783 research outputs found

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Get PDF
    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    Prototype of Fault Adaptive Embedded Software for Large-Scale Real-Time Systems

    Get PDF
    This paper describes a comprehensive prototype of large-scale fault adaptive embedded software developed for the proposed Fermilab BTeV high energy physics experiment. Lightweight self-optimizing agents embedded within Level 1 of the prototype are responsible for proactive and reactive monitoring and mitigation based on specified layers of competence. The agents are self-protecting, detecting cascading failures using a distributed approach. Adaptive, reconfigurable, and mobile objects for reliablility are designed to be self-configuring to adapt automatically to dynamically changing environments. These objects provide a self-healing layer with the ability to discover, diagnose, and react to discontinuities in real-time processing. A generic modeling environment was developed to facilitate design and implementation of hardware resource specifications, application data flow, and failure mitigation strategies. Level 1 of the planned BTeV trigger system alone will consist of 2500 DSPs, so the number of components and intractable fault scenarios involved make it impossible to design an `expert system' that applies traditional centralized mitigative strategies based on rules capturing every possible system state. Instead, a distributed reactive approach is implemented using the tools and methodologies developed by the Real-Time Embedded Systems group.Comment: 2nd Workshop on Engineering of Autonomic Systems (EASe), in the 12th Annual IEEE International Conference and Workshop on the Engineering of Computer Based Systems (ECBS), Washington, DC, April, 200

    Cross-layer fault tolerance in networks-on-chip

    Get PDF
    The design of Networks-on-Chip follows the Open Systems Interconnection (OSI) reference model. The OSI model defines strictly separated network abstraction layers and specifies their functionality. Each layer has layer-specific information about the network that can be exclusively accessed by the methods of the layer. Adhering to the strict layer boundaries, however, leads to methods of the individual layers working in isolation from each other. This lack of interaction between methods is disadvantageous for fault diagnosis and fault tolerance in Networks-on-Chip as it results in solutions that have a high effort in terms of the time and implementation costs required to deal with faults. For Networks-on-Chip cross-layer design is considered as a promising method to remedy these shortcomings. It removes the strict layer boundaries by the exchange of information between layers. This interaction enables methods of different layers to cooperate, and thus, deal with faults more efficiently. Furthermore, providing lower layer information to the software allows hardware methods to be implemented as software tasks resulting in a reduction of the hardware complexity. The goal of this dissertation is the investigation of cross-layer design for fault diagnosis and fault tolerance in Networks-on-Chip. For fault diagnosis a scheme is proposed that allows the interaction of protocol-based diagnosis of the transport layer with functional diagnosis of the network layer and structural diagnosis of the physical layer by exchanging diagnostic information. The techniques use this information for optimizing their own diagnosis process. For protocol-based diagnosis on the transport layer, a diagnosis protocol is proposed that is able to locate faulty links, switches, and crossbar connections. For this purpose, the technique utilizes available information of lower layers. As proof of concept for the proposed interaction scheme, the diagnosis protocol is combined with a functional and a structural diagnosis approach and the performance and diagnosis quality of the resulting combinations is investigated. The results show that the combinations of the diagnosis protocol with one of the lower layer techniques have a considerably reduced fault localization latency compared to the functional and the structural standalone techniques. This reduction, however, comes at the expense of a reduced diagnosis quality. In terms of fault tolerance, the focus of this dissertation is on the design and implementation of cross-layer approaches utilizing software methods to provide fault tolerance for network layer routings. Two approaches for different routings are presented. The requirements to provide information of lower layers to the software using the available Network-on-Chip resources and interfaces for data communication are discussed. The concepts of two mechanisms of the data link layer are presented for converting status information into communicable units and for preventing communication resources from being blocked. In the first approach, software-based packet rerouting is proposed. By incorporating information from different layers, this approach provides fault tolerance for deterministic network layer routings. As specialization of software-based rerouting, dimension-order XY rerouting is presented. In the second approach, a reconfigurable routing for Networks-on-Chip with logical hierarchy is proposed in which cross-layer interaction is used to enable hierarchical units to manage themselves autonomously and to reconfigure the routing. Both approaches are evaluated regarding their performance as well as their implementation costs. In a final study, the cross-layer diagnosis technique and cross-layer fault tolerance approaches are combined. The information obtained by the diagnosis technique is used by the fault tolerance approaches for packet rerouting or for routing reconfiguration. The combinations are evaluated regarding their impact on Networks-on-Chip performance. The results show that the crosslayer information exchange with software has a considerable impact on performance when the amount of information becomes too large. In case of crosslayer diagnosis, however, the impact on Networks-on-Chip performance is significantly lower compared to functional and structural diagnosis

    An incrementally scalable and cost-efficient interconnection structure for datacenters

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The explosive growth in the volume of data storing and complexity of data processing drive data center networks (DCNs) to become incrementally scalable and cost-efficient while to maintain high network capacity and fault tolerance. To address these challenges, this paper proposes a new structure, called Totoro, which is defined recursively and hierarchically: dual-port servers and commodity switches are used to make Totoro affordable; a bunch of servers are connected to an intra-switch to form a basic partition; to construct a high-level structure, a half of the backup ports of servers in the low-level structures are connected by inter-switches in order to incrementally build a larger partition. Totoro is incrementally scalable since expanding the structure does not require any rewiring or routing alteration. We further design a distributed and fault-tolerant routing protocol to handle multiple types of failures. Experimental results demonstrate that Totoro is able to satisfy the demands of fault tolerance and high throughput. Furthermore, architecture analysis indicates that Totoro balances between performance and costs in terms of robustness, structural properties, bandwidth, economic costs and power consumption.This work is supported by the NSF of China under grant (no. 61272073, and no. 61572232), the NSF of Guangdong Province (no. S2013020012865)

    A self-reconfigurable hardware architecture for mesh arrays using single/double vertical track switches

    Get PDF
    科研費報告書収録論文(課題番号:14380138・基盤研究(B)(2)・14~16/研究代表者:堀口, 進 死亡(奥様 堀口悦子)/超高速ノンブロック・ネットワーク構成方式に関する研究

    Improving Scalability and Usability of Parallel Runtime Environments for High Availability and High Performance Systems

    Get PDF
    The number of processors embedded in high performance computing platforms is growing daily to solve larger and more complex problems. Hence, parallel runtime environments have to support and adapt to the underlying platforms that require scalability and fault management in more and more dynamic environments. This dissertation aims to analyze, understand and improve the state of the art mechanisms for managing highly dynamic, large scale applications. This dissertation demonstrates that the use of new scalable and fault-tolerant topologies, combined with rerouting techniques, builds parallel runtime environments, which are able to efficiently and reliably deliver sets of information to a large number of processes. Several important graph properties are provided to illustrate the theoretical capability of these topologies in terms of both scalability and fault-tolerance, such as reasonable degree, regular graph, low diameter, symmetric graph, low cost factor, low message traffic density, optimal connectivity, low fault-diameter and strongly resilient. The dissertation builds a communication framework based on these topologies to support parallel runtime environments. Such a framework can handle multiple types of messages, e.g., unicast, multicast, broadcast and all-gather. Additionally, the communication framework has been formally verified to work in both normal and failure circumstances without creating any of the common problems such as broadcast storm, deadlock and non-progress cycle
    corecore