22,231 research outputs found

    Supervised learning on graphs of spatio-temporal similarity in satellite image sequences

    Get PDF
    High resolution satellite image sequences are multidimensional signals composed of spatio-temporal patterns associated to numerous and various phenomena. Bayesian methods have been previously proposed in (Heas and Datcu, 2005) to code the information contained in satellite image sequences in a graph representation using Bayesian methods. Based on such a representation, this paper further presents a supervised learning methodology of semantics associated to spatio-temporal patterns occurring in satellite image sequences. It enables the recognition and the probabilistic retrieval of similar events. Indeed, graphs are attached to statistical models for spatio-temporal processes, which at their turn describe physical changes in the observed scene. Therefore, we adjust a parametric model evaluating similarity types between graph patterns in order to represent user-specific semantics attached to spatio-temporal phenomena. The learning step is performed by the incremental definition of similarity types via user-provided spatio-temporal pattern examples attached to positive or/and negative semantics. From these examples, probabilities are inferred using a Bayesian network and a Dirichlet model. This enables to links user interest to a specific similarity model between graph patterns. According to the current state of learning, semantic posterior probabilities are updated for all possible graph patterns so that similar spatio-temporal phenomena can be recognized and retrieved from the image sequence. Few experiments performed on a multi-spectral SPOT image sequence illustrate the proposed spatio-temporal recognition method

    Scalable NIDS via Negative Pattern Matching and Exclusive Pattern Matching

    Full text link
    In this paper, we identify the unique challenges in deploying parallelism on TCAM-based pattern matching for Network Intrusion Detection Systems (NIDSes). We resolve two critical issues when designing scalable parallelism specifically for pattern matching modules: 1) how to enable fine-grained parallelism in pursuit of effective load balancing and desirable speedup simultaneously; and 2) how to reconcile the tension between parallel processing speedup and prohibitive TCAM power consumption. To this end, we first propose the novel concept of Negative Pattern Matching to partition flows, by which the number of TCAM lookups can be significantly reduced, and the resulting (fine-grained) flow segments can be inspected in parallel without incurring false negatives. Then we propose the notion of Exclusive Pattern Matching to divide the entire pattern set into multiple subsets which can later be matched against selectively and independently without affecting the correctness. We show that Exclusive Pattern Matching enables the adoption of smaller and faster TCAM blocks and improves both the pattern matching speed and scalability. Finally, our theoretical and experimental results validate that the above two concepts are inherently complementary, enabling our integrated scheme to provide performance gain in any scenario (with either clean or dirty traffic).Department of ComputingRefereed conference pape

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Data Asset Management and Visualization Based on Intelligent Algorithm: Taking Power Equipment Data as An Example

    Get PDF
    Data asset management is adequate in solving the problem of data silence and data idleness for enterprises. Through intelligent algorithms such as neural network, in-depth learning and block chain, and guided by business needs, it extracts, analyzes and visualizes the existing business precipitation data, and forms scattered and disordered data into valuable information to support the development of the company, so as to activate data assets. Taking the management data of electric power equipment as an example, this paper proposes a method of fusion of multiple intelligent control algorithms. The specific modules include the fusion of heterogeneous data; feature extraction of equipment asset management data based on machine learning; intelligent control of multi-objective optimization environment based on energy consumption data; BIM data visualization based on data classification-energy extraction-neural network (SVM-CART-SAE-DNN) algorithm fusion. The algorithm can effectively improve the efficiency of equipment management and enhance the security and economy of power infrastructure through intelligent control of equipment management
    corecore