30,531 research outputs found

    Probabilistic Wind Power and Electricity Load Forecasting with Echo State Networks

    Get PDF
    With the introduction of distributed generation and the establishment of smart grids, several new challenges in energy analytics arose. These challenges can be solved with a specific type of recurrent neural networks called echo state networks, which can handle the combination of both weather and power consumption or production depending on the dataset to make predictions. Echo state networks are particularly suitable for time series forecasting tasks. Having accurate energy forecasts is paramount to assure grid operation and power provision remains reliable during peak hours when the consumption is high. The majority of load forecasting algorithms do not produce prediction intervals with coverage guarantees but rather produce simple point estimates. Information about uncer- tainty and prediction intervals is rarely useless. It helps grid operators change strategies for configuring the grid from conservative to risk-based ones and assess the reliability of operations. A popular way of producing prediction intervals in regression tasks is by applying Bayesian regression as the regression algorithm. As Bayesian regression is done by sampling, it nat- urally lends itself to generating intervals. However, Bayesian regression is not guaranteed to satisfy the designed coverage level for finite samples. This thesis aims to modify the traditional echo state network model to produce marginally valid and calibrated prediction intervals. This is done by replacing the standard linear regression method with Bayesian linear regression while simultaneously reducing the di- mensions to speed up the computation times. Afterward, a novel calibration technique for time series forecasting is applied in order to obtain said valid prediction intervals. The experiments are conducted using three different time series, two of them being a time series of electricity load. One is univariate, and the other is bivariate. The third time series is a wind power production time series. The proposed method showed promising results for all three datasets while significantly reducing computation times in the sampling ste

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Predicting wind energy generation with recurrent neural networks

    Get PDF
    Decarbonizing the energy supply requires extensive use of renewable generation. Their intermittent nature requires to obtain accurate forecasts of future generation, at short, mid and long term. Wind Energy generation prediction is based on the ability to forecast wind intensity. This problem has been approached using two families of methods one based on weather forecasting input (Numerical Weather Model Prediction) and the other based on past observations (time series forecasting). This work deals with the application of Deep Learning to wind time series. Wind Time series are non-linear and non-stationary, making their forecasting very challenging. Deep neural networks have shown their success recently for problems involving sequences with non-linear behavior. In this work, we perform experiments comparing the capability of different neural network architectures for multi-step forecasting in a 12 h ahead prediction. For the Time Series input we used the US National Renewable Energy Laboratory’s WIND Dataset [3], (the largest available wind and energy dataset with over 120,000 physical wind sites), this dataset is evenly spread across all the North America geography which has allowed us to obtain conclusions on the relationship between physical site complexity and forecast accuracy. In the preliminary results of this work it can be seen a relationship between the error (measured as R2R2 ) and the complexity of the terrain, and a better accuracy score by some Recurrent Neural Network Architectures.Peer ReviewedPostprint (author's final draft

    “Dust in the wind...”, deep learning application to wind energy time series forecasting

    Get PDF
    To balance electricity production and demand, it is required to use different prediction techniques extensively. Renewable energy, due to its intermittency, increases the complexity and uncertainty of forecasting, and the resulting accuracy impacts all the different players acting around the electricity systems around the world like generators, distributors, retailers, or consumers. Wind forecasting can be done under two major approaches, using meteorological numerical prediction models or based on pure time series input. Deep learning is appearing as a new method that can be used for wind energy prediction. This work develops several deep learning architectures and shows their performance when applied to wind time series. The models have been tested with the most extensive wind dataset available, the National Renewable Laboratory Wind Toolkit, a dataset with 126,692 wind points in North America. The architectures designed are based on different approaches, Multi-Layer Perceptron Networks (MLP), Convolutional Networks (CNN), and Recurrent Networks (RNN). These deep learning architectures have been tested to obtain predictions in a 12-h ahead horizon, and the accuracy is measured with the coefficient of determination, the R² method. The application of the models to wind sites evenly distributed in the North America geography allows us to infer several conclusions on the relationships between methods, terrain, and forecasting complexity. The results show differences between the models and confirm the superior capabilities on the use of deep learning techniques for wind speed forecasting from wind time series data.Peer ReviewedPostprint (published version

    Predictive control of wind turbines by considering wind speed forecasting techniques

    Get PDF
    A wind turbine system is operated such that the points of wind rotor curve and electrical generator curve coincide. In order to obtain maximum power output of a wind turbine generator system, it is necessary to drive the wind turbine at an optimal rotor speed for a particular wind speed. A Maximum Power Point Tracking (MPPT) controller is used for this purpose. In fixed-pitch variable-speed wind turbines, wind-rotor parameters are fixed and the restoring torque of the generator needs to be adjusted to maintain optimum rotor speed at a particular wind speed for optimum power output. In turbulent wind environment, control of variable-speed fixed-pitch wind turbine systems to continuously operate at the maximum power points becomes difficult due to fluctuation of wind speeds. In this paper, wind speed forecasting techniques will be considered for predictive optimum control system of wind turbines

    Wind energy forecasting with neural networks: a literature review

    Get PDF
    Renewable energy is intermittent by nature and to integrate this energy into the Grid while assuring safety and stability the accurate forecasting of there newable energy generation is critical. Wind Energy prediction is based on the ability to forecast wind. There are many methods for wind forecasting based on the statistical properties of the wind time series and in the integration of meteorological information, these methods are being used commercially around the world. But one family of new methods for wind power fore castingis surging based on Machine Learning Deep Learning techniques. This paper analyses the characteristics of the Wind Speed time series data and performs a literature review of recently published works of wind power forecasting using Machine Learning approaches (neural and deep learning networks), which have been published in the last few years.Peer ReviewedPostprint (published version

    Exploring Interpretable LSTM Neural Networks over Multi-Variable Data

    Full text link
    For recurrent neural networks trained on time series with target and exogenous variables, in addition to accurate prediction, it is also desired to provide interpretable insights into the data. In this paper, we explore the structure of LSTM recurrent neural networks to learn variable-wise hidden states, with the aim to capture different dynamics in multi-variable time series and distinguish the contribution of variables to the prediction. With these variable-wise hidden states, a mixture attention mechanism is proposed to model the generative process of the target. Then we develop associated training methods to jointly learn network parameters, variable and temporal importance w.r.t the prediction of the target variable. Extensive experiments on real datasets demonstrate enhanced prediction performance by capturing the dynamics of different variables. Meanwhile, we evaluate the interpretation results both qualitatively and quantitatively. It exhibits the prospect as an end-to-end framework for both forecasting and knowledge extraction over multi-variable data.Comment: Accepted to International Conference on Machine Learning (ICML), 201

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features
    • …
    corecore