295 research outputs found

    Cross-Lingual Dependency Parsing for Closely Related Languages - Helsinki's Submission to VarDial 2017

    Full text link
    This paper describes the submission from the University of Helsinki to the shared task on cross-lingual dependency parsing at VarDial 2017. We present work on annotation projection and treebank translation that gave good results for all three target languages in the test set. In particular, Slovak seems to work well with information coming from the Czech treebank, which is in line with related work. The attachment scores for cross-lingual models even surpass the fully supervised models trained on the target language treebank. Croatian is the most difficult language in the test set and the improvements over the baseline are rather modest. Norwegian works best with information coming from Swedish whereas Danish contributes surprisingly little

    CoNLL-Merge: Efficient Harmonization of Concurrent Tokenization and Textual Variation

    Get PDF
    The proper detection of tokens in of running text represents the initial processing step in modular NLP pipelines. But strategies for defining these minimal units can differ, and conflicting analyses of the same text seriously limit the integration of subsequent linguistic annotations into a shared representation. As a solution, we introduce CoNLL Merge, a practical tool for harmonizing TSV-related data models, as they occur, e.g., in multi-layer corpora with non-sequential, concurrent tokenizations, but also in ensemble combinations in Natural Language Processing. CoNLL Merge works unsupervised, requires no manual intervention or external data sources, and comes with a flexible API for fully automated merging routines, validity and sanity checks. Users can chose from several merging strategies, and either preserve a reference tokenization (with possible losses of annotation granularity), create a common tokenization layer consisting of minimal shared subtokens (loss-less in terms of annotation granularity, destructive against a reference tokenization), or present tokenization clashes (loss-less and non-destructive, but introducing empty tokens as place-holders for unaligned elements). We demonstrate the applicability of the tool on two use cases from natural language processing and computational philology

    CoNLL-Merge: efficient harmonization of concurrent tokenization and textual variation

    Get PDF
    The proper detection of tokens in of running text represents the initial processing step in modular NLP pipelines. But strategies for defining these minimal units can differ, and conflicting analyses of the same text seriously limit the integration of subsequent linguistic annotations into a shared representation. As a solution, we introduce CoNLL Merge, a practical tool for harmonizing TSV-related data models, as they occur, e.g., in multi-layer corpora with non-sequential, concurrent tokenizations, but also in ensemble combinations in Natural Language Processing. CoNLL Merge works unsupervised, requires no manual intervention or external data sources, and comes with a flexible API for fully automated merging routines, validity and sanity checks. Users can chose from several merging strategies, and either preserve a reference tokenization (with possible losses of annotation granularity), create a common tokenization layer consisting of minimal shared subtokens (loss-less in terms of annotation granularity, destructive against a reference tokenization), or present tokenization clashes (loss-less and non-destructive, but introducing empty tokens as place-holders for unaligned elements). We demonstrate the applicability of the tool on two use cases from natural language processing and computational philology

    Synthetic Treebanking for Cross-Lingual Dependency Parsing

    Get PDF
    accepted to appear in the special issue on Cross-Language Algorithms and ApplicationsPeer reviewe

    An Automated Framework for the Extraction of Semantic Legal Metadata from Legal Texts

    Get PDF
    Semantic legal metadata provides information that helps with understanding and interpreting legal provisions. Such metadata is therefore important for the systematic analysis of legal requirements. However, manually enhancing a large legal corpus with semantic metadata is prohibitively expensive. Our work is motivated by two observations: (1) the existing requirements engineering (RE) literature does not provide a harmonized view on the semantic metadata types that are useful for legal requirements analysis; (2) automated support for the extraction of semantic legal metadata is scarce, and it does not exploit the full potential of artificial intelligence technologies, notably natural language processing (NLP) and machine learning (ML). Our objective is to take steps toward overcoming these limitations. To do so, we review and reconcile the semantic legal metadata types proposed in the RE literature. Subsequently, we devise an automated extraction approach for the identified metadata types using NLP and ML. We evaluate our approach through two case studies over the Luxembourgish legislation. Our results indicate a high accuracy in the generation of metadata annotations. In particular, in the two case studies, we were able to obtain precision scores of 97.2% and 82.4% and recall scores of 94.9% and 92.4%

    Explorations in Sentence Fusion

    Get PDF

    New Treebank or Repurposed? On the Feasibility of Cross-Lingual Parsing of Romance Languages with Universal Dependencies

    Get PDF
    This is the final peer-reviewed manuscript that was accepted for publication in Natural Language Engineering. Changes resulting from the publishing process, such as editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document.[Abstract] This paper addresses the feasibility of cross-lingual parsing with Universal Dependencies (UD) between Romance languages, analyzing its performance when compared to the use of manually annotated resources of the target languages. Several experiments take into account factors such as the lexical distance between the source and target varieties, the impact of delexicalization, the combination of different source treebanks or the adaptation of resources to the target language, among others. The results of these evaluations show that the direct application of a parser from one Romance language to another reaches similar labeled attachment score (LAS) values to those obtained with a manual annotation of about 3,000 tokens in the target language, and unlabeled attachment score (UAS) results equivalent to the use of around 7,000 tokens, depending on the case. These numbers can noticeably increase by performing a focused selection of the source treebanks. Furthermore, the removal of the words in the training corpus (delexicalization) is not useful in most cases of cross-lingual parsing of Romance languages. The lessons learned with the performed experiments were used to build a new UD treebank for Galician, with 1,000 sentences manually corrected after an automatic cross-lingual annotation. Several evaluations in this new resource show that a cross-lingual parser built with the best combination and adaptation of the source treebanks performs better (77 percent LAS and 82 percent UAS) than using more than 16,000 (for LAS results) and more than 20,000 (UAS) manually labeled tokens of Galician.Ministerio de Economía y Competitividad; FJCI-2014-22853Ministerio de Economía y Competitividad; FFI2014-51978-C2-1-RMinisterio de Economía y Competitividad; FFI2014-51978-C2-2-

    Learning Language from a Large (Unannotated) Corpus

    Full text link
    A novel approach to the fully automated, unsupervised extraction of dependency grammars and associated syntax-to-semantic-relationship mappings from large text corpora is described. The suggested approach builds on the authors' prior work with the Link Grammar, RelEx and OpenCog systems, as well as on a number of prior papers and approaches from the statistical language learning literature. If successful, this approach would enable the mining of all the information needed to power a natural language comprehension and generation system, directly from a large, unannotated corpus.Comment: 29 pages, 5 figures, research proposa

    Resourcing machine translation with parallel treebanks

    Get PDF
    The benefits of syntax-based approaches to data-driven machine translation (MT) are clear: given the right model, a combination of hierarchical structure, constituent labels and morphological information can be exploited to produce more fluent, grammatical translation output. This has been demonstrated by the recent shift in research focus towards such linguistically motivated approaches. However, one issue facing developers of such models that is not encountered in the development of state-of-the-art string-based statistical MT (SMT) systems is the lack of available syntactically annotated training data for many languages. In this thesis, we propose a solution to the problem of limited resources for syntax-based MT by introducing a novel sub-sentential alignment algorithm for the induction of translational equivalence links between pairs of phrase structure trees. This algorithm, which operates on a language pair-independent basis, allows for the automatic generation of large-scale parallel treebanks which are useful not only for machine translation, but also across a variety of natural language processing tasks. We demonstrate the viability of our automatically generated parallel treebanks by means of a thorough evaluation process during which they are compared to a manually annotated gold standard parallel treebank both intrinsically and in an MT task. Following this, we hypothesise that these parallel treebanks are not only useful in syntax-based MT, but also have the potential to be exploited in other paradigms of MT. To this end, we carry out a large number of experiments across a variety of data sets and language pairs, in which we exploit the information encoded within the parallel treebanks in various components of phrase-based statistical MT systems. We demonstrate that improvements in translation accuracy can be achieved by enhancing SMT phrase tables with linguistically motivated phrase pairs extracted from a parallel treebank, while showing that a number of other features in SMT can also be supplemented with varying degrees of effectiveness. Finally, we examine ways in which synchronous grammars extracted from parallel treebanks can improve the quality of translation output, focussing on real translation examples from a syntax-based MT system
    corecore