
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

8-2020 

Providing Insight into the Performance of Distributed Applications Providing Insight into the Performance of Distributed Applications 

Through Low-Level Metrics Through Low-Level Metrics 

David Eberius 
University of Tennessee, deberius@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

Recommended Citation Recommended Citation 
Eberius, David, "Providing Insight into the Performance of Distributed Applications Through Low-Level 
Metrics. " PhD diss., University of Tennessee, 2020. 
https://trace.tennessee.edu/utk_graddiss/6800 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6800&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by David Eberius entitled "Providing Insight into 

the Performance of Distributed Applications Through Low-Level Metrics." I have examined the 

final electronic copy of this dissertation for form and content and recommend that it be 

accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a 

major in Computer Science. 

Jack Dongarra, Major Professor 

We have read this dissertation and recommend its acceptance: 

Gregory Peterson, Michael Berry, Yingkui Li 

Accepted for the Council: 

Dixie L. Thompson 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Providing Insight into the

Performance of Distributed

Applications Through Low-Level

Metrics

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

David Eberius

August 2020



Copyright c© by David Eberius, 2020

All Rights Reserved.

ii



To my parents Bill and Natalie Eberius, and my siblings Rachel, Adam, and Megan for

their love, support, and motivation.

iii



Acknowledgments

I want to first express my sincere gratitude to my advisor, Dr. Jack Dongarra, for taking

me on as his student and giving me a position as a Graduate Research Assistant in the

Innovative Computing Laboratory (ICL). His leadership and guidance always ensured that I

had funding to continue my research and fueled my passion for High-Performance Computing.

It has been a great privilege to work with him, and I will always treasure the knowledge and

experience he has given me throughout these years.

I am also eternally grateful to Dr. George Bosilca, my group leader in the DisCo group,

for always encouraging me to dig deeper and strive for improvement, saying things like: ”Ok,

but why does it do that?” and ”That’s good, but can we do better?”. He was able to provide

a relaxed atmosphere in the office, encouraged discussion, and always had a willingness to

teach. Without his guidance, I would not have been able to finish this research!

I am so lucky to have met Dr. Olga Pearce by happenstance at SC17, and to subsequently

work for her over the course of two summers at Lawrence Livermore National Laboratory.

She always encouraged me to explain why my results looked the way they did, and to provide

solid evidence, which led me to a much better understanding of the work. She also provided

me with valuable insight into working at a National Laboratory, which led me to decide to

pursue a career working at National Laboratories.

I would like to thank Dr. Yingkui Li, Dr. Michael Berry, and Dr. Gregory Peterson for

serving on my dissertation committee. Their help and guidance provided me with a more

clear direction in my research which has culminated in this dissertation.

My family and friends have provided me with so much love, support, motivation, and

confidence throughout this process that cannot be understated. My family always pushed

me to finish with phrases like, ”When are you graduating?”, and welcomed me home during

iv



breaks. My friends always had much more confidence in me and my work than I did and

provided much needed emotional support along the way. I am so incredibly thankful for all

they have done!

Finally, I would like to thank my colleagues at ICL for teaching me all about the

various aspects of HPC, providing excellent discussion and deep dives into meaningless topics

during coffee breaks, great companionship, and encouragement of my competitive whistling

(particularly Dr. Anthony Danalis). I really appreciate the wisdom and companionship from

Dr. Thomas Herault, Dr. Aurelien Bouteiller, Dr. Damien Genet, Dr. Anthony Danalis, Dr.

Heike Jagode, Dr. Hartwig Anzt, Dr. Piotr Luszczek, Dr. Jakub Kurzak, Dr. Azzam Haidar,

Sam Crawford, Earl Carr, and many more staff at ICL. Last, but not least, I would like to

thank my fellow students Dr. Wei Wu, Dr. Chongxiao Cao, Dr. Reazul Hoque, Dr. Thananon

Patinyasakdikul, Dr. Xi Luo, Jiali Li, Mike Tsai, Dong Zhong, Yu Pei, Sangamesh Ragate,

Hanumantharayappa, Qinglei Cao, Yicheng Li, and many others for their friendship and

camaraderie, I will never forget it!

v



Abstract

The field of high-performance computing (HPC) has always dealt with the bleeding edge of

computational hardware and software to achieve the maximum possible performance for a

wide variety of workloads. When dealing with brand new technologies, it can be difficult

to understand how these technologies work and why they work the way they do. One of

the more prevalent approaches to providing insight into modern hardware and software is to

provide tools that allow developers to access low-level metrics about their performance. The

modern HPC ecosystem supports a wide array of technologies, but in this work, I will be

focusing on two particularly influential technologies: The Message Passing Interface (MPI),

and Graphical Processing Units (GPUs).

For many years, MPI has been the dominant programming paradigm in HPC. Indeed, over

90% of applications that are a part of the U.S. Exascale Computing Project plan to use MPI

in some fashion [7]. The MPI Standard provides programmers with a wide variety of methods

to communicate between processes, along with several other capabilities. The high-level

MPI Profiling Interface has been the primary method for profiling MPI applications since

the inception of the MPI Standard, and more recently the low-level MPI Tool Information

Interface was introduced.

Accelerators like GPUs have been increasingly adopted as the primary computational

workhorse for modern supercomputers. GPUs provide more parallelism than traditional

CPUs through a hierarchical grid of lightweight processing cores. NVIDIA provides profiling

tools for their GPUs that give access to low-level hardware metrics.

In this work, I propose research in applying low-level metrics to both the MPI and

GPU paradigms in the form of an implementation of low-level metrics for MPI, and a new

method for analyzing GPU load imbalance with a synthetic efficiency metric. I introduce

vi



Software-based Performance Counters (SPCs) to expose internal metrics of the Open MPI

implementation along with a new interface for exposing these counters to users and tool

developers. I also analyze a modified load imbalance formula for GPU-based applications

that uses low-level hardware metrics provided through nvprof in a hierarchical approach to

take the internal load imbalance of the GPU into account.
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Chapter 1

Introduction

In the pursuit of ever faster supercomputers, High-Performance Computing (HPC) research

has led to a vast ecosystem of hardware and software technologies that continue to push the

limits of the inherent expression of parallelism. There is a divergent relationship between

hardware and software research in that hardware vendors are trying to better serve the

current and future needs of their customers through new hardware, and software research,

by necessity, must delve into the best utilization of current hardware. This creates a cycle

where software research delves into one set of hardware until new hardware is released, and

since not all of the previous research still applies, the software has to adapt to the new

hardware.

In order to maximize parallelism, modern supercomputers often combine a variety of

computation, data movement, and data storage resources. A modern system could have

multiple CPUs with dozens of cores per CPU, multiple GPUs with several nested levels of

parallelism within, several levels of cache per CPU, multiple NUMA nodes with their own

RAM, on-node solid state burst buffers, spinning disk storage on the node, multiple NICs,

a hierarchical network interconnect, and a parallel file system. To run at the full capacity

of such a system, an application will most likely combine several programming paradigms

such as MPI[20] for the data movement and distributed communication, OpenMP[40] for

managing CPU threads, and CUDA[39] for performing GPU computation. With all of these

moving parts, it can be overwhelming for a programmer to understand why their application

1



performs the way it does, especially since much of the underlying complexity is handled by

the various programming paradigms to ease the difficulty of development.

When developing on a modern supercomputer, parallelizing an application is one of

the first steps to a potential shorter time to solution. The parallelization step is usually

supplemented by a performance analysis stage where performance bottlenecks (either in

the algorithm itself or in the communication pattern) are identified and addressed. There

are many approaches to analyzing the performance of parallel applications. One of the

predominant approaches is to add some form of instrumentation to the code and to use the

data from this instrumentation to understand how the code is operating.

MPI

For many years now, the Message Passing Interface (MPI) has been the standard paradigm

for implementing parallel applications in a distributed memory setting. The MPI Standard

has expanded over time to not only include point-to-point message-passing, but also

topics such as collective communications, group and communicator concepts, one-sided

communications, I/O, a profiling interface, and a tool information interface [20]. These

capabilities, along with the high performance provided by many MPI implementations, have

led to MPI being used extensively for writing parallel applications on distributed systems

across academia and industry alike.

Profiling of MPI applications often uses the MPI profiling interface (PMPI) that allows

tools to preempt all MPI function calls and add instrumentation or other functionality around

a call to a name shifted version of the MPI function with a prefix of ’PMPI ’ instead of ’MPI ’.

Many tools like Vampir [9], Paraver [30], TAU [51], and mpiP [60] use the PMPI interface

to profile MPI applications, mainly through inserting timing functionality to track when

MPI functions start and complete. This information is generally stored in a binary trace file

and is available to the tools post-mortem for thorough analysis. This method provides an

overview of how the application progressed overall but cannot expose low-level details and

therefore provides little insight into what was happening within the MPI implementation.

The MPI performance revealing extension interface (Peruse) [31] was developed as a

means to complement this lack of fine grained details in the PMPI interface, and to provide

2



more insight into MPI implementation performance. For example, using the Peruse interface,

a tool could have access to detailed MPI state change information such as when a send

request enters the queue of posted messages or when a communication request is completed.

Essentially, Peruse allows for a tool to follow the life cycle of an MPI communication through

the library. This interface had great potential for performing in-depth analysis of the state

changes experienced by each communication, however it does not provide information about

what is happening within those states. The Peruse interface was not accepted into the MPI

Standard and has not seen widespread adoption.

The MPI T interface was introduced to the MPI Standard as an official way to

expose low-level information in the MPI implementation. The MPI T interface allows

MPI implementation developers to expose internal implementation variables to tools and

users in the form of control variables and performance variables. Control variables are

meant to contain properties and configuration settings of the MPI implementation such

as the current eager limit or transport protocol [20]. Performance variables are meant to

store implementation specific performance information such as internal queue sizes or data

usage [20]. The MPI Standard does not specify any default variables, so it is up to the

MPI implementation to determine which internal variables to expose through the MPI T

interface.

The Open MPI [22] implementation uses a Modular Component Architecture (MCA) [61],

which allows for dynamic loading of different components of the library depending on the

configuration that is specified through MCA parameters at run time. Many of these MCA

parameters are registered as MPI T control variables, which allows for dynamic configuration

of Open MPI through the MPI T interface. Before my work, there were almost no MPI T

performance variables registered in Open MPI.

GPUs

On the hardware side of things, one of the growing trends in HPC is the use of accelerator

technologies such as Graphical Processing Units (GPUs) for the bulk of the computational

workload. In the November 2019 top500 list of supercomputers, 145 machines used some

form of accelerator, and 137 of those were GPUs (136 NVIDIA and 1 AMD)[53]. The main
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advantage of GPU accelerators over standard CPUs is their capability to employ massive

levels of parallelism on the order of thousands of concurrent hardware threads compared to

tens of hardware threads on a modern CPU. The hardware threads on GPUs are much more

lightweight than on a CPU, with minimal resources such as registers and cache memory

attributed to each thread. The GPU hardware minimizes the impact of such restrictions

through optimizations like maximizing memory bandwidth to supply work to all of the

threads simultaneously, and providing fast context switching to hide memory stalls.

When it comes to profiling GPU applications, developers are typically limited to the

profiling capabilities provided by the GPU vendors. For NVIDIA GPUs, this typically

means using NVIDIA’s support software for their CUDA programming environment such

as the nvprof profiling tool and the CUDA Profiling Tool Interface (CUPTI ) [39]. There

are also some third party tools such as PAPI [38], Vampir [9], Caliper[8], and TAU[51] that

provide access to CUDA profiling information.

MPI and GPU Internal Runtime Systems

Both the MPI and CUDA programming environments have runtime systems that take care

of a lot of the complexities of getting their programming models to work. The MPI runtime

handles all of the process management, data movement, buffer allocation and management,

and network and transport protocols among other things. The CUDA runtime hides the

complexity of things like scheduling kernel launches across the streaming multiprocessors

(SMs) and compute cores and managing data movement between host and device. All of

these hidden operations can have huge effects on the performance of a user application, so

it is essential to have a way to get information about what is going on within these hidden

operations so you can analyze why the program is behaving a certain way.

1.1 Dissertation Statement

In order to understand the performance of parallel applications in a distributed environment,

it is essential to have access to low-level profiling information about the programming
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environments provided on distributed systems. In this study, I will be focusing on the

MPI and CUDA programming environments.

The MPI Standard provides the MPI T interface to allow MPI implementations to

expose such low-level information to tool developers, however this does not require MPI

implementations to take advantage of this capability. The MPI T interface can also be quite

difficult to use as it requires the user to register a context in which an MPI T variable exists

along with potentially attaching that variable to an MPI object such as a communicator and

then performing a read operation which adds overhead by copying the value of the variable

into a user buffer.

When programming with GPUs in the CUDA environment, many of the specifics of the

various levels of scheduling from kernels down to threads are hidden from the user. This

can make it difficult to understand how the workload is spread across the GPU. The metrics

provided by the CUDA profiling system can provide some insight into what is going on inside

the GPU, however the descriptions of these metrics can be vague, and the values stored in

the metrics can lack the level of detail necessary to get the full picture.

In this study, I explore the implementation, expression, and usage of low-level metrics

for understanding the MPI and CUDA programming environments in a distributed system.

For my study of the MPI programming environment, I will focus on the Open MPI [22]

implementation of the MPI Standard, which makes extensive use of MPI T control variables,

but does not take advantage of MPI T performance variables. The Open MPI codebase

is open source, which allows me to explore the implementation and expression of low-level

performance metrics while also providing a platform for testing their usage. With the CUDA

programming environment, the implementation is not provided as open source, so I will study

the usage of the existing capabilities. I use load balancing in a molecular dynamics simulation

as a case study for using metrics provided by CUDA profiling tools to understand what is

happening within the GPU.
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1.2 Contributions

In this work, I contribute to performance analysis in HPC in two main ways: (1) Introducing

an interface for defining and exposing low-level performance metrics in MPI both through

the existing MPI T interface and through a new mmap-based interface; and (2) Evaluating

a novel hierarchical GPU load imbalance formula using a composite GPU efficiency metric

derived from existing GPU metrics, within my extension to a molecular dynamics proxy

application as a case study and comparison of CPU vs. GPU load imbalance.

1.2.1 Software-based Performance Counters

I address the need for low-level performance information about the operation of imple-

mentations of the MPI Standard by analyzing the capabilities of the currently available

methodologies and then providing my own method which expands upon previous work.

The PMPI interface remains the primary method for profiling MPI applications, which only

allows for high-level performance information about the operation of MPI such as time spent

performing MPI functions and call-site analysis. The introduction of the MPI T interface

allows for internal MPI variables to be exposed as performance variables, however with no

default variables defined in the MPI Standard, many MPI implementations have been slow

to add their own MPI T performance variables. I investigate the capabilities of the MPI T

interface and assess its strengths while also identifying the limitations and drawbacks of this

interface as it is designed.

The primary strengths of performance variables in the MPI T interface are: they provide

a generic way for tools to expose internal variables; tracking of individual variables can be

enabled or disabled at any time; variables can be defined such that they are attached to a

particular MPI construct (such as an MPI communicator); and the variables can be read at

any time during the application. The MPI T interface is designed to simply provide internal

variables to performance analysis tools and the tools are responsible for storing and reporting

the information in a useful manner. This means that MPI T variables are only accessible

during runtime, and only through the MPI T interface.
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In this work, I introduce Software-based Performance Counters (SPCs) [15] to a particular

MPI implementation, Open MPI. These SPCs act as a complementary interface to MPI T

within Open MPI to provide access to low-level performance metrics. At their core, SPCs are

integer counters that keep track of various information in the implementation. All of these

counters are registered as MPI T performance variables so they can be accessed through

that interface, however they can also be stored in a shared data file allocated using the

mmap function such that any MPI process can attach to this file and have read-only access

to the counters. The SPC interface also has the capability to store snapshots of these data

files and keep a persistent copy of the data file, which allows for post-mortem analysis of

the SPC values. This work looks into several uses cases of SPCs, including diagnosing

issues in Open MPI, identifying application performance bottlenecks, and machine workload

characterization.

1.2.2 GPU Load Balancing

I address the need for an accurate formula for load imbalance in distributed systems using

GPUs by showing that the existing formula for load imbalance in CPU-only systems can be

inaccurate when applied to GPU computation, and I use a new composite GPU efficiency

metric to evaluate a proposed formula that attempts to improve accuracy by taking into

account internal GPU imbalance. On CPU-only architectures, load imbalance is defined as

the scaled maximum load on any CPU core minus the average [44]. This formula relies on

two major assumptions: (1) all CPU cores perform computations at roughly the same rate;

and (2) a CPU core is the smallest unit upon which work can be scheduled.

Assumption (1) can be problematic in general when you consider systems in which

CPUs and GPUs can have their frequencies scaled dynamically. For simplicity, I will be

assuming that the CPU and GPU frequencies are held constant. Assumption (2) works

nicely for CPU-only machines, though there are cases where a system has the capability

to use hyperthreading to schedule multiple logical threads one physical core. This is done

through duplicating some CPU resources; however the execution units are typically not

duplicated, effectively allowing only one thread to perform computations at a time. For

simplicity, I will be ignoring hyperthreading.

7



On a GPU-based system, assumption (2) becomes problematic because each GPU is

broken down into several additional levels of parallelism. On a system with multiple GPUs,

if one were to assume that each GPU is equivalent to a CPU core for the purposes of

calculating load imbalance, there would be a significant loss of accuracy with the formula

used in CPU-only systems.

In this work, I evaluate a modified load imbalance formula for use on GPU-based systems.

I created a composite GPU efficiency metric to use in this formula, which is composed of

GPU metrics from NVIDIA’s nvprof tool. This is used to estimate load within the GPU’s

various levels of parallelism to provide a hierarchical look at the load imbalance. This

formula provides increased accuracy over the CPU-only formula and provides a way forward

for making more generalized load imbalance formulas.

1.3 Dissertation Organization

This dissertation shall be laid out as follows:

• Chapter 2 encompasses a literature review of research related to the topics introduced

in this dissertation with particular focus on data collection, profiling, and performance

analysis tools for MPI and GPU-based applications.

• Chapter 3 introduces Software-based Performance Counters; and includes an in-depth

discussion of relevant background information from the MPI Standard as well as best

practices in profiling MPI applications, a discussion of the motivations for creating the

SPC interface, an evaluation of the types of events of interest and corresponding SPC

metrics, a detailed look at the design and implementation of SPCs, an evaluation of

the overhead introduced to Open MPI by SPCs, a comparison to existing approaches

to profiling MPI applications, an evaluation of the various reporting methods for SPCs,

and a discussion of use cases for SPCs.

• Chapter 4 includes a discussion of the relevant background information on the CUDA

programming environment and load imbalance in MPI applications, provides an

introduction to the CoMD proxy application, details my extensions to the CoMD
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proxy application to provide a test bed for CPU and GPU imbalance studies including

performance enhancements and my profiling and instrumentation efforts, introduces

a new GPU efficiency metric derived from nvprof metrics, evaluates a load balancing

formula for GPU-based systems, a discussion of the insufficiency of the existing formula

for CPU-only systems, and an evaluation of the accuracy of the new formula.

• Chapter 5 will wrap up this dissertation with a summary of the conclusions I arrived at

throughout my research of distributed performance analysis in HPC through low-level

metrics, and a discussion of future work in this area.
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Chapter 2

Literature Review

There is an abundance of research that has been conducted into performance analysis of

distributed applications and the software stack that supports such analysis. There are

several areas of focus in this research such as: the collection of data about an application,

visualization methods for collected data, and analysis techniques for understanding the data.

In this section, I will be discussing the existing research into distributed performance analysis

with a particular focus on the HPC field in the areas of MPI and GPU performance tools

and analysis methods.

2.1 HPC Performance Analysis Tools

Conducting performance analysis of HPC applications provides a unique challenge for HPC

performance analysis tools in dealing with the massive scale inherent to supercomputers. In

application performance analysis, there are two primary phases: data collection, and data

analysis. There has been extensive research into both of these phases, which has resulted

in a wealth of tools that are available to application developers for providing different views

of application performance. These HPC performance analysis tools tend to either specialize

in collecting data during an application’s lifetime, or providing support for postmortem

analysis, though there are some tool suites that provide both.
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2.1.1 Data Collection Tools

In order to conduct performance analysis, one must first collect information about the perfor-

mance of the application. Data collection tools are specialized for gathering this performance

information, and typically follow one of two approaches to data collection: instrumentation-

based or interrupt-based. Instrumentation-based approaches require additional code to be

added to an application in order to gather information at specific points in the code, which

can be done manually by a programmer or dynamically through libraries like Paradyn [36].

The interrupt-based approach does not require additional code to be added to the application,

it simply interrupts the application’s execution periodically and gathers information at those

points in time.

PAPI

The Performance Application Programming Interface (PAPI ) provides an interface for

accessing hardware performance counters available from many modern microprocessors [38].

PAPI is highly portable with support for most hardware vendors and operating systems and

provides a wealth of information with its counters such as the number of cache misses and

the total number of instructions issued. PAPI can gather information from the lowest level

possible with information that is stored in reserved registers on a given hardware platform.

Originally, the PAPI library was focused on hardware counters from the CPU and memory

on a system, but it has been extended over the years to include a variety of additional

components for collecting and manipulating counters from other sources all of which can be

monitored simultaneously[57]. Some components of note are the components for monitoring

hardware events on both NVIDIA and AMD GPUs, network interface counters, counters

associated with monitoring and capping power on a variety of architectures, and a software

defined events (SDE) component [35] [24] [28].

The SDE component is an interesting departure from the typical focus on hardware-based

events in PAPI. The SDE component is designed to allow library developers to provide PAPI

access to the library’s internal variables, so those variables can be exposed as PAPI events.

This interface operates through weak symbols for SDE interface functions in the target library
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and sharing pointers between the target library and PAPI. In this way, the SDE interface is

able to add no overhead to the target library when PAPI is not linked with the application,

and only minimal setup overhead in the majority of cases where PAPI is linked with the

application. This approach shares some similarities with the MPI T interface discussed in

Section 2.1.3.

Paradyn

The Paradyn tool provides a method for dynamically instrumenting applications [36].

Essentially, this works by inserting instrumentation into an existing binary at runtime. The

idea is that potential locations for instrumentation can be determined through the use of

some form of monitoring daemon, and instrumentation can be added to these areas of interest

when needed and removed when there is no longer a need.

The Paradyn project has made this technology available through the Dyninst API, which

allows for more general purpose code insertion into a running program [41]. This can of

course be extended to uses outside of inserting profiling code, such as dynamic algorithm

selection [3].

TAU

The Tuning and Analysis Utilities (TAU ) tool framework is designed to allow for profiling

and tracing of parallel applications in a variety of languages and provides a graphical user

interface for analysis [51]. TAU supports both manual code instrumentation and dynamic

instrumentation through the Dyninst API [41].

TAU maintains information about code constructs like functions and blocks for several

different levels of parallelism in an application such as threads and nodes [56]. The standard

use case is for TAU to provide timing information of these code constructs; however it is also

possible to track other information such as hardware performance counters through PAPI.

The TAU framework also includes visualization and analysis tools and a capability to create

binary trace files designed to resemble Gantt charts or parallel timelines when visualized by

tools like Vampir and Paraver, discussed in further detail in Section 2.1.2.
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Scalasca

The Scalasca tool specifically targets performance analysis of applications using the MPI and

OpenMP programming paradigms on large-scale systems [23]. The focus of performance

analysis with Scalasca is in identifying bottlenecks introduced by communication and

synchronization events. Scalasca operates in one of two analysis modes, profiling mode

and tracing mode, each with their own type of data collection [49].

Profiling mode collects data such as hardware counters or other metrics for each function

call path. This provides a way to quickly identify hotspots in the codebase. In tracing mode,

Scalasca additionally records specific events that can help identify program wait states such

as a delayed sender which could force the corresponding receiver to wait on that data.

Scalasca also provides custom visualization and analysis tools and can export binary trace

files which can be visualized with tools like Vampir and Paraver as discussed in Section 2.1.2.

Score-P

The Score-P performance measurement infrastructure was born out of a need for providing

a common interface for redundant capabilities across the different performance analysis

tools [33]. These redundant capabilities are things like code instrumentation, data collection,

and data storage. Score-P is able to provide a common infrastructure for these tools,

and supports several tools discussed in this chapter such as TAU, Scalasca, Pariscope, and

Vampir [51] [23] [5] [9].

Score-P provides utilities that facilitate adding code instrumentation and data collection,

such as the scorep command-line tool. This instrumentor tool is used as a prefix to the normal

command line string for compiling the application. The idea is that this tool will detect which

of the supported programming paradigms is being used, such as OpenMP or MPI, and add

the appropriate flags to allow for appropriate instrumentation for that paradigm. This step

only needs to happen once, and still allows for switching the Score-P configuration properties

such as the mode (profiling and/or tracing). In addition, the data storage for Score-P uses

pre-allocated thread-local storage to alleviate the overhead added for memory allocation and

data movement at run time.
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Caliper

The Caliper tool is an abstraction layer for performance introspection that is built on the

principle of separating mechanism from policy [8]. The idea is that Caliper provides access

to a wide variety of mechanisms by which data can be collected such as instrumentation,

sampling, hardware counters, call stack information, and traces, which can then be used in

various combinations as data collection policies at runtime.

Standard Caliper operation involves three primary concepts: attributes, the blackboard,

and snapshots. The attributes represent individual points of data, and these attributes are

stored in the blackboard which is a global buffer. A snapshot is a measurement event, which

essentially means that the current contents of the blackboard are written to a snapshot record

along with any measurements provided by data collection services that are on-demand such

as collection of time stamps or reading hardware counters.

HPCToolkit

The HPCToolkit provides a series of tools that target the different stages of performance

analysis [1]. In this section, I will focus on the two data collection tools within HPCToolkit:

hpcrun and hpcstruct.

The hpcrun tool uses a sampling approach that collects samples both at certain time

intervals, and at triggered events based on performance metrics. This provides calling-

context-sensitive performance measurements that can be used by the analysis tools in

HPCToolkit [17]. The hpcstruct tool is a companion to the hpcrun tool that associates

the performance measurements with the underlying source code.

LDMS

The Lightweight Distributed Metric Service (LDMS ) is a system monitoring tool that allows

for high-fidelity monitoring of a number of different metrics across the different levels of the

system [2]. LDMS is designed to run continuously across an entire system and collect data at

a sufficiently high frequency to provide for useful analysis. One of the motivating factors for
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this work is that applications running on large systems can be affected by other applications

on the system interfering with shared resources such as the network and the file system.

LDMS operates using three main components: Samplers, Aggregators, and Storage. The

Samplers collect information periodically from sampling plugins, each of which collect a set

of performance metrics. The Aggregators pull information from the samplers, and potentially

other Aggregators, periodically and can stage this data for storage. The Storage component

supports a number of different file formats, and only allows writing of valid updated metric

data from an Aggregator that has been configured to write data to storage.

2.1.2 Performance Analysis Tools

Of course, collecting performance data is just the first step, there must be tools for analyzing

and visualizing that data in order to understand the performance. There are several

different approaches to visualizing performance data, but two of the more common ones are:

trace visualizers that have information associated with events in a timeline, and program

callstack trees with information associated with specific program elements. When it comes

to performance analysis, there are various approaches, some that aim to be more general

purpose, and others that are tailored to identify a specific class of performance characteristics.

Trace Files

One of the more popular formats for representing performance data is with trace files. These

files typically include a series of time stamps for the beginning and end of events of interest,

along with performance metrics and metadata such as the processing unit associated with

the event. The Paraver and Vampir tools provide the capability to parse the data from

such trace files, and display that data, typically in a timeline that is similar to a Gantt

chart [30] [9].

Vampir

The Vampir toolset primarily relies on the Score-P tool for providing performance data,

but can accept data from a number of different sources [59]. Vampir provides many highly
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polished visualization options for performance data, including a hierarchical timeline that can

be edited to highlight particular functions or blocks with certain properties, the capability

to combine multiple metrics into composite metrics, and much more. Unlike most of the

tools discussed here, which are open source, Vampir has a commercial licence.

Periscope

The Periscope tool provides a method for performing online rather than static analysis of

distributed performance with a particular focus on the MPI and OpenMP programming

paradigms [5]. Periscope operates by preprocessing user code files in order to add

instrumentation, and then generating new instrumented object files which are linked with

the Periscope monitoring library.

Once this preprocessing is done, the application can be run through Periscope and

can take advantage of repetitive code regions or simply reexecute the application entirely

to construct detailed analysis on code regions. This analysis is based on metrics taken

throughout the various executions by different metrics such as hardware counters from PAPI

or MPI function timing information.

TAU’s paraprof Tool

TAU provides a tool called paraprof that allows for a wide variety of visualization and

analysis options for performance data generated from TAU instrumentation. Depending

on the type of instrumentation that was added to the code, paraprof can display the data

in graphical visualizations such as 3-D scatter plots, thread-based displays such as thread

statistics tables, breakdowns of individual functions like histograms for metrics about the

function across all calls, and many other options [56].

Scalasca

The built-in analysis capabilities in Scalasca are focused on identifying performance

bottlenecks, but the main focus is specifically on identifying wait states introduced by

communication and synchronization [49]. This wait state analysis looks for events such
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as an MPI Send operation that occurred much later than it should, or a thread that got to

an OpenMP barrier late.

HPCToolkit

Once data has been gathered through HPCToolkit’s hpcrun and hpcstruct tools, it can be

processed through the analysis tools within HPCToolkit. The first step is to combine the

output from the two previous tools using the hpcprof tool, which can form a link between

the performance measurements and the source code and then creates a database of this

combined performance data.

Once this database has been created, HPCToolkit provides two additional tools to

visualize and analyse the data called hpcviewer and hpctraceviewer. With hpcviewer, the

focus is on providing code-focused analysis by providing insight into both hotspots in the

code and potential bottlenecks [17]. The hpctraceviewer tool is designed to present the data

in a timeline format where the information is organized by the hierarchy of the parallelism

of the original execution.

2.1.3 MPI-Specific Tools

MPI Standard Tools

Since its inception, the MPI Standard has included a profiling interface, called PMPI [20].

The PMPI interface has been one of the most common methods for profiling MPI applications

for a long time since it provides a simple interface for preempting MPI functions. The idea is

that all MPI functions are available with an alternate naming starting with ’PMPI ’ instead

of ’MPI ’, and a profiling tool can simply write their own MPI X function and then call the

equivalent PMPI X function within their MPI X function surrounded by any profiling code

the tool wishes to add. Unfortunately, since this is simply using a naming shift, only the

first library linked into the application will be able to overload the MPI X function. There

is a more in-depth discussion of the PMPI interface in Section 3.3.1.

There is a proposed successor to the PMPI interface called the QMPI interface which

is meant to remedy the issue of only one tool being able to overload an MPI function for a
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given application [16]. This is done through providing a stack of tool instrumentation code

surrounding the PMPI function invocation to allow for multiple tools to add profiling code

before and after a given MPI function. There is a more in-depth discussion of the QMPI

interface in Section 3.3.2.

The MPI Standard has recently been extended to include the MPI Tool information

interface (MPI T ), which is meant to provide low-level internal MPI information [20]. This

is done through exposing internal MPI implementation variables through two different

constructs: control variables and performance variables. Control variables are meant to

store variables that affect the configuration of the MPI implementation such as the data

sizes used for different internal protocols. Performance variables are more focused on internal

performance metrics of the MPI implementation such as the number of messages that arrived

unexpectedly. There is a more in-depth discussion of the MPI T interface in Section 3.3.3.

MPI T Introspection

One of the intended use cases of the MPI T interface is to use the MPI T performance

variables for introspection of the operation of the MPI implementation and then use

that information to inform dynamic updates to the MPI T control variables. Ramesh

et. al. [48] provide an infrastructure for performing such introspection in the MVAPICH2

implementation of the MPI Standard using TAU and the Backplane for Event and Control

Notification (BEACON ), which comes from the Argo project [51] [45]. This work uses

the integration of TAU and BEACON to conduct online monitoring of MPI T performance

variables and implements TAU plugin extensions to adjust the MPI T control variables at

runtime to improve performance.

mpiP

The mpiP tool specifically targets MPI applications and uses the PMPI interface to

instrument all MPI functions in the application [60]. The mpiP tool counts and times all

MPI function calls and then performs a stack trace in order to associate each MPI call with

its call site in the application. This allows MPI application developers to identify hot spots
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Figure 2.1: A state machine provided by Keller et. al. in their introductory papery for the
Peruse interface [31]. This shows a potential sequence of events in the Peruse interface in
Open MPI.

in their code from an MPI perspective, by not only showing that they had an issue with a

particular function taking a lot of time, but which particular invocation of that function.

Peruse and the MPI T Events Interface

Before the MPI T interface was added to the MPI Standard, there was a proposed addition

called the Peruse interface [31]. Essentially, Peruse was meant to expose internal MPI

performance information through instrumentation of the MPI implementation with hooks

to function callbacks. The idea was that whenever certain events happened within the MPI

implementation a function callback would be triggered to keep track to the current MPI

state. This detailed state information could provide a road map of sorts for the execution

of MPI functions as shown in Figure 2.1. This interface was not accepted into the MPI

Standard but is still in use by the Open MPI implementation.

The MPI T events interface has been proposed as an addition to the MPI Standard and is

something of a spiritual successor to the Peruse interface [26]. The idea of the MPI T events

interface is to provide a way for tools to access information about asynchronous events that

happen within an MPI implementation through function callbacks. Essentially, performance

tools would be able to query possible events, and to attach to those events to be notified

when that event occurs.
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2.1.4 GPU Performance Analysis Tools

In this work, I am focusing specifically on NVIDIA GPUs, so I will be looking at tools that

support NVIDIA’s CUDA programming environment for their GPUs. There are many tools

that have support for profiling NVIDIA GPUs, some directly from NVIDIA, and others

from third party developers. NVIDIA has been releasing more tool support over the years,

however the information available on these GPUs is often limited, partially due to the limited

monitoring resources available on the GPU hardware.

NVIDIA Tools

NVIDIA provides several tools to assist with performance analysis of CUDA applications

such as nvprof, Nsight, NVIDIA Visual Profiler, and the CUDA Profiling Tools Interface

(CUPTI ). The nvprof tool is a command line utility that allows users to run a CUDA-based

application with automatic instrumentation. In addition to simple timing information, nvprof

can also collect a wide variety of different metrics from the GPU for each CUDA kernel. Since

there are limited registers on the GPU for storing this profiling information, each kernel may

be run multiple times with different metrics enabled in order to collect all of the enabled

metrics [39].

At the end of the program’s execution, nvprof dumps a profile file that can then be

displayed by the Visual Profiler. The Visual Profiler provides a timeline view of the

application with the capability to expand each GPU kernel and investigate its properties

and any metrics collected for that kernel. In addition, the Visual Profiler can create an

analysis report that attempts to identify potential bottlenecks or inefficiencies in each of

the CUDA kernels and provides suggestions for improvement. The Nsight development

environment combines these features by providing the capability to develop and run CUDA

applications with the option to profile and visualize those applications.

When it comes to support for third-party tools, NVIDIA provides the CUPTI interface.

Essentially, CUPTI provides an API that allows tools to access various information about

the CPU and GPU usage throughout an execution such as timing and usage of CUDA API

functions and GPU metrics like instruction and memory access counts all with consistent
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timestamps across CPU and GPU events. There are also CUPTI utilities that provide

analysis of the collected data and attempt to identify potential bottlenecks.

Tools With CUDA Support

The TAU, Vampir, Caliper, and HPCToolkit tools provide access to CUDA profiling

information through the CUPTI interface. They all provide robust timing and metric

information of the GPU usage seamlessly with any other instrumentation they have added

to the code. The PAPI tool provides a CUDA component that specifically focuses on

the hardware counters available on the GPU through CUPTI. These counters are exposed

through the standard PAPI API.

2.2 Load Imbalance

2.2.1 Distributed Load Imbalance

The ability to identify load imbalance on a distributed system is a critical need for distributed

application development and optimization. There are several tools that can help identify this

load imbalance such as Scalasca and HPCToolkit.

Scalasca helps identify load imbalance by analyzing traces to identify inefficiencies that

could lead to a load imbalance such as late senders or receivers [23]. This analysis is

conducted through extensive trace replays. HPCToolkit uses a technique called blame

shifting introduced by Tallent et. al. [55] to shift blame for inefficiencies to their proper

source [1]. In other work by Tallent et. al. [54], this concept of blame shifting is applied

to call path profiles specifically for identifying the particular point in a program where load

imbalance was introduced.

2.2.2 GPU Load Imbalance

Load imbalance studies including GPUs require the help of performance profiling tools that

provide access to GPU information that is relevant to imbalance. I have discussed a number
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of different tools that are capable of providing GPU performance information in Section 2.1.4,

however there is another tool that provides analysis of load imbalance called CASITA.

The CASITA tool provides the capability to conduct root-cause and critical-path analysis

on heterogeneous applications through event traces [50]. In addition, CASITA contains a

critical blame metric that applies a blame shifting technique to both CPU and GPU events on

the critical path that cause idleness in future synchronization operations, and thus indicate

a potential load imbalance.

Chabbi et al. [10] use HPCToolkit [1] to create a sampling-based approach for conducting

performance analysis on GPU-based applications. This is done through the usage of a blame-

shifting technique to match sources of idleness or wait states, such as those caused by device

synchronization, to the CUDA kernels that caused them rather than the CPU. This allows

for a more fair analysis of the influence that CUDA kernels have on the application.

Farooqui et al. [19] add the capability to apply instrumentation procedures to PTX

modules in the GPU version of Ocelot to report profiling information at run time. This

extended version of GPU Ocelot is used to assess the load imbalance of several CUDA

applications by counting the number of cycles executed per SM. The number of cycles

executed per SM can be used to calculate a metric similar to sm efficiency from nvprof,

but not a measure of inter-SM load imbalance.

The blame-shifting techniques used in HPCToolkit and CASITA allow for identifying

potential load imbalance between MPI processes introduced at the GPU kernel level. The

cycles per SM metric from Farooqui et al. goes a little deeper by providing a look at the

internal GPU usage. These two approaches each provide a portion of the picture of how

the GPU influences load imbalance, one from a high level and one from a lower level. In

Chapter 4, I explore a novel GPU load imbalance metric that combines internal GPU metrics

and high-level timing information.
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Chapter 3

MPI Performance Analysis and Tool

Support Through Software-based

Performance Counters

3.1 Chapter Overview

This chapter provides a discussion of my work on MPI performance analysis with a

particular focus on providing tool support in the form of low-level performance metrics.

I introduce Software-based Performance Counters (SPCs), which are designed to expose

internal performance metrics in the Open MPI implementation of the MPI standard. I use

these SPCs as a vehicle for furthering my study of the topic of MPI performance analysis.

I will start by providing an introduction of this topic in Section 3.2. This will be followed

by a discussion of the relevant background information in Section 3.3. Section 3.4 will

elaborate on the motivation for the creation of SPCs. Section 3.5 will explain what sorts of

metrics are exposed by SPCs. Section 3.6 will provide a detailed discussion of the design

and implementation of SPCs. Section 3.7 will provide analysis of the overhead cost of

SPCs. Section 3.8 will show the different methods available for reporting SPCs to users and

tools. Section 3.9 will provide results from usage of SPCs for performance analysis in several

different use cases. I will then conclude this work in Section 3.10.
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3.2 Introduction

With the collapse of Dennard scaling around 2006 [14], chip manufacturers have increasingly

relied on multi-core processors in order to improve performance. This trend is reflected on

the Top500 list of supercomputers, which shows that on the November 2001 list, 100% of the

machines had only 1 processing core per socket, whereas on the November 2019 list, none of

the machines had 1 processing core per socket, and the most common configuration was 20

cores per socket with 178 machines [53]. With Moore’s Law still in effect (though progress

is slowing), the number of cores per socket is expected to continue to increase, at least in

the near future [37]. With this increase in parallelism, it has never been more important to

have tools for performance analysis, particularly in large distributed systems which can have

hundreds of thousands of cores.

3.3 Background

The Message Passing Interface (MPI) is the primary paradigm for writing parallel programs

in large distributed memory systems. As such, much of the performance analysis and

tool support for these systems is focused on MPI. Since its inception, the MPI Forum

has made sure the MPI Standard includes support for native performance analysis of

MPI [20]. This started with the MPI Profiling Interface, or PMPI Interface, which allows for

high-level profiling of MPI through use of name-shifted MPI functions (more information

in Section 3.3.1). The second major performance analysis support added to the MPI

Standard was the MPI Tool Information Interface, or MPI T Interface, which allows for MPI

implementations to expose internal variables as MPI T control and performance variables

(more information in Section 3.3.3). There are many implementations of the MPI Standard

with varying degrees of compliance to the MPI Standard, each with their own design

philosophies (more information in Section 3.3.4).
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3.3.1 The MPI Profiling Interface (PMPI)

The MPI Standard defines hundreds of functions with the prefix ’MPI ’, for functionalities

ranging from sending and receiving data to timer functions. The MPI Profiling Interface

provides a means for tools to intercept calls to these ’MPI ’ functions and add their own

functionality. This works by providing a name-shifted version of the MPI functions that use

’PMPI ’ instead of ’MPI ’. The idea is that the tool will be linked into the application before

the MPI library, so the tool’s MPI X function is called instead of the MPI implementation’s

MPI X function. This allows the tool to add profiling information surrounding a call to the

name-shifted version of the function PMPI X, or to provide their own implementation of the

MPI X function.

A typical usage of the PMPI interface for profiling an MPI function might look like the

following:

1 /* Global value declarations in the tool */

2 static long long mpi_send_count = 0;

3 static long long mpi_send_bytes = 0;

4 static double mpi_send_time = 0.0;

5

6 /* Tool’s implementation of MPI_Send */

7 int MPI_Send(const void* buffer, int count, MPI_Datatype datatype,

8 int dest, int tag, MPI_Comm comm)

9 {

10 double start_time = MPI_Wtime();

11 /* Call the PMPI_Send to perform the actual MPI_Send operation */

12 int return_value = PMPI_Send(buffer, count, datatype, dest, tag, comm);

13 /* Update the global mpi_send_time with calculated duration */

14 mpi_send_time += MPI_Wtime() - start_time;

15

16 int type_size;

17 MPI_Type_size(datatype, &type_size); /* Calculate datatype size */

18 /* Update the global mpi_send_bytes */
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19 mpi_send_bytes += type_size * count; /* Calculate the bytes sent */

20 /* Update the global mpi_send_count */

21 mpi_send_count += 1;

22

23 /* Use the return value from the PMPI call */

24 return return_value;

25 }

Listing 3.1: An example implementation using the PMPI interface to profile the MPI Send

function.

The PMPI interface is designed to be MPI implementation agnostic, so tool developers

can collect performance information without access to the MPI implementation’s source

code[20]. This design principle makes it so that only high-level information such as counts

of MPI function calls, timing information, and call-site information can be collected through

the PMPI interface. Another major drawback of the PMPI interface is that the name-shift

design only allows a single tool to preempt a given function for an application. Essentially,

whichever tool gets linked first will get the first opportunity to have its overloaded functions

used. This problem has been addressed by a new potential addition to the MPI Standard,

the QMPI interface [16].

3.3.2 The QMPI Interface

The QMPI interface has been proposed as a potential successor to the PMPI interface,

with its name intended to evoke this idea as the ’Q’ was chosen because it comes after ’P’

in the alphabet [16]. The QMPI interface was designed to allow for multiple tools to use

the interface at once, which address the biggest weakness of the PMPI interface. There

were several requirements proposed for the QMPI interface: it must support all PMPI tool

functionality; it must allow for implementing both pre-processing and post-processing steps;

it must allow for replacing MPI function call functionality; it must allow for several tools to

be in use at once; the set of tools and the order in which they are used must be configurable

at both the user and system level; and the interface itself must have low overhead [16].
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Figure 3.1: An example control flow of the hierarchical tool wrappers with pre-processing
and post-processing capabilities in the QMPI interface.

The main concept of the QMPI interface that allows it to support many concurrent tools

is that it creates a hierarchy of wrappers to surround the PMPI function call. This way, each

tool can have its own pre-processing and post-processing step, while still allowing for many

tools. Figure 3.1 shows an example control flow of a usage of the QMPI interface, where

two tools were loaded and both of those tools had a pre-processing and post-processing

step. With this design, the QMPI interface is much more powerful than the original PMPI

interface, though it still only allows for high-level profiling of the MPI library. The QMPI

interface will likely be included in the next version of the MPI Standard.

3.3.3 The MPI Tool Information Interface (MPI T)

With the PMPI interface covering the high-level profiling capabilities of MPI, the MPI

Forum decided to include the MPI T interface as a standardized way to provide low-level

tool support in MPI. Since the MPI T interface focuses on internal information, much of

the specifics of what is exposed is necessarily left up to the MPI implementations. The

MPI T interface does provide some guidance through its design in that there are two broad

categories of variables that can be exposed: control variables and performance variables.

Control Variables

MPI T control variables are meant to contain configuration settings and other properties

of the MPI implementation [20]. Most MPI implementations already had some way of
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getting and setting custom configuration settings, whether that was through environment

variables, configuration files, or some other interface, however they are typically not easily

accessible to the user within an application. The introduction of MPI T control variables

provides a consistent interface for accessing these MPI properties at runtime that is MPI

implementation agnostic. These control variables can also be registered to be modifiable

so these settings can be adjusted throughout a run, which can be helpful for tasks like

dynamic performance optimization. Many MPI implementations use some form of internal

breakpoints for determining which protocols to use for completing user requests. Some

common examples in major MPI implementations would be things like the eager limit which

determines the upper bound for using an eager protocol (sending the payload along with the

header), or ranges for message or communicator sizes within which to use different algorithms

for collective communications.

Performance Variables

Unlike MPI T control variables, which are meant to expose guidelines for how the MPI

implementation can operate, MPI T performance variables are meant to provide insight

into how the MPI implementation is operating. As such, performance variables are often

MPI implementation internals that provide information on the state of the implementation

both at the current moment and earlier in the run. This could be information like what

the implementation is currently doing (or not doing), aggregations of data such as number

of bytes sent eagerly, which protocols and algorithms are being used, current and previous

internal queue usage, etc...

For many MPI implementations, the infrastructure to expose this performance informa-

tion was not as well developed as it was for control variables. This has led to slower adoption

of performance variables by MPI implementations. Since these metrics would typically be

related to performance-critical portions of the implementation, special considerations need to

be taken to avoid excess overhead in tracking this information. Thus, MPI implementations

often opt to have MPI T performance variables disabled by default to avoid the overhead

cost.
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MPI T Usage

The usage of the MPI T interface requires the user or tool to initialize and finalize the MPI T

interface and specify which variables they are interested in tracking through several MPI T

interface functions. There are slightly different process for accessing MPI T control and

performance variables as well. The initialization and finalization of the MPI T interface is

done through the MPI T init thread and MPI T finalize functions respectively. No MPI T

functions can be called on a given process until the initialization is complete.

Once the MPI T interface has been initialized, the typical usage of the interface boils

down to looping through the available variables, getting their information, choosing the

variables of interest, setting up context and handle information for the variables, reading

and writing the variables, and then freeing contexts and handles for the variables. This

process starts with querying the number of available control or performance variables with the

MPI T [cvar/pvar] get num function. The user can then loop over the number of available

control or performance variables with indices from 0 until the number of counters, and use

the MPI T [cvar/pvar] get info function, which provides information such as the variable

name, verbosity, datatype, description, binding, and scope. If the user knows the name of

the variable already, they can also use the MPI T [cvar/pvar] get index function to get the

appropriate index for that variable which can be used to query the variable’s information.

With the appropriate metadata for the variables of interest, the user must then allocate a

handle for each variable with the MPI T [cvar/pvar] handle alloc function. This handle will

bind the variable to an appropriate MPI object provided by the user, unless the variable was

registered by the MPI implementation as MPI T BIND NO OBJECT. The handle allocation

function will also provide the count of the number of elements the variable has of its datatype

so users can allocate appropriately sized buffers to store a copy of the variables. For control

variables, this is all of the preparation that is required in order to access the variables, so

the MPI T cvar [read/write] functions can be used to access the variables.

For performance variables, there is a bit more information that is required in order

to access the variables. Performance variables are separated into a variety of classes,

which dictate their general behavior such as MPI T PVAR CLASS STATE which represents
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discrete states in the MPI implementation, or MPI T PVAR CLASS COUNTER which

counts the instances of a given event. So, the MPI T pvar get info function also provides the

variable class information for performance variables, and the MPI T pvar get index function

requires the class information to return an index. The scope information is also more detailed

for performance variables and is broken down into flags for whether the variable is read-

only, is continuously active or can be started and stopped, and is capable of being updated

atomically.

The concept of sessions is also introduced for performance variables. Sessions are

meant to provide an isolated context within which performance variables are accessed

in order to avoid collisions in accesses by different tools [20]. This introduces the

MPI T pvar session [create/free] functions for managing contexts for performance variables.

Sessions must be used when allocating handles for, and accessing, performance variables.

With all of the different classes of performance variables, there are considerably more

ways to interact with the variables than just reading and writing them. If the variable is not

continuous, the MPI T pvar [start/stop] functions can be used to control their operation.

If the variable is not read-only, MPI T pvar [reset/readreset] functions can be used to reset

the value of the variable to its initial value.

With all of this functionality, the MPI T interface is very powerful and allows for well-

defined variables that makes it easier for users to understand what they are working with

and generally how that information is updated. This does have the unfortunate drawback

of requiring a lot of API calls in order to register and use each variable.

3.3.4 MPI Implementations

When it comes to MPI implementations, there are essentially two base implementations:

Open MPI and MPICH. Both of these implementations are open source, and most other

implementations are based on one of these two. The other major distinction between

the various MPI implementations is open source versus closed source. The open source

implementations such as Open MPI, MPICH, and MVAPICH tend to be collaborations

between academia, government, and private companies, whereas most of the closed source

implementations come from supercomputer vendors and are optimized for their machines
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such as Intel MPI (MPICH-based), Cray MPICH, and IBM Spectrum MPI (Open MPI-

based).

For my work, I have chosen to develop my code within the Open MPI implementation

because The University of Tennessee Knoxville (UTK) is one of the founding members of

Open MPI, and there is a lot of expertise in Open MPI available in the Innovative Computing

Laboratory at UTK.

Open MPI

In order to allow for a wide range of different functionalities, the Open MPI implementation

is based on the Modular Component Architecture (MCA), which is designed to allow for

development of several well contained components that make extending Open MPI easier,

and for run-time decisions of which components to use [61] [22]. By default, Open MPI makes

decisions on which components to use during an application, however users can control which

components are loaded and some of the properties of how those components operate through

MCA parameters, typically supplied on the command line or in an MCA parameter file.

The standard stack of components used for communication starts with MPI at the top

level; the Point-to-Point management layer (PML) below that; the BTL management layer

(BML) below that; and the byte transfer layer (BTL) at the lowest level. When a user calls

an MPI communication function, Open MPI transfers control to the PML. The PML uses

the BML to determine the appropriate BTL implementation for a particular transfer, and

then the BTL handles the hardware transfers of data between MPI processes.

3.4 Motivation

When profiling MPI applications, it can often be difficult to tell what is causing performance

issues, particularly when the problem lies within MPI itself. There are many factors that can

affect the performance of an MPI implementation, such as management of internal queues,

algorithms used for collective communications, and transport protocols used.

MPI implementations often have to deal with data that is received under sub-optimal

circumstances such as with unexpected and out-of-sequence messages. An unexpected
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message is one that arrived before the corresponding receive was posted. It is well known

that searching the unexpected message queue can quickly become a bottleneck, particularly

when there are a large number of messages in the queue [58]. Out-of-sequence messages are

messages that were delivered out of the MPI-imposed order. MPI is expected to deliver

the messages in first-in first-out (FIFO) order between each pair of processes within a

communicator. Messages can be delivered out of the proper sequence due to multiple network

paths between the processes and potentially because of how the transport software is written.

These out of sequence messages block the matching queue on the target process, as all

matching must be delayed until the FIFO order can be guaranteed.

There is a need for a tool that would be able to report such internal MPI information

to users and tools alike, to provide a more precise picture of what particular conditions

could have affected the application performance. Such a tool has the potential to be generic

enough to be of use not only to MPI users, but also to be particularly useful to those

who are developing an MPI implementation. Having metrics on the internal MPI behavior

can help identify bugs and inefficiencies in the implementation, and correct performance

critical bottlenecks before they impact production-level scientific applications. One active

area of MPI development is in implementing efficient multi-threaded MPI communication,

which requires extra care to enforce thread safety and ensure that messages are received

in the order they were sent[4]. Being able to easily access internal metrics like when data

transfers are initiated or when a message arrives out of sequence can help decrease the burden

on multi-threaded MPI developers by giving an explanation for the performance they are

seeing. Thus, I implemented Software-based Performance Counters (SPCs) as a means to

provide such capabilities.

A crucial benefit to having these metrics internal to the MPI implementation is that

they can be exposed without using the PMPI interface. The PMPI interface works by

preempting MPI functions, while SPCs work through instrumentation of Open MPI code

and do not need to interfere with this preemption. Many existing MPI tools use the PMPI

interface to perform their profiling, so keeping this interface free allows those tools to be

used concurrently with SPCs. Users can also leverage the PMPI interface for supplementing

MPI functions with their own code.
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These SPCs are modeled after PAPI ’s hardware counters due to their simplicity and

familiarity within the HPC community. The idea is to have a similar system for exposing

low level information as PAPI does, but for software-based events, specific to MPI, rather

than hardware events. It is worth noting that PAPI now has an interface for software-defined

events that allows for libraries to define their own events to be exposed through PAPI [11].

3.5 Performance Metrics Exposed

3.5.1 Types of Events

When thinking about what sorts of metrics to create, it is helpful to first think about

what types of events can happen and what information about those events is relevant to

performance analysis. There are many events that can happen in an MPI implementation.

I have decided to focus on events related to the transmission process of messages since these

tend to be the most performance sensitive events. I have distilled these events into five major

categories: cumulative, state, temporal, watermark, and categorical.

Cumulative Events

Cumulative events are those that derive their importance from the number of times they

occurred. There are many potential use cases for cumulative events such as keeping track of

event counts to allow for calculating simple statistics and identifying proportions of events

with positive and negative performance impact. For example, imagine a scenario where

there are two cumulative events, A and B. Event A represents a program executing the fast

path, and event B represents the program executing a sub-optimal path. In this example,

the proportion of the counts of events A and B could be useful in informing performance

optimization efforts. Cumulative events are tracked in SPCs through regular counters.

Regular counters are represented by an integer and can be updated both positively and

negatively by an event.
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State Events

State events are events that are relevant to the current program state. In this context,

program state could refer to a number of things such as the current values stored in memory,

or what the program is currently doing in a broad sense. As discussed in Section 3.6.1,

SPCs are stored as long long integer values, and do not have contextual information such

as timestamps associated with them. For this reason, it is difficult to create SPCs that are

specifically representative of the current program state, and there is no specialty counter

type for state events.

With no specialized state counters, the state of MPI must be derived through a

combination of a variety of different counters taken as a snapshot at a particular point

in the application. Many SPCs are monotonically increasing, and are not representative of

the current program state, however some regular counters can provide some insight, such as

the current number of messages in internal queues or the amount of data currently allocated

for internal queues.

Temporal Events

For temporal events, the time at which they happened, or their duration are the area of

interest. These could be the amount of time spent matching messages or time spent waiting

at a barrier for example. These temporal events are represented by timer counters, so only

temporal events that can be represented by a cumulative duration are available at this time.

SPC timer counters use a cycle-precision timer under the hood by default to keep track of

the duration of temporal events within Open MPI.

Watermark Events

For some types of events, it is important that they are pushing the boundary of a maximum

or minimum value. I refer to this type of events as watermark events. These events are

represented by a special type of SPCs called watermark counters. Watermark counters are

paired with a regular counter, called a sentinel value, and are updated whenever the sentinel

value exceeds the current watermark. At this time, only high watermarks are currently
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supported. An example of a high watermark could be the maximum number of items stored

in a queue. High watermark SPCs are reset to the current sentinel value whenever they are

read through the MPI T interface.

Categorical Events

There are some events where it is important to qualify the event in some way to provide

a distinction between this event and similar events. For instance, when MPI performs a

broadcast, this is important information, but it is also important which algorithm was used

to perform the broadcast and what the parameters of the broadcast were, such as the size

of the communicator or the message size. In order to keep track of such events, I have

created bin counters. Bin counters operate by having a top-level counter that keeps track

of how many total times the counter was updated as well as a series of bins that represent

subcategories of the event. Each bin counter has a series of rules associated with it that

determine the circumstances under which a particular bin is updated. For example, a bin

counter could be created for the MPI Send function that has two bins, one for messages less

than or equal to 1000 bytes in size, and one for messages greater than 1000 bytes. So, if

MPI Send was called twice with message sizes of 1 and 10000 bytes, the top-level counter

would be 2 and each bin would have a value of 1.

I have also created a special subcategory of bin counters called collective bin counters,

which are specifically for keeping track of the context surrounding collective algorithm usage.

The idea is that for each collective algorithm there are four bins arranged in a 2 × 2 grid.

The rows of the grid represent message size, small or large, and the columns represent

communicator size, small or large. The breakpoints for small and large communicators and

message sizes are MCA parameters for user tuning.

3.5.2 SPC Metrics

I implemented a variety of counters that expose information from two different levels within

the Open MPI stack. The first level I added counters to is the MPI layer. Some examples of

these counters can be seen in Table 3.1 (full list in Appendix A). In this layer, the counter
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Table 3.1: Some examples of SPCs from the MPI and PML levels of the Open MPI codebase.

MPI Level PML Level

OMPI SPC SEND OMPI SPC BYTES RECEIVED USER
OMPI SPC RECV OMPI SPC BYTES RECEIVED MPI
OMPI SPC ISEND OMPI SPC BYTES SENT USER
OMPI SPC IRECV OMPI SPC BYTES SENT MPI
OMPI SPC BCAST OMPI SPC BYTES PUT

OMPI SPC REDUCE OMPI SPC BYTES GET
OMPI SPC ALLREDUCE OMPI SPC UNEXPECTED

OMPI SPC SCATTER OMPI SPC OUT OF SEQUENCE
OMPI SPC GATHER OMPI SPC MATCH TIME

OMPI SPC ALLTOALL OMPI SPC OOS MATCH TIME
OMPI SPC ALLGATHER

values fall into two categories: those that count how many times each of the user-level MPI

functions has been called, and those that keep track of collective algorithm usage.

The MPI function call information is useful for showing an overview of the types of

communications that appear in an MPI application. The information from these counters

could have been collected with the PMPI interface, but with SPCs keeping track of these

values, a PMPI-based tool would no longer need to count the instances of each MPI function.

These values can also be used to provide context to some of the other lower level counter

values.

The collective algorithm counters are more low-level than the basic MPI function counters

and provide insight into how Open MPI is performing a given collective. In Open MPI there

are many algorithms for performing each collective operation, and a decision needs to be

made at runtime which algorithm will be used when that collective is called. This decision

is typically based on the message size and the communicator size. Thus, I have added a

collective bin counter for each collective algorithm available in the base collective component,

which is at the MPI level.

The other level I added counters to was the PML layer (see Section 3.3.4). This was done

in order to expose more low-level information, particularly about the process of sending and

receiving messages. Some examples of counters for this level are shown in Table 3.1 (full
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list in Appendix A). These lower level counters focus on things like bytes sent and received,

internal queue usage and properties, and usage of eager protocols.

Bytes Sent and Received by the User vs. MPI

The counters for bytes sent and received are split into two subcategories: bytes sent

or received by the user, and bytes sent or received by MPI (OMPI SPC BYTES

[SENT/RECEIVED] [USER/MPI]). This is an important distinction, because some of the

data transmissions performed by MPI are not explicitly requested by the user. For bytes

sent and received by the user, the bulk of the values come from explicit point-to-point

messages such as MPI Send and MPI Recv. For bytes sent and received by MPI, most

of the values are from MPI collective operations, which are managed by MPI. This can

also include additional data transmitted for the process of data transfer management, data

transmitted for MPI internals, topology information detection and exchange, and particular

algorithms for communicators, windows, and file creation.

In the Open MPI implementation, messages can be broken down into separate fragments

for internal processing depending on their size. This allows for optimizations such as

pipelining and allows for more fine-grained control of the transmission of messages. The

SPCs for bytes sent/received are updated at the message fragment granularity in that as

soon as a fragment is given to or taken from the BTL level, the counters are updated. The

aforementioned methodology works well for smaller messages, but the process becomes more

complicated with larger messages. Open MPI uses remote direct memory access (RDMA)

operations such as Put and Get operations for large memory transfers (OMPI SPC BYTES

[PUT/GET]). These Put and Get operations are handled by the BTL, so rather than add

detailed counters to all of the BTL implementations, I decided to simply add Put and Get

counters at the PML level and update them when a Put or Get operation is initiated. There

may be more time between initiation and when the data is actually transferred, so these

counters can be more coarse-grained in their updates than the bytes sent/received counters.
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Internal Queue Counters

The primary function of MPI is to move data from one place to another within a system, so

it stands to reason that managing that data tends to be one of the more expensive operations

within an MPI implementation. In many cases, the MPI implementation can begin moving

data right away, but there are some cases where this is not possible and data needs to be

stored, often in a queue, for later processing. There are two major cases where this happens in

Open MPI on the receiver side: unexpected messages, and out of sequence (OOS) messages.

For both unexpected and out of sequence messages, Open MPI needs to perform a

matching process to pair a receive request with its corresponding arrived data. The time it

takes to perform this matching process can have a big impact on latency, particularly when

there are a large number of messages in the queues. It can therefore be interesting to gain

a more precise understanding of the state of these internal queues, and the performance of

the matching process.

In order to assess the performance of the matching process, I have broken down the

matching process into two parts: attempting to find a match and handling a failure to

match. The performance of an attempted match is a factor of how many posted receives

there are, and potentially how many messages are in queues such as the OOS message queue.

If no match is found, the message is inserted into the unexpected message queue for later

processing. To quantify the performance of these two parts of the matching process, I added

two SPC timer counters: one for time attempting to match, and one for inserting messages

into the unexpected message queue.

When inserting messages into internal queues, there is additional overhead in the form

of the additional memory usage required to store the messages. In Open MPI, there is a

certain small amount of memory that is allocated for each message request in addition to the

size of the metadata for the request. This is to facilitate including the payload of very small

messages in this allocated memory to avoid memory allocation overhead. In some cases, the

payload exceeds this small buffer, and additional memory must be allocated to store the

payload, particularly when using an eager protocol where some, if not all, of the payload

is delivered with the request. To quantify this memory overhead for unexpected and OOS
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messages, I added SPCs such as the current and maximum amount of memory allocated to

store messages (in addition to the memory allocated as part of the request), and the current

and maximum amount of payload data in the queues.

Typically, MPI implementations handle unexpected messages by pushing them into a

queue that will be checked each time a receive is posted. Since handling of unexpected

messages can become a significant bottleneck [58], I have added several SPCs to the

unexpected message queue portions of the Open MPI implementation such as: the total

number of unexpected messages received, the current number of messages in the unexpected

queue, and a high watermark of the number of messages in the unexpected queue. This can

give the user an idea of what percentage of messages are arriving unexpectedly, and what the

current and worst-case queue search lengths are. If the user or tool keeps track of counter

values over time, they can also determine information such as how often unexpected messages

are arriving, and which portions of their code are producing more unexpected messages.

One of the core principles laid out in the MPI standard is that messages must be received

in the order that they are sent [20]. Open MPI enforces this ordering using a sequence number

for each message between two MPI processes in the same communicator. In Open MPI, order

is sometimes enforced by the BTL implementation (see Section 3.3.4) such as with the TCP

BTL, but other BTL implementations such as openib for InfiniBand do not necessarily enforce

ordering in every use case. The InfiniBand hardware does enforce ordering of the messages,

however the openib BTL implementation in Open MPI allows for messages to be sent out of

sequence when there are messages that failed to send. Essentially, when a message fails to

send it is put into a queue for resending later.

There are many ways that a message can be delivered out of the proper sequence,

such as race conditions with multithreading, delivering messages with multiple networks,

multiple routing paths through the network between endpoints, and more. For example,

there was a bug in the openib BTL in Open MPI that allowed for messages in the fast

path to bypass checking the failed message queue, thus these fast path messages were sent

before the failed messages, causing them to be delivered out of sequence in most cases. At

the receiver side, posted receives can only be matched once all prior sequence numbered

requests have been received. Out of sequence messages can cause a significant bottleneck
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due to increased memory management and time spent searching through the queue of out

of sequence messages, similar to unexpected messages. To identify this bottleneck, I have

added several counters to the out of sequence message handling code in Open MPI, mirroring

the counters for unexpected messages with a total count of out of sequence messages as well

as current and high watermark values for the out of sequence messages in the queue.

3.6 Design and Implementation

The implementation of SPCs enables users to see useful performance metrics that range from

the number of times MPI Send was called to more detailed internal MPI metrics such as the

number of messages that were unexpected or which algorithm was used for an MPI Bcast.

The driver code for SPCs was implemented in the MPI runtime layer within Open MPI

which acts as general manager for the operation of Open MPI. The driver code consists of

data structures for storing the counter information and functions for managing allocated

memory and updating the counters. The instrumentation code for the various counters

appears in both the MPI and PML layers, depending on how low level the information is.

Some counters are only updated in one location, while others are updated in multiple places

to most accurately reflect the metric they represent.

3.6.1 SPC Data Structures

The SPC driver code relies on four main data structures for operation: an enumeration of

all SPCs, bitmaps for enabled counters and counter properties, a buffer for storing counter

values, and an array of offset structures. There are two primary design principles behind

the the SPC data structures: usage of SPCs should incur minimal overhead, and the data

exposed to the user should be contained within a single contiguous buffer. The usage of a

single contiguous buffer has performance benefits for data accesses by helping to minimize

page faults and cache misses. Another benefit, from a design standpoint is that this data

can be mapped into shared pages using the mmap function. Each MPI process has its own

SPC data structures, so the counters are updated separately for each process.
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Figure 3.2: The data layout for the contiguous SPC data buffer, with N being the number of
SPCs, and M being the number of bin counters. Note: Each pair of rules and values arrays
are cache line aligned in order to avoid false sharing between separate bin counters.

The enumeration of SPC names serves as a method for indexing into most of the other

internal SPC data structures and serves as a form of counter ID. To minimize overhead,

SPC properties such as whether they are enabled and whether they are a special type of

counter are stored in bitmaps. The enumeration provides the offset for the appropriate bit

in a given bitmap. The bitmap denoting which SPCs are enabled gets particularly heavy

usage because it needs to be checked each time Open MPI instrumentation tries to update

a counter.

The counter value data can be broken down into three components: base value, rules, and

bin values. The rules and bin values are used for storing additional information associated

with special bin counters. At this time, the counter values are stored as long long integer

values, so floating point counters are not supported. The rules are stored as int type

values since they typically don’t require particularly large values. The counter values are

represented as integer values rather than an array of values to reduce memory overhead.

Due to this, there is no context associated with individual updates to a counter such as a

timestamp or which portion of the Open MPI code caused the update.
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Since all of the counter values, rules, and bin values are stored in one contiguous buffer

with multiple data types inside, there is a need to index into this data properly. The data

buffer is organized as shown in Figure 3.2, with all of the SPC values contiguously stored at

the beginning of the buffer followed by adjacent rules and values arrays for each bin counter.

To avoid false sharing between bin counters, each rules array is aligned such that it begins

a new cache line. The SPC offsets structure array is added to allow for easy indexing into

the proper locations within this buffer for the rules and bin values.

3.6.2 SPC Update Functionality

In order to support all of the different types of counters that are available, there are several

helper functions for updating the SPCs. All of these functions are called through macros

that become no-ops and get optimized out if Open MPI is built without support for SPCs.

In order to minimize overhead, these macros are constructed to check whether a particular

counter is turned on before calling any functions, so the worst case for a disabled counter is

the overhead of an if statement.

Since MPI allows for multi-threading within a process, most updates to the SPC data

structures are performed using atomic operations. The exception to this is the update for

watermark counters, which assumes that the watermark update was performed with a lock

already acquired. This is done to avoid having to acquire a lock within the SPC driver code

which would incur a huge overhead penalty. At this point, all watermark counters are already

within a locked region of the Open MPI code base, so no additional locks were required.

3.7 Overhead of SPCs

3.7.1 Instrumentation Overhead

One of the biggest concerns when implementing SPCs within Open MPI is minimizing the

overhead of adding instrumentation throughout the Open MPI code, particularly within

the fast path. If there is too much overhead in adding instrumentation, the overhead

could sometimes outweigh the benefit of getting the profiling information and would lessen
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usage of the instrumentation. For this reason, I took particular interest in making SPC

instrumentation as inexpensive as possible.

The overhead added for instrumentation depends primarily on the type of counter, and

whether or not the counter is activated. When a counter is activated, the instrumentation

can add a variety of operations into the code such as: if statements, function calls, bitmap

queries, value comparisons, assignments, atomic add operations, add operations, subtraction

operations, and cycle timer queries denoted as follows:

Definition 3.1. Tif → The cost of an if statement.

Definition 3.2. Tfunc → The cost of a function call.

Definition 3.3. Tbitmap → The cost of a bitmap query.

Definition 3.4. Tcomp → The cost of a value comparison.

Definition 3.5. Tassign → The cost of a value assignment.

Definition 3.6. Tatomic → The cost of an atomic add operation.

Definition 3.7. Tsub → The cost of a subtraction operation.

Definition 3.8. Tcyc → The cost of a cycle timer query.

These operations can be combined to express the overhead incurred by SPCs in different

circumstances. The overhead will be different for counters that are turned on versus turned

off, and additional overhead will be incurred by some of the specialized counters like bin

counters, timer counters, and watermark counters. Equations 3.1 to 3.5 show the overhead

of these scenarios through a combination of the operations listed above in Definitions 3.1

to 3.8. It is worth noting that Equations 3.3 to 3.5 build upon the overhead of Equation 3.2

in that they are additional overhead on top of the counter being turned on.

OOff = Tif + Tbitmap (3.1)

OOn = Tif + Tbitmap + Tfunc + Tatomic (3.2)
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OWatermark = Tatomic + Tif + Tbitmap + Tif + Tcomp + Tassign (3.3)

The overhead for watermark counters varies depending on the situation. Equation 3.3

assumes that both the watermark counter and the sentinel counter are turned on, otherwise

the additional overhead would the same as the overhead of a counter that is turned off,

shown in Equation 3.1. If the updated sentinel value is greater than the current watermark,

then the assignment overhead (Tassign) is incurred.

OT imer = Tif + Tbitmap + (2× Tcyc) + Tsub (3.4)

The overhead for timer based SPCs includes two queries to a cycle precision timer for

the start and stop times, and as such there is an additional if statement overhead associated

with these counters since there need to be two checks for whether the counter is turned on

(one for start and one for stop).

OBin =
NumBins−1∑

1

Tif + Tcomp (3.5)

The overhead for bin counters varies depending on which bin needs to be updated. Since

bin counters have a series of rules denoting which ranges of values go in each bin, the rules

for each bin are checked sequentially until the correct bin is found. Equation 3.5 shows the

worst case overhead where all of the rules need to be checked. If the value belongs in the final

bin, an if statement is not required because all of the previous if statements have ensured

that the update belongs to the final bin, thus the summation from one to the number of bins

minus one.

The SPC overhead varies for each MPI function since not all SPCs fall within the code

path executed by each function. With the overhead formulas defined in Equations 3.1 to 3.5,

I can provide an equation for the overhead added to an MPI function in Equation 3.6.
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Table 3.2: Configuration of the testing system, Arc.

Property Arc Configuration

Processor Dual 10-core Intel Xeon E5-2650 v3 @2.3 Ghz
Interconnect InfiniBand EDR (100 Gb)

Compiler gcc 6.3.0
Open MPI optimized, dynamic build

OSPC =

Off∑
0

OOff +
On∑
0

OOn +

T imerOff∑
0

OOff +
T imerOn∑

0

OT imer+ (3.6)

WatermarkMiss∑
0

OWatermark − Tassign +
WatermarkHit∑

0

OWatermark +
Bin∑

0

OBin

In Equation 3.6, each summation represents the number of counters from a particular

class of counters or enabled status that are encountered in the code path of a particular MPI

function. For example, an MPI Send operation might hit SPCs such as the number of times

MPI Send was called, bytes sent by the user, point to point message size (bin counter), and

number of eager messages. Assuming all counters are turned on, the overhead added to this

MPI Send operation would be (4×OOn) + OBin.

3.7.2 Testing the Overhead Cost of SPCs

It is critical to ensure that the overhead imposed by any performance gathering mechanism

remains minimal, and its impact on the performance of the underlying MPI functionality is

unaffected. To test how much overhead is introduced with these counters, I use the NetPIPE

benchmark [52]. This benchmark performs a ping-pong throughput test and reports the

bandwidth and latency for a variety of message sizes and repetitions for each message size.

In this section I will focus on the latency numbers from NetPIPE because they provide more

insight into the overhead of the different counters.
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Figure 3.3: The overhead of adding SPCs to the code while leaving all of
them turned off. Note: the error bars represent the standard deviation
across the 10 test runs.
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Figure 3.4: The overhead of adding SPCs to the code and turning all of
them on. Note: the error bars represent the standard deviation across the
10 test runs.
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These tests are performed on the Arc machine, the configuration for which can be found

in Table 3.2. To test different usage cases, I performed the NetPIPE benchmark with three

different configurations with varying degrees of expected impact. The first configuration,

Node, focuses on inter-node communication over InfiniBand using the openib BTL. Here,

node refers to an individual server within a distributed compute cluster. The next two

configurations, Socket and Core, deal with intra-node communication over shared memory

using SysV shared memory through the Open MPI vader BTL. With the Socket test, the

MPI processes were bound to cores from different CPU sockets within the same node, and

for the Core test, the MPI processes were bound to cores within the same socket. Here,

socket refers to a CPU slot within a compute server. It is worth noting that these tests were

conducted with an older version of SPCs which had fewer counters added to the Open MPI

codebase, however the overhead is similar in the most recent version of SPCs.

For the baseline test, Open MPI is built with the same set of configuration parameters

but without SPCs enabled, which turns all of the code associated with SPCs into no-ops.

Next, I performed several tests with SPCs compiled in. The first two tests simply have all of

the counters turned off or all of the counters turned on. The overhead of all counters being

off shows the impact of the if statements added to the different paths in the code (including

in some cases to the critical path). Having all of the counters turned on is the worst case

for overhead, and the impact will be from both the if statements and instructions added to

handle the counters (including in most cases atomic add operations). All of the overhead

data points are the average of ten runs of NetPIPE to help account for noise in the network.

I also present the standard deviation of the non-curated data points, to highlight the best

and worst case scenarios.

Figure 3.3 shows the overhead incurred when SPCs are built, but all of them are turned

off. This effectively shows the difference in performance if SPCs were to be included in the

Open MPI build by default. The overall trend is that the overhead decreases as the message

size increases. As expected, the inter-node overhead is the lowest with the overhead for most

message sizes being around 1%. For messages between 3 and 8 bytes in length, there is an

increase in latency on the Arc system. This spike in latency happened infrequently but was

more likely to occur when the counters were turned on resulting in over 4% overhead on
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Table 3.3: Counters used in the NetPIPE benchmark.

Counter Name

OMPI SEND
OMPI RECV

OMPI BYTES RECEIVED USER
OMPI BYTES SENT USER

OMPI BYTES GET
OMPI UNEXPECTED
OMPI MATCH TIME

average. The maximum overhead for this test was ˜14.5% for small messages sent between

cores in the same socket. In most cases the overhead was less than 5%, and for the intra-node

tests the latency was actually shorter on average for message sizes around 100 bytes when

the counters were built.

Figure 3.4, shows the maximum overhead of using SPCs with NetPIPE, since all of the

counters are turned on. There are similar patterns in the plots for the different test cases,

simply with higher magnitudes. Again, the Core test shows the highest overhead with

˜40.0%. The inter-node overhead remains around or below 5% overhead for most message

sizes. This result shows that for the majority of cases, adding SPCs does not add a large

amount of overhead.

To account for the sizable gap between the overheads of having all counters turned on and

off, I performed tests with selected counters turned on. For the NetPIPE benchmark, seven

different SPCs are encountered during the run. These counters are shown in Table 3.3. After

testing with different counters turned on, I found that the OMPI MATCH TIME counter

accounts for the majority of the overhead.

Figure 3.5 provides a comparison between having the counters turned on, turned off,

only having OMPI MATCH TIME turned on, and only having the six counters needed

by NetPIPE minus OMPI MATCH TIME, for the Core test. This figure shows that

nearly all of the overhead increase from all off to all on can be attributed to the

OMPI MATCH TIME counter. In order to update this counter, I use a timer function

to get the start and end times of the matching process. Both starting and stopping the
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Figure 3.5: Comparing the intra-node overhead within a single socket with the counters all
on, all off, only OMPI MATCH TIME turned on, or only the counters from Table 3.3 minus
OMPI MATCH TIME. Note: the error bars represent the standard deviation across the 10
runs.
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Figure 3.6: The overhead of adding SPCs to the code and turning on only the counters
from Table 3.3 minus OMPI MATCH TIME. Note: the error bars represent the standard
deviation across the 10 runs.

timer require if statements to ensure the OMPI MATCH TIME counter is turned on in

addition to the if statement and atomic add operation of the counter update. In total,

there are three if statements, two timer function calls, one subtraction operation (for

calculating elapsed time), and one atomic add operation needed for each match. The other

counters used in this test, by comparison, only require a single if statement and an atomic

add. The OMPI MATCH TIME counter can also happen more often than many other

counters because the matching process can happen multiple times for a single message if

it is unsuccessful. The OMPI BYTES RECEIVED/SENT USER counters can also happen

multiple times per message if the message is broken into fragments, yet these counters do

not add a significant amount of additional overhead. This suggests that the additional if

statements and timer function calls are the cause of this increased overhead.
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Figure 3.7: The overhead of adding SPCs to the code in the Core case when using cycles
instead of converting to microseconds. This also looks only at the counters from Table 3.3
in all on, all off, and all on minus OMPI MATCH TIME. Note: the error bars represent the
standard deviation across the 10 runs.
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The timer function used for these test cases simply calculates the time in microseconds

by dividing the monotonic number of cycles returned from the RDTSC instruction by the

clock frequency in MHz. This division operation can add a large percentage of time when

the latency is already low. For example, in the case where the overhead is 40%, the latency

without the SPCs built is ˜200 nanoseconds and the latency with the SPCs built and turned

on is ˜280 nanoseconds. This additional overhead of 80 nanoseconds equates to 184 cycles

on the Arc machine. On this machine, the estimated length of a 32-bit division operation

is 35-47 cycles according to the Intel manual, and there are two of them for each time the

matching process happens, so for each match these division operations add 70-94 cycles

of overhead [27]. To verify that removing the OMPI MATCH TIME counter reduces the

overhead for all cases, I decided to redo the Core, Socket, and Node tests with this counter

turned off. Figure 3.6 shows the overhead of the three tests if the OMPI MATCH TIME

counter is turned off. For all of the use cases, the performance is nearly the same as having

none of the counters turned on.

The bulk of the additional overhead of having counters turned on comes from the timer-

based counters due to the more expensive operations in these counters. In order to alleviate

this overhead, I reimplemented the timer counters to store the raw timer values in cycles

rather than converting them to microseconds each time. This avoids the division operation

in the timer counters, which can save a significant amount of overhead. Figure 3.7 shows

that the maximum overhead of having all of the SPCs turned on drops from ˜40% to ˜25%

in the Core test case, which provides the worst case scenario for overhead.

3.7.3 mpiP Overhead

To compare with a similar tool, I looked at the overhead of using the mpiP tool which uses

the PMPI interface to instrument the code. mpiP adds timing information and counters

to user-level MPI functions like MPI Send and MPI Recv and associates each function call

with its calling location in the user code. The idea is to assess the number of times and

length of time spent in each function from each location. This tool is similar to SPCs in

that it keeps track of the number of times that MPI functions are called, however it provides

additional information in the form of timing information for the function calls. Figure 3.8
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Figure 3.8: The overhead of using mpiP with NetPIPE. Note: the error bars represent the
standard deviation across the 10 runs, however the deviation was extremely small so they
appear nonexistent.
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Figure 3.9: The overhead of having all SPCs turned on while running the LAMMPS proxy
application.

shows the overhead of running NetPIPE with mpiP, using the default settings for mpiP.

For the Node test, mpiP performed similarly to the baseline Open MPI test, but the shared

memory tests tell a much different story. For the Socket test, the overhead of using mpiP

was up to ˜245.6% and for the Core test, the overhead was up to ˜465%.

The mpiP build used PMPI Wtime for its timing measurements, which redirects to the

same low-level timer used for the SPC timer counters. Some of the additional overhead

comes from determining the call sites of MPI functions from the call stack and from calling

mpiP functions. This overhead is particularly apparent for the intra-node tests because the

latency for these tests is already as low as hundreds of nanoseconds and simply adding timer

functions can have a large impact as seen with the SPC timer-based counters. For the inter-

node test, this overhead is largely hidden by the network latency since the baseline latency

in these tests are in microseconds.

3.7.4 Proxy Application Overhead

I have shown that adding SPCs can add up to 25% overhead to each MPI call in the worst

case and drops below 5% for message sizes over ˜1000 bytes with larger messages having
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negligible overhead. In order to determine how this added MPI overhead affects scientific

applications, I ran a proxy application with all SPCs turned on and without SPCs enabled

in Open MPI.

For this test, I used the in.reaxc.hns problem from the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) [46]. I ran this test on a small x86 system with

16 cores per node and 16 nodes, for a total of 256 cores with an Infiniband interconnect.

This test utilizes the entire system, with one MPI process per core arranged in an 8× 8× 4

processor grid. I performed ten runs of each configuration and calculate the average runtime

of the application. Figure 3.9 shows that there is a minimal difference in the application run

time between having SPCs compiled in with all counters turned on, and running without

SPCs compiled into Open MPI. In addition, the average overhead added to MPI operations

throughout this application is less than 1% given that many of these communications are

between nodes and are over 100 bytes in size.

3.8 SPC Reporting Methods

With all of this instrumentation added to Open MPI, there must be a way for users to access

this information. I decided to provide a variety of methods for accessing SPCs, to give users

options that suit a variety of use cases. These methods are: printing SPCs to stdout in

MPI Finalize, through the MPI T interface, and through my custom mmap interface which

also has a snapshot feature.

3.8.1 Printing to stdout

Essentially, the way this method works is that in MPI Finalize, all of the SPCs in the

MPI COMM WORLD communicator perform an MPI Gather operation to put all of the

data on rank 0, which then prints the data to stdout with a human readable format in

rank order from rank 0 to the maximum rank. Printing the SPC values to stdout has the

advantage that the user doesn’t need to modify their code to get the counter values, however

there are several drawbacks to this method. The most obvious drawback is that if there are

a large number of processes, the output would print many lines and would be hard for a
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person to read and make sense of it. For more systematic analysis, the user would need to

capture stdout and then parse the text to get the information they are interested in. This

is obviously not an ideal reporting method but can be useful for quick assessment of small

application runs.

3.8.2 MPI T Performance Variables

All of the SPCs are registered as MPI T performance variables during the SPC initialization

process. More specifically, SPCs are registered as performance variables with the long long

type, the counter performance variable class, the no object binding, and are flagged as read

only and continuous. This tells the MPI T interface that these counters cannot be modified

by the user, do not need to be bound to an MPI object, and their value does not not need

to be modified by the MPI T interface at all. It is important to provide these stipulations

to allow for my own management of SPCs and to reduce potential overhead within MPI T

functions. It is worth noting that there is a special interaction for watermark counters when

they are being read through the MPI T interface: watermark counters are reset to the current

value of their sentinel counter when they are read.

Using the MPI T interface can be somewhat cumbersome with all of the functions and

data structures required to find, initialize, and read MPI T performance variables. This is

a result of the design of the MPI T interface being as general as possible and supporting

a wide variety of use cases. See Section 3.3.3 for a more detailed discussion of the MPI T

interface.

3.8.3 SPC mmap Interface

The initial idea behind the mmap interface was to provide an alternative to the MPI T

interface that must be portable, have low overhead, and allow for both in-situ and post-

mortem analysis. As the name implies, this interface relies on the mmap function, which is

widely available across Linux systems. The mmap function creates a new mapping of pages

in the virtual address space of the calling process [32]. This new mapping can optionally be

attached to a file with a variety of different permissions and properties. I decided to map
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Figure 3.10: A diagram of the operation of the SPC mmap interface. Note: the ” 0” in the
data file name refers to the process rank (rank 0).

the new pages to a file, typically stored in a system location such as /dev/shm, and make

the mapping read only as well as shared. This means that any process that maps to the

same memory region will be able to read the memory, and all updates to the memory will

be written back to the file.

What this means for SPCs is that users and tool developers can get direct read only access

to the counter data without having to perform any library calls after the initial mapping.

Thus, from the user perspective, the overhead of using the mmap interface is essentially the

same as any other memory load operation. Since I attach the new pages to a file, I can make

that data file persist after the run for use in post-mortem analysis.

As explained in Section 3.6.1, the SPC values and related data is stored in one contiguous

buffer. This buffer is what is mapped into the data file, so a user needs some way to determine

where in that contiguous buffer the SPCs they are interested in are located. To facilitate

this, I use an XML file that provides metadata that might be useful for performing analysis

such as the name and path to the corresponding data file, the clock rate (for converting

cycles to time), the number of counters, etc... There is also an entry for each SPC in the
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XML file that provides offsets into the data file for the counter’s value, and potentially the

rules and bin values if the counter is a bin counter. So, an example usage would be for a

tool to open the XML file, store the data file’s location, read the number of counters, search

through the list of SPCs for the metrics they are interested in, store the offsets to those

events, use mmap to attach to the SPC data pages, and then use the offsets to read the

values of interest. A simplified version of this example is shown in Figure 3.10.

One major difference for reading counters with the mmap interface is with watermark

counters. With the MPI T interface, watermark counters are reset to their sentinel value

when read. This is not possible with the mmap interface, because there is no simple and

fast way to tell when a counter value has been accessed.

3.8.4 SPC Snapshot Functionality

With the mmap interface introduced in Section 3.8.3, a user or tool can get a direct mapping

into the SPC data to be used during runtime, or read the backing data file for post-mortem

analysis. This provides for two of the more common use cases, however there is another

case where the user wants regular snapshots of the counter values. I decided to implement

an automatic snapshot feature to allow users and tools to specify a period of time after

which a copy of the data file on a process will be made. The idea is that without modifying

their code, a user could get access to the change in the counter values over time. This is

implemented in the Open Run-Time Environment (ORTE) layer within Open MPI as an

event added to an event loop. If the time between events exceeds the user-defined period of

time, another copy of the data file is made. The data file copies append the timestamp to

their name in order to provide context for that data. An example of what this process looks

like can be found in Figure 3.11

3.9 SPC Use Case Results

There are many potential use cases for SPCs, but in this section I will be focusing on three

use cases with separate areas of focus:
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Figure 3.11: A diagram of the operation of the SPC snapshot feature using the mmap
interface. Note: the write operation always creates a new file with the current timestamp
appended to the end of the name, and the ” 0” in the names refers to the process rank (rank
0).

60



1. Diagnosing issues in the MPI implementation

2. Application performance analysis

3. Machine/datacenter workload characterization

The first use case focuses on introspection of the MPI implementation to determine

whether it is performing the way it was intended to. This could be looking at whether there

is performance degradation due to new changes, or the choice of algorithm for a collective

operation, or any number of other problems. The second use case focuses on analyzing

a particular application and determining why it performed the way it did from an MPI

perspective. This is not so much diving into why the implementation is doing what it is, but

how the implementation affects the performance of a specific application. The third use case

is the most general in that the information could be gathered across a variety of different

applications and/or architectures and provide a general picture of what the MPI usage is

like in these various scenarios.

3.9.1 Diagnose MPI Implementation Issues: Out of Sequence

Messages Case Study

In this section, I will focus on the first use case of identifying issues with the MPI

implementation. I performed a case study of one particular issue that I helped identify in the

Open MPI implementation with the use of SPCs. The issue in question is the performance

degradation of the multithreaded MPI implementation due to out of sequence (OOS)

messages. I performed tests on two different sample applications to help identify this issue.

The first application, called multirate, is a synthetic benchmark that is designed to measure

message injection rate, extraction rate, latency, and bandwidth in a variety of different

communication patterns and levels of multithreading [43]. The second application is a

quantum chemistry application called moldft that was implemented with the Multiresolution

Adaptive Numerical Environment for Scientific Simulation (MADNESS) [25]. Both of these

applications have the option to run in a multithreaded environment using multithreaded

MPI.
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Table 3.4: Results of the multirate benchmark using the pairwise communication pattern
with: 2, 4, and 8 threads, a window size of 256, message size of 64 bytes, and iteration count
of 100. Note: The message rate and wall time do not include the warm-up phases, but the
other values do. Without warm-up messages there are 256× 100×Nt messages sent where
Nt is the number of threads.

Threads Message Rate (msg/sec) Receives OOS Messages % OOS Wall Time (us) Match Time (us) OOS Match Time (us)

2 601, 773.54 56, 320 16, 633 29.53% 85, 598 9, 634 9, 875
4 476, 174.73 112, 640 47, 216 41.92% 218, 807 34, 312 51, 196
8 162, 458.93 225, 280 112, 813 50.08% 1, 260, 863 96, 465 729, 187

Multirate Benchmark with the Pairwise Communication Pattern

The multirate benchmark is able to isolate the performance characteristics of various areas

within an MPI implementation such as its capability to inject messages into the network or

extract messages from the network. This is done through providing a variety of capabilities

such as flexibility in usage of threads and processes for communication participants, and

different communication patterns like many-to-one, one-to-many, and many-to-many. The

communication pattern that provides the best-case scenario is the pairwise communication

pattern, where every communication entity is paired with one other communication entity.

Since I am focusing on multithreaded MPI in this test, I initialize multithreading in MPI

with MPI THREAD MULTIPLE, which allows for all threads to execute MPI functions

concurrently. I have also set up the multirate test to have two MPI processes, one for sending

(rank 0) and one for receiving (rank 1). Each of the MPI processes creates T threads and

connects these threads pairwise between processes with all processes and threads sharing a

single communicator, such that the first thread from rank 0 is paired with the first thread

on rank 1 and so on. The paired threads only communicate with their partner thread.

The benchmark performs a warm-up phase, and then calculates message rate by posting a

window of W asynchronous sends of size S from each thread on process 0 to their respective

partner threads on process 1, repeating this procedure I times and then dividing messages

by time. In this case, I chose to use a relatively small message size of 64 bytes to focus on

the stress to the MPI implementation rather than the communication hardware. I also used

a window size of 256 and an iteration count of 100 to provide the potential for saturating
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the communication infrastructure within the MPI implementation. I used the vader BTL

for shared memory communication and placed the threads from each process on different

CPU sockets to alleviate potential issues with cache interactions between threads from the

separate processes. I then ran this experiment with 2, 4, and 8 threads per process.

Ideally, when the number of parallel entities increases, there would be an opportunity for

higher message rate since messages are being injected and extracted from the network by

several entities at once. This has been shown to be true when communicating exclusively

with MPI processes without multithreading, however, there tends to be some performance

degradation when enabling multithreading due to the overhead introduced for thread safety

in multithreaded MPI. Theoretically, the performance of communicating between a series

of pairs of threads should follow that of a series of pairs of processes with some factor of

overhead added to the threads. At the very least, one would expect that the performance

should increase up to a certain plateau as the number of threads increases.

The results of the multirate tests, shown in Table 3.4, tell a much different story. The

message rate is significantly decreasing as the number of threads increases. To investigate

this further, I looked at the SPC counter values, and I see that as the number of threads

increases, so too does the number of out-of-sequence (OOS) messages. Messages that arrive

out of the proper sequence cause a similar problem to messages that arrive unexpectedly in

that they must be stored in an internal queue until they can be completed properly. In these

particular tests, the number of OOS messages is becoming a significant portion of the total

messages with 29.53% of the messages arriving as OOS messages with 2 threads and over

50% of the messages with 8 threads. With all of those messages being pushed into the OOS

message queue, the time spent matching these messages increases with a much larger queue

of OOS messages to search through. In these tests, the time spent matching OOS messages

becomes a severe bottleneck for message rate with matching time reaching over half of the

total wall time.

So OOS messages reduce the performance, but why are these messages arriving out

of sequence in the first place? The answer lies in the fact that the multirate benchmark

was configured to perform all the sends and receives between threads within a single

communicator. With all of the threads in one communicator, they compete for acquiring
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sequence numbers and memory locations to perform the data transfers since both of these

operations are atomic. When multiple threads attempt these operations at the same time,

the order in which they get what they need is nondeterministic. The OS can also deschedule

the threads at any time which can influence the order in which they transfer the data.

Effectively, when multiple threads attempt to send data at the same time, their order of

acquiring sequence numbers, and the order in which they actually acquire a memory location

to write to are not necessarily in the same order. The more threads there are, the more likely

it is for these collisions to occur, which then increases the number of OOS messages.

Demonstrating the OOS Message Problem in the MADNESS Application

MADNESS comes packaged with several test benchmarks, one of which is called moldft. This

benchmark takes a set of molecular geometry as input and performs a molecular dynamics

simulation based on density-function theory. MADNESS operates in a multi-threaded MPI

environment in which any thread can communicate with any other thread directly. As I

have shown with the multirate benchmark, using multi-threaded MPI can potentially cause

a large number of OOS messages when the thread counts are high. In a sense, the multirate

tests show a worst-case scenario where many threads are putting a lot of stress on the MPI

library all at the same time. On the other hand, the multirate tests only had pairs of threads

communicating and did not look at what happens when any thread can communicate with

any other thread. This test with MADNESS will serve to show a real-world case where any

thread can communicate with any other thread, and those communications can cause delays

to computation.

To test the impact of OOS messages on simulation performance, I decided to use three

different BTLs to run the simulation: vader, openib, and TCP over InfiniBand. The vader

shared memory BTL and the openib InfiniBand BTL can both potentially allow messages

to be sent out of sequence, while the TCP BTL does not allow OOS messages. To provide

a fair comparison between the different BTLs, I hold the number of threads constant at 18

with 9 on each node for openib and TCP. I decided to use a moderate sized problem within

moldft that performs a simulation of five water molecules.
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Table 3.5: The results of the MADNESS moldft tests using five water molecules. The
counter values are the average of 10 runs with 18 threads per run of the simulation for each
configuration. Note: the total time is the wall time reported by moldft.

Counter openib vader tcp

Total Time (sec) 626.41 440.95 518.54
OMPI RECV 12, 995.6 13, 024.7 12, 710.6
OMPI ISEND 3, 252, 957.0 3, 253, 238.0 3, 143, 029.9
OMPI IRECV 3, 291, 284.3 3, 291, 596.8 3, 180, 212.8
OMPI BCAST 4.0 4.0 4.0

OMPI BYTES RECEIVED USER 1, 898, 491, 237.9 879, 724, 185.9 23, 428, 171, 947.7
OMPI BYTES RECEIVED MPI 168.0 168.0 168.0

OMPI BYTES SENT USER 1, 980, 636, 856.5 968, 525, 668.5 23, 675, 080, 020.9
OMPI BYTES SENT MPI 168.0 168.0 280.0

OMPI BYTES PUT 0.0 0.0 129, 295, 502.3
OMPI BYTES GET 23, 032, 934, 218.0 24, 056, 241, 711.4 0.0

OMPI UNEXPECTED 126, 339.4 21, 654.5 14, 868.5
OMPI OUT OF SEQUENCE 1, 222, 397.6 134, 631.0 0.0

OMPI MATCH TIME 282, 910.2 369, 343.7 251, 844.7
OMPI OOS MATCH TIME 317, 157.8 32, 742.9 0.0

Table 3.5 shows the results of the MADNESS experiments. Under normal circumstances,

one would expect that using the optimized InfiniBand BTL would outperform TCP, but this

is not the case for these tests. The TCP over InfiniBand test ran ˜20.8% faster than the pure

InfiniBand test on average. As expected, OOS messages have a huge effect on performance

here with ˜37% of the messages in the openib tests being delivered out of sequence. With

this many OOS messages, the time spent managing the OOS data structures and matching

messages also increases. The shared memory test ran ˜17.6% faster than TCP, and ˜42%

faster than openib and had much fewer out of sequence messages than openib with only ˜4%

of the messages arriving out out sequence.

These tests show that even in a situation where the communications are naturally spaced

out across an application run and interspersed with computation there can be a significant

portion of the messages delivered out of sequence in a multithreaded environment. This also

shows that the openib BTL has even more of a problem with out of sequence messages than

the vader BTL that was used for the multirate tests.
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Improvements to Multithreaded MPI Performance

After identifying this issue of out-of-sequence messages in multithreaded MPI, some

improvements were made by Open MPI developers to alleviate the number of out-of-

sequence messages in the multithreaded case. Patinyasakdikul et. al. [42] show a number

of improvements made to handling multithreading in MPI with particular focus to the

progress engine and the matching process. They proposed a method for almost completely

removing OOS messages by performing concurrent matching in addition to concurrent

progress in Open MPI. They simulated this by performing all communications between pairs

of communicating entities within separate communicators. Since matching in Open MPI

is performed per pair of processes per communicator, isolating each communication pair in

their own communicator effectively removes competition between threads as a factor with

respect to sequence numbers. It is still possible to see OOS messages in a single-threaded

case, but it is quite rare. While this method is somewhat extreme, it demonstrates a way to

significantly improve the performance of multithreaded MPI.

3.9.2 Identify Application Bottlenecks

When it comes to identifying application bottlenecks, there are many potential issues that

SPCs can highlight. They can be used to get higher precision bandwidth numbers than

simply calculating based on timers placed around an MPI function, they can identify which

algorithms are being used for collectives that may or may not suit the application, they can

identify how well the matching process is being handled, etc... In this section, I want to focus

on a real-world example where SPCs were used to identify a bottleneck with an application

and provide a method for quantifying the improvements of the solution.

Identifying a Bottleneck in a Local Rollback Approach to Fault Tolerance

The study I will be looking at was conducted by Losada et. al. [34]. This study was focused

on solving a few practical limitations of performing a local rollback of a checkpoint/restart

scheme over User Level Failure Mitigation (ULFM) fault tolerant MPI. Local rollback is

meant to only replay communications between the failed process and other processes affected
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by the fault. One of the problems with this approach is that all of the communications from

remote processes to the failed process will come flooding in at once and overwhelm the

recovering process.

The authors decided to use SPCs to identify the fact that the number of unexpected

messages significantly increases when local rollback is used. This is because the recovering

process is not able to post the appropriate receives fast enough to be matched with all of the

incoming messages from the remote processes that are replaying their messages. To solve this

problem, the authors decided to use RMA operations for their local rollback so the recovering

process can simply get the information it needs at the appropriate time without having the

remote processes overwhelming it with messages. The authors were able to demonstrate

with SPCs that their RMA-based local rollback approach drastically reduced the number

of unexpected messages and showed a 59% reduction in recovery times across all of the

applications they tested.

3.9.3 Workload Characterization

The SPC mmap interface with the snapshot feature lends itself well to performing workload

characterization of individual applications or across many applications on a particular

machine or across an institution. Since the mmap interface allows for storing data files

with the counter values in them, it is easy to look back at the counter values for a particular

application. With the snapshot feature, this can become more precise with several data files

storing the counter values at various time slices throughout the application’s lifetime.

To test this capability, I have created a simple test where I will run an example code

called indent provided by the Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) [46]. The indent test is described as simulating a spherical indenter interacting

with a two dimensional solid. I performed this test with two small CPU-based nodes each

with two Intel Xeon processors with 10 cores on each processor. I ran the test with 40 MPI

processes, one for each core in an 8 × 5 × 1 processor grid. I enabled the mmap interface

with snapshots turned on and set to record every 0.5 seconds. I enabled all of the SPCs,

though I will primarily be focusing on seven counters:
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Table 3.6: The MPI collective operations used in the LAMMPS indent test.

MPI Function Algorithm Approximate Calls/Process

MPI Bcast Binomial Tree 130
MPI Reduce Binomial Tree 6
MPI Allreduce Recursive Doubling 54,000

• OMPI SPC BYTES SENT MPI

• OMPI SPC BYTES RECEIVED MPI

• OMPI SPC BYTES SENT USER

• OMPI SPC BYTES RECEIVED USER

• OMPI SPC MATCH TIME

• OMPI SPC MATCH QUEUE TIME

• OMPI SPC UNEXPECTED

To visualize the results of these tests, I created heatmap plots for each of the

aforementioned counters across all MPI ranks and SPC snapshot data files. These plots

will show the difference in the raw counter values between two snapshot files in each box.

In this experiment, I want to primarily focus on what information can be provided from my

counters and information that is provided at a high level by LAMMPS, without looking at

the implementation of LAMMPS.

Collective Operations

The bytes sent/received by MPI counters primarily focus on data sent through MPI collective

operations. In Figure 3.12, you can see that there is a very distinct pattern to the bytes

transferred through collective operations in this test. Out of the first sixteen ranks, there is

an alternation between light and heavy amounts of data transfers. To dig deeper into why
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(a) Bytes sent by MPI, primarily through
MPI collective operations.

(b) Bytes received by MPI, primarily
through MPI collective operations.

Figure 3.12: Heatmaps of the bytes sent/received by MPI during a run of the LAMMPS
indent test with 40 MPI processes across two nodes. Each box represents the counter values
added in a 0.5 second time slice of the application run.
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Table 3.7: The MPI point-to-point operations used in the LAMMPS indent test.

MPI Function Approximate Calls/Process

MPI Send 350, 000→ 450, 000
MPI Irecv 350, 000→ 450, 000
MPI Sendrecv 9,400

this is, I looked at which collectives were used. This particular example used the broadcast,

reduce, and allreduce collectives as shown in Table 3.6.

The vast majority of the collectives performed were MPI Allreduce operations using the

recursive doubling algorithm. The recursive doubling algorithm requires a power of two

processes to operate properly, however this run is using 40 processes which is not a power

of two. Open MPI gets around this by first reducing the number of processes involved to

the nearest lower power of two processes, which is 32 in this case, and then performing the

standard recursive doubling algorithm. The full algorithm for this is shown in Figure 3.13.

Essentially, if M processes need to be removed out of N total processes to get to a power of

two, the following algorithm is used: (1) the first member of the first M pairs of processes

sends its value to the second member of its pair to perform the op (sum, difference, etc...); (2)

The remaining N −M processes perform the recursive doubling algorithm; (3) The second

member of the first M pairs of processes sends the final value to the first member of its pair.

Thus, at the end there will be M processes with 1 send/receive, M processes with log2 N + 1

sends/receives, and N − 2M processes with log2 N sends/receives.

Knowing how Open MPI handles recursive doubling when the number of processes is not

a power of two provides insight into why the heatmaps in Figure 3.12 look the way they do.

Since there are 40 processes, 8 processes need to be removed to get to a power of two. So,

we see that the first 8 pairs of processes exhibit the behavior of the first member of each pair

being removed from the rest of the algorithm and the second member of each pair having

extra communication to keep those removed processes updated.
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Figure 3.13: A visualization of the recursive doubling algorithm for an MPI Allreduce as
implemented in Open MPI. This assumes that there are 10 processes, each with a starting
value of 1 with a summation operation. The ’R’ labels indicate the MPI rank, and the ’C’
labels indicate the number of round-trip communications performed on a given rank.
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(a) Bytes sent by the user, primarily through
MPI point-to-point operations.

(b) Bytes received by the user, primarily
through MPI point-to-point operations.

Figure 3.14: Heatmaps of the bytes sent/received by the user during a run of the LAMMPS
indent test with 40 MPI processes across two nodes. Each box represents the counter values
added in a 0.5 second time slice of the application run.
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Figure 3.15: An approximate representation of the heatmaps in Figure 3.14 with the
processes arranged in an 8× 5 processor grid.

Point-to-Point Operations

When looking at the point-to-point messaging results for the LAMMPS test, things become

a bit more difficult to parse. Figure 3.14 shows a pattern of hotspots much different from

what we see with the collective communications. This pattern shows what appears to be

a periodic behavior across processes with the bytes sent/received going from light to heavy

and back again.

To get some more insight into this pattern, I looked at which MPI point-to-point

operations were being used in this test. The three MPI functions used were: MPI Send,

MPI Irecv, and MPI Sendrecv as shown in Table 3.7. The MPI Sendrecv function was used

the same number of times per process, like with the collective operations. This is likely for

performing halo exchanges of some ghost region data between processes. Unlike the collective

operations, however, the MPI Send and MPI Irecv operations called per process vary wildly

on the order of 350-450 thousand bytes.

To understand why this pattern emerges, it helps to look at what this application is

simulating. The description is that there is a spherical indent into a two dimensional solid.

I think of this solid as standing up with atoms stacked on top of each other, like grains of
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sand in an ant farm. Then, a spherical indenter is pushed down from the top, displacing the

atoms in its way.

Figure 3.15 shows an approximation of what the bytes sent/received heatmap would look

like if mapped onto the 8×5 processor grid. With this visualization, it is easy to see the path

of the indenter going into the solid roughly in the middle. So, it seems that the processes

with more communication are those which have more atoms displaced by the indenter.

Matching

When looking at message matching, there are two major aspects of matching that I want

to focus on: attempting to match a message and inserting messages into the unexpected

message queue. When matching messages, the number of posted receives in the posted

receive queue can impact how long it takes to find whether there is a match. Once a match

is found, if the match was delivered unexpectedly, it must be found in and removed from the

unexpected message queue. As the size of the unexpected message queue grows, this process

will take longer. In this particular experiment, the maximum number of messages in the

unexpected message queue varied by process, but never exceeded 25 messages and was only

above 15 for one process. So, for this particular experiment it would not take particularly

long to find and remove an element from the unexpected message queue.

To compare these two matching areas, I look at the OMPI SPC MATCH TIME and

OMPI SPC MATCH QUEUE TIME SPCs. The MATCH TIME counter keeps track of

the amount of time spent attempting to find a match, and the MATCH QUEUE TIME

counter keeps track of the amount of time spent inserting messages into the unexpected

message queue, potentially including time spent allocating additional memory if necessary.

In Figure 3.16 I show a comparison of the heatmaps for these two counters.

In Figure 3.16a, the pattern from the collective communications shows up for the first 16

processes, and the pattern for point-to-point messages is more prevalent in the later processes

(though still visible to a certain degree in the earlier processes). Since matching must happen

for each message, as the number of messages increases, so too will the time spent matching

them. This time is increased when there are more unexpected messages, since the data must

be found in and copied from the unexpected message queue. In Figure 3.16b, the pattern is
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(a) Time spent attempting to match mes-
sages.

(b) Time spent inserting messages into the
unexpected message queue.

Figure 3.16: Heatmaps of the time spent in the process of matching during a run of the
LAMMPS indent test with 40 MPI processes across two nodes. Each box represents the
counter values added in a 0.5 second time slice of the application run. Note: The timer
counter values have been converted to microseconds.
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(a) The number of unexpected messages
encountered.

(b) Time spent inserting messages into the
unexpected message queue.

Figure 3.17: Heatmaps of the number of unexpected messages and time spent inserting those
messages into the queue during a run of the LAMMPS indent test with 40 MPI processes
across two nodes. Each box represents the counter values added in a 0.5 second time slice of
the application run. Note: The timer counter values have been converted to microseconds.
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very similar to that of the collective communications with the first 16 processes alternating

high and low values, while the remaining processes are relatively similar.

Since this application is using MPI Irecv for the point-to-point communication, I suspect

that many of the point-to-point messages are pre-posted messages, which means that

they are unlikely to result in unexpected messages. On the other hand, MPI collective

communications can cause increased unexpected messages due to their usage of the eager

protocol for sending message fragments. In this case, most of the collectives are transmitting

relatively small payloads so nearly all messages sent inside of these collectives will be sent with

the eager protocol. Figure 3.17 shows that the there is a nearly perfect match between the

number of unexpected messages and the time inserting those messages into the unexpected

queue as one would expect. Comparing Figures 3.12 and 3.17 shows that processes with

more communication as part of collectives tend to have more unexpected messages, and thus

spend more time inserting those messages into the unexpected message queue.

3.10 Conclusion

In the interest of fulfilling the need for lower-level performance information for MPI

performance analysis, this chapter assessed the current state of performance analysis in MPI

with a particular focus in approaches available through the MPI Standard. I proposed the

Software-based Performance Counters approach to address the lack of low-level performance

metrics and implemented and evaluated my approach in the Open MPI implementation of

the MPI Standard. I demonstrated that my approach can provide useful low-level metrics

about the MPI implementation that can be used to perform detailed performance analysis of

MPI applications with low overhead added to the MPI library. In summary, my contributions

in this chapter are:

• Software-based Performance Counters: Performance counters reminiscent of

PAPI counters that are added to an MPI implementation at key locations in order

to provide context to how an MPI implementation is operating. I introduced several

different types of counters such as regular counters, timer counters, watermark counters,

bin counters, and collective bin counters. I added counters that keep track of metrics
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such as: the number of invocations of high-level MPI functions such as MPI Send;

the algorithms used for MPI collective operations broken down by the size of the

message and communicator; fine-grained data transfer information for both data sent

and received by an MPI process; and detailed internal queue usage information.

• Integration of SPCs with MPI T: I registered all of my SPCs as MPI T

performance variables so they can be accessed through the MPI T interface. This

allows tools to query, enable, and access my counters the same way they would any

other performance variable exposed by Open MPI.

• Custom Interface for Reporting SPCs: I implemented an mmap interface that

allows for SPCs to be stored in a shared data file that can be attached to by any process,

and gives direct read-only access to the SPCs without having to spend the function

overhead of using the MPI T interface. These data files are also accessible after a

program’s execution for postmortem analysis and are associated with an XML file

which provides the details of where each SPC is stored in the data file. This interface

also supports creating automatic snapshots of the data files periodically, which can

show the change in the counter values over time.
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Chapter 4

GPU Load Imbalance

4.1 Chapter Overview and Acknowledgment

This chapter provides a discussion of my work on GPU load imbalance analysis, with a

focus on using a synthetic GPU efficiency metric to analyze a proposed new load imbalance

formula for GPU kernels. The work in this chapter was performed over the course of two

summer internship programs at Lawrence Livermore National Laboratory (LLNL) under the

supervision and mentorship of Dr. Olga Pearce (LLNL) and with significant contributions

from Kewen Meng (University of Oregon) in the early code development, and Dr. David

Boehme (LLNL) for his expertise in performance analysis, particularly with the Caliper tool.

Section 4.2 provides an introduction and motivation for this work. In Section 4.3, I

will provide some relevant background information for the topics explored in this chapter.

Section 4.4 details the design and implementation of my modifications to the CoMD proxy

application as well as the metric driven load balancing approach. Section 4.5 describes the

experimental setup and analysis of the results of those experiments. Finally, I will conclude

this work in Section 4.6.

4.1.1 Auspices

This work was performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-TH-808649).
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4.1.2 Disclaimer

This document was prepared as an account of work sponsored by an agency of the United

States government.

Neither the United States government nor Lawrence Livermore National Security, LLC,

nor any of their employees makes any warranty, expressed or implied, or assumes any legal

liability or responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe

privately owned rights.

Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States government or Lawrence

Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect

those of the United States government or Lawrence Livermore National Security, LLC, and

shall not be used for advertising or product endorsement purposes.

4.2 Introduction

Modern High-Performance Computing (HPC) systems have grown to meet the needs of state

of the art scientific simulations for solving some of the world’s hardest problems. The largest

HPC systems use millions of independent processors, and with the increasing popularity of

GPUs, the levels of concurrency on these systems has skyrocketed. In order to maximize the

utilization of these machines, it is crucial to balance the work between processors to avoid

wasting computational resources. With increased concurrency, this problem becomes more

pronounced since the more processes you have, the more total compute time is spent waiting

on the slowest process. Dynamic load balancing is one strategy for correcting imbalance

that occurs as a simulation progresses, by migrating work between processes. The first step

to performing dynamic load balancing is to accurately determine the current imbalance in

the simulation. Assessing load imbalance in a GPU-based simulation is more nuanced than
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in a CPU-based simulation due to the hierarchical parallelism inherent to GPUs and the

increased concurrency that brings.

The aim of this work is to study the load imbalance of CPU-based vs. GPU-based

simulations and assess whether the methods used to quantify load imbalance on CPU-based

systems are sufficiently accurate when applied to GPU-based systems and if not, provide

a new technique to quantify load imbalance on GPU-based systems. When assessing the

viability of a technique for large-scale simulation codes, it is often the best practice to first

demonstrate the technique on an appropriate smaller-scale proxy application. In this work, I

extend the CoMD molecular dynamics proxy application to allow for easy switching between

CPU-based and GPU-based computation using RAJA as a portability layer [47]. The CoMD

proxy application was chosen because it has been shown to have a high correlation between

simulation work units and application load and has been extended to provide a method to

introduce controlled initial load imbalance in previous work [44].

My contributions in this chapter are:

• Extension of a proxy application (CoMD) with a well-understood correlation between

simulation units and application workload, to be portable between the CPU and GPU

using RAJA as a portability layer, for studying load imbalance

• Instrumentation of CoMD to provide insight into application load balance, and

collection of GPU metrics using NVIDIA’s nvprof tool to better understand internal

GPU load imbalance

• Analysis and evaluation of a load imbalance metric for GPU-based HPC systems, which

improves the correlation of measurements and application workload by up to 20.61%.

4.3 Background

4.3.1 The CUDA Programming Environment

The CUDA programming environment is NVIDIA’s official programming environment for

their GPUs [39]. The CUDA environment provides helper functions to allow for easy
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programming of GPUs along with a runtime system for organizing how those functions

operate and how code is executed on the GPU. When thinking about programming with

CUDA, there is a clear distinction between code that is run on the CPU, or host side, and

code that is run on the GPU, or device side.

Computational functions that are run on the GPU are referred to as kernels and are

expressed in terms of blocks, which, in turn, are composed of threads. These blocks of

threads are scheduled to run on the GPU by CUDA’s runtime system using the three main

levels of parallelism available in CUDA: streaming multiprocessors (SMs), warps, and threads.

The CUDA runtime schedules the blocks across SMs depending on the resources available on

each SM. Since there can be many threads within each block, those threads are grouped into

teams of 32 threads called warps. The warps are scheduled to run within an SM. Within each

warp, the individual threads are scheduled to run on the physical compute cores available

on an SM.

4.3.2 Load Imbalance Between MPI Processes

On CPU-only architectures, load imbalance is defined as the scaled maximum load on any

process minus the average [44]:

Imbalance =

(
Lmax − Lave

Lave

)
× 100%. (4.1)

The first consideration in calculating the load imbalance with Equation 4.1 is to determine

a definition for what load is. For this study, load is defined as the time an MPI process spends

doing some form of work. Since I am focusing on distributed applications using MPI, time

spent performing MPI operations such as MPI Barrier and MPI Wait are not considered

work from the application perspective, so I can further define load on a given process as:

Loadprocess = Timetotal − TimeMPI . (4.2)

where TimeMPI refers to the time spent waiting at MPI synchronization points.
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One of the main assumptions inherent to Equation 4.1 is that a process is the smallest

level of parallelism in the system such that processes are not broken down into further levels

of parallelism. What this translates to in a real-world example is that each MPI process

would be bound to an individual processor core and only have one thread executing its

workload. This is of course not always the case in modern HPC applications where one of

the more popular paradigms, even on CPU-only systems, is to use an MPI+X approach

where X is some form of multithreading layer such as OpenMP [40]. For simplicity’s sake,

when I refer to load balancing in CPU-based systems, I will be assuming that the traditional

one MPI process per core approach is being used.

This is further complicated on a system where much of the work is offloaded to GPUs since

there is a hierarchical nesting of parallelism inherent to the GPU architecture as discussed

in Section 4.3.1. Effectively, a single GPU can be thought of as being similar to a CPU-

only node in that it has several parallel elements within it. In a GPU-based system, the

typical usage with MPI is to bind one MPI process to each GPU, and for simplicity’s sake

I will assume that this is the case throughout this study. Another typical usage scenario

is that there are synchronization operations between the CPU and GPU to ensure that the

GPU has finished its computation and written its result to memory before that memory is

communicated by MPI. I have ensured that this is the case throughout the code used in this

study, and I perform minimal operations on the CPU to keep synchronization times to a

minimum.

4.3.3 CoMD Proxy Application

In order to provide a test bed for this load balancing study, I used the CoMD classical

molecular dynamics proxy application that was introduced as a part of the ExMatEx

project [18]. CoMD evaluates the forces that the atoms in a system exert on each other

over time through two different energy potential models: Lennard-Jones (LJ) [21] and the

Embedded Atom Method (EAM) [12, 13].

Rather than simulate an all-to-all interaction between the atoms, each atom only interacts

with nearby atoms located within a certain radius defined by the potential function. In this

case, interactions refer to the calculation of the forces that two atoms exert on each other and
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Figure 4.1: Molecular dynamics definitions

how that would update their position, velocity, and energy. Figure 4.1 provides a simplified

visualization for these interactions in two dimensions. Figure 4.1a shows an example of the

radius around one particular atom. While only performing the interactions with atoms in a

certain radius does reduce the number of computations, some method is needed to determine

which atoms fall within the radius. To reduce this search space, the simulation area can be

organized into cells that are no smaller than the cutoff radius as shown in Figure 4.1b. Thus,

all atoms that could potentially be within the cutoff radius of a given atom are either in the

same cell or in an immediately surrounding cell.

CoMD implements this by using a three-dimensional Cartesian spatial decomposition

of atoms across processes. Each process computes the energy, velocity, and position of all

atoms assigned to be within its local cells. As the positions of the atoms change, they can

potentially cross the boundaries of the cells assigned to a given process. In this case, they

would need to be transferred from one process to another. It is also important that cells that

are on the border between one process and another have access to the border cells from the

logically neighboring process in order to not ignore interactions between atoms in neighboring

cells. To facilitate this, CoMD uses ghost cells, which are local copies of neighboring cells

from a remote process. So, at the end of each time step all processes communicate which

atoms moved from their local cells into the ghost region using a halo exchange, which is how

ownership of atoms transfers between processes.
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Figure 4.2: Introducing load imbalance in CoMD

Other than the borders between processes, another special case in molecular dynamics

simulations is the border of the simulation space itself. In the case of CoMD, all borders are

periodic in that they wrap around to the opposite side of the simulation space. For example,

in a simulation with a 3× 3× 3 grid (X,Y,Z values of 0-2), atoms in cells with an X value of

0 would interact with atoms in cells on their ’right’ with an X value of 1 and atoms in cells

on their ’left’ with an X value of 2 since the X values would wrap around to the other side

of the simulation space.

The initial implementation of CoMD is designed to minimize load imbalance by default.

This is done by dividing the simulation space as evenly as possible between MPI processes

and having all of the atoms in the simulation space placed randomly but with a uniform

density. In previous work from Pearce et. al. [44], CoMD was extended such that an initial

load balance could be introduced by removing atoms from the simulation. They achieved this
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by creating spherical voids in the simulation space within which all atoms would be deleted.

The load imbalance could be adjusted by changing the diameter and placement of these

spherical voids. Figure 4.2 shows a simplified version of what the progression of this cutout

procedure looks like on a two dimensional grid for a problem with four processes with four

cells each. The thin black lines denote cell boundaries, the thick black lines represent process

boundaries, the green circles represent atoms, and the blue circles represent the spherical

voids introduced to create a load imbalance. In this particular example, processes 1 and 2

would have significantly fewer atom interactions to calculate, while process 3 would have a

lesser reduction of work and process 0 would still have the same number of local atoms. Due

to the periodic nature of CoMD, all of the processes would be affected by the introduction

of these spherical voids but some more than others as shown in Figure 4.2d. Pearce et.

al. [44] provided several user-specified runtime parameters to allow users to manipulate how

the spherical voids operate such as: 1) the spherical void size, 2) the sphere count, and 3) a

random seed for generating the coordinates for the sphere center.

I was also able to ensure that the GPU processes were given enough work for all of the

SMs to have at least some work to do by providing a floor to the atom removal due to the

spherical cutouts. This floor value is a tunable parameter, and essentially, once the total

number of atoms drops below a certain floor, no more atoms will be removed. This floor

value is not a hard constraint since the removal stops once the number of atoms goes under

the floor value and can be as much as 64 atoms under the floor.

4.4 Design and Implementation

4.4.1 Introducing RAJA

For this work, I updated CoMD to use the RAJA [47] portability layer. RAJA allows for

implementation of C++ lambda functions that can use a variety of computational backends

common on HPC systems such as OpenMP [40] and CUDA [39]. In this way, a user can

write a computational kernel once and then run it on a variety of architectures depending

on which backend is chosen at runtime.
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In my implementation, I used several different RAJA policies for the various compu-

tational kernels in both the CPU and GPU policy sets. For CPU-based runs, I used the

standard sequential policy for all outer loops, and the SIMD policy for the innermost loops

in order to provide vectorization hints to the compiler for those inner loops. Things get a

bit more complicated for the GPU kernels using the CUDA backend.

In the CUDA programming model, blocks and threads can be organized into one, two, or

three-dimensional grids with blocks/threads having indices in the X, Y, and Z dimensions.

Since most of the computational kernels used two nested loops, I spread the work of the outer

loop across CUDA blocks in the X dimension, and the work of the inner loop across CUDA

threads in the X dimension. Essentially, the loop iterations were assigned in a round-robin

fashion to the blocks and threads. For some of the kernels, the outer loop didn’t have enough

iterations to saturate the GPU, so I fixed the block size to a smaller number of threads to

allow for more parallelism at the cost of dense blocks. The increased parallelism improved

the performance for these kernels.

The most computationally intensive kernel for CoMD is the one that calculates the force

interactions between the atoms. This kernel consists of four nested loops, so initially, I spread

the work of the first loop across blocks in the X direction, the work of the second loop across

blocks in the Y direction, the work of the third loop across threads in the X direction, and

the work of the fourth loop across threads in the Y direction. This initially sounds like a

good idea but based on the way the CoMD data structures are set up, and how these loops

are organized, this causes an extremely imbalanced implementation of this kernel.

4.4.2 Refactoring for More Optimal GPU Usage

Reorganizing the Force Kernel

The CoMD data structures are set up such that there is a grid of boxes with a fixed maximum

number of atoms they can contain which is 64. Without removing atoms, the typical number

of atoms per box is about 18 on average (though it can be as high as 32) and does not change

much throughout the simulation. The size of these boxes are such that the atoms within

a box could only potentially interact with atoms in immediate neighbor boxes due to the
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Figure 4.3: The average number of interactions per thread across all of the threablocks in
the original implementation of the GPU-based CoMD.

radius of influence for force calculations. With that being said, the four loops for the force

calculations iterate over: local boxes, neighbor boxes of the current local box, atom slots

within the current local box’s possible 64 atoms, atom slots within the current neighbor

box’s possible 64 atoms. The two inner-most loops must have a fixed iteration count in this

particular instance due to a limitation with how loop indices can be written in RAJA policies

and how the data structures are set up in CoMD.

In my initial implementation, the first two loops over local and neighbor boxes have their

iterations spread out over CUDA blocks in the X and Y directions on the CUDA block

grid, respectively. The local boxes loop has on the order of thousands of iterations, and the

neighbor boxes loop always has a fixed number of iterations because each box has exactly 27

neighbor boxes. The third and fourth loops over local and neighbor atom slots would have

their iterations spread out amongst the CUDA threads in the X and Y directions on the

CUDA thread grid, respectively. Since each box has a fixed 64 atom slots, these two loops

will always have 64 iterations. This creates a problem, because using 64 threads in the X and

Y directions would result in 64 × 64 = 4096 threads, and the maximum number of threads

in a block is 1024. Thus, the RAJA runtime reduces these dimensions to 64×16 = 1024 and

unrolls the loops to allow for this configuration. Even though each loop iteration signifies

an atom, the units of work here are atom interactions, where the first iteration would be

the interaction between the first atom in the first local box and the first atom in the first

neighbor box.
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The boxes typically have less than 20 atoms in them and contain at most 32 atoms out of

the fixed 64 atom slots. Since 64 threads are assigned to the interactions between atom slots

in the local box, and there are never atoms in the second half of those slots, the threads with

an X index of 32 or higher (half of the threads) will never be assigned any work. In addition,

the way that RAJA unrolls the loops and the fact that most boxes have 24 or fewer atoms in

them results in the work being further concentrated on the threads with lower thread IDs.

Figure 4.3 shows that all of the work is assigned to approximately the first 300 threads and

no work is given to any of the other threads. Since I am conducting an imbalance study on

what is by default an extremely balanced application on the CPU, I decided to reorganize

the way atoms are processed to be more balanced on the GPU.

To make this implementation more balanced, I first changed the unit of work in these

loops from atom interactions to atoms, so one thread would perform all of the interactions

between this atom and all other atoms within its radius. This has the added benefit of

reducing the amount of potential collisions for atomic operations for updating shared data

structures. Next, I packed all of the atoms from the local boxes on an MPI process into

chunks of 1024 atoms each since I knew that the CUDA kernel would launch with 1024

threads per block. I then used a simplified bin packing algorithm to spread the chunks

evenly across 80 bins, one for each SM on the V100 GPUs I used [29]. Since all of my chunks

will be the same size except possibly the last one, I simply assigned chunks to bins in a loop

from zero to the number of bins. I then changed the RAJA loop structure to have one outer

loop for the bins and one inner loop for the chunks assigned to that bin, which results in

the RAJA backend launching a total of 80 blocks with 1024 threads each. Since the chunks

are distributed evenly, the worst case is that there are a factor of 80 plus one chunks and

that singleton chunk has only one atom in it. This becomes less of an issue the more chunks

there are, as the overhead of having one additional chunk is amortized by the total number

of chunks in that bin.

Unified Memory

One of the early design decisions when porting CoMD to using GPUs through RAJA was to

use unified memory for keeping track of memory that is used on the GPU [39]. Essentially,
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unified memory pages are managed by the CUDA runtime, which moves them between the

CPU and GPU as necessary. This means that if a page is currently resident on the CPU and

is accessed from the GPU, this would cause a GPU page fault and the memory would need to

be moved to the GPU. Using unified memory allows me to minimize the code modifications

to CoMD outside of reimplementing the compute kernels using RAJA.

In order to minimize unified memory page faults, I made sure that shared data structures

stored in unified memory were only accessed on the CPU when absolutely necessary. In the

final implementation, the only time the the data structures are moved to the CPU is when

data needs to be communicated between processes via MPI, and to speed up this process,

I used packing and unpacking kernels to prepare the memory for transfer and extract the

memory from the network respectively.

4.4.3 Instrumentation and Profiling

In order to gather accurate profiling information for the various tests, I introduced a few

different forms of instrumentation to the CoMD code along with data from NVIDIA’s nvprof

tool. The first level of profiling I added was the Caliper tool from LLNL [8]. Caliper allows

for low-overhead source code annotation and can provide information from third-party tools

such as nvprof. In this case, I am using Caliper primarily for its timing capabilities and

connection to nvprof and cupPTI. I collected all of the timing information through Caliper

and provided hints to the NVIDIA profiling tools to focus the profiling only on the portions

of code of interest.

I also added my own custom instrumentation to keep track of the exact number of atoms

on each process. I did this by counting the number of atoms processed on each CUDA

thread and writing that information out to a file. With this information, I can get a sense

of where the atoms were placed across a run with a fine granularity. This instrumentation

was used to inform the changes I made to the organization of the force kernel and to verify

that the initial new placement of atoms was reasonably balanced to start with in the new

implementation.
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4.4.4 Metric-Driven Load Balancing

Figure 4.4: GPU efficiency: SM and warp usage.

GPU Parallelism

In this study, I am using NVIDIA GPUs through RAJA with the CUDA programming model

on the back end, so it is important to understand how CUDA exposes the parallelism of the

GPUs as discussed in Section 4.3.1. The various layers of parallelism within a GPU must

be taken into account when reasoning about load balance between GPUs, which requires

methods for identifying imbalance at each layer. The three primary levels of parallelism

exposed through CUDA are the blocks, warps, and threads, and it is important to understand

how these concepts translate to the GPU hardware.

The first level of parallelism is simple enough, the CUDA blocks are mapped onto SMs

which are the first level of internal processing power in the GPU. Things get a bit more

complicated when reasoning about how the warps and threads are mapped onto the hardware.

For this study, I am using NVIDIA V100 GPUs which have 80 SMs, each with 32 FP64 cores,

64 FP32 cores, and 64 INT32 cores. CUDA threads are scheduled on these compute cores,

and in NVIDIA GPUs the cores typically operate in lock-step to a certain extent, meaning

that if there is divergence in the threads, each path is executed separately with threads
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not involved in the current path masked out for these instructions. Since I have configured

CoMD to be performing FP64 operations, for simplicity, I can assume that effectively only

one warp (32 threads) can be actively processed on an SM at a time. So, the parallelism of

the warps comes in the form of context switching between warps to hide stalls for things like

memory load operations. Thus, from a hardware perspective, there are only two main levels

of parallelism: SMs for blocks and compute cores for threads.

GPU Metrics

To better understand what is happening inside the GPU at runtime, I am using NVIDIA’s

nvprof tool which provides a number of metrics about the GPU. I have decided to use two

particular metrics from nvprof: sm efficiency and warp execution efficiency.

The sm efficiency metric is defined as ”the percentage of time at least one warp is

active on a multiprocessor averaged over all multiprocessors on the GPU” in the CUDA

documentation [39]. What this means is that this metric provides an estimate of the

percentage of time that each SM was performing work on average. It is worth noting that

as the warps complete their work and there are fewer warps to schedule on the SM, there

will be fewer opportunities to hide stalls with context switches, so towards the end of a

block’s execution on an SM there could actually be more idle time due to stalls, which is not

captured by this metric. In addition, this metric is an average across all SMs, so it can hide

outliers and will not be able to provide a measure of load balance at this level of parallelism

in the GPU.

The warp execution efficiency metric is defined as the ”ratio of the average active threads

per warp to the maximum number of threads per warp...” in the CUDA documentation [39].

This metric provides an estimate of the parallelism achieved in each warp, which essentially

translates to the percentage of time work was being done within each warp on average.

More recent CUDA architectures have relaxed the intra-warp lock-step constraints, but

thread divergence can still cause a decrease in the average active threads per warp. Like

sm efficiency, this metric is an average so it can hide outliers and is unable to provide a

measure of load balance at this level of parallelism.
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These two metrics provide a coarse-grained estimate of the idle time at the two main levels

of parallelism within the GPU hardware. Figure 4.4 visualizes what the distribution of work

would look like within a GPU, and in the context of this figure, the metrics reveal the average

difference between the intra-SM local maxima and the inter-SM global maximum bar height

(sm efficiency), and the average utilization within each bar (warp execution efficiency), but

not the differences in the bar heights within each SM.

To estimate the percentage of time that the GPU is performing work, I can estimate the

volume under the surface in Figure 4.4 as the following:

GPUeff = SMeff ×Warpeff (4.3)

where 100% efficiency would indicate full utilization of the GPU. This approximation is

equivalent to the trapezoidal rule.

Adjusted Load Imbalance Formula

Dr. Olga Pearce of Lawrence Livermore National Laboratory has proposed applying the same

principle from Equation 4.2 to the load within a GPU in order to remove the idle time within

a GPU’s internal computation. The idea is to use some metric of GPU efficiency, which I

have provided in Equation 4.3, to adjust the wall time spent executing a kernel:

Timeadj = Timemeasured ×GPUeff (4.4)

and apply this new measure of load to the original definition of load imbalance (Equation 4.1)

which results in the following:

Imbalance =

(
Ladjmax − Ladjave

Ladjave

)
× 100%. (4.5)

This load imbalance formula is designed to bring the load (time) imbalance more in line

with the work imbalance of the application. Essentially, the idea is to remove noise added

to the execution time via stalls and idle time due to the implementation of the application

and the scheduling of blocks, warps, and threads in the CUDA runtime.
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4.5 Results and Analysis

4.5.1 Experimental Setup

Test Machine

The following experiments were executed on Lassen, a 23-petaflop supercomputer at LLNL

comprised of 795 nodes with two 22-core IBM Power9 CPUs, four NVIDIA Tesla V100

GPUs, and 256GB of DDR4 memory per node, with a Mellanox 100Gbps EDR InfiniBand

interconnect. Each NUMA node is associated with two of the V100 GPUs, and I ensured that

the MPI processes were bound to the correct CPU to maximize bandwidth and minimize

latency between CPU and GPU.

Instrumentation Setup

I added three different types of instrumentation to the CoMD implementation for these exper-

iments: the Caliper [8] tool for precise timing information; my own custom instrumentation

in the compute kernels to count atoms processed at the granularity of CPU cores and GPU

threads; and NVIDIA’s nvprof tool for GPU metrics. With consistent atom placement and

removal across runs, I was able to perform separate runs for timing, nvprof instrumentation,

and the custom instrumentation in order to minimize noise. For the timing information, I

am only timing the most compute intensive kernel, the force calculation kernel, which makes

up the majority of the execution time. So, when I discuss measured time throughout this

section, I mean the time spent performing the force kernel on a given process.

CoMD Problem Size

I ran my experiments with 64 MPI processes across 16 nodes with one MPI process per

GPU bound to a single core of the appropriate CPU. In order to keep the MPI performance

consistent between runs using the CPU vs. the GPU for computation, I use the same MPI

process binding for both tests.

In previous work [44], it has been demonstrated that in CoMD the execution wall time

closely correlates with the number of atoms. For this reason, I am using atoms as my metric
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(a) Small problem size (256K ceiling and 80K floor atoms per process).
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(b) Large problem size (864K ceiling and 200K floor atoms per process).

Figure 4.5: Atom removal histograms for 60% atom imbalance problems for both small and
large amount of work per GPU.

for workload on a given MPI process. I chose to use two problem sizes for these experiments:

one with a small amount of work per process and one with a large amount of work per

process. For the smaller problem size, I set the minimum number of atoms per process to

approximately 80,000, which results in the majority of CUDA threads having at least one

atom to process, and the maximum number of atoms per process to approximately 256,000

atoms. I chose these bookends to allow for some threads to have nothing to do, but not

many. For the larger problem size, I set the minimum number of atoms per process to

approximately 200,000, and the maximum number of atoms per process to approximately

864,000 atoms. I chose these bookends to get to a point where the GPU is saturated for a

significant portion of the execution.
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Figure 4.6: Imbalance percentage for each amount of atom removal for the small test case
(256K ceiling and 80K floor atoms per process). Note: The Atoms values are the ground
truth for work imbalance.

Initial Imbalance

I used the cutout feature from previous work by Pearce et. al. [44] to introduce a variety of

different initial load imbalances in CoMD. I adjusted the sizes and placement of the spherical

voids to create initial atom imbalances of approximately 5, 10, 20, 30, 40, 50, 60, 70, 80,

90, and 100 percent. These different initial imbalances produce similar results, so I will be

focusing primarily on the 60% imbalance case for the two different problem sizes. Figure 4.5a

shows the breakdown of the number of atoms on each MPI process with indicators for the

maximum and average atom count for the small problem size, while Figure 4.5b shows the

same but for the large problem size, both with an imbalance of 60%.

Datasets

In order to control for variation due to the random initialization of atoms by CoMD, I

decided to use a fixed random seed for creating the two initial problems for the small and

large problem size. I then created two separate datasets from each of these two initial

problems by adjusting the parameters for the cutout voids to create 11 separate problems
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from each of the initial two problems. Thus, there are a total of 22 different problems across

two datasets. I always used exactly 10 spherical voids and centered them in exactly the same

place for all problems. I only changed the radius of these spheres to change the initial load

imbalance. This way, the processes with fewer atoms are always the same across problems,

and the MPI communications and internal GPU imbalance are modified similarly across

problems.

Figure 4.6 illustrates the 11 problems for the data set with a small amount of work per

process. The x axis shows the percentage of atoms removed, and the y axis shows the work

imbalance in remaining atoms, the load imbalance as measured when running the problems

on the CPUs or GPUs, and the adjusted load imbalance metric for GPU-based computation.

As more atoms are non-uniformly removed, the work imbalance in the problem increases.

Information Collected

Throughout this study I will be focusing on four main data points: atom count, CPU

measured time, GPU measured time, and GPU adjusted time. The atom count is used for

calculating the ground truth of the work imbalance since atoms are my measure of work.

The measured wall time spent in CPU execution is meant to provide as a control group of a

well understood case for load imbalance between MPI processes and serve as a verification of

previous results. The measured wall time spent in GPU execution indicates the interprocess

load imbalance of a GPU-based simulation without taking into consideration the intra-GPU

load balance. The GPU adjusted time uses Equation 4.5 to update the load imbalance

with some consideration of the intra-GPU load balance to alleviate the noise introduced by

switching to a GPU-based execution.

4.5.2 Overview and CPU Verification

Overview

Table 4.1 provides an overview of the 22 separate problems across the two datasets with

Table 4.1a showing the data for the small problem size and Table 4.1b showing the data

for the large problem size. The interactions listed in these tables are the same interactions
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Table 4.1: Detailed parameters and statistics for both the small and large problem sets.

(a) Small amount of work per process (floor 80K, ceiling 256K atoms).

(b) Large amount of work per process (floor 200K, ceiling 864K atoms).
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described in Section 4.3.3. It is worth noting that the initial work imbalance in the atoms is

not exactly at the target test imbalances (5, 10, 20, etc...) for each problem, but is reasonably

close. This is due to the fact that creating an exact desired imbalance with the spherical

voids is non-trivial.

One of the major differences between the CPU and GPU to keep in mind is that of their

optimal memory access patterns. On a CPU, sequential accesses are ideal because of how the

caches are implemented, whereas on a GPU strided accesses with a step size of the number

of threads in a warp and taking into account GPU memory banks are ideal since memory

loads pull enough data for all threads in a warp or half warp meaning one memory load could

service all threads in the ideal case. This means that the way this code is implemented with

all of the interactions for a given atom handled by a single thread accessing all nearby atoms

sequentially is more optimal for the CPU than the GPU and would cause a lot of stalls for

memory operations in the GPU implementation.

Table 4.1 verifies the premise of this study that the measured load imbalance of the GPU

does not match the work imbalance. The load imbalance shown on the GPU shows the

same general trend of the work imbalance, but is not nearly as accurate as the CPU load

imbalance.

CPU Verification

In order to have a solid baseline, I wanted to verify the previous work [44] and show that

the load imbalance as measured on the CPU-based implementation lines up with the work

imbalance of the number of atoms per process. Table 4.1 shows that the measured load

imbalance on the CPU matches the atom work imbalance very closely with most problems

being within 1%. This verifies the notion that there is a strong correlation between the

simulation workload (atoms) and the application run time. Thus, one would expect that the

run time of the GPU should also match the simulation workload.
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(a) Small test case (256K ceiling and 80K floor atoms per process).
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(b) Large test case (864K ceiling and 200K floor atoms per process).

Figure 4.7: Measured and adjusted time vs atom values with 60% atom imbalance for both
small and large test cases. All values are normalized by the maximum of their respective
data sets.

4.5.3 Comparing Measured GPU Load and Adjusted GPU Load

The main issue at the heart of this study is that even though there is a near perfect match

between application workload (atoms) and run time in the CPU-based implementation, the

same cannot be said for the GPU-based implementation. One of the key differences between

the load (measured time) values for the CPU and GPU is that the load on a CPU process

only contains a single thread whereas a GPU process contains all of the nested parallelism

inherent to a GPU. So, unless the GPU-based implementation is perfectly balanced and

causes little to no interruption to computation due to stalls, there will be an internal load

imbalance and additional noise from stalls on the GPU. So, in Section 4.4.4 I introduced some

GPU metrics and a proposed update to the traditional load imbalance formula designed to
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(a) Small test case (256K ceiling and 80K floor atoms per process).
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(b) Large test case (864K ceiling and 200K floor atoms per process).

Figure 4.8: Measured and adjusted time value differences with atom values. Using 60% atom
imbalance for both large and small test cases. All values are normalized by the maximum of
their respective data sets.

adjust the load (run time) by an efficiency metric in order to better reflect the work (atoms)

imbalance.

Measured vs. Adjusted Load Across Ranks

In Figure 4.7, I show histograms of the atom count, GPU measured execution time, and

GPU adjusted execution time for the 60% imbalance versions of the small and large problem

sizes with all values normalized to have unified units. In this figure, it is clear that both

GPU metrics generally follow the atom count, however the adjusted metric tends to follow

the atom count more closely. This is particularly true for the small problem size where there

is more opportunity for internal load imbalance on the GPU since the GPU is not saturated

with work and there is a larger proportional gap in the number of atoms per thread.
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Figure 4.8 shows the same comparison, but plots the difference between the normalized

values for the GPU data points (measured/adjusted time) and the normalized atom count.

For the small problem size, Figure 4.8a illustrates that the adjusted load is indeed closer to

the amount of work performed, or within 7%, while the measured load can be as far off as

23%. For the large problem size, the GPU has significantly more work overall which mitigates

the internal GPU load imbalance to some extent. This is shown in Figure 4.8b, which still

shows the same trend of adjusted load being closer to the amount of work performed, with

adjusted load again within 7%, while the measured load can be as far off as 11%.

GPU Load Imbalance vs. Work Imbalance

I have demonstrated that the adjusted GPU load better matches the atom count values

when normalized against their respective maximum values, but how does the adjusted time

metric affect the closeness of the matching between the calculated work imbalance and load

imbalance. If I refer back to Figure 4.6 and Table 4.1, neither the measured GPU load

imbalance, nor the adjusted GPU imbalance closely match the work imbalance. In fact, the

adjusted load imbalance appears to perform worse than the measured GPU load imbalance

in several cases.

Correlation of Load and Work

For CoMD, the application work (atoms) should translate directly to application load (time),

however this is not the case for the GPU-based approaches. Indeed, even when the GPU

load is adjusted by an efficiency metric to help remove the noise introduced by internal GPU

imbalance, the calculated load imbalance does not match the work imbalance well. In order

to see how well the adjusted load reflects the application work, I decided to do an analysis of

the Pearson correlation of the measured and adjusted GPU load values and the atom count

work values. The Pearson correlation coefficient provides a metric of the strength of the

linear relationship between two variables, and is important in this context because it shows

whether the adjusted time metric correctly captures the relative loads per process [6]. The

better a metric is at capturing the relative loads per process, the more accurately a load

balancing scheme can correct the load imbalance based on this metric.
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Figure 4.9: Correlation coefficients of small and large problem sizes for the 60% imbalance
case.

Throughout this study, I have been focusing on the 60% imbalance case for both the small

and large problem sizes. Figure 4.9 shows the Pearson correlation coefficients of measured

and adjusted load when compared to the atom counts for the 60% imbalance problems.

Both the measured and adjusted loads have a strong positive correlation with the atom

count; however the adjusted metric has a higher correlation. The adjustment improves the

correlation coefficient from 0.93895349 to 0.9949787 in the case where there is less work per

process, and from 0.99616814 to 0.99753709 in the case of more work per process.

Figure 4.10 provides a more general look at the correlation coefficients across all of the

different problems with Figure 4.10a focusing on the small problem size and Figure 4.10b

focusing on the large problem size. This shows that across the board, the adjusted load

metric provides a better correlation with the application workload than the measured load.

For the small problem size, where there is more opportunity for load imbalance within the

GPU, there is a 5.9% to 20.61% improvement in the correlation coefficient. Again, when

the GPU is more saturated with work, the internal GPU load imbalance is mitigated better,

yet there is still an improvement in correlation. The improvement is to a lesser degree, with

only a little over a 1% improvement in the best case.
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Figure 4.10: Correlation coefficients of measured/adjusted load (time) compared to workload
(atom count) for the various initial atom imbalances for both small and large test cases.
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4.6 Conclusions

I extended a proxy application with a well-characterized correlation of work to simulation

run time with the RAJA portability layer, which enabled an evaluation of load imbalance on

GPUs. I devised a metric for estimating the efficiency of a GPU’s execution using two low-

level GPU metrics from the nvprof tool and applied that to an extension to the standard

load imbalance formula proposed by Dr. Olga Pearce. I was then able to evaluate the

effectiveness of this new imbalance formula when applied to this extended proxy application

and show an improvement of up to 20.61% correlation between application work in the form

of atoms and load in the form of adjusted run time. This improvement is shown with a

GPU-based implementation that is extremely balanced within the GPU to alleviate stalls

due to synchronizations.
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Chapter 5

Conclusions

5.1 Conclusions

Performance tools in the High-Performance Computing field rely on having access to low-

level performance metrics in addition to timing information to conduct performance analysis

of distributed applications. The MPI programming paradigm has been the de facto standard

approach to programming in a distributed environment, and GPU accelerators have become

more dominant as a computational platform recently, so both of these technologies are

ideal candidates for showcasing the usefulness of low-level performance metrics. Thus, this

study contributes to the performance analysis field by introducing new metrics and analysis

approaches to the MPI and GPU paradigms. In summary, this study provides the following

contributions to distributed performance analysis:

• A Tool for Tracking Internal MPI Metrics: The PMPI interface remains

predominant approach to MPI performance analysis today, however it provides only

a limited view of the highest level of MPI performance information by overloading

MPI function calls. There have been efforts over the years to expose internal

MPI performance information such as the Peruse interface [31], and recently the

MPI T interface was added to the MPI Standard to allow for exposing such internal

information [20]. This study introduces a companion approach to the MPI T interface

called Software-based Performance Counters (SPCs) in the Open MPI implementation
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of the MPI Standard in Chapter 3. With SPCs, I am able to track a wealth of internal

MPI performance metrics across many different aspects of an MPI implementation’s

performance such as collective algorithm usage, fine-grained data transfer information,

and detailed internal queue usage.

• A Method for Exposing Internal MPI Metrics to Tools: Collecting performance

data is not terribly useful without a method for exposing this collected data to end

users. In Chapter 3 I introduce several methods for accessing SPCs such as command

line output, MPI T performance variables, and the mmap interface. The mmap

interface is my addition and adds a method for tools to gain direct read-only access

to SPCs without having to pay the function overhead of using the MPI T interface.

With the mmap interface, the overhead of reading a counter is essentially the same as

accessing an array element and does not have any effect on the collection of SPCs. The

mmap interface is backed by a shared data file for storing counter data, and an XML

file for describing the properties of the data file and providing offsets at which each

counter is stored in the data file. These backing files persist after execution which allows

for postmortem analysis of these counters, which is unavailable through the MPI T

interface. I have also provided a snapshot feature that allows for periodic copying of

the data file in order to provide data for particular time slices of an application rather

than just an overall summary.

• A Demonstration of the Use Cases of Internal MPI Metrics: I demonstrate

several potential use cases for SPCs in Chapter 3 such as: identifying internal MPI

implementation issues, MPI application analysis, and workload characterization. I

demonstrated a problematic implementation of multithreaded MPI in Open MPI

through a case study of out-of-sequence messages in a synthetic benchmark as well

as in a multithreaded MPI application from MADNESS. SPCs were instrumental in

identifying the issue of having far too many out-of-sequence messages when MPI was

initialized with MPI THREAD MULTIPLE. I discussed a study in which SPCs were

used to identify a bottleneck in an implementation of a local rollback algorithm for
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fault tolerance. Finally, I conducted an example workload characterization study with

the LAMMPS application and the snapshot feature of the mmap interface for SPCs.

• A Testbed for Imbalance Studies: In order to study the effects of load balancing

algorithms or approaches to identify potential load imbalance, one must have an

application to test out the new approach. There have been many load imbalance studies

conducted on CPU-based applications, however there is a need for a test application

with support for CPU-based and GPU-based computation. In Chapter 4 I introduce an

extended version of the CoMD proxy application that uses RAJA as a portability layer

for easy switching between CPU-based, GPU-based, and hybrid computation. This

allows for future load imbalance studies to easily identify how their work is affected

by changing between the CPU and GPU paradigms, or simply target a particular

paradigm of interest.

• An Efficiency Metric for Internal GPU Efficiency: There are many metrics

available through NVIDIA’s nvprof tool, but none of them provides a complete view

of the GPU efficiency during a CUDA kernel’s lifetime. In Chapter 4 I combine two

separate GPU efficiency metrics, sm efficiency and warp execution efficiency, into a

unified GPU efficiency metric. I do this by simply representing both of these metrics

as a value between zero and one and multiplying them together. This is able to provide

an estimate of the percentage of time that computation was being done throughout

the kernel’s execution.

• An Analysis of a Proposed GPU Imbalance Formula: With my GPU efficiency

metric, I was able to evaluate a GPU load imbalance formula proposed by Dr. Olga

Pearce. The key concept of this formula is to adjust the GPU execution time by

an efficiency metric to create an adjusted time and use this adjusted time for load

imbalance calculations. This is meant to take into account the internal imbalance

of the GPU when calculating load imbalance across the distributed application. In

Chapter 4, I show that this GPU imbalance formula allows for an improvement in

the correlation between application work units and load in the form of time by up to

20.61%.
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The initial version of the contributions from Chapter 3 have been published at

EuroMPI/USA 2017. The current state of the work from Chapter 4 is in the process of being

submitted to a Workshop at EuroPar 2020. I also contributed my expertise in performance

analysis with SPCs to two different papers led by Dr. Thananon Patinyasakdikul: the

introduction of the Multirate benchmark [43], and a study of the design of multithreading

in MPI [42], accepted to the ExaMPI Workshop 2019 and CLUSTER 2019 respectively.

The initial implementation of SPCs that was introduced in [15] is incorporated into the

Open MPI 4.0.0 release, and there is an active pull request to have the current version of

SPCs included into the current master branch of the Open MPI repository for release in

Open MPI 5.0.0. My RAJA implementation of CoMD, minus the bin packing optimization,

has an active pull request to be incorporated into the RAJAProxies repository on GitHub.

5.2 Suggestions For Future Work

The work presented in this study addresses performance analysis of two major technologies

in distributed applications development, MPI and GPUs. Both my MPI work in Chapter 3

and my GPU load imbalance work in Chapter 4 have the potential to provide for future

performance analysis research in these areas.

5.2.1 Software-based Performance Counters

The work in Chapter 3 focuses on providing a baseline implementation of internal MPI

metrics in Open MPI, including several methods for exposing those metrics to end users and

tool developers. The implementation of SPCs has room for improvement and extension to

provide better support for performance tool developers.

One of the areas where SPCs are currently lacking is in ease of use. The MPI T interface

can be cumbersome to use, and there is a lack of utility functions for facilitating use of

the mmap and snapshot features of SPCs. Another area that would be ideal for further

research is in incorporation of SPCs into the tool ecosystem through integration with existing

performance analysis and data gathering tools.
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SPC Utilities

Currently, the method for using SPCs exported through the mmap interface is to parse an

XML file on each process which indicates some metadata about an SPC data file including

offsets in the data file where counters are stored, then attach to that data file with the mmap

function, and finally read the counters of interest. To assist with this, it would be useful

to have a utility that can read and display counter values on the command line as well as

a library to support parsing this data and delivering it to tools and application developers.

Such utilities could potentially be extended to be able to handle a series of data files from

the snapshot feature and convert them into a trace file which could be read by tools like

Vampir.

Dynamic Open MPI Instrumentation with Dyninst

Currently, the SPC instrumentation in Open MPI is either enabled or disabled when

Open MPI is compiled. This means that all of the added instrumentation must check whether

a counter is enabled each time, even if the counter is disabled. This can add unnecessary

overhead to the MPI library, though not much. One potential area for improvement would

be to add the instrumentation dynamically with the Dyninst API. With this approach, the

instrumentation could be added and removed throughout a program’s execution, and only

enabled counters would be added to the code.

PAPI Software-Defined Events Interface

The PAPI Software-Defined Events (SDE) interface would be a good candidate for adding

SPCs to an existing tool. With some simple code additions to the SPC driver code,

SPCs could be available through PAPI and would thus be immediately available to many

performance tools due to PAPI’s widespread adoption. I am currently working on providing

SDE support inside my SPC driver code.

110



LDMS Integration

The Lightweight Distributed Metric System (LDMS) provides an interface for performing

machine characterization across all of the major resources on the system. If SPCs were

to be integrated with LDMS as a metric set, this internal MPI performance information

could provide context to the other communication metrics across the system. I am currently

discussing incorporating SPCs into LDMS in some capacity with the LDMS team at Sandia

National Laboratory.

5.2.2 GPU Load Imbalance

The work in Chapter 4 primarily focuses on analyzing a metric-based extension to the

traditional load imbalance formula to remove some of the noise introduced by the internal

load balance of the GPU and the stalls inherent to how work is scheduled and run

within a GPU. Using more precise internal load information, such as application-specific

instrumentation, for calculating the internal GPU efficiency could further improve the

extended load imbalance formula. Future work could also focus more on improving the

accuracy of the load balance calculation with respect to the work imbalance after using the

proposed load balance formula extension to help alleviate noise.

The concept of adjusting execution time by an efficiency metric could potentially be

applied more generally to any form of hierarchical parallel application. For example, imagine

an application is run at a large scale with tens of thousands of MPI processes, and each of

those processes represents dozens of threads, and potentially some of those threads are

associated with accelerators. In this instance, the load imbalance at a given level of this

hierarchy could be influenced by the internal imbalance of all subsequent layers. Thus, an

efficiency metric could be applied to each layer where parallelism is combined into one entity,

such as the threads within a process, to estimate the internal load of this combined entity

and factor that into the imbalance calculations.
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A List of SPCs

Table 1: A list of the currently available SPCs in my pull request to the Open MPI
development repository. Note: ’*’ represents ’OMPI SPC’. Table 1 is continued on to
pages 122-133.

Level SPC Name SPC Description

MPI * SEND The number of times MPI Send was

called.

MPI * BSEND The number of times MPI Bsend was

called.

MPI * RSEND The number of times MPI Rsend was

called.

MPI * SSEND The number of times MPI Ssend was

called.

MPI * RECV The number of times MPI Recv was

called.

MPI * MRECV The number of times MPI Mrecv was

called.

MPI * ISEND The number of times MPI Isend was

called.

MPI * IBSEND The number of times MPI Ibsend was

called.

MPI * IRSEND The number of times MPI Irsend was

called.

MPI * ISSEND The number of times MPI Issend was

called.

MPI * IRECV The number of times MPI Irecv was

called.

MPI * SENDRECV The number of times MPI Sendrecv was

called.
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Table 1 (continued)

MPI * SENDRECV REPLACE The number of times

MPI Sendrecv replace was called.

MPI * PUT The number of times MPI Put was called.

MPI * RPUT The number of times MPI Rput was

called.

MPI * GET The number of times MPI Get was called.

MPI * RGET The number of times MPI Rget was

called.

MPI * PROBE The number of times MPI Probe was

called.

MPI * IPROBE The number of times MPI Iprobe was

called.

MPI * BCAST The number of times MPI Bcast was

called.

MPI * IBCAST The number of times MPI Ibcast was

called.

MPI * BCAST INIT The number of times MPI Bcast init was

called.

MPI * REDUCE The number of times MPI Reduce was

called.

MPI * REDUCE SCATTER The number of times MPI Reduce scatter

was called.

MPI * REDUCE SCATTER BLOCK The number of times

MPI Reduce scatter block was called.

MPI * IREDUCE The number of times MPI Ireduce was

called.

MPI * IREDUCE SCATTER The number of times MPI Ireduce scatter

was called.
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Table 1 (continued)

MPI * IREDUCE SCATTER BLOCK The number of times

MPI Ireduce scatter block was called.

MPI * REDUCE INIT The number of times MPI Reduce init

was called.

MPI * REDUCE SCATTER INIT The number of times

MPI Reduce scatter init was called.

MPI * REDUCE SCATTER BLOCK

INIT

The number of times

MPI Reduce scatter block init was

called.

MPI * ALLREDUCE The number of times MPI Allreduce was

called.

MPI * IALLREDUCE The number of times MPI Iallreduce was

called.

MPI * ALLREDUCE INIT The number of times MPI Allreduce init

was called.

MPI * SCAN The number of times MPI Scan was

called.

MPI * EXSCAN The number of times MPI Exscan was

called.

MPI * ISCAN The number of times MPI Iscan was

called.

MPI * IEXSCAN The number of times MPI Iexscan was

called.

MPI * SCAN INIT The number of times MPI Scan init was

called.

MPI * EXSCAN INIT The number of times MPI Exscan init

was called.
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Table 1 (continued)

MPI * SCATTER The number of times MPI Scatter was

called.

MPI * SCATTERV The number of times MPI Scatterv was

called.

MPI * ISCATTER The number of times MPI Iscatter was

called.

MPI * ISCATTERV The number of times MPI Iscatterv was

called.

MPI * SCATTER INIT The number of times MPI Scatter init

was called.

MPI * SCATTERV INIT The number of times MPI Scatterv init

was called.

MPI * GATHER The number of times MPI Gather was

called.

MPI * GATHERV The number of times MPI Gatherv was

called.

MPI * IGATHER The number of times MPI Igather was

called.

MPI * IGATHERV The number of times MPI Igatherv was

called.

MPI * GATHER INIT The number of times MPI Gather init

was called.

MPI * GATHERV INIT The number of times MPI Gatherv init

was called.

MPI * ALLTOALL The number of times MPI Alltoall was

called.

MPI * ALLTOALLV The number of times MPI Alltoallv was

called.
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Table 1 (continued)

MPI * ALLTOALLW The number of times MPI Alltoallw was

called.

MPI * IALLTOALL The number of times MPI Ialltoall was

called.

MPI * IALLTOALLV The number of times MPI Ialltoallv was

called.

MPI * IALLTOALLW The number of times MPI Ialltoallw was

called.

MPI * ALLTOALL INIT The number of times MPI Alltoall init

was called.

MPI * ALLTOALLV INIT The number of times MPI Alltoallv init

was called.

MPI * ALLTOALLW INIT The number of times MPI Alltoallw init

was called.

MPI * NEIGHBOR ALLTOALL The number of times

MPI Neighbor alltoall was called.

MPI * NEIGHBOR ALLTOALLV The number of times

MPI Neighbor alltoallv was called.

MPI * NEIGHBOR ALLTOALLW The number of times

MPI Neighbor alltoallw was called.

MPI * INEIGHBOR ALLTOALL The number of times

MPI Ineighbor alltoall was called.

MPI * INEIGHBOR ALLTOALLV The number of times

MPI Ineighbor alltoallv was called.

MPI * INEIGHBOR ALLTOALLW The number of times

MPI Ineighbor alltoallw was called.

MPI * NEIGHBOR ALLTOALL INIT The number of times

MPI Neighbor alltoall init was called.
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Table 1 (continued)

MPI * NEIGHBOR ALLTOALLV INIT The number of times

MPI Neighbor alltoallv init was called.

MPI * NEIGHBOR ALLTOALLW INIT The number of times

MPI Neighbor alltoallw init was called.

MPI * ALLGATHER The number of times MPI Allgather was

called.

MPI * ALLGATHERV The number of times MPI Allgatherv was

called.

MPI * IALLGATHER The number of times MPI Iallgather was

called.

MPI * IALLGATHERV The number of times MPI Iallgatherv was

called.

MPI * ALLGATHER INIT The number of times MPI Allgather init

was called.

MPI * ALLGATHERV INIT The number of times MPI Allgatherv init

was called.

MPI * NEIGHBOR ALLGATHER The number of times

MPI Neighbor allgather was called.

MPI * NEIGHBOR ALLGATHERV The number of times

MPI Neighbor allgatherv was called.

MPI * INEIGHBOR ALLGATHER The number of times

MPI Ineighbor allgather was called.

MPI * INEIGHBOR ALLGATHERV The number of times

MPI Ineighbor allgatherv was called.

MPI * NEIGHBOR ALLGATHER INIT The number of times

MPI Neighbor allgather init was called.

MPI * NEIGHBOR ALLGATHERV

INIT

The number of times

MPI Neighbor allgatherv init was called.
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Table 1 (continued)

MPI * TEST The number of times MPI Test was

called.

MPI * TESTALL The number of times MPI Testall was

called.

MPI * TESTANY The number of times MPI Testany was

called.

MPI * TESTSOME The number of times MPI Testsome was

called.

MPI * WAIT The number of times MPI Wait was

called.

MPI * WAITALL The number of times MPI Waitall was

called.

MPI * WAITANY The number of times MPI Waitany was

called.

MPI * WAITSOME The number of times MPI Waitsome was

called.

MPI * BARRIER The number of times MPI Barrier was

called.

MPI * IBARRIER The number of times MPI Ibarrier was

called.

MPI * BARRIER INIT The number of times MPI Barrier init

was called.

MPI * WTIME The number of times MPI Wtime was

called.

MPI * CANCEL The number of times MPI Cancel was

called.
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Table 1 (continued)

PML * BYTES RECEIVED USER The number of bytes received by the user

through point-to-point communications.

Note: Includes bytes transferred using

internal RMA operations.

PML * BYTES RECEIVED MPI The number of bytes received by MPI

through collective

PML * BYTES SENT USER The number of bytes sent by the user

through point-to-point communications.

Note: Includes bytes transferred using

internal RMA operations.

PML * BYTES SENT MPI The number of bytes sent by MPI through

collective

PML * BYTES PUT The number of bytes sent/received using

RMA Put operations both through user-

level Put functions and internal Put

functions.

PML * BYTES GET The number of bytes sent/received using

RMA Get operations both through user-

level Get functions and internal Get

functions.

PML * UNEXPECTED The number of messages that arrived as

unexpected messages.

PML * OUT OF SEQUENCE The number of messages that arrived out

of the proper sequence.

PML * MATCH TIME The number of microseconds spent

matching unexpected messages. Note:

The timer used on the back end is in

cycles
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Table 1 (continued)

PML * MATCH QUEUE TIME The number of microseconds spent in-

serting unexpected messages into the

unexpected message queue. Note: The

timer used on the back end is in cycles

PML * UNEXPECTED IN QUEUE The number of messages that are cur-

rently in the unexpected message queue

PML * OOS IN QUEUE The number of messages that are cur-

rently in the out of sequence message

queue

PML * MAX UNEXPECTED IN

QUEUE

The maximum number of messages that

the unexpected message queue

PML * MAX OOS IN QUEUE The maximum number of messages that

the out of sequence message queue

MPI * BASE BCAST LINEAR The number of times the base broadcast

used the linear algorithm.

MPI * BASE BCAST CHAIN The number of times the base broadcast

used the chain algorithm.

MPI * BASE BCAST PIPELINE The number of times the base broadcast

used the pipeline algorithm.

MPI * BASE BCAST SPLIT BINTREE The number of times the base broadcast

used the split binary tree algorithm.

MPI * BASE BCAST BINTREE The number of times the base broadcast

used the binary tree algorithm.

MPI * BASE BCAST BINOMIAL The number of times the base broadcast

used the binomial algorithm.

MPI * BASE REDUCE CHAIN The number of times the base reduce used

the chain algorithm.
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Table 1 (continued)

MPI * BASE REDUCE PIPELINE The number of times the base reduce used

the pipeline algorithm.

MPI * BASE REDUCE BINARY The number of times the base reduce used

the binary tree algorithm.

MPI * BASE REDUCE BINOMIAL The number of times the base reduce used

the binomial tree algorithm.

MPI * BASE REDUCE IN ORDER

BINTREE

The number of times the base reduce used

the in order binary tree algorithm.

MPI * BASE REDUCE LINEAR The number of times the base reduce used

the basic linear algorithm.

MPI * BASE REDUCE SCATTER

NONOVERLAPPING

The number of times the base reduce scat-

ter used the nonoverlapping algorithm.

MPI * BASE REDUCE SCATTER

RECURSIVE HALVING

The number of times the base reduce scat-

ter used the recursive halving algorithm.

MPI * BASE REDUCE SCATTER

RING

The number of times the base reduce

scatter used the ring algorithm.

MPI * BASE ALLREDUCE

NONOVERLAPPING

The number of times the base allreduce

used the nonoverlapping algorithm.

MPI * BASE ALLREDUCE RECUR-

SIVE DOUBLING

The number of times the base allreduce

used the recursive doubling algorithm.

MPI * BASE ALLREDUCE RING The number of times the base allreduce

used the ring algorithm.

MPI * BASE ALLREDUCE RING

SEGMENTED

The number of times the base allreduce

used the segmented ring algorithm.

MPI * BASE ALLREDUCE LINEAR The number of times the base allreduce

used the linear algorithm.

MPI * BASE SCATTER BINOMIAL The number of times the base scatter used

the binomial tree algorithm.
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Table 1 (continued)

MPI * BASE SCATTER LINEAR The number of times the base scatter used

the linear algorithm.

MPI * BASE GATHER BINOMIAL The number of times the base gather used

the binomial tree algorithm.

MPI * BASE GATHER LINEAR SYNC The number of times the base gather used

the synchronous linear algorithm.

MPI * BASE GATHER LINEAR The number of times the base gather used

the linear algorithm.

MPI * BASE ALLTOALL INPLACE The number of times the base alltoall used

the in-place algorithm.

MPI * BASE ALLTOALL PAIRWISE The number of times the base alltoall used

the pairwise algorithm.

MPI * BASE ALLTOALL BRUCK The number of times the base alltoall used

the bruck algorithm.

MPI * BASE ALLTOALL LINEAR

SYNC

The number of times the base alltoall used

the synchronous linear algorithm.

MPI * BASE ALLTOALL TWO

PROCS

The number of times the base alltoall used

the two process algorithm.

MPI * BASE ALLTOALL LINEAR The number of times the base alltoall used

the linear algorithm.

MPI * BASE ALLGATHER BRUCK The number of times the base allgather

used the bruck algorithm.

MPI * BASE ALLGATHER RECUR-

SIVE DOUBLING

The number of times the base allgather

used the recursive doubling algorithm.

MPI * BASE ALLGATHER RING The number of times the base allgather

used the ring algorithm.

MPI * BASE ALLGATHER NEIGH-

BOR EXCHANGE

The number of times the base allgather

used the neighbor exchange algorithm.
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Table 1 (continued)

MPI * BASE ALLGATHER TWO

PROCS

The number of times the base allgather

used the two process algorithm.

MPI * BASE ALLGATHER LINEAR The number of times the base allgather

used the linear algorithm.

MPI * BASE BARRIER DOUBLE

RING

The number of times the base barrier used

the double ring algorithm.

MPI * BASE BARRIER RECURSIVE

DOUBLING

The number of times the base barrier used

the recursive doubling algorithm.

MPI * BASE BARRIER BRUCK The number of times the base barrier used

the bruck algorithm.

MPI * BASE BARRIER TWO PROCS The number of times the base barrier used

the two process algorithm.

MPI * BASE BARRIER LINEAR The number of times the base barrier used

the linear algorithm.

MPI * BASE BARRIER TREE The number of times the base barrier used

the tree algorithm.

PML * P2P MESSAGE SIZE This is a bin counter with two

subcounters. The first is messages

that are less than or equal to

mpi spc p2p message boundary bytes

and the second is those that are larger

than mpi spc p2p message boundary

bytes.

PML * EAGER MESSAGES The number of messages that fall within

the eager size.

PML * NOT EAGER MESSAGES The number of messages that do not fall

within the eager size.
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Table 1 (continued)

PML * QUEUE ALLOCATION The amount of memory allocated after

runtime currently in use for temporary

message queues like the unexpected

message queue and the out of sequence

message queue.

PML * MAX QUEUE ALLOCATION The maximum amount of memory

allocated after runtime at one point

for temporary message queues like the

unexpected message queue and the out

of sequence message queue. Note: The

* QUEUE ALLOCATION counter must

also be activated.

PML * UNEXPECTED QUEUE DATA The amount of memory currently in use

for the unexpected message queue.

PML * MAX UNEXPECTED QUEUE

DATA

The maximum amount of memory in use

for the unexpected message queue. Note:

The * UNEXPECTED QUEUE DATA

counter must also be activated.

PML * OOS QUEUE DATA The amount of memory currently in use

for the out-of-sequence message queue.

PML * MAX OOS QUEUE DATA The maximum amount of memory in use

for the out-of-sequence message queue.

Note: The * OOS QUEUE DATA counter

must also be activated.
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B SPC Example Code

1

2 import sys

3 import glob

4 import operator

5 import struct

6

7 import numpy as np

8 import matplotlib

9 matplotlib.use(’Agg’) # For use with headless systems

10 import matplotlib.pyplot as plt

11 import matplotlib.cm as cm

12 import matplotlib.ticker as ticker

13

14 def combine(filename, data):

15 f = open(filename, ’rb’)

16 for i in range(0,num_counters):

17 temp = struct.unpack(’l’, f.read(8))[0]

18 if ’TIME’ in names[i]:

19 temp /= freq_mhz

20 data[i].append(temp)

21

22 def fmt(x, pos):

23 return ’{:,.0f}’.format(x)

24

25 # Make sure the proper number of arguments have been supplied

26 if len(sys.argv) < 3:

27 print("Usage: ./parse.py [/path/to/data/files] [datafile_label]")

28 exit()

29

30 path = sys.argv[1]
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31 label = sys.argv[2]

32

33 xml_filename = ’’

34 # Lists for storing the snapshot data files from each rank

35 copies = []

36 ends = []

37 # Populate the lists with the appropriate data files

38 for filename in glob.glob(path + "/spc_data*"):

39 if label in filename:

40 if xml_filename == ’’ and ’.xml’ in filename:

41 xml_filename = filename

42 if ’.xml’ not in filename:

43 temp = filename.split(’/’)[-1].split(’.’)

44 if len(temp) < 5:

45 temp[-1] = int(temp[-1])

46 ends.append(temp)

47 else:

48 temp[-1] = int(temp[-1])

49 temp[-2] = int(temp[-2])

50 copies.append(temp)

51

52 # Sort the lists

53 ends = sorted(ends, key = operator.itemgetter(-1))

54 for i in range(0,len(ends)):

55 ends[i][-1] = str(ends[i][-1])

56 copies = sorted(copies, key = operator.itemgetter(-2,-1))

57 for i in range(0,len(copies)):

58 copies[i][-1] = str(copies[i][-1])

59 copies[i][-2] = str(copies[i][-2])

60

61 sep = ’.’

62
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63 xml_file = open(xml_filename, ’r’)

64 num_counters = 0

65 freq_mhz = 0

66 names = []

67 base = []

68 # Parse the XML file (same for all data files)

69 for line in xml_file:

70 if ’num_counters’ in line:

71 num_counters = int(line.split(’>’)[1].split(’<’)[0])

72 if ’freq_mhz’ in line:

73 freq_mhz = int(line.split(’>’)[1].split(’<’)[0])

74 if ’<name>’ in line:

75 names.append(line.split(’>’)[1].split(’<’)[0])

76 value = [names[-1]]

77 base.append(value)

78

79 prev = copies[0]

80 i = 0

81 ranks = []

82 values = []

83 times = []

84 time = []

85

86 # Populate the data lists

87 for n in range(0,len(base)):

88 values.append([0, names[n]])

89 for c in copies:

90 if c[-2] != prev[-2]:

91 filename = path + "/" + sep.join(ends[i])

92 combine(filename, values)

93

94 ranks.append(values)
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95 times.append(time)

96 for j in range(0, len(names)):

97 temp = [ranks[0][j][0]]

98

99 values = []

100 time = []

101 for n in range(0,len(base)):

102 values.append([i+1, names[n]])

103 i += 1

104

105 filename = path + "/" + sep.join(c)

106 time.append(int(filename.split(’.’)[-1]))

107 combine(filename, values)

108 prev = c

109

110 filename = path + "/" + sep.join(ends[i])

111 combine(filename, values)

112 ranks.append(values)

113 times.append(time)

114

115 for i in range(0, len(names)):

116 fig = plt.figure(num=None, figsize=(7, 9), dpi=200, facecolor=’w’,

edgecolor=’k’)

117

118 plot = False

119 # Only plot the SPCs of interest

120 if names[i] == ’OMPI_SPC_BYTES_SENT_USER’:

121 plot = True

122

123 map_data = []

124 avg_x = []

125
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126 for j in range(0, len(ranks)):

127 if avg_x == None:

128 avg_x = np.zeros(len(times[j])-1)

129 empty = True

130 for k in range(2,len(ranks[j][i])):

131 if ranks[j][i][k] != 0:

132 empty = False

133 break

134 if not empty:

135 if plot:

136 xvals = []

137 yvals = []

138 for l in range(1, len(times[j])):

139 if ranks[j][i][l+2] - ranks[j][i][l+1] < 0:

140 break

141 xvals.append(times[j][l] - times[j][0])

142 yvals.append(ranks[j][i][l+2] - ranks[j][i][l+1])

143

144 map_data.append(yvals)

145 for v in range(0,len(avg_x)):

146 avg_x[v] += xvals[v]

147 if plot:

148 for v in range(0,len(avg_x)):

149 avg_x[v] /= float(len(ranks))

150

151 ax = plt.gca()

152 im = ax.imshow(map_data, cmap=’Reds’, interpolation=’nearest’)

153

154 cbar = ax.figure.colorbar(im, ax=ax, format=ticker.FuncFormatter(fmt))

155 cbar.ax.set_ylabel("Counter Value", rotation=-90, va="bottom")

156

157 plt.title(names[i] + ’ Snapshot Difference’)
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158

159 plt.xlabel(’Time’)

160 plt.ylabel(’MPI Rank’)

161

162 ax.set_xticks(np.arange(len(avg_x)))

163 ax.set_yticks(np.arange(len(map_data)))

164 ax.set_xticklabels(avg_x)

165

166 plt.show()

167 fig.savefig(names[i] + ’.png’)

Listing 1: An example Python script for parsing SPC snapshot data files and creating a

heatmap of their value differences over time.
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