12 research outputs found

    Optimizing Collective Communication for Scalable Scientific Computing and Deep Learning

    Get PDF
    In the realm of distributed computing, collective operations involve coordinated communication and synchronization among multiple processing units, enabling efficient data exchange and collaboration. Scientific applications, such as simulations, computational fluid dynamics, and scalable deep learning, require complex computations that can be parallelized across multiple nodes in a distributed system. These applications often involve data-dependent communication patterns, where collective operations are critical for achieving high performance in data exchange. Optimizing collective operations for scientific applications and deep learning involves improving the algorithms, communication patterns, and data distribution strategies to minimize communication overhead and maximize computational efficiency. Within the context of this dissertation, the specific focus is on optimizing the alltoall operation in 3D Fast Fourier Transform (FFT) applications and the allreduce operation in parallel deep learning, particularly on High-Performance Computing (HPC) systems. Advanced communication algorithms and methods are explored and implemented to improve communication efficiency, consequently enhancing the overall performance of 3D FFT applications. Furthermore, this dissertation investigates the identification of performance bottlenecks during collective communication over Horovod on distributed systems. These bottlenecks are addressed by proposing an optimized parallel communication pattern specifically tailored to alleviate the aforementioned limitations during the training phase in distributed deep learning. The objective is to achieve faster convergence and improve the overall training efficiency. Moreover, this dissertation proposes fault tolerance and elastic scaling features for distributed deep learning by leveraging the User-Level Failure Mitigation (ULFM) from Message Passing Interface (MPI). By incorporating ULFM MPI, the dissertation aims to enhance the elastic capabilities of distributed deep learning systems. This approach enables graceful and lightweight handling of failures while facilitating seamless scaling in dynamic computing environments

    Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging

    Full text link
    Deep learning at scale is dominated by communication time. Distributing samples across nodes usually yields the best performance, but poses scaling challenges due to global information dissemination and load imbalance across uneven sample lengths. State-of-the-art decentralized optimizers mitigate the problem, but require more iterations to achieve the same accuracy as their globally-communicating counterparts. We present Wait-Avoiding Group Model Averaging (WAGMA) SGD, a wait-avoiding stochastic optimizer that reduces global communication via subgroup weight exchange. The key insight is a combination of algorithmic changes to the averaging scheme and the use of a group allreduce operation. We prove the convergence of WAGMA-SGD, and empirically show that it retains convergence rates similar to Allreduce-SGD. For evaluation, we train ResNet-50 on ImageNet; Transformer for machine translation; and deep reinforcement learning for navigation at scale. Compared with state-of-the-art decentralized SGD variants, WAGMA-SGD significantly improves training throughput (e.g., 2.1x on 1,024 GPUs for reinforcement learning), and achieves the fastest time-to-solution (e.g., the highest score using the shortest training time for Transformer).Comment: Published in IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS), vol. 32, no. 7, pp. 1725-1739, 1 July 202

    Canary: Congestion-Aware In-Network Allreduce Using Dynamic Trees

    Full text link
    The allreduce operation is an essential building block for many distributed applications, ranging from the training of deep learning models to scientific computing. In an allreduce operation, data from multiple hosts is aggregated together and then broadcasted to each host participating in the operation. Allreduce performance can be improved by a factor of two by aggregating the data directly in the network. Switches aggregate data coming from multiple ports before forwarding the partially aggregated result to the next hop. In all existing solutions, each switch needs to know the ports from which it will receive the data to aggregate. However, this forces packets to traverse a predefined set of switches, making these solutions prone to congestion. For this reason, we design Canary, the first congestion-aware in-network allreduce algorithm. Canary uses load balancing algorithms to forward packets on the least congested paths. Because switches do not know from which ports they will receive the data to aggregate, they use timeouts to aggregate the data in a best-effort way. We develop a P4 Canary prototype and evaluate it on a Tofino switch. We then validate Canary through simulations on large networks, showing performance improvements up to 40% compared to the state-of-the-art

    Toward Reliable and Efficient Message Passing Software for HPC Systems: Fault Tolerance and Vector Extension

    Get PDF
    As the scale of High-performance Computing (HPC) systems continues to grow, researchers are devoted themselves to achieve the best performance of running long computing jobs on these systems. My research focus on reliability and efficiency study for HPC software. First, as systems become larger, mean-time-to-failure (MTTF) of these HPC systems is negatively impacted and tends to decrease. Handling system failures becomes a prime challenge. My research aims to present a general design and implementation of an efficient runtime-level failure detection and propagation strategy targeting large-scale, dynamic systems that is able to detect both node and process failures. Using multiple overlapping topologies to optimize the detection and propagation, minimizing the incurred overhead sand guaranteeing the scalability of the entire framework. Results from different machines and benchmarks compared to related works shows that my design and implementation outperforms non-HPC solutions significantly, and is competitive with specialized HPC solutions that can manage only MPI applications. Second, I endeavor to implore instruction level parallelization to achieve optimal performance. Novel processors support long vector extensions, which enables researchers to exploit the potential peak performance of target architectures. Intel introduced Advanced Vector Extension (AVX512 and AVX2) instructions for x86 Instruction Set Architecture (ISA). Arm introduced Scalable Vector Extension (SVE) with a new set of A64 instructions. Both enable greater parallelisms. My research utilizes long vector reduction instructions to improve the performance of MPI reduction operations. Also, I use gather and scatter feature to speed up the packing and unpacking operation in MPI. The evaluation of the resulting software stack under different scenarios demonstrates that the approach is not only efficient but also generalizable to many vector architecture and efficient

    ACiS: smart switches with application-level acceleration

    Full text link
    Network performance has contributed fundamentally to the growth of supercomputing over the past decades. In parallel, High Performance Computing (HPC) peak performance has depended, first, on ever faster/denser CPUs, and then, just on increasing density alone. As operating frequency, and now feature size, have levelled off, two new approaches are becoming central to achieving higher net performance: configurability and integration. Configurability enables hardware to map to the application, as well as vice versa. Integration enables system components that have generally been single function-e.g., a network to transport data—to have additional functionality, e.g., also to operate on that data. More generally, integration enables compute-everywhere: not just in CPU and accelerator, but also in network and, more specifically, the communication switches. In this thesis, we propose four novel methods of enhancing HPC performance through Advanced Computing in the Switch (ACiS). More specifically, we propose various flexible and application-aware accelerators that can be embedded into or attached to existing communication switches to improve the performance and scalability of HPC and Machine Learning (ML) applications. We follow a modular design discipline through introducing composable plugins to successively add ACiS capabilities. In the first work, we propose an inline accelerator to communication switches for user-definable collective operations. MPI collective operations can often be performance killers in HPC applications; we seek to solve this bottleneck by offloading them to reconfigurable hardware within the switch itself. We also introduce a novel mechanism that enables the hardware to support MPI communicators of arbitrary shape and that is scalable to very large systems. In the second work, we propose a look-aside accelerator for communication switches that is capable of processing packets at line-rate. Functions requiring loops and states are addressed in this method. The proposed in-switch accelerator is based on a RISC-V compatible Coarse Grained Reconfigurable Arrays (CGRAs). To facilitate usability, we have developed a framework to compile user-provided C/C++ codes to appropriate back-end instructions for configuring the accelerator. In the third work, we extend ACiS to support fused collectives and the combining of collectives with map operations. We observe that there is an opportunity of fusing communication (collectives) with computation. Since the computation can vary for different applications, ACiS support should be programmable in this method. In the fourth work, we propose that switches with ACiS support can control and manage the execution of applications, i.e., that the switch be an active device with decision-making capabilities. Switches have a central view of the network; they can collect telemetry information and monitor application behavior and then use this information for control, decision-making, and coordination of nodes. We evaluate the feasibility of ACiS through extensive RTL-based simulation as well as deployment in an open-access cloud infrastructure. Using this simulation framework, when considering a Graph Convolutional Network (GCN) application as a case study, a speedup of on average 3.4x across five real-world datasets is achieved on 24 nodes compared to a CPU cluster without ACiS capabilities

    Providing Insight into the Performance of Distributed Applications Through Low-Level Metrics

    Get PDF
    The field of high-performance computing (HPC) has always dealt with the bleeding edge of computational hardware and software to achieve the maximum possible performance for a wide variety of workloads. When dealing with brand new technologies, it can be difficult to understand how these technologies work and why they work the way they do. One of the more prevalent approaches to providing insight into modern hardware and software is to provide tools that allow developers to access low-level metrics about their performance. The modern HPC ecosystem supports a wide array of technologies, but in this work, I will be focusing on two particularly influential technologies: The Message Passing Interface (MPI), and Graphical Processing Units (GPUs).For many years, MPI has been the dominant programming paradigm in HPC. Indeed, over 90% of applications that are a part of the U.S. Exascale Computing Project plan to use MPI in some fashion. The MPI Standard provides programmers with a wide variety of methods to communicate between processes, along with several other capabilities. The high-level MPI Profiling Interface has been the primary method for profiling MPI applications since the inception of the MPI Standard, and more recently the low-level MPI Tool Information Interface was introduced.Accelerators like GPUs have been increasingly adopted as the primary computational workhorse for modern supercomputers. GPUs provide more parallelism than traditional CPUs through a hierarchical grid of lightweight processing cores. NVIDIA provides profiling tools for their GPUs that give access to low-level hardware metrics.In this work, I propose research in applying low-level metrics to both the MPI and GPU paradigms in the form of an implementation of low-level metrics for MPI, and a new method for analyzing GPU load imbalance with a synthetic efficiency metric. I introduce Software-based Performance Counters (SPCs) to expose internal metrics of the Open MPI implementation along with a new interface for exposing these counters to users and tool developers. I also analyze a modified load imbalance formula for GPU-based applications that uses low-level hardware metrics provided through nvprof in a hierarchical approach to take the internal load imbalance of the GPU into account

    Austrian High-Performance-Computing meeting (AHPC2020)

    Get PDF
    This booklet is a collection of abstracts presented at the AHPC conference

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Large-scale Data Analysis and Deep Learning Using Distributed Cyberinfrastructures and High Performance Computing

    Get PDF
    Data in many research fields continues to grow in both size and complexity. For instance, recent technological advances have caused an increased throughput in data in various biological-related endeavors, such as DNA sequencing, molecular simulations, and medical imaging. In addition, the variance in the types of data (textual, signal, image, etc.) adds an additional complexity in analyzing the data. As such, there is a need for uniquely developed applications that cater towards the type of data. Several considerations must be made when attempting to create a tool for a particular dataset. First, we must consider the type of algorithm required for analyzing the data. Next, since the size and complexity of the data imposes high computation and memory requirements, it is important to select a proper hardware environment on which to build the application. By carefully both developing the algorithm and selecting the hardware, we can provide an effective environment in which to analyze huge amounts of highly complex data in a large-scale manner. In this dissertation, I go into detail regarding my applications using big data and deep learning techniques to analyze complex and large data. I investigate how big data frameworks, such as Hadoop, can be applied to problems such as large-scale molecular dynamics simulations. Following this, many popular deep learning frameworks are evaluated and compared to find those that suit certain hardware setups and deep learning models. Then, we explore an application of deep learning to a biomedical problem, namely ADHD diagnosis from fMRI data. Lastly, I demonstrate a framework for real-time and fine-grained vehicle detection and classification. With each of these works in this dissertation, a unique large-scale analysis algorithm or deep learning model is implemented that caters towards the problem and leverages specialized computing resources

    A distributed multi-threaded data partitioner with space-filling curve orders

    Get PDF
    The problem discussed in this thesis is distributed data partitioning and data re-ordering on many-core architectures. We present extensive literature survey, with examples from various application domains - scientific computing, databases and large-scale graph processing. We propose a low-overhead partitioning framework based on geometry, that can be used to partition multi-dimensional data where the number of dimensions is >=2. The partitioner linearly orders items with good spatial locality. Partial output is stored on each process in the communication group. Space-filling curves are used to permute data - Morton order is the default curve. For dimensions <=3, we have options to generate Hilbert-like curves. Two metrics used to determine partitioning overheads are memory consumption and execution time, although these two factors are dependent on each other. The focus of this thesis is to reduce partitioning overheads as much as possible. We have described several optimizations to this end - incremental adjustments to partitions, careful dynamic memory management and using multi-threading and multi-processing to advantage. The quality of partitions is an important criteria for evaluating a partitioner. We have used graph partitioners as base-implementations against which our partitions are compared. The degree and edge-cuts of our partitions are comparable to graph partitions for regular grids. For irregular meshes, there is still room for improvement. No comparisons have been made for evaluating partitions of datasets without edges. We have deployed these partitions on two large applications - atmosphere simulation in 2D and adaptive mesh refinement in 3D. An adaptive mesh refinement benchmark was built to be part of the framework, which later became a testcase for evaluating partitions and load-balancing schemes. The performance of this benchmark is discussed in detail in the last chapter
    corecore