2,334 research outputs found

    Neutrino Observatories Can Characterize Cosmic Sources and Neutrino Properties

    Get PDF
    Neutrino telescopes that measure relative fluxes of ultrahigh-energy νe,νμ,ντ\nu_{e}, \nu_{\mu}, \nu_{\tau} can give information about the location and characteristics of sources, about neutrino mixing, and can test for neutrino instability and for departures from CPT invariance in the neutrino sector. We investigate consequences of neutrino mixing for the neutrino flux arriving at Earth, and consider how terrestrial measurements can characterize distant sources. We contrast mixtures that arise from neutrino oscillations with those signaling neutrino decays. We stress the importance of measuring νe,νμ,ντ\nu_{e}, \nu_{\mu}, \nu_{\tau} fluxes in neutrino observatories.Comment: 9 RevTeX pages, 4 figure

    S4Net: Single Stage Salient-Instance Segmentation

    Full text link
    We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{https://github.com/RuochenFan/S4Net}

    Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns

    Get PDF
    In core-collapse supernovae, the nu_e and anti-nu_e species may experience collective flavor swaps to non-electron species nu_x, within energy intervals limited by relatively sharp boundaries ("splits"). These phenomena appear to depend sensitively upon the initial energy spectra and luminosities. We investigate the effect of generic variations of the fractional luminosities (l_e, l_{anti-e}, l_x) with respect to the usual "energy equipartition" case (1/6, 1/6, 1/6), within an early-time supernova scenario with fixed thermal spectra and total luminosity. We represent the constraint l_e+l_{anti-e}+4l_x=1 in a ternary diagram, which is explored via numerical experiments (in single-angle approximation) over an evenly-spaced grid of points. In inverted hierarchy, single splits arise in most cases, but an abrupt transition to double splits is observed for a few points surrounding the equipartition one. In normal hierarchy, collective effects turn out to be unobservable at all grid points but one, where single splits occur. Admissible deviations from equipartition may thus induce dramatic changes in the shape of supernova (anti)neutrino spectra. The observed patterns are interpreted in terms of initial flavor polarization vectors (defining boundaries for the single/double split transitions), lepton number conservation, and minimization of potential energy.Comment: 24 pages, including 14 figures (1 section with 2 figures added). Accepted for publication in JCA

    Definable Ellipsoid Method, Sums-of-Squares Proofs, and the Isomorphism Problem

    Get PDF
    The ellipsoid method is an algorithm that solves the (weak) feasibility and linear optimization problems for convex sets by making oracle calls to their (weak) separation problem. We observe that the previously known method for showing that this reduction can be done in fixed-point logic with counting (FPC) for linear and semidefinite programs applies to any family of explicitly bounded convex sets. We use this observation to show that the exact feasibility problem for semidefinite programs is expressible in the infinitary version of FPC. As a corollary we get that, for the isomorphism problem, the Lasserre/Sums-of-Squares semidefinite programming hierarchy of relaxations collapses to the Sherali-Adams linear programming hierarchy, up to a small loss in the degree

    Definable ellipsoid method, sums-of-squares proofs, and the isomorphism problem

    Get PDF
    The ellipsoid method is an algorithm that solves the (weak) feasibility and linear optimization problems for convex sets by making oracle calls to their (weak) separation problem. We observe that the previously known method for showing that this reduction can be done in fixed-point logic with counting (FPC) for linear and semidefinite programs applies to any family of explicitly bounded convex sets. We use this observation to show that the exact feasibility problem for semidefinite programs is expressible in the infinitary version of FPC. As a corollary we get that, for the graph isomorphism problem, the Lasserre/Sums-of-Squares semidefinite programming hierarchy of relaxations collapses to the Sherali-Adams linear programming hierarchy, up to a small loss in the degree. © 2018 ACM.Peer ReviewedPostprint (author's final draft

    On Elliptical Billiards in the Lobachevsky Space and associated Geodesic Hierarchies

    Full text link
    We derive Cayley's type conditions for periodical trajectories for the billiard within an ellipsoid in the Lobachevsky space. It appears that these new conditions are of the same form as those obtained before for the Euclidean case. We explain this coincidence by using theory of geodesically equivalent metrics and show that Lobachevsky and Euclidean elliptic billiards can be naturally considered as a part of a hierarchy of integrable elliptical billiards.Comment: 14 pages, to appear in Journal of Geometry and Physic
    corecore