CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Definable ellipsoid method, sums-of-squares proofs, and the isomorphism problem
Authors
Albert Atserias
Joanna Ochremiak
Publication date
1 January 2018
Publisher
'Association for Computing Machinery (ACM)'
Doi
Abstract
The ellipsoid method is an algorithm that solves the (weak) feasibility and linear optimization problems for convex sets by making oracle calls to their (weak) separation problem. We observe that the previously known method for showing that this reduction can be done in fixed-point logic with counting (FPC) for linear and semidefinite programs applies to any family of explicitly bounded convex sets. We use this observation to show that the exact feasibility problem for semidefinite programs is expressible in the infinitary version of FPC. As a corollary we get that, for the graph isomorphism problem, the Lasserre/Sums-of-Squares semidefinite programming hierarchy of relaxations collapses to the Sherali-Adams linear programming hierarchy, up to a small loss in the degree. © 2018 ACM.Peer ReviewedPostprint (author's final draft
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 10/08/2021
UPCommons. Portal del coneixement obert de la UPC
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/129...
Last time updated on 06/03/2019
UPCommons
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:upcommons.upc.edu:2117/129...
Last time updated on 17/04/2020