8 research outputs found

    Design of efficient Java message-passing collectives on multi-core clusters

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in The Journal of Supercomputing. The final authenticated version is available online at: https://doi.org/10.1007/s11227-010-0464-5[Abstract] This paper presents a scalable and efficient Message-Passing in Java (MPJ) collective communication library for parallel computing on multi-core architectures. The continuous increase in the number of cores per processor underscores the need for scalable parallel solutions. Moreover, current system deployments are usually multi-core clusters, a hybrid shared/distributed memory architecture which increases the complexity of communication protocols. Here, Java represents an attractive choice for the development of communication middleware for these systems, as it provides built-in networking and multithreading support. As the gap between Java and compiled languages performance has been narrowing for the last years, Java is an emerging option for High Performance Computing (HPC). Our MPJ collective communication library increases Java HPC applications performance on multi-core clusters: (1) providing multi-core aware collective primitives; (2) implementing several algorithms (up to six) per collective operation, whereas publicly available MPJ libraries are usually restricted to one algorithm; (3) analyzing the efficiency of thread-based collective operations; (4) selecting at runtime the most efficient algorithm depending on the specific multi-core system architecture, and the number of cores and message length involved in the collective operation; (5) supporting the automatic performance tuning of the collectives depending on the system and communication parameters; and (6) allowing its integration in any MPJ implementation as it is based on MPJ point-to-point primitives. A performance evaluation on an InfiniBand and Gigabit Ethernet multi-core cluster has shown that the implemented collectives significantly outperform the original ones, as well as higher speedups when analyzing the impact of their use on collective communications intensive Java HPC applications. Finally, the presented library has been successfully integrated in MPJ Express (http://mpj-express.org), and will be distributed with the next release.Ministerio de Ciencia e Innovación; TIN2010-16735Ministerio de Educación; FPU; AP2009-2112Xunta de Galicia; PGIDIT06PXIB105228P

    Study of Parallel Programming Models on Computer Clusters with Accelerators

    Get PDF
    In order to reach exascale computing capability, accelerators have become a crucial part in developing supercomputers. This work examines the potential of two latest acceleration technologies, Intel Many Integrated Core (MIC) Architecture and Graphics Processing Units (GPUs). This thesis applies three benchmarks under 3 different configurations, MPI+CPU, MPI+GPU, and MPI+MIC. The benchmarks include intensely communicating application, loosely communicating application, and embarrassingly parallel application. This thesis also carries out a detailed study on the scalability and performance of MIC processors under two programming models, i.e., offload model and native model, on the Beacon computer cluster. According to different benchmarks, the results demonstrate different performance and scalability between GPU and MIC. (1) For embarrassingly parallel case, GPU-based parallel implementation on Keeneland computer cluster has a better performance than other accelerators. However, MIC-based parallel implementation shows a better scalability than the implementation on GPU. The performances of native model and offload model on MIC are very close. (2) For loosely communicating case, the performances on GPU and MIC are very close. The MIC-based parallel implementation still demonstrates a strong scalability when using 120 MIC processors in computation. (3) For the intensely communicating case, the MPI implementations on CPUs and GPUs both have a strong scalability. GPUs can consistently outperform other accelerators. However, the MIC-based implementation cannot scale quite well. The performance of different models on MIC is different from the performance of embarrassingly parallel case. Native model can consistently outperform the offload model by ~10 times. And there is not much performance gain when allocating more MIC processors. The increase of communication cost will offset the performance gain from the reduced workload on each MIC core. This work also tests the performance capabilities and scalability by changing the number of threads on each MIC card form 10 to 60. When using different number of threads for the intensely communicating case, it shows different capabilities of the MIC based offload model. The scalability can hold when the number of threads increases from 10 to 30, and the computation time reduces with a smaller rate from 30 threads to 50 threads. When using 60 threads, the computation time will increase. The reason is that the communication overhead will offset the performance gain when 60 threads are deployed on a single MIC card

    High performance Java for multi-core systems

    Get PDF
    [Abstract] The interest in Java within the High Performance Computing (HPC) community has been rising during the last years thanks to its noticeable performance improvements and its productivity features. In a context where the trend to increase the number of cores per processor is leading to the generalization of many-core processors and accelerators, multithreading as an inherent feature of the language makes Java extremely interesting to exploit the performance provided by multi- and manycore architectures. This PhD Thesis presents a thorough analysis of the current state of the art regarding multi- and many-core programming in Java and provides the design, implementation and evaluation of several solutions to enable Java for the many-core era. To achieve this, a shared memory message-passing solution has been implemented to provide shared memory programming with the scalability of distributed memory paradigms, also with the benefits of a portable programming model that allows the developed codes to be run on distributed memory systems. Moreover, representative collective operations, involving computation and communication among different processes or threads, have been optimized, also introducing in Java new features for scalability from the MPI 3.0 specification, namely nonblocking collectives. Regarding the exploitation of many-core architectures, the lack of direct Java support forces to resort to wrappers or higher-level solutions to translate Java code into CUDA or OpenCL. The most relevant among these solutions have been evaluated and thoroughly analyzed in terms of performance and productivity. Guidelines for taking advantage of shared memory environments have been derived during the analysis and development of the proposed solutions, and the main conclusion is that the use of Java for shared memory programming on multi- and many-core systems is not only productive but also can provide high performance competitive results. However, in order to effectively take advantage of the underlying multi- and many-core architectures, the key is the availability of optimized middleware that abstracts multithreading details from the user, like the one proposed in this Thesis, and the optimization of common operations like collective communications

    Proceedings of the 7th International Conference on PGAS Programming Models

    Get PDF

    Partial aggregation for collective communication in distributed memory machines

    Get PDF
    High Performance Computing (HPC) systems interconnect a large number of Processing Elements (PEs) in high-bandwidth networks to simulate complex scientific problems. The increasing scale of HPC systems poses great challenges on algorithm designers. As the average distance between PEs increases, data movement across hierarchical memory subsystems introduces high latency. Minimizing latency is particularly challenging in collective communications, where many PEs may interact in complex communication patterns. Although collective communications can be optimized for network-level parallelism, occasional synchronization delays due to dependencies in the communication pattern degrade application performance. To reduce the performance impact of communication and synchronization costs, parallel algorithms are designed with sophisticated latency hiding techniques. The principle is to interleave computation with asynchronous communication, which increases the overall occupancy of compute cores. However, collective communication primitives abstract parallelism which limits the integration of latency hiding techniques. Approaches to work around these limitations either modify the algorithmic structure of application codes, or replace collective primitives with verbose low-level communication calls. While these approaches give fine-grained control for latency hiding, implementing collective communication algorithms is challenging and requires expertise knowledge about HPC network topologies. A collective communication pattern is commonly described as a Directed Acyclic Graph (DAG) where a set of PEs, represented as vertices, resolve data dependencies through communication along the edges. Our approach improves latency hiding in collective communication through partial aggregation. Based on mathematical rules of binary operations and homomorphism, we expose data parallelism in a respective DAG to overlap computation with communication. The proposed concepts are implemented and evaluated with a subset of collective primitives in the Message Passing Interface (MPI), an established communication standard in scientific computing. An experimental analysis with communication-bound microbenchmarks shows considerable performance benefits for the evaluated collective primitives. A detailed case study with a large-scale distributed sort algorithm demonstrates, how partial aggregation significantly improves performance in data-intensive scenarios. Besides better latency hiding capabilities with collective communication primitives, our approach enables further optimizations of their implementations within MPI libraries. The vast amount of asynchronous programming models, which are actively studied in the HPC community, benefit from partial aggregation in collective communication patterns. Future work can utilize partial aggregation to improve the interaction of MPI collectives with acclerator architectures, and to design more efficient communication algorithms

    High Performance Alltoall and Allgather Designs for InfiniBand MIC Clusters

    No full text

    Scalable String and Suffix Sorting: Algorithms, Techniques, and Tools

    Get PDF
    This dissertation focuses on two fundamental sorting problems: string sorting and suffix sorting. The first part considers parallel string sorting on shared-memory multi-core machines, the second part external memory suffix sorting using the induced sorting principle, and the third part distributed external memory suffix sorting with a new distributed algorithmic big data framework named Thrill.Comment: 396 pages, dissertation, Karlsruher Instituts f\"ur Technologie (2018). arXiv admin note: text overlap with arXiv:1101.3448 by other author
    corecore