
A DISTRIBUTED MULTI-THREADED DATA PARTITIONER WITH SPACE-FILLING
CURVE ORDERS

BY

APARNA SASIDHARAN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Marc Snir
Professor Laxmikant Kale
Professor Paul Fischer
Dr. Anshu Dubey, Argonne National Laboratory

ABSTRACT

The problem discussed in this thesis is distributed data partitioning and data re-
ordering on many-core architectures. We present extensive literature survey, with ex-
amples from various application domains - scientific computing, databases and large-
scale graph processing. We propose a low-overhead partitioning framework based on
geometry, that can be used to partition multi-dimensional data where the number of
dimensions is≥ 2. The partitioner linearly orders items with good spatial locality. Par-
tial output is stored on each process in the communication group. Space-filling curves
are used to permute data - Morton order is the default curve. For dimensions ≤ 3,
we have options to generate Hilbert-like curves. Two metrics used to determine par-
titioning overheads are memory consumption and execution time, although these two
factors are dependent on each other. The focus of this thesis is to reduce partitioning
overheads as much as possible. We have described several optimizations to this end
- incremental adjustments to partitions, careful dynamic memory management and
using multi-threading and multi-processing to advantage. The quality of partitions
is an important criteria for evaluating a partitioner. We have used graph partitioners
as base-implementations against which our partitions are compared. The degree and
edge-cuts of our partitions are comparable to graph partitions for regular grids. For ir-
regular meshes, there is still room for improvement. No comparisons have been made
for evaluating partitions of datasets without edges. We have deployed these partitions
on two large applications - atmosphere simulation in 2D and adaptive mesh refinement
in 3D. An adaptive mesh refinement benchmark was built to be part of the framework,
which later became a testcase for evaluating partitions and load-balancing schemes.
The performance of this benchmark is discussed in detail in the last chapter.

ii

ACKNOWLEDGMENTS

I wish to thank my advisor Professor Snir for his help and guidance during the entire
duration of my Ph.D. I also wish to thank the other students of his group, both past and
present for their help in times of need. Besides government funding agencies I would
like to thank the Department of Computer Science, for supporting my education for 7
years and also providing me with the opportunity to teach and interact with students.
I would like to thank Professors Kale and Zilles and their students, both of whom have
helped me over the years as teaching assistant. I would like to extend gratitude to-
wards my family and friends, near and far, for being supportive. I would like to thank
TACC and ANL for allowing access to their computing resources, as well as the de-
partment technical supprt staff for helping in times of trouble. I wish to acknowledge
my neighbors, old and new for keeping it quiet, as well as the town of Urbana, the
co-op and farmer’s market for their food. Most importantly, the birds and animals of
Urbana will be remembered, especially, my pet cat, who was with me at a table, while
I wrote this thesis.

iii

TABLE OF CONTENTS

LIST OF ABBREVIATIONS . v

CHAPTER 1 INTRODUCTION . 1
1.1 Introduction . 1
1.2 Meshes . 5
1.3 The Partition Problem . 9
1.4 Multi-Level Methods . 15

CHAPTER 2 PARTITIONING DATA USING GEOMETRY 19
2.1 Outline . 19
2.2 Metrics for Evaluating Partitions . 20
2.3 KD-Trees . 23
2.4 Parallel KD-tree . 30
2.5 Static KD-tree . 39
2.6 Testcases . 44
2.7 Linearizing Recursion . 52
2.8 Dynamic KD-tree . 56
2.9 Distributed KD-tree . 65
2.10 Parallel Quicksort . 72
2.11 Space-Filling Curves . 76

CHAPTER 3 2D SPACE-FILLING CURVES . 81
3.1 2D Traversal Rules . 81
3.2 Empirical Measurements . 82

CHAPTER 4 3D SPACE-FILLING CURVES . 98
4.1 3D Traversal Rules . 98
4.2 Optimizations . 102
4.3 Putting It Together . 103
4.4 3D SFC Empirical Evaluation . 106
4.5 Parallel Construction of General Space-filling Curves 117

CHAPTER 5 BENCHMARKS . 122
5.1 MiniAMR - Block-structured AMR . 126
5.2 MiniAMR Improvements . 130
5.3 Multi-threaded Adaptive Mesh Refinement 139

CHAPTER 6 CONCLUSION . 155

REFERENCES . 157

iv

LIST OF ABBREVIATIONS

SFC Space-filling curves

AMR Adaptive Mesh Refinement

2D Two-dimensions

3D Three-dimensions

NUMA Non-uniform Memory Access

ANL Argonne National Laboratory

TACC Texas Advanced Computing Resources

KNL Knight’s Landing

MPI Message Passing Interface

v

CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

Partitioning data is an essential step in the parallelization of a problem. The goal is to
produce good quality partitions that are load balanced and have low communication
between process/threads. Most partitioning software are based on graph partitioners
that solve for the lowest communication volume or edge cut subject to load balance
constraints. Some of them generate very good partitions for general graphs. Histori-
cally, the formulations of this problem and its solutions have focussed on generating
good quality partitions, largely ignoring their overheads. There has been compara-
tively less effort on the performance evaluation of partitioners as stand-alone software
and their implementations in the parallel space. One of the challenges in this domain
is the partitioning of raw data which do not have adjacency relationships. Distributed
partitioning of large datasets using thousands of threads on many-core architectures is
a problem that requires scalable solutions.

We address in this thesis possible solutions to these problems. We propose a low-
overhead parallel data partitioner which produces good quality partitions and data
permutations using space-filling curves. These permutations can be used to assign
points to coarse and fine partitions - with coarse partitions mapped to processes and
finer partitions mapped to cores and threads. We allow incremental adjustments to
partitions - addition of new points or deletion of existing points. We have included
benchmarks from scientific computing for evaluating partitions. The results are en-
couraging; it is a further push towards a programming model with MPI+threads, for
scalable solutions to big data problems.

Partitioning is the first and most important step that determines the total execution
time of any parallel program. Much can be achieved by starting from well-organized
data, both in terms of computation and communication time within a node as well as
communication between nodes. The converse argument is also true - much is lost in
terms of resources if a parallel program is based on poor quality partitions. Consid-
erable effort is spent on improving the performance of parallel programs using auto-
tuning [1], tiling [2], compiler optimizations, loop re-ordering [3] etc, all of which are
derivatives of the same idea - graph paritioning. There is plenty of work character-

1

izing the quality of partitions, with definitions for good and bad partitions. We will
be discussing some of the commonly used metrics and their significance later. For
distributed data, the metrics are usually edge-cut or communication volume, which
is measured as the number of point-to-point messages and the total number of bytes
exchanged. There are more complex models that include machine parameters. The vir-
tual topology of the machine with number of hops, routing overheads and congestion
in the network are costs that can be added to the base costs. However, we have con-
sidered only the most expensive terms in the network model for evaluating our work.
Partition metrics are chosen in relation to metrics in communication - i.e message la-
tency and bandwidth. Some of these terms are dependent on each other in some sense.
If a partitioner minimizes the maximum number of messages between any two pro-
cesses in the network, it indirectly reduces congestion between nodes. The same can
be argued about communication volume, lower edge-cut results in fewer packets to
route. Mapping communicating neighbors to nearest nodes on the machine can make
some difference in the communication time by reducing maximum number of hops.
But, mapping functions and metrics depend on the machine topology.

At the second level of partitioning, within a node, distributed memory metrics are
replaced by equivalents in shared memory. In a simple model, the edge-cut or commu-
nication volume can be replaced by number of cache misses. There are more detailed
models involving caches and multiple NUMA nodes. Although we have not devel-
oped detailed models for shared-memory communication, we have re-ordered data
accesses within a node to increase cache re-use. There are also testcases where we have
mapped data to the closest NUMA nodes to reduce latency of memory accesses. These
optimizations are hard to generalize because they are architecture dependent and need
to be tuned for the processor used.

This work is based on geometric partitioning that ignores adjacencies, but reduces
edge-cut by using a distance metric for separating data. The points co-located in a
partition are closer to each other than those across partitions, according to the distance
metric. We have used Euclidean distance for partitioning all the datasets discussed in
this thesis. Our implementations are distributed and multi-threaded and can be used
for data from scientific computing and database applications. We have evaluated the
partitioner both as stand-alone software and as a module in a full simulation. The raw
performance of the partitioner is evaluated using random distributions of points in d

dimensional space.

2

In iterative methods, data is organised on grid (finite-difference, fixed resolution) or
mesh (finite volume, with areas of varying resolution) vertices. Many applications in
computational science use iterative algorithms which perform some non-trivial com-
putation on the mesh elements and communicate between adjacent elements through
a common face. The meshes are usually large enough to be partitioned (decomposed)
across multiple processes. In this context, a good partition is defined as one with load
balance - with roughly equal work performed at each process and locality - with neigh-
boring cells being co-located on the same processes.

We have used Space-filling curves (SFC) to order data across nodes and within a
node. Construction of space-filling curves with good locality is a sub-section of this
thesis, although the programmer can define his own rules for producing other per-
mutations. The default space-filling curve in our partitioner is Morton Order, for all
dimensions > 1. Specialized Hilbert-like orders are supported for dimensions 2, 3.
The assumption is that spatial locality is good, defining distances in higher dimensional
space. This has worked well so far for meshes and grids in scientific computing, be-
cause the communication patterns are usually nearest-neighbor exchanges. SFCs are
a quick and easy method for dimension-reduction in many areas of computer science
- databases, networking and parallel computing to name a few. They generate a lin-
ear order of points in higher dimensional space, so that successive points on the curve
tend to be adjacent in space. The linear list can be used to partition data by slicing it
into roughly equal segments and assigning a piece to each process. For mesh parti-
tioning, each mesh element is represented by a point in space, typically 2D or 3D. The
center of gravity of the mesh element is its representative point and the mesh is parti-
tioned by partitioning these points. This results in good quality partitions for most
meshes. The most commonly used partitioners in scientific computing come from
graph partitioning (using the dual graph), i.e Metis [4] and Scotch [5]. SFC orders
have also been used for speeding up k-nearest neighbor and point-location problems
in database applications which benefit from locality. There is significant difference be-
tween database applications and iterative methods, besides the obvious that iterative
methods are focussed on solving a particular partial differential equation on mesh ele-
ments and database applications perform search, insertions, deletions and updates to
an existing database. Database applications and general graphs tend to have higher
dimensions (attributes), i.e number of search variables are quite high. The number of
permutations increases exponentially with the number of dimensions. A good per-
mutation for a given database and set of search records is harder to find for higher

3

dimensions. The size of the database and the number of variables, affects sorting, in-
sertion and deletion times which are essential operations. Hierarchical datastructures
are used for indexing in multi-dimensional databases [6]. Although the performance
degrades with increasing dimensions, they are used extensively at lower dimensions.
Databases based on geographic co-ordinate systems use similar methods for searching
and indexing [7]. There are other databases using derived distance based metrics for
organising data e.g sequences in bioinformatics [8], [9],image processing and multime-
dia [10],tracking moving objects [11]. Some of these databases use space-filling curves
for indexing data, especially Morton order [7], [12].

Several space-filling curves have been described in literature - Hilbert, Peano and
Sierpinski are some of them [13]. These curves are defined on regular shapes (squares
in 2D and cubes in 3D) with dimensions that are usually powers of 2 (Hilbert, Mor-
ton and Siepenski) or 3 (Peano) which makes it difficult to adapt them to irregular
point distributions. This can also happen to domains which are not square or cube
although points may be equi-distant from each other, for example, circle, sphere and
other shapes used in image processing. In short, this work describes a general frame-
work for ordering data using hilbert-like curves and mapping them onto processes
and threads on a many-core machine. Our Hilbert implementations are defined for
dimensions ≤ 3. SFC order is used hierarchically, first to assign a coarse partition to
nodes and later to map finer partitions to cores (threads). Good locality is achieved at
all levels. Recursive mapping also reduces data movement and enables quick load bal-
ancing for dynamic data (adaptive meshes). Besides generating permutations of mesh
elements that have good locality, this work also describes a general framework for or-
ganizing large number of random points that are distributed across multiple processes
and nodes. The partitioner linearly orders points with good spatial locality across mul-
tiple dimensions. The final permutation (order) is distributed across processes. The
assignment of processes and threads to permuted data is computed in parallel. It is
left to the programmer to re-arrange his data according to permutations generated by
the partitioner. Since frequent repartitioning and data transfers maybe expensive for
dynamic data, we provide options for incremental adjustments to existing partitions
that can be used by applications to find the new location of data. The incrementally
refined/coarsened partitions tend to have high similarity to previous partitions, which
reduces data transfers. It is possible that a full re-partition might produce a permuta-
tion that is entirely different from the previous order. In such cases, the application
execution time is likely to increase due to full data exchange between processes. There

4

is a trade-off here that can be explored. If the overhead of tolerating a poor partition
exceeds the cost of full re-partition, it might be beneficial to re-order data from scratch.
We have used this approach for meshes in scientific computing, which have edges be-
tween mesh elements. It is not clear whether it benefits other testcases.

These are some of the focal points of this thesis :

1. Using geometry to advantage

2. Multi-threaded framework for constructing and managing hierarchical decom-
position of space : static and dynamic

3. Generalized space-filling curves in 2D and 3D, that can re-order arbitrary point
distributions

4. Parallel Construction of Space-filling curves

5. Low overhead parallel partitions

6. Optimizations in distributed and multi-threaded AMR : datastructures and algo-
rithms

7. Low overhead load balancing schemes for AMR

8. Code restructuring for many-core architectures

Chapter 1 provides an introduction to the problem addressed by this thesis - parti-
tioning of meshes and data. Chapters 2 discusses hierarchical decomposition of datasets.
Chapters 3 and 4 describe data re-ordering using space-filling curves in 2D and 3D. The
algorithms used, their implementations, and performance evaluation are presented in
these chapters. Chapter 5 discusses benchmarks in detail. The partitioner is integrated
with benchmark programs and testcases are provided that compare the performance
of these programs.

1.2 MESHES

Meshes in scientific computing can be broadly divided into structured and unstruc-
tured, in 2D and 3D. This classification is based on the co-ordinate system and the
shapes of mesh elements.

5

1. Structured meshes consist of elements which are usually symmetric, i.e. square
or cubes and have the same resolution in all dimensions. Such meshes are used in
many applications in scientific computing for which a uniform sample of points is
sufficient. They can be partitioned by dividing them into roughly equal blocks be-
cause the communication patterns are simple nearest neighbor exchanges. Struc-
tured meshes can be stored in contiguous arrays and indexed without pointers.
For example, the nearest neighbors of mesh element (i, j) can be computed lo-
cally using its indices, i.e. elements (i − 1, j), (i + 1, j), (i, j + 1), (i, j − 1) are
the immediate neighbors in a 5-point stencil of element (i, j). The same holds
for 3D meshes, with (i, j, k) indices. Mesh points may be aggregated into blocks
to improve cache reuse and pre-fetching. Loops implementing solvers used for
these meshes are written entirely using array indices 1...n for n points. These pro-
grams don’t need much re-structuring for many-core and SIMD architectures. An
example program for a single iteration of a Poisson process with tiling (blocking)
is provided in 1.1. For processors with deep memory hierarchies (at least L1 and
L2 cache), block sizes can be chosen to fit a tile each of a_new and a in L2 cache
(for example). One could further improve the performance by a second level
of tiling for L1 and vectorization [14]. This program benefits from cache re-use
because of temporal locality, in addition to spatial locality [15].

Listing 1.1: Structured mesh accesses

for i i =1 ,n , t i l e _ i

for j j =1 ,n , t i l e _ j

for i = i i , i i + t i l e _ i

for j = j j , j j + t i l e _ j

a_new [i ∗n+ j] += 0 . 2 5∗ (a [i ∗n+ j]+ a [(i +1)∗n+ j]+

a [(i −1)∗n+ j]+ a [i ∗n+j −1]+

a [i ∗n+ j +1])

2. The loops used for accessing and computing parameters on structured meshes
with missing points (holes) are different from dense grids. The mesh elements
themselves are used after applying a mask to them, where the mask value at po-
sition (i, j) is 0 for missing data and 1 otherwise. Nearest neighbor lookup maybe
affected in this case with the addition of an if condition or a bitmask to check the
presence of a neighbor in a given dimension. These additional checks can affect
some optimizations and increase memory consumption for these meshes. An ex-

6

ample loop for one iteration of a Poisson process on a mesh with missing points
is listed in 1.2. In this loop we have used a mask array to multiply individual
elements. Block sizes should now be chosen to fit a tile of a_new, a and mask in
L2. Examples for such meshes are structured grids covering water bodies, with
missing data on land masses.

Listing 1.2: Structured Mesh with Holes

for i i =1 ,n , t i l e _ i

for j j =1 ,n , t i l e _ j

for i = i i , i i + t i l e _ i

for j = j j , j j + t i l e _ j

{

i n t num_nbrs =0;

num_nbrs += mask [(i −1)∗n+ j]+mask [(i +1)∗n+ j]

+mask [i ∗n+j −1]+mask [i ∗n+ j +1]

num_nbrs = max(num_nbrs , 1)

a_new [i ∗n+ j] += a [i ∗n+ j]∗mask [i ∗n+ j]

a_new [i ∗n+ j] += a [(i −1)∗n+ j]∗mask [(i −1)∗n+ j]

a_new [i ∗n+ j] += a [(i +1)∗n+ j]∗mask [(i +1)∗n+ j]

a_new [i ∗n+ j] += a [i ∗n+j −1]∗mask [i ∗n+j −1]

a_new [i ∗n+ j] += a [i ∗n+ j +1]∗mask [i ∗n+ j +1]

a_new [i ∗n+ j] ∗= mask [i ∗n+ j]∗ (1/ num_nbrs) ;

}

y

zx

Figure 1.1: Unstructured 3D Mesh with
tetrahedral elements

y

x

z

Figure 1.2: Unstructured 3D Mesh with
tetrahedral elements - Refined

We add a category of meshes here which are used in block-structured AMR ap-

7

plications and cosmology simulations [16]. These meshes may be constructed
from finite difference grids which require higher resolution in certain areas of the
domain. Computation and communication are performed at the granularity of
blocks instead of mesh points in these problems. A block is an axis-aligned hy-
percube of mesh points that are smaller than the cache. Each block is treated as
an element for partitioning. Computations are performed on all points contained
in a block, which have spatial and temporal locality due to its size. For block-
structured AMR, the areas of the mesh marked for refinement are sub-divided
equally in all dimensions, unlike fully unstructured meshes where the refine-
ment ratio may differ in each dimension. There are additional constraints on the
refinement levels of adjacent mesh elements to allow smooth transitions - No two
adjacent mesh elements should differ by more than one refinement level. Since
mesh points within a block are equi-distant, memory accesses in loops are similar
to structured meshes, which gives good performance on many-core architectures.
One may need indirect addressing or lookup-tables to locate non-local blocks in
these meshes. Cosmology simulations [17] are modeled using a random distri-
bution of points that tend to be clustered in certain areas. However, the meshes
used are similar to block-structured AMR with uniform refinement in areas of
clustering. The particles within a mesh block are usually stored in contiguous
arrays and particle-particle (particle-cell) interaction loops can be structured to
enable vectorization.

Listing 1.3: Unstructured Mesh Accesses

for i =1 ,n

{

a_new [i] += a [i]

for j =1 ,num_nbrs (i)

{

a_new [i] += a [nbrs [i] [j]]

}

}

Unstructured meshes consisting of triangle or hexagonal elements in 2D and
tetrahedral elements in 3D are treated as special cases. The neighbor lists for
these mesh elements have to be stored explicitly. Therefore, nearest neighbor ex-
changes require additional levels of indirection. The meshes may be stored in

8

contiguous memory, but neighbor lookup can result in more irregular memory
accesses than in structured meshes. Indirect addressing increases cache misses
in the solver loops. Unstructured meshes may be uniformly refined, where all
elements have the same size and number of neighbors or highly irregular with
several regions of coarse and fine elements scattered in the domain. Two exam-
ples for unstructured meshes in 3D are shown in figures 1.1 and 1.2. A simple
loop for a single iteration of a Poisson process on an unstructured mesh is pro-
vided in listing 1.3. Neighbor indices are stored in adjacency lists. There is one
level of indirection for each neighbor in the inner loop. One could improve the
performance of this loop by unrolling the outer loop. Meshes that use indirect
addressing in this manner are classified as unstructured in this work.

1.3 THE PARTITION PROBLEM

Mesh partitioning is a subset of the larger problem of graph partitioning. The bal-
anced graph partition problem known to be NP-complete, can be formally defined as:
given a graph G with vertex-set V and edge-set E, both weighted, a P -way partition of
the graph should create P disjoint subsets minimizing the maximum weight of a par-
tition or total edge-cut (communication volume) or maximum edge-cut. This is often
formulated as an optimization problem with an objective function and a set of con-
straints. A commonly used objective function is minimization of maximum edge-cut
or communication volume, and constraints are placed on the maximum load imbal-
ance between partitions. There are more complex formulations with objective func-
tions minimizing the maximum number of outgoing or incoming messages, weighted
sum of multiple criteria, etc. A couple of different formulations for this problem can
be found in [18]. They also provide options for the programmer to form his own objec-
tives and constraints.

We discuss below, the objective function that minimizes maximum communication
volume, subject to load imbalance constraints. Let ei be the sum of weights of outgoing
edges of any partition pi, which contribute to the total communication volume. The
objective function can be formulated as:

P

min
i=1

max ei (1.1)

9

For a given partition set, let wi be the load (sum of the weights of elements) of any
partition pi. Define load imbalance as the maximum difference between weights of any
two partitions pi and pj . The R.H.S in the constraint is the maximum desired value for
load imbalance, say X .

P
max

i=1,j=1
(wi − wj) ≤ X (1.2)

Solutions to the partition problem are broadly classified into Geometric, Greedy,
Combinatorial optimization, Spectral and Multi-level methods. Except for geometric
partitioners, most of these methods are iterative, based on heuristics and computation-
ally expensive.

Approaches to solve the partition problem can be broadly classified into

1. Exact and approximate algorithms

There are some algorithms that solve the exact bi-partition problem or relaxed
versions of it [19], [20]. But running times for these algorithms are quite high.
Bi-partition of grids without holes can be solved optimally in O(n4) if there are
n vertices. Approximation algorithms for bisection of unweighted planar graphs
that are O(logn) optimal are also described in literature [21]. However these al-
gorithms are not used in practice. Min-flow max-cut implementations belong to
this category [21]. The objective functions in these algorithms is to minimize max-
flow between two partitions. These implementations tend to find natural cuts in
graphs, which are likely to be imbalanced. Load balance is added as additional
constraint or incorporated into the cut-metric [21]. PUNCH [22] is a multi-level
algorithm that computes min-cuts in road networks with added load balance con-
straints. The advantage of PUNCH over other partitioners is that it is a parallel
implementation that has shown good performance on large graphs of the order
of tens of millions of vertices.

2. Order producing

Graph coloring is a commonly used technique to partition and order columns of
sparse matrices [23]. The sparse matrices may be derived from graphs, which
makes them a good category of partitioners for general graphs. There is a dif-
ference in the objective functions for graph coloring vs graph partitioners. The
objective here is to minimize the number of colors used. Typically, there are no

10

constraints on the number of vertices having the same color or the coloring of
adjacent vertices. This is a very fast technique to order vertices of a graph, com-
monly used for task assignment in schedulers where graph vertices are the tasks
in the algorithm. Coloring is not a good choice for partitioning meshes because
load balance and edge-cut are not usually minimized in this method. Colpack is
a recent implementation of graph coloring algorithms that has shown good per-
formance [24].

3. Spectral methods

Spectral methods partition graphs by computing the eigen vectors of a Laplacian
derived from the adjacency matrix of the graph. For a graph G with vertex set V
and edge-set E, both weighted, the Laplacian L is defined as :

L = D − A (1.3)

where A ∈ RnXn, is the weighted adjacency matrix of the graph and D is the
diagonal matrix.

D = diag(Ae) (1.4)

e = (1, 1, ..., 1)T

For p partitions, the first p eigen vectors of the Laplacian are chosen as the parti-
tion order of the matrix (graph). Minimization objectives and constraints can be
incorporated into to this method [25], [26] to improve the quality of partitions.

Spectral partitioners produce good quality bipartitions although they are com-
putationally expensive. They are typically used as routines in other graph par-
titioners for bisection or for partitioning smaller hypergraphs. There are some
recent parallel implementations of spectral partitioners that are faster, but results
are shown for small numbers of partitions [27].

4. Global and local search based

There are several iterative graph partitioning algorithms which refine partitions
using heuristic functions. One of the simplest ones is Kernighan-Lin [28] which
searches for a global solution using local exchanges. There are many variants of
this algorithm. A linear time implementation of Kernighan-Lin’s algorithm [29] is

11

widely used by many partitioners. Such algorithms are often used as refinement
routines to improve the quality of existing partitions. There are some trade-offs
though. For example, it is difficult for local searches to satisfy load balance con-
straints along with minimum edge-cuts in the mesh. A pair-wise exchange that
lowers load imbalance may increase communication cost and vice-versa. This
depends on the quality of the initial partition. If the initial partition is good, then
refinement will quickly converge to a better solution. Some implementations of
these algorithms make global moves to achieve a global minima. There are oth-
ers that restrict movement between neighbors, in which case you may not find
a global solution. The implementations of these algorithms add conditions to
avoid getting trapped in local minima. More details are provided in the section
on multi-level methods.

5. Bottom-up

There are implementations that use bottom-up approaches called seeding or graph-
growing to compute initial partitions [30]. Random seeds are picked in the do-
main. Search routines like breadth-first search are spawned at these locations
to determine membership of a vertex in a partition. Seeding terminates when
the partitions satisfy load balance constraints or when all vertices are assigned
to partitions, which ever happens first. There is no guarantee on the quality of
partitions. One approach is to create several partition sets and pick the best from
them. The other option is to refine partitions using one of the iterative schemes
mentioned earlier, i.e. [29].

6. Multi-level

Discussed in detail in section 1.4.

7. Geometric

Geometric partitioning algorithms use spatial co-ordinates of the vertices of a
graph, ignoring connectivity information. [31] has some techniques for partition-
ing points in 2D and 3D. These partitions tend to have poor edge-cuts compared
to the other methods described here. Since space-filling curves fall into this cat-
egory, we discuss these methods in detail in the later sections. We present em-
pirical results for both structured and unstructured meshes for comparison with
graph partitioners. This method is particularly good for parallel implementa-
tions due to low overheads - both memory and execution time. It has shown

12

promise as an efficient adaptive scheme that lends itself well to rapidly chang-
ing workloads. This method can be extended to general graphs with very large
vertex degrees and edges [7].

8. Streaming algorithms

One of the recent developments is the addition of streaming versions of parti-
tioning algorithms intended for handling large datasets. [32] describes an imple-
mentation that partitions data based on some metrics defined on the adjacency
graph. The program is sequential and maintains p bins corresponding to p parti-
tions. The overheads are less, data is accessed once and assigned to bins without
accessing other graph vertices/edges. The assignment of vertices to bins ranges
from random to carefully chosen metrics that pick the vertex with most number
of shared edges. The assignment overheads depend on the metrics. For exam-
ple, to assign a new vertex v to the bin with most shared edges, it is necessary
to access all previously assigned vertices in a bin and count the number of edges
shared with v.

Most of these implementations are sequential. Typically, meshes in scientific com-
puting and databases are large and stored across multiple compute nodes. The applica-
tions using these meshes/datapoints require quick parallel computation of partitions.
An additional caveat is dynamic workloads that change during a simulation. Sim-
ulations using dynamic or adaptive meshes require re-partitioning which brings the
partitioner into the simulation routine. The partitioner is no longer an isolated entity,
instead, it is online (part of some iteration). An online-partitioner could potentially
slow down the application, depending on its overheads. Some of the widely used par-
allel partitioners belong to the class of multi-level methods. They have shown good
scaling with increasing number of processes. Nevertheless, re-partitioning and data
migration are non-trivial overheads introduced by parallelism, which need to be han-
dled well. There are several questions here that need to be answered - how often to
re-partition, where to include the partitioning routine in a simulation etc. We attempt
to answer some of these questions through benchmarks in chapter 5.

In recent times, there has been a lot of work on developing packages for processing
large real-world graphs, typically derived from social networks, web graphs etc. These
are random graphs that follow the power law degree distribution [33]. The graphs
are large, with hundreds of millions of vertices on an average and billions of edges.
The average degrees of these graphs are quite high which makes them different from

13

meshes. Most of these graph processing frameworks are distributed and provide inter-
faces for handling large files, searches and data transfer. Depending on the application,
the graphs may be fixed or dynamic. Dynamic workloads allow addition and deletion
of vertices and edges in the graph. The problem of graph partition still holds for this
domain - generate good quality partitions where neighbors are co-located on the same
process. Most of the packages use hashing to map vertices to partitions. A set of bins
are assigned to processes and threads. Hash functions are usually random, based on
some permutation of bits. The performance of these partitions was found to be very
poor and this led to the use of graph partitioners like Metis and Parmetis [4] in this do-
main. Partitions with better locality improved the performance of these applications
considerably. Giraph++ [34], GraphX [35], Dryad [36], Naiad [37], DistGraphLab [38],
Mizan [39] and Pregel [40] are some of the widely use packages for graph analytics on
real-world data. Naiad uses space-filling curves to partition adjacency matrices (edges)
of graphs. This can work depending on how graph vertices are numbered. Different
numbering can give rise to different space-filling curves, some of which are better than
others. We support partitioning of data if it can be embedded in d-dimensional space.
We leave the embedding to the programmer because distances and relationships be-
tween graph vertices are application dependent. For example, if there are many pa-
rameters per vertex, one can resort to a detailed statistical analysis and pick the d most
significant ones and treat them as d dimensions [41]. There are many advantages to
using a geometric partitioner for general dynamic graphs - they are usually fast and
have low overheads.

Meshes in iterative methods also appear as sparse matrices derived from their ad-
jacency graphs. There are many methods in linear algebra to re-order these matrices
to enable computation, both sequential and parallel. For a given permutation of mesh
elements, its adjacency matrix is a sparse matrix with non-zeros used to indicate the
presence of an edge between any two elements. The matrix has zeros elsewhere. If
edges are unweighted, all non-zeros will be equal to one. Otherwise, they can take any
positive real value. There are some methods which improve the sparse nature of these
matrices for speeding-up computation. The objective is to convert the sparse matrix
with a random distribution of non-zeros to a banded or diagonal matrix which can
be partitioned into blocks. Some of these methods introduce additional zeros while
re-ordering and partitioning matrices. These are called fill-in values. The problem
of finding the best order with minimum fill-in is NP-complete. Commonly used ma-
trix reordering algorithms are e.g nested-dissection [42], [43] and reverse cut-hill [44].

14

There are variations of these algorithms that are parallel. A recent algorithm uses a ge-
ometric method to create coarse partitions, followed by nested-dissection at the lower
levels to re-order matrix elements [45]. Space-filling curves can be used to create coarse
partitions from sparse-matrices. However, we do not re-order the rows and columns
of matrices. The non-zeros in a sparse computation can be distributed across processes
and threads using space-filling curves for load balancing and spatial locality.

1.4 MULTI-LEVEL METHODS

Multi-level graph partitioners like Metis [18] and Scotch [5] are widely used for par-
titioning general graphs and meshes. They do considerable work to optimize and
improve the quality of partitions. We have used these methods as baseline for all
our measurements. As the partition problem is NP-hard, it is difficult to find a good
baseline implementation against which other algorithms can be compared. Since our
methods are single pass without iterative improvement, we consider multi-level meth-
ods a good choice for baseline comparison of partition quality. Between Metis and
Scotch, these packages have similar frameworks, although the algorithms, implemen-
tation and tuning parameters tend to differ. Most of them are optimized for planar
graphs, i.e meshes while others are more general and capable of handling large real-
world graphs [46]. Some of the multi-level packages have default objective functions,
while others like Metis and Scotch offer tuning parameters to the programmer which
can be adjusted to pick an objective function and set of constraints that best describes
his requirements. Most applications in scientific computing benefit from minimizing
the maximum communication volume and load imbalance. Real world graphs could
gain from minimizing the maximum degree subject to load balance constraints. There
are options to add weights to nodes and edges. It is left to the discretion of the pro-
grammer to carefully understand the requirements of his application and tune the par-
titioner.

Multi-level graph partitioning is outlined in this section. Let G be any input graph
with vertex set V and edge-set E. Let n be the number of vertices, each of weight
wi, and m the number of edges with weight eij assigned to edge (i, j). Let p be the
desired number of partitions. The different stages in a k-way multi-level partitioner
are explained below:

15

1. Graph coarsening: The input graph is coarsened over many stages into a smaller
hypergraph of a few hundred hyper nodes. Each coarsening stage uses edge
matching, either randomized or sorted (according to edge weights) to merge ver-
tices [47], [18]. Coarsening is also implemented by seeding multiple Breadth-first
Search (BFS) in the mesh and greedily adding vertices to these partitions. The
widely used implementations for coarsening are based on matching. The coars-
ened hypergraph is partitioned into k-sets using a more expensive algorithm, like
a spectral method [25]. Some packages prefer recursive bisection to direct k-way
if k is a power of 2.

2. Graph refinement:

Coarse graph partitions are iteratively improved by projecting them onto finer
partitions, until there are p partitions. The objective function is satisfied during
every iteration of refinement, without violating constraints. There are several
algorithms for continuous improvement of partitions in Metis, some of which in-
clude Fidducia-Mattheyas [29], a variant of Fidducia-Matheyes and greedy [18].
Refinement algorithms improve the quality of partitions by searching for solu-
tions that satisfy the objective function and constraints. The goal is to obtain a
better refined partition from a good initial partition. The number of refinement
stages is a tuning parameter. The algorithm terminates naturally when no further
improvements are possible or when a fixed number of iterations are reached. Re-
finement algorithms differ in their choice of data structures and minimization cri-
teria. Two additional refinement algorithms implemented in Scotch are Band [48]
and diffusion [49].

3. Mapping to a process topology: This is an optional step that is found in some
partitioners. Partitions are eventually mapped onto a machine or MPI ranks.
The machine architecture or virtual topology of MPI processes is represented as
a graph. These graphs are partitioned into clusters using similar techniques or
simpler methods like recursive bi-partitioning. Vertices are assigned numbers
according to clusters, and mesh partitions are assigned to these vertices, in the
order of indices. Topology can be extended further to include memory hierarchy
such as NUMA regions within a rank. Different weights are assigned to each type
of vertex in the topology graph. Scotch has an extension that handles topology-
aware mapping of partitions to nodes and cores. If using Metis, mapping is left to
the programmer. A connected graph specifying the machine topology with edge-

16

weights that model communication overheads can be given as input to Metis and
its output used to map partitions into clusters of nodes and cores.

Since most coarsening and refinement algorithms are randomized, it is advised to
generate multiple partition sets and choose the best partition. Each execution of the
coarsening stage will initialize the refinement stage to a different configuration, some
of which may be worse than others. We have used these partitioners with default
parameters for most of our experiments.

Jostle [50] is a parallel graph partitioning software that implements a multi-level
partitioning algorithm, like Metis and Scotch.

The Zoltan package [51] provides interfaces to both hypergraph partitioners Metis
and Scotch along with a custom hypergraph partitioner [52]. Other multi-level par-
titioners include Kahip [53], Party [54],Patoh [55] and DiBAP [56]. Patoh has used
agglomerative clustering during the coarsening stage to form hypergraphs. They have
also used several variations of Kerninghan-Lin and Fidducia-Matheyses for refine-
ment. The quality and partitioning times are comparable to other multi-level imple-
mentations. Kahip [53] implements a faster coarsening algorithm, called Global Path
Algorithm, compared to Metis. The refinement algorithms have been retained along
with a couple of new implementations for local exchanges. One of the refinement
schemes is based on seeding two BFS until the bi-partitions satisfy load balance crite-
ria. The BFS is done repeatedly along with vertex exchanges to lower edge-cut. The
second implementation is a k-way version of Fidducia-Matheyes. There is some minor
improvement in performance. There is also a parallel version of this implementation,
with performance comparable to Parmetis [57]. Party [54] is an attempt to improve the
refinement phase in multi-level methods. The coarse hypergraph is partitioned using
recursive bisection instead of direct k-way method. The partitioned hypergraph is im-
proved iteratively by a new refinement algorithm called helpful-sets. This algorithm is
based on Fidducia-Matheyses with variations in the potential function and data struc-
tures used. This could lead to differences in the number of iterations and exchanges
to find an improved solution. The improvements have not been evaluated fully. They
have a multi-threaded version, which is compared with Jostle and Parmetis. They get
better edge-cuts for structured symmetric meshes with finite degrees, which was the
objective of the partitioner.

DiBap [56] is another multi-level partitioner with additional algorithms for coars-
ening and refinement. The coarsening phase includes a faster geometric method that

17

computes the distance between the center gravity of a partition and a new vertex for
membership. The vertex gets assigned to the partition that is closest to it. The last few
iterations of coarsening use this method, also known as, Bubble-FOS. New additions
to the refinement stage are bubble-based diffusion and truncated-diffusion (TRUNC-
CONS). Both are based on diffusion, which transfers load from heavily loaded pro-
cesses to lightly loaded ones. Only those moves are encouraged that maintain load
balance. Refinement stages also consider minimizing edge-cut while choosing the pair
of processes engaged in diffusion.

A detailed discussion of Metis and Scotch can be found in Chapters 3 and 4. We give
the pros and cons of using multi-level partitioners along with testcases.

18

CHAPTER 2: PARTITIONING DATA USING GEOMETRY

2.1 OUTLINE

In this chapter, we discuss the software architecture of the partitioning framework.
There are many benefits to using geometry with data. It provides a natural way to
organize data relative to each other. This is exploited greatly in meshes, but the same
methods can be extended to other point distributions. One method is to use a mesh
generation software to impose a mesh on a pointset - Voronoi tessellations [58], De-
launay triangulations [59]. Once the mesh is generated, its elements can be permuted
and partitioned using a suitable graph partitioner. One can also use geometric meth-
ods to partition pointsets without edges. Our partitioner does not distinguish between
pointsets and meshes.

The input to the partitioner is a set of points and a distance criteria in d dimensional
space that can be used to separate them. We provide the outline below :

1. Construct a hierarchical decomposition of space enclosing the dataset using axis-
parallel hypercubes (boxes).

2. Define a traversal on the boxes that preserves locality. The order of traversal
generates the final permutation of data.

3. If there are P partitions, the permutation list is sliced into P roughly equal length
segments.

4. If the dataset has unequal computation at different regions in the domain, weights
are assigned to all points. In the current implementation, this does not affect the
decomposition or the traversal. In the weighted case, partitions are still roughly
equal length segments, where the length of a segment is the sum of weights of its
constituent points.

We have used kd-trees for hierarchical decomposition of the domain. In our current
implementation, there are two possible traversals - Morton and Hilbert. Our imple-
mentation of Morton is a generalized version that is independent of the shape of the
domain. It is defined on all dimensions, d >= 2. The Hilbert curve is also a general
version which can be applied to asymmetric domains. In the current version, Hilbert

19

curves are defined only on 2 and 3 dimensional data.

In the remaining sections in this chapter, we discuss and evaluate these components
in isolation. The first section deals with kd-tree implementations. The general descrip-
tion is provided along with various optimizations for a parallel environment. Here
we have discussed shared memory programming in some detail. The algorithms for
splitting and the data structures used are discussed. Various test cases are provided
to compare the performance of different parallel implementations. The test cases are
random point distributions in this section - not derived from meshes. But the imple-
mentation is agnostic to the source of data. They may or may not be derived from a
mesh. After a discussion on kd-trees, we present rules for Hilbert traversals - 2D and
3D. The traversals are evaluated empirically by comparing against multi-level graph
partitions.

2.2 METRICS FOR EVALUATING PARTITIONS

The partition problem was discussed briefly in Chapter1. In this section we define
a minimal set of metrics that we have used to evaluate partition quality. These met-
rics appear later while evaluating the performance of testcases. The metrics define
the way in which measurements are taken at various points in programs to evaluate
performance.

Define work, the amount of computation per mesh point and communication. Com-
putation per mesh point is also referred to as weight in some descriptions. We isolate
these operations in a program and define metrics separately. This separation is essen-
tial for reasonable evaluation of parallel programs. Both computation and communi-
cation depend on the number and shape of partitions.

The effort taken to optimize programs depends on the ratio between computation
and communication. For programs with compute heavy code sections and sparse com-
munication, it may be worth the effort to restructure the code to reduce cache misses,
re-use data and even think of simpler equations that can perform the same computa-
tion. In all cases, the criteria that works across optimizations is load balance.

The communication graph of a parallel program consists of vertices that are code
sections executed by processes or threads and edges that are weighted according to

20

the number of bytes exchanged between these code sections. There are three metrics
that are easily defined on the communication graph - maximum degree, sum of edge
weights and maximum edge weight. At any given point in time, a subset of code sec-
tions (vertices) that satisfy dependencies are executed in parallel. Therefore, between
sum and maximum, the more significant metric is the maximum edge weight. A pro-
gram can have different communication graphs at various points. The communication
graph is updated when the dataset is updated or if the execution of a vertex generates
new vertices, e.g. adaptive computations and graph traversal.

Minimum computation time is obtained when the load distribution is roughly equal
across partitions. If the distribution is not balanced, there is some process pi that has
more load than others. Let Tcomp be the total computation time of a parallel program
with P partitions. Processes are numbered from 0, ..., P − 1 and let wi be the load of
any partition pi Let C be the amount of work per unit weight.

Tcomp =
P−1
max
i=0

(C ∗ wi) (2.1)

When there is imbalance in the load distribution, heavily loaded partitions take more
time to complete than others, which increases the maximum computation time of the
application. On the other hand, lightly loaded processes spend time idling at barriers.
An ideal distribution has the same weight on all processes and this should be the mean
value.

We have used a similar model for inter-process communication where each process
has degree di and communication volume ei in bytes. Assume a PRAM delay model
for communication where α is the setup cost or latency of a message and β is the cost of
transferring a byte on the network. If a node has a single-port, the total communication
cost of a partition is the sum of all individual messages that are sent/received. The
communication cost of the entire group is the maximum communication cost of any
partition. Let Tcomm be the communication cost of a communication phase where point-
to-point messages are sent between processes.

Tcomm =
P−1
max
i=0

(α ∗ di + β ∗ ei) (2.2)

Parallel programs exhibit different behavior depending on the frequency and pro-
portion of computation and communication. We have used the following models for

21

measuring execution time in our programs. Suppose there are a computation phases
and b communication phases in a program. Let TBSP be the total execution time of the
program if it follows a BSP [60] model where computation and communication are
carried out in stages, and processes synchronize between them. Then,

TBSP = a ∗ Tcomp + b ∗ Tcomm (2.3)

Suppose there are r regions in a program where computation and communication
overlap - there is no synchronization between processes until the program is termi-
nated. Let Tcompi be the computation time and Tcommi

the communication time of pro-
cess i. The total execution time when these operations overlaps is Toverlap, which is
defined as

Toverlap =
P−1
max
i=0

r ∗max(Tcompi , Tcommi
) (2.4)

The assumption here is that Toverlap is equal for all r stages. Most often parallel pro-
grams are a mix of both styles. There are computation and communication phases and
code sections that are asynchronous. Let Ttotal be the total execution time of a parallel
program,

Ttotal = a ∗ Tcomp + b ∗ Tcomm +
P−1
max
i=0

r ∗max(Tcompi , Tcommi
) (2.5)

2.2.1 Multi-threaded and Hybrid Applications

Similar metrics can be used for multi-threaded and hybrid applications where a
group of threads are spawned for computation within a process. We have followed
these metrics while measuring execution time in our multi-threaded and hybrid pro-
grams. Let P be the number of processes numbered from 0, ..., P − 1 and T be the
threads per rank, numbered from 0, ..., T − 1. Let wi be the computational load per
rank i that is distributed among T threads. If the total computation per node is dis-
tributed equally, ti = dwi

T
e is the load per thread. We can use the same argument above

in favor of a balanced load distribution between threads. No thread in the group
should be overloaded and no thread should idle at barriers. Maximum degree and

22

edge-cuts metrics are analogous to the number of synchronization points and cache
misses in a shared memory program. Access to shared data-structures is controlled
using mutexes. Similarly, the execution of threads can be controlled using signal-wait
constructs. The number of such primitives in the program depends on the partitioning
and ordering of data. If there are K synchronization points in a program and at most
T contenders per access (worst case), we can form a metric for communication cost
that depends on program structure. Let k be the average cost incurred by a thread for
gaining exclusive access to a location. Another influence here is cache misses. Let Bi

be the average cache size available to thread Ti. If the thread accesses Mi distinct bytes
in total, there are at most c ∗ dMi

Bi
e cache misses. The overhead factor c, >= 1 depends

on the cache mapping policy and number of hardware contexts on the same CPU. Let
α be the computation cost per unit weight and β be the cost of transferring a byte from
memory to cache. The computation cost per rank Tcompi is now split into computation
and synchronization costs incurred by a group of threads.

Tcompi =
T−1
max
i=0

(α ∗ ti + β ∗ c ∗ dMi

Bi

e) +
K∑
i=0

k ∗ T (2.6)

One can define more complicated models where the cost of data transfer depends on
the type of memory used (NUMA effects). We have kept it simple for now.

Orders that reduce communication costs, i.e. cache misses and synchronizations are
better partitions in shared memory. We have used space-filling curves for ordering data
within ranks. For a given data layout, one can always find orders that are competi-
tive, with fewer cache misses. Similarly, there is at least one permutation that has the
highest number of misses. We have not used counters to measure cache misses, but the
differences in execution time are used to justify choice of data structures and favor one
data layout over the other. Concrete examples are discussed in the section on parallel
AMR 5.3.

2.3 KD-TREES

Unstructured data is difficult to represent, index and manipulate, both in scientific
computing and database applications. There are many reasons behind this, the ma-

23

jor factors being the size of the dataset and the number of dimensions and features
attached to a point. This difficulty increases with increase in the number of dimen-
sions, which has not been fully addressed so far in parallel computing [61], [62], [63].
There is plenty of work that deals with handling large datasets efficiently, especially
in databases [64]. One of the commonly used data structures for representing multi-
dimensional datasets is a kd-tree [65]. It is mostly used for point location, nearest-
neighbor searches and region searches. They are not so popular in scientific computing
for representing meshes. Moab [66] has a mesh implementation that uses kd-trees for
storing and coupling different meshes. There are variants of this data structure in cos-
mology and AMR applications which handle dynamic datasets e.g. Barnes-hut [17].
Parallel KD-trees are widely used data structures in 2D and 3D animation, for locating
objects and computing interactions. For such applications that are real-time, it is es-
sential the data structure is concurrent and has low synchronization overheads. These
programs should use a processor’s memory hierarchy efficiently by structuring code
for spatial and temporal localities. Ray-tracing [67] and collision-detection [68] soft-
ware both of which are real-time simulations belong to this category. They typically
have dynamic scenes which are continuously updated.

These applications and their implementations are typical testcases for GPU perfor-
mance, therefore, there has been considerable effort in the past to optimize them on
SIMD [69]. Several optimizations for kd-trees are discussed in [70] which improved
their SIMD performance. The most commonly used splitters in these trees are based on
volume-surface area criteria, also known as SAH-trees [69]. These are useful metrics for
meshes with well-defined adjacencies and communication patterns. Testcases for gen-
eral graphs and random distributions of points without adjacencies haven’t been ad-
dressed in these papers. The dimensions are usually restricted to 2D and 3D and sim-
ulations are iterated over time, continuously updating scenes and interactions.

We have relied heavily on the geometry of the outer-most bounding box and less
on the shape of individual mesh elements. This was done intentionally, to remove de-
pendence on mesh types and make the partitioner capable of handling random points
with clusters. There are some similarities between GPU specific implementations and
ours, mostly in the optimizations used. Both implementations are synchronous, based
on single-sweep techniques, where threads independently sweep through the data,
measuring metrics that are aggregated at the end of the sweep. These metrics are
used for decisions later. Our synchronization methods are different from GPU thread-

24

ing constructs. CPUs do not have the additional restrictions that hardware threads
on GPU have - with respect to warps and thread blocks. We first describe the se-
quential algorithms and later explain their parallel equivalents. Multi-threading con-
structs, synchronization methods and parallel overheads are explained in detail in sec-
tion 2.4.1.

2.3.1 KD-tree Construction

Algorithm 2.1 KD-tree Construction Method

1: procedure KDTREE_BUILD(node n)
2: if thenn.size() <= bucket_size
3: return
4: else
5: dim← n.dim_of_max_spread()
6: n.split(dim)
7: n1← n.lower()
8: n2← n.upper()
9: if thenn1.is_valid()

10: KDTREE_BUILD(n1)
11: end if
12: if thenn2.is_valid()
13: KDTREE_BUILD(n2)
14: end if
15: end if
16: end procedure

Figure 2.1: Two examples of kd-trees from random point distributions, a: midpoint
splitters with cycling through the dimensions b: median splitters along the dimension
of maximum spread

The most common implementations of kd-trees have two types of nodes - non-

25

Algorithm 2.2 Node Split

1: procedure SPLIT(dim)
2: value←Median
3: set_splitter(dim, value)
4: n← datasize
5: n1← lower()
6: n2← upper()
7: for doi← 1, n
8: if thendata[index[i]].coord[dim] ≤ value
9: n1.add(index[i])

10: else
11: n2.add(index[i])
12: end if
13: end for
14: end procedure

terminals and terminals (leaf nodes). At the non-terminal nodes, the dataset in Rd

is divided into subsets by splitting along a hyperplane in d − 1 dimensions. We have
used two degrees of freedom while deciding a splitting hyperplane - a splitting di-
mension perpendicular to the hyperplane and a splitting value along that dimension.
We have restricted ourselves to hyperplanes that are axis-parallel. The subsets are as-
signed membership to two sub cells depending on the position of points relative to the
splitting value. Suppose the splitting dimension is i and the splitting value is m, then
all points with co-ordinate values less than or equal to m along the dimension i are
assigned to the lower sub cell and the remaining points belong to the upper sub cell. A
node stores information regarding its splitting hyperplane. The choice of hyperplanes
affect the maximum depth of the kd-tree, its size (number of nodes) and time taken for
tree construction. This has been explained in detail in [65]. The pseudo-codes for our
implementation are described in algorithms 2.1 and 2.2. We have used a two-level data
structure to reduce repeated irregular accesses to mesh data. The first level consists of
a geometric summary of the mesh maintained using an index vector and a vector of
co-ordinates in some order.These are the only vectors the partitioner accesses. The
co-ordinate vector is never modified, all accesses are reads. The vector that is contin-
uously updated is the index vector. We have allocated extra space for copying in the
index vector. If there are N points in d dimensional space, the input to the program is
N ∗ (d + 1) doubles for storing d co-ordinates and one weight value per point, along
with 2∗N unsigned integers for storing and copying indices. These data structures and
their accesses are explained in detail along with the parallel kd-tree implementation in

26

the next section. We first provide a discussion of the splitters used.

1 2

3 4 5 6

7 8

9

Figure 2.2: KD-tree of a set of points in 3D

1

2

3
4

5
6

7

8

9

Figure 2.3: Dataset with splitting
hyperplanes

The diagrams in figure 2.1 show a random distribution of points in 2D and two ways
of separating them with hyperplanes perpendicular to the X and Y axes. The diagram
on the left uses a midpoint splitter where splitting dimensions are fixed {0, 1}, in that
order. Notice a large proportion of empty sub cells when using this set of splitters for
separating points. The figure on the right has the same point distribution but they are
split along the dimension of maximum spread and the splitting value is the median
co-ordinate. The diagrams in 2.2 and 2.3 show a random distribution of points in 3D
split using 2D hyperplanes and its corresponding kd-tree.

The partitioner takes co-ordinates of the unstructured dataset (including finite dif-
ference and finite element meshes) as input and constructs a kd-tree. One of the bottle-
necks for large data is tree construction time which includes computing splitters and
data movement. We have reduced the execution time for sequential versions by using
linear or constant time algorithms for computing splitters and maintaining offsets to
the index vector instead of explicitly copying them to non-terminal nodes. The parallel
kd-tree implementation is explained in detail in later sections. The output of the parti-
tioner is a final permutation that may be used by the application for re-ordering data
accesses to the dataset.

The total cost of building a kd-tree from a random distribution of points depends on
the splitters and the number of levels required to separate points in the input distribu-
tion. We have included buckets for specifying the granularity of leaf nodes. The size of
a bucket in turn influences the maximum depth of the tree. Every leaf node will have
at most BUCKETSIZE elements. For an input dataset with N points in d dimensions
and BUCKETSIZE = 1, the worst case time taken to build the tree is O(Nd+1) where

27

the maximum depth of the tree is N . This can happen with highly unbalanced cuts
which split the domain of N points into two sub cells, each containing N − 1 and 1

points. The total number of splits required to separate N points is therefore N . The
choice of dimensions is another variable for splitters. For example, there can be two
points which are exactly equal in d − 1 dimensions. In this case, for a fixed order of
dimensions, one will have to try d− 1 cuts, before these two points are separated. This
adds the exponent d to the term. The average and best costs are obtained for splits that
are balanced. If the splitting dimensions follow a fixed order, then the maximum depth
of the tree isO(logn) in each dimension. The total time taken for tree building is at most
O(N ∗ (logn)d). For optimal constructions, we pick the dimension of maximum spread
at every node. The maximum depth of the tree will not exceed O(logn) for these trees.
For all distributions, median splitters are consistently better than midpoint splitters in
obtaining balanced trees of depth at most O(logn). The cost of splitting or computing
the median can be made linear if done carefully. Therefore, for d dimensions, the cost
of tree building is O(N ∗ logn).

For large datasets, there is a trade-off between the complexity of choosing a splitting
hyperplane and the size of the tree. We have used a couple of low-overhead splitters
that avoid empty nodes in the kd-tree.

1. Midpoint of the dimension of maximum spread : This splitter first computes a
tight bounding box around the points within a node. The longest dimension
of the bounding box is picked. The splitting value is the exact midpoint of co-
ordinates along this dimension. It takes linear time O(N) to compute the extents
of each bounding box and determine the dimension of maximum spread. The ex-
tents for a node are updated incrementally by sweeping through its points once.

2. Exact Median of the dimension of maximum spread : The distinct co-ordinates of
all points in the domain are stored in separate vectors, one for each dimension.
These vectors are pre-sorted once before tree building. For d dimensions, the cost
of pre-sorting co-ordinate vectors isO(d∗N ∗logN). A tight bounding box is com-
puted around the points in the domain and the longest dimension is picked. The
median value of the co-ordinates in this dimension is the splitter. Co-ordinates of
points in each node cover non-overlapping sections of co-ordinate vectors. The
co-ordinate ranges in all dimensions are stored in tree nodes. When a node is
split along dimension i, two sub-cells are created. Both sub cells inherit ranges
from the parent cell for all dimensions except i. For dimension i, the range is

28

split at the median which is located at (max − min)/2 where max and min are
the extents of i. All this computation can be done in constant time. The cost of
computing the exact median is O(d ∗N ∗ logn), which is the cost of pre-sorting.

3. Approximate Median of dimension of maximum spread : This implementation is
used if the number of points is large enough that pre-sorting co-ordinate vectors
in d dimensions becomes an overhead. Instead of sorting the entire co-ordinate
vector, a smaller subset of co-ordinates is sampled from every thread for every
dimension. These subsets are gathered and sorted. The approximate median is
the median of the sample set. The approximate median works for large random
distributions of points when sufficient number of samples are picked. We used
this implementation for some of the testcases. The sorting overhead still holds.
Moreover, in this implementation sorting and re-sampling are done at every node
when it is split, compared to the previous implementation where pre-sorting was
sufficient. The cost of sampling S points from n points is O(n), if we avoid dupli-
cates. The overhead of sorting is O(S ∗ logS). Replacing S with k ∗ n, the sorting
overhead isO(k∗n∗logn), where k < 1. If this splitter is used for L levels, the cost
of tree building is O(L ∗ k ∗n ∗ logn)+O(n). Since the construction is hierarchical
and uses geometry, we may be able to reduce this cost by using constant number
of samples.

4. Exact Median by Selection: Out of all median finding algorithms, this has been
the best implementation so far. This algorithm computes median by repeatedly
selecting and pruning the sample set. The cost of sampling k points from a set
of N points where k < N is linear in the number of points. Once a sample set is
picked, and a random point is selected as the median, the rank r of this median
in the sample set is computed. If the number of points less than the median
is greater than half, then the correct median should have a rank less than r. If
the number of points larger than the median is more than half, then the median
should have a rank greater than r. The samples are pruned in either case to
remove points that need not be considered during the next iteration [71]. If points
are random, sampling converges quickly in constant number of steps. The cost
of selecting the median from samples is linear in the number of samples. The
computation cost is O(c ∗N) where c is the number of iterations until the correct
median is found. The algorithm terminates when the sample list is small enough
to be sorted (exact median for a small list of size < 100).

29

2.4 PARALLEL KD-TREE

Figure 2.4: Pthreads overheads

2.4.1 Shared Memory Implementation - Threads and Synchronization

STL interface to pthreads was used for shared memory implementations in this the-
sis [72], [73]. The interface is minimal, which worked out best for us. We did not com-
pare our implementation to similar programs written using contemporary threading
libraries like [74], [75]. The objective was to measure the impact of data re-ordering
between and within nodes. The threading interface had to be as simple as possible
without any frills, for better control over data placement and mapping of threads vs
data location. In this discussion, mapping threads is same as pinning them to CPUs.
We use these terms interchangeably, unless mentioned. STL interface has routines to
spawn threads and assign tasks to them. The synchronization constructs supported by
STL are the following :

1. atomic : atomic variables and instructions like fetch-add, compare-swap used for
lock free data structures [72], [76].

2. mutex variables for implementing locks [72], [76].

3. Signal and wait constructs for handling dependencies in control flow between

30

threads [72], [76].

This interface was used to spawn threads, assign functions to them and wait for
threads to join the main thread after execution, referred to as fork-join model [77]. The
assignment of tasks to threads and mapping to cores was done manually for better
control. We used pthread affinity functions for mapping threads to the CPUs on a
node. Tasks are functions in our implementation, which have access to shared and
local data structures. All threads in a group may execute the same function with par-
titioned data [78] or different functions that synchronize using read/write variables or
messages. If threads execute different functions, their control flow needs to be synchro-
nized using signal-wait constructs. Some threads may block or yield while waiting for
others to complete. It can also happen that there exists a dependency between any
two threads ti and tj , e.g ti produces a value that is required by tj . Then ti notifies tj
when its work is completed while tj blocks until the signal is received. This model is
supported by STL to co-ordinate execution of threads while satisfying dependencies.
In the extreme case, this can be used to implement a barrier where a group of threads
block until a signal is received.

We implemented a few additional constructs for brevity in our programs. A rule
of thumb throughout the implementation was to keep synchronization to a minimum.
Three basic synchronization constructs were identified as minimum requirements for
all our programs. An array of atomic variables, one for each thread, was used to im-
plement these functions. We call this array wait [76].

1. Barrier - The members of the wait array are initialized to zero. When thread
ti arrives at the barrier, it sets wait[i] = 1. Thread0 computes the sum of all wait
variables. When the sum equals the number of threads, it resets all wait variables.
The remaining threads block until their wait variables are 0. We have referred to
this function as sync in our programs. A variant of sync, known as sync(tid, fn)
is used to implement atomic sections of the code where tid is the thread id and fn
is the atomic function. Signal and wait are implemented using loads and stores
to the wait array and polling the values of these variables.

2. Reduction - This primitive can be defined on any binary operation. It com-
putes a reduction on thread local values and broadcasts the cumulative value
to all threads. We have used this method for computing the sum, maximum
and minimum of thread local values. We have also used it to broadcast values
across threads. This method was used in some sections of the program for agree-

31

ment/consensus between threads. There is a shared vector called reduce, with
num_threads values. Each thread writes to or reads from the location reduce[tid],
where tid is the thread id.

3. Scan - This primitive is used for quick computation of offsets and prefixes in
programs. It computes an inclusive scan of all thread-local values and shares
the result with the corresponding thread. This can be defined on any binary
operation. There is a shared vector called prefix with num_threads values. Each
thread writes it local value to prefix[tid] where tid is the id of a thread. For any
thread ti where tid = i, this function applies the binary operation bin on all values
in prefix starting from 0 to i. The result is stored in prefix[i] and read by ti at the
end of the computation.

The complexity of these three synchronization primitives is linear in the number of
threads. The optimal isO(logP) where P is the number of threads [79]. But, we kept the
implementation simple, because synchronization is restricted to threads in a group and
this is usually a small pre-defined value. The time taken for thread creation, reduction,
prefix and barrier are shown in figures 2.4,2.5. These measurements were taken on
Intel KNL nodes [80]. All associated arrays were allocated on DDR memory.

All programs discussed in this thesis follow a common model, where threads are
spawned once, and joined when the program terminates. This reduces the overhead of
spawning threads frequently. Any intermediate synchronization is achieved using bar-
riers (sync). There are no primitives for work distribution or load balancing between
threads [81]. Work assignment to threads was done by assigning indices of the data
structure to threads according to some permutation, usually in the order of thread ids.
This works out particularly well for array-type data structures. We have transformed
non-array type data structures to use indices for this reason. The transformations will
become clearer in the later sections. If the application requires explicit mapping of
threads to cores, a mapping function is defined to create different permutations. Some
objectives to consider while creating these permutations is the number of available
cores and the location of NUMA regions on a node. For sections of the code where
there is very little data re-use for threads, scheduling is off-loaded to the operating
system. For sections where data is re-used, threads are pinned to CPUs. An example
where this decision would make a difference is divide-and-conquer or recursion. Im-
plementations of such algorithms where the problem is decomposed into smaller non-
overlapping sub-problems would benefit from mapping or pinning threads to CPUs.

32

Figure 2.5: Pthread Additional Constructs

The sub-problems are more likely to be executed by the same thread-CPU combina-
tion which could benefit from cache re-use [82] for reasonable problem sizes. Pinning
of threads to CPUs follows KNL numbering of tiles and cores, for a given configura-
tion. Threads executing on CPUs that share a lower level cache, were assigned nearby
data in memory, to take advantage of spatial locality. Benefits depend on the available
data locality in the computation as well as the implementation.

2.4.2 Parallel KD-tree - Data structure and Algorithms

Several changes had to be made to the sequential data structure to make it parallel
friendly.

1. Linear Indexing

Parallel implementation of kd-trees discussed in this thesis are transformed linear
data structures which enable quick mapping to threads and load balancing across
nodes. The active nodes of the tree are numbered according to some traversal

33

order or global indexing scheme. In our implementations, the default order is
Morton, unless specified. Hilbert-like orders are used for better locality, benefits
of which are discussed in the next chapter. For now, the indexing scheme is de-
fined as function f that maps the members of a spatial data structure with some
absolute or relative distance metric defined on them in Rd to [0, N − 1] where
the member at the origin is assigned the index 0 and the farthest member has
index N − 1. Trees are natural in this regard, because they form hierarchies and
distances that are easy to compute. A simple depth-first search or breadth-first
search can assign distances to the nodes of a tree, which can be translated to in-
dices that span a global range. Some mappings are better than others :

(a) Absolute indexing: The indices assigned to the members of a data structure
may be absolute, most often derived from spatial co-ordinates. For exam-
ple, the elements of a mesh in 3D have (x, y, z) co-ordinates and the bit-wise
interleaving of these co-ordinates can be used to generate unique keys. Any
hashing function H can be defined on these co-ordinates without consider-
ing the number and position of other members in the data-structure. Al-
though it is possible to derive unique hash keys without collisions in this
scheme, the span can be very large. For 64-bit co-ordinates, bit-interleaving
will generate hash keys that are 64 ∗ 3 = 192 bits wide. The span is therefore
[0 − (2192 − 1)]. Many of these indices are likely to be unused. Managing
such a large range of keys with missing values, leads to overheads that in-
turn defeat the purpose of a linear compressed data structure.

(b) Relative indexing: Indices can be derived based on their relative location
to other members in the data-structure. One must be careful to avoid colli-
sions in this situation, but the span can be reduced considerably. We have
used this for trees, arrays and linked-lists. It may be possible to find such
transformations for other data-structures.

Linear transformation and hash keys is a natural way to obtain parallelism in
data structures. Concurrent accesses to a data-structure can be made mutually
exclusive by accessing members with different indices. Any permutation, Mor-
ton, Hilbert or Gensfc can be used to linearize the same data structure. In places
where this is not possible, we have used atomic variables to synchronize concur-
rent reads and writes. Our sequential implementation also had linear trees, but it
was mainly meant for internode load balancing and neighbor look-up. Keys and

34

indices are used to assign exclusive addresses to threads and reduce contention.

2. Buffered Writes

Contention in programs can be reduced by using additional buffers which store
partial results. We have used this technique in most of our implementations
to reduce time spent synchronizing memory accesses. The idea is to maintain
thread-local or shadow copies of data and accumulate partial results incremen-
tally, using reduction and prefix methods. This technique will work provided the
extra buffers are small compared to the size of the data structure. In the best case,
buffer size is equal to the number of threads, because each thread has at most one
value to share with others. In the worst case, the auxiliary buffer is as big as the
original data structure. Locks may be a better option for such scenarios. Like in
the serial version, each kd-tree node covers a sub-region in the domain bounded
by axis-parallel planes. The indices of points within a sub-region are stored in
contiguous memory locations. Tree nodes store the offset in the index array and
number of points in their bounding boxes. The linear implementation of a kd-
tree with 7 nodes is shown in the figure 2.6. 3 nodes are non-terminal and 4 are
terminal nodes. The nodes are assigned monotonically increasing indices, i.e. the
children of a node are assigned numbers strictly greater than itself. The root node
covers the entire index array, with offset = 0 and num_points = N . Indices are
relocated in the array whenever a node is split. The indices of points to the left of
the splitter are relocated to the first half and the remaining indices to the second
half. To generalize, when a node with offset = t and num_points = n is split
into two sub cells node1 and node2 with number of points n1 and n2 respectively,
the lower cell (node1) will have offset = t, num_points = n1 and the upper cells
(node2) will have offset = t+ n1 and num_points = n2.

3. Replicated Computation

In some scenarios if data is available to all threads, it would benefit if all threads
replicate some computation. This can help only if the replicated portion has fewer
synchronization steps than the code section using multiple locks, barriers and
broadcasts. We have employed this technique in several places in the code. For
example, suppose the average of a vector needs to be computed in parallel for
a small subset of data n, where n is comparable to p. It might be beneficial if
all threads in the group replicate average computation without waiting for other
threads to compute their local values, followed by a reduction. The cost of repli-

35

cated average is O(n), while the cost of parallel average is O(n
p
)+O(p). For small

problem sizes, synchronization costs can dominate computation cost. In such
situations, replication is preferred. Our overheads are low, compared to imple-
mentations that do task scheduling. We have no auxiliary data structures for
scheduling thread execution. A light-weight implementation suited this prob-
lem, but there may be other problems which require complex control structures
and algorithms for thread scheduling.

4. Reduced Working Set

The diagram in figure 2.6 shows the two-level partitioning defined on the re-
duced set. The mesh data or database is untouched during tree-building and
partitioning.

Figure 2.6: Linearized kd-tree

Top nodes of the tree which contain larger number of points, are shared by all
threads. The node parameters computed during this stage are aggregated from thread-
local partial values. The synchronization required for this stage is equal to the cost of
reduction and prefix, which is proportional to the number of threads. The initial re-
cursion is stopped when there are sufficient nodes (>=number of threads) to distribute
across threads in a load balanced manner. After the initial phase, threads work on their

36

independent sets of nodes. Very little synchronization is required after this point. Tree
nodes are stored in a linked-list, where the elements of the linked list are blocks of
nodes. The number of nodes in a block is configurable and defined by the parameter
BLOCKSIZE. Nodes are indexed using their unique ids. A node with id n belongs to
block n

BLOCKSIZE
. The index of the node within the block is n%BLOCKSIZE. These

two indices are used by threads to locate the node. Since node ids are global, when
new nodes are added to the tree, it may lead to addition of blocks to the linked-list
if its id is out of range. The addition of new blocks to the list is synchronized using
atomic compare-swap operations. For sufficiently large BLOCKSIZE this may hap-
pen very few times during tree-building. Also, the addition of blocks is distributed
across all threads if the top node assignment is load balanced. If there are b blocks in
the linked-list, location of a node belonging to some block i, i >= 0, i < b, will require
at most d(b

BLOCKSIZE
)e accesses to pointers in the linked-list.

Figure 2.7: Parallel Construction of KD-trees

The program computes splitters and performs data re-ordering. Midpoint splitter
has linear computation cost O(n) for a node containing n points. If a node is shared by
p threads, each thread computes the minimum and maximum co-ordinates of a set of
dn
p
e points in d dimensions. The global minimum and maximum are computed from

37

partial results using vector reductions, each taking linear time O(p).

We implemented parallel versions of all sequential median finding algorithms ex-
plained in the previous section. Pseudocodes for parallel splitters are provided in
algorithms 2.4, 2.5 and 2.6. Algorithm 2.4 is the parallel midpoint finding method
and algorithms 2.5 and 2.6 are the median finding methods, approximate median and
median by selection resepctively. Sequential quicksort is replaced by a shared memory
version of parallel quicksort discussed in section 2.10. If Tqs is the cost of parallel quick-
sort for a vector of numbers, the total pre-sorting cost is d ∗ Tqs for d dimensions. Exact
median is computed in constant time by all threads independently without additional
synchronization. This computation is replicated on threads to avoid synchronization.
But, pre-sorting overheads still hold for large datasets. For the approximate median
splitter, we used parallel sampling, followed by sorting. This version had similar tree
building time compared to exact median. Median selection algorithm had the best par-
allel performance. For a set with n co-ordinates, threads select unique samples (avoid
same values) independently from their subsets by traversing them once. These sam-
ples are combined to form a larger sample set. The cost of selecting S samples from a
set of n points is O(n

p
), where each thread selects dS

p
e local samples. A prefix operation

is used to compute the position of samples in the sample set. The total cost of sampling
is therefore O(n

p
) +O(p)

Algorithm 2.6 iteratively computes the median in linear time by selection from a
smaller subset. A subset of co-ordinate values are picked to form the sample set. At
iteration i, sample s in the subset is either valid or invalid depending on whether it is
considered in round i or not. Initially, all samples are valid. Median is selected from
a set of valid thread-local choices. Once a median is picked, its rank in the array is
computed using reduction and parallel prefix. Depending on the rank of the median,
the sample set is pruned by parallel marking those samples that are out of range as
invalid. When the number of valid samples in the set falls below a threshold, the entire
algorithm becomes sequential. Thread0 sorts local samples and picks the middle value.
During the selection phase, threads pick at most one valid candidate median each and
share its value. These p medians are sorted, and middle value is picked. For a sample
set of size S, cost of the selection phase is O(S

p
+ plogp). If there are c selection steps,

the total cost of selecting a median is O(c ∗ S
p
+ c ∗ p ∗ logp) which is at most O(S), linear

in the size of the sample set. Communication cost is O(k ∗ p), for some k > 1, if there
are at most k synchronizations in c iterations.

38

Median splitters produce trees that are balanced with shorter maximum distance
from root to leaf, especially for higher dimensional data. The maximum depth of the
kd-tree depends on the distribution of points in the domain. If the points are uni-
formly distributed in the domain, there may not be a big difference between median
and midpoint values in a dimension. For highly clustered point sets, median splitters
produce shorter trees that reduce both tree building time and computation time for
operations performed on data stored in the tree, such as searching [65]. For clustered
data, we have used a combination of splitters, where median is used at the top nodes
and midpoint at the lower nodes of the tree.

The implementation is divided into two versions, to suit the nature of input data. It is
easier to manage memory and data structures for static datasets, compared to dynamic
inputs which move or change in size (points may be added or deleted). There are two
multi-threaded implementations which are described in detail below:

2.5 STATIC KD-TREE

Algorithm 2.3 lockfree Nodelist

1: procedure Add_new_node(curmax)
2: b← ALLOCATE_NEW
3: do
4: n← 0
5: a← memory_blocks
6: While(a− > next.load() 6= NULL)
7: a← a− > next.load()
8: n← n+ 1
9: if thencurmax ≤ n ∗BLOCKSIZE

10: break
11: end if
12: !While(a− > next.cas(a− > next.load(), b))
13: end procedure

A pseudo-code for addition of new blocks is provided in the algorithm 2.3. In the
current implementation of static kd-trees, blocks are never deleted. The tree once con-
structed, is maintained in its entirety until the program terminates. For static datasets,
it may be beneficial in some cases to avoid storing non-terminal tree nodes in the node
list, to reduce memory footprint. A vector of leaf nodes may be sufficient for most
problems. However, we have maintained the non-terminal nodes in our implementa-

39

Algorithm 2.4 Parallel_Midpoint_Splitter

1: procedure Par_Midpoint(node *n)
2: offset← GET_OFFSET(n)
3: numpts← GET_NUM_POINTS(n)
4: avg_load← numpts

num_threads
5: tid← THREAD_ID
6: offset← offset+ avg_load ∗ tid
7: N ← GET_NUM_POINTS(n)
8: for doi = offset, offset+ N

p

9: for doj = 1, NDIM
10: if thenmint[j] > data[i].coord[j]
11: min_t[j]← data[i].coord[j]
12: end if
13: if thenmax_t[j] < data[i].coord[j]
14: max_t[j]← data[i].coord[j]
15: end if
16: end for
17: end for
18: THREAD_BARRIER
19: for doj = 1, NDIM
20: min[j]← THREAD_REDUCE(min_t,MINIMUM)
21: max[j]← THREAD_REDUCE(max_t,MAXIMUM)
22: end for
23: end procedure

Algorithm 2.5 Parallel_Approx_Median_Splitter

1: procedure Par_Approx_Median(node *n)
2: offset← GET_OFFSET(n)
3: numpts← GET_NUM_POINTS(n)
4: numsamples← NUM_RANDOM_SAMPLES
5: samples← PICK_SAMPLES
6: THREAD_BARRIER
7: PARALLEL_SORT(samples)
8: THREAD_BARRIER
9: median← samples[(numsamples/2)]

10: end procedure

40

Algorithm 2.6 Parallel_Median_Selection

1: procedure Par_Approx_Median(node *n)
2: offset← GET_OFFSET(n)
3: numpts← GET_NUM_POINTS(n)
4: numsamples← NUM_RANDOM_SAMPLES(numpts)
5: tid← threadID
6: avg ← dnumsamples

numthreads
e

7: samples← PICK_SAMPLES
8: start← tid ∗ avg
9: end← start+ avg

10: num_less_g ← 0
11: num_grt_g ← 0
12: THREAD_BARRIER
13: While(true)
14: med_local← PICK_VALUE(start, end)
15: med_samples[tid]← med_local
16: THREAD_BARRIER
17: SEQUENTIAL_SORT(med_samples)
18: med← PICK_MEDIAN(med_samples)
19: num_less← COUNT_LESS(med)
20: num_grt← COUNT_GRT(med)
21: num_less_g ← num_less_g + THREAD_REDUCE(num_less, SUM)
22: num_grt_g ← num_grt_g + THREAD_REDUCE(num_grt, SUM)
23: if thenabs(num_less_g − num_grt_g) < small
24: median← SEQUENTIAL_SORT_MED(sample) return median
25: else if thennum_less_g > num_grt_g
26: MARK_RIGHT(samples)
27: else
28: MARK_LEFT(samples)
29: end if
30: EndWhile
31: end procedure

41

tions of both static and dynamic kdtrees. We certainly need the entire tree for dynamic
versions which require changes to the data structure, i.e addition of new leaves and
deletion of existing leaves. When the number of points covered by a node falls below
bucket size, the node is marked as a leaf and tree-building ends for that sub-cell. When
threads are simultaneously working on independent sub cells, the total execution time
depends on the longest path, total number of nodes and the largest sub-cell assigned
to any thread. Therefore, to reduce parallel execution time, it is important to ensure
load balance across threads. One of the ways to do that is to create sub cells that have
nearly equal number of points. The other option is to partition the tree until there
are r ∗ num_threads non-terminals in the tree, where r >= 1. Weights are assigned to
nodes, where weight of a node is equal to the number of points or a normalized fraction
of the total number of points. If computation is unequal, one can define a distribution
of weights, normalized over the maximum value at any point. All threads are assigned
roughly equal weights of sub cells. This will ensure they have similar load during the
second stage of parallel tree building. For the shared memory tree implementations,
we have created sub cells with roughly equal number of points using splitters that bal-
ance the load. Weighted load balancing is used for assigning subcells to processes in
the distributed version. Although we handle input data as points throughout this dis-
cussion, these results hold both for structured grids and for unstructured meshes.

Parallel splitters partition data according to the value and dimension of the splitting
hyperplane. The pseudocode for parallel splitting is described in algorithm 2.7. The
splitting hyperplane may be computed by parallel midpoint or median functions. Sup-
pose dim = i and s_value = s, this algorithm rearranges data into two subsets <= s

and > s, along dimension i. The parallel splitter rearranges data indices concurrently.
If left is the total number of points <= s along dimension i, data is rearranged by
computing offsets of these points in the index vector. If offset is the first location in
the index array belonging to the node, all points <= s will have offsets computed rel-
ative to offset, while points > s will have offsets relative to offset + left. Suppose
the splitter uses midpoint values to separate data, and TS is the time taken for splitting
along the midpoint. Given midpoint computation is linear (including computing the
boundaries of boxes) in the number of points per thread, TS is :

TS = O(
n

p
) +O(p) (2.7)

42

Algorithm 2.7 Parallel_Splitter

1: procedure Par_Splitter(node *n)
2: PAR_MIDPOINT(n)
3: dim← SPLIT_DIM(n)
4: s_value← SPLIT_VALUE(n)
5: offset← GET_OFFSET(n)
6: N ← GET_NUM_POINTS(n)
7: Nz ← NUM_ELEMENTS
8: tid← THREAD_ID
9: avg_load← N

P

10: offset← offset+ tid ∗ avg_load
11: for doi = offset, offset+ N

p

12: if thendata[i].coord[dim] ≤ s_value
13: left_t← left_t+ 1
14: else
15: right_t← right_t+ 1
16: end if
17: end for
18: l_id← cur_node.fetch_add
19: u_id← cur_node.fetch_add
20: SET_LOWER(n, l_id)
21: SET_UPPER(n, u_id)
22: left← thread_reduce(left_t, SUM)
23: right← thread_reduce(right_t, SUM)
24: COPY_BUFFER(offset+Nz, left_t)
25: COPY_BUFFER(offset+Nz + left, right_t)
26: THREAD_BARRIER
27: RELOCATE(offset, left_t)
28: RELOCATE(offset+ left, right_t)
29: if thentid == 0
30: SET_OFFSET(l_id, offset)
31: SET_OFFSET(u_id, offset+ left)
32: SET_NUM_POINTS(l_id, left)
33: SET_NUM_POINTS(u_id, right)
34: end if
35: thread_barrier
36: end procedure

43

TS will have the same overheads if using a median selection algorithm. If using other
functions to split data, TS should be replaced accordingly.

For approximate median, the cost is :

TS = O(
n

p
) +O(α ∗ n

p
∗ log(n

p
)) +O(p) (2.8)

This is the algorithm that uses a smaller sorted subset S = α ∗ n, where α < 1 of
samples to approximate the median.

TS is therefore the cost of splitting nodes at depth i, where 0 <= i < log(K), if
there are K top nodes. This is the shared portion of the tree where decisions are taken
collaboratively. Therefore the cost of building the top levels of the tree, Ttp, is :

Ttp = (logK) ∗ TS (2.9)

The lower levels of the tree are constructed independently in parallel by p threads.
For r = 1, assume top nodes are distributed roughly equally between threads, with
each thread having dn

p
e points on an average in its subcells. If the size of a bucket is at

most b points, the average number of leaves in a subtree with dn
p
e points is d n

p∗be, each
leaf node containing b points.

Tip = O(log(
n

pb
) ∗ n

p
) (2.10)

In our results, these execution times are divided into two columns init_time and
build_time. Ttp is the init_time and Tip is the build_time. The differences between tree-
building times with different splitters can be justified by plugging in their respective
cost functions and comparing with measured values.

2.6 TESTCASES

Two kinds of testcases were used for evaluating the static kd-tree and the splitters
separately. When points are distributed uniformly in the domain, there is no differ-
ence between the midpoint and median values. The cheaper splitter is the better op-

44

tion, which is usually midpoint. Input datasets were built by sampling points from
a uniform distribution [83]. Each experiment uses a different uniform distribution
within the same range. Therefore, execution times may differ across runs. The values
reported are averaged over five runs, for different thread counts and problem sizes.
The reported execution times are for tree building alone without the overhead of SFC
traversal. Traversal times are reported in the next chapter. The second case is used to
evaluate three median finding algorithms. A clustered distribution is used for this to
separate midpoint kdtrees from median trees. The dataset was built from an underly-
ing uniform distribution with one cluster located in the bottom left corner. The cluster
was generated using a Poisson distribution [83] with median in the lower left corner
of the domain. This combination of distributions was used to generate a pointset with
boundaries fixed by the programmer.

The results are tabulated below.
#threads num_points num_nodes bsize max_depth init_time build_time

64 1m_3D 88437 32 18 0.278551 0.194691
128 1m_3D 88437 32 18 0.436313 0.25911
256 1m_3D 88437 32 18 0.916542 0.389991
64 1m_10D 88595 32 17 0.45169 0.209525

128 1m_10D 88595 32 17 0.800992 0.266701
256 1m_10D 88595 32 17 1.71579 0.415911
64 10m_3D 931055 32 22 0.859855 2.82839

128 10m_3D 931055 32 22 0.957406 3.76726
256 10m_3D 931055 32 22 1.42395 2.87436
64 10m_10D 940055 32 21 0.987128 13.7839

128 10m_10D 940055 32 21 1.40502 13.2486
256 10m_10D 940055 32 21 2.86587 6.41648
64 100m_3D 2168975 128 23 7.33959 57.8845

128 100m_3D 2168975 128 23 5.76166 48.0373
256 100m_3D 2168975 128 23 6.017 29.9769

Table 2.1: Static KD-tree construction time, uniform dist, midpoint splitter,scheduled
and pinned

The measured times for tree building, with four splitters - midpoint splitter, exact
median, approximate median and median selection and two point distributions are
discussed in this section. All experiments were conducted on Stampede, which is a su-
percomputer at TACC, Texas Center for Supercomputing [84]. Stampede has two types
of nodes - Intel KNL and Intel SkyLake. All measurements in this section are from KNL
nodes. We have used the default configuration - cache quadrant, with one NUMA

45

node [80]. The fast memory, MCDRAM is used in cache mode. The configuration
on Stampede assigns the entire MCDRAM as L3 cache. The performance numbers are
tabulated below. Top-level recursion terminates at 128 nodes. This number is kept con-
stant for all experiments. The design is similar to Intel’s implementation [80], although
we have used arrays and indices instead of pointers. We have also implemented more
splitters in our partitioner. Measurements are included for three data sizes - 1million,
10 million and 100million points and two dimensions - 3D and 10D.

#threads num_points num_nodes bsize max_depth init_time build_time
64 1m_3D 88367 32 17 232.826 0.133796

128 1m_3D 88367 32 17 233.806 0.103972
256 1m_3D 88367 32 17 237.594 0.116932
64 1m_10D 88425 32 17 690.08 0.185988

128 1m_10D 88425 32 17 690.469 0.219978
256 1m_10D 88425 32 17 717.584 0.364945

Table 2.2: Static KD-tree construction time, uniform dist, exact median splitter,always
pinned

Figure 2.8: Static KD-tree, uniform, scheduled and pinned

46

#threads num_points num_nodes bsize max_depth init_time build_time
64 1m_3D 90091 32 19 94.9519 0.179216

128 1m_3D 89361 32 20 111.763 0.298883
256 1m_3D 89503 32 21 296.208 0.358957
64 1m_10D 89111 32 19 111.630 0.251025

128 1m_10D 89719 32 20 201.437 0.395938
256 1m_10D 89187 32 20 609.889 0.482809
64 10m_3D 914111 32 22 143.848 3.28883

128 10m_3D 903371 32 22 162.102 3.0292
256 10m_3D 896253 32 22 356.121 2.26295
64 10m_10D 915017 32 21 142.015 7.92856

128 10m_10D 891581 32 21 196.106 6.74519
256 10m_10D 899969 32 21 664.909 4.51095
64 100m_3D 2142645 128 23 237.056 27.571

128 100m_3D 2178319 128 23 360.967 25.472
256 100m_3D 2225813 128 23 818.57 20.462

Table 2.3: Static KD-tree construction time, uniform dist, approx.median
splitter,scheduled and pinned

For both uniform and clustered data distributions, measured results are consistent
with expected values. Not many experiments were performed using exact median
splitter. The initial sorting routines made it an expensive splitter, especially for the
data sizes used in this section. Besides, the approximate splitter gave reasonably good
results, close to the exact median splitter. These results for uniformly random dis-
tributed points are tabulated in tables,table 2.1, 2.2 and table2.3. Approximate median
was a good replacement for large datasets. For every splitting phase 1

1000
of the number

of points were used as samples. For small nodes, the entire dataset was used as sam-
ples. The computation times for the lower levels of the tree, shows good scaling with
increasing number of threads, and for large datasets. Top nodes are expensive to build.
Construction time depends on data size, number of dimensions and the amount of syn-
chronization between threads. For the init phase, threads synchronize to compute node
extents in all dimensions, and to pick the splitter. We have chosen different bucket sizes
for each test case. Bucket sizes are mentioned in the tables. Tree building time is broken
into init_time and build_time in the tables for better comparison, across datasets, di-
mensions and splitters. This section is an evaluation of the partitioner as a stand-alone
program, without any dependence on applications. For all inputs with uniform distri-
bution, midpoint splitter gave the best performance. build_time values were higher for
midpoint splitter, for increasing data size and number of dimensions, but init_times

47

values were much lower than other splitters. Since its performance numbers (maxi-
mum depth and build_time) were very close to approximate median, the exact median
splitter was dropped from remaining experiments. The median values computed us-
ing a smaller sample set were good enough to replace the exact median. The graphs
for static kdtree with uniform distribution are shown in figure 2.8.

#threads num_points num_nodes bsize init_time build_time max_depth
64 1m_3D 89929 32 0.293638 2.22074 41

128 1m_3D 89929 32 0.450009 3.31495 41
256 1m_3D 89929 32 0.879423 4.93171 41
64 1m_10D 109609 32 0.511841 4.84628 46

128 1m_10D 109609 32 0.828893 5.91806 46
256 1m_10D 109609 32 1.78326 8.60049 46
64 10m_3D 907387 32 1.04578 47.5189 46

128 10m_3D 907387 32 1.12306 64.9748 46
256 10m_3D 907387 32 1.67447 91.5091 46
64 10m_10D 1007555 32 1.17938 168.911 57

128 10m_10D 1007555 32 1.88338 188.434 57
256 10m_10D 1007555 32 3.46121 223.096 57
64 100m_3D 2243255 128 7.70986 549.983 51

128 100m_3D 2243255 128 7.54894 760.21 51
256 100m_3D 2243255 128 8.85877 1016.77 51

Table 2.4: Static KD-tree construction time, cluster, midpoint splitter,scheduled and
pinned

For the clustered distribution, tree-building times for midpoint splitter are not con-
sistent because of higher tree depth. Nodes are not balanced and the maximum depth
of the tree is quite high. Midpoint values are independent of the distribution and
computed using the geometry of the domain. This lead to the creation of some nodes
which had a large proportion of points compared to others. Load imbalance in sub-
cells resulted in higher maximum execution times. This difference is apparent in the
results in this section tabulated in tables 2.4 and 2.5. There is not much variance in the
init_time (construction of top nodes), but the independent section is time consuming
and shows poor scaling. Median splitter, has good performance especially for large
data sizes (100 million points, 3D). There is no difference in the init_time for median
splitter compared to uniform distribution, sorting overheads are still predominant in
their total execution cost. The build times are lower than those which use midpoint
splitters for large datasets. The graphs for static kdtree with clustered datasets in
shown in figure 2.9.

48

#threads num_points num_nodes bsize init_time build_time max_depth
64 1m_3D 91237 32 79.2418 0.204402 35

128 1m_3D 91125 32 122.713 0.275941 36
256 1m_3D 91411 32 296.482 0.489907 36
64 1m_10D 107669 32 127.736 0.367086 39

128 1m_10D 107371 32 183.169 0.381948 41
256 1m_10D 107955 32 623.485 0.529948 40
64 10m_3D 913455 32 142.893 3.46236 41

128 10m_3D 911833 32 179.098 2.94797 40
256 10m_3D 911057 32 184.944 3.26594 41
64 10m_10D 1008465 32 418.817 11.9046 48

128 10m_10D 1008217 32 419.919 8.8217 48
256 10m_10D 1007025 32 438.738 6.38393 48
64 100m_3D 2221115 128 476.184 45.059 45

128 100m_3D 2217763 128 470.424 35.844 44
256 100m_3D 2215601 128 512.191 26.0079 44

Table 2.5: Static KD-tree construction time, cluster, approx.median splitter,scheduled
and pinned

Figure 2.9: Static KD-tree, cluster, scheduled and pinned

49

To reduce the init_time of tree building with median splitters, the approximate me-
dian was replaced by parallel median selection algorithm. For a vector with S samples,
c iterations of median selection, the total cost of parallel selection isO(S

p
)+O(p∗ logp)+

O(p), which is linear in the number of samples for S > p. The improved median splitter
was picked as the best performing version. The results using median selection algo-
rithm for clustered datasets are tabulated in table 2.6
#threads num_points num_nodes bsize init_time build_time max_depth

64 1m_3D 90393 32 1.286881 0.189238 31
128 1m_3D 90039 32 0.796237 0.145783 31
256 1m_3D 90191 32 1.604486 0.191034 31
64 1m_10D 110949 32 0.70703 0.236332 32

128 1m_10D 111129 32 1.002143 0.193194 33
256 1m_10D 111127 32 2.014646 0.227383 32
64 10m_3D 915043 32 1.74959 4.085286 39

128 10m_3D 914925 32 1.647036 2.881918 39
256 10m_3D 915077 32 2.563302 2.875 39
64 10m_10D 1032087 32 1.446788 13.40398 44

128 10m_10D 1032133 32 1.716942 10.68796 44
256 10m_10D 1031867 32 3.075664 6.608078 44
64 100m_3D 2211459 128 12.5729 60.50094 44

128 100m_3D 2211355 128 7.592104 50.8479 44
256 100m_3D 2211491 128 6.517666 31.44724 44

Table 2.6: Static KD-tree construction time, cluster, median selection splitter,scheduled
and pinned

It is left to the programmer to pick splitters depending on the distribution and cluster
size. In our implementations, the observed performance was the following, decreasing
in cost :

exact median > approximate median > median selection

#threads init_time build_time total_time
8 28.21122 151.9588 183.653025

16 17.3582 107.08134 120.130375
32 22.07462 82.28648 104.825325
64 9.758814 71.98786 79.758045

128 6.212152 35.40592 42.642715
256 4.53673 27.07604 31.715255

Table 2.7: Static KD-tree construction time, uniform distribution,100million points

50

Figure 2.10: Static KD-tree, cluster, median selection, scheduled and pinned

#threads init_time build_time total_time
8 2.829174 12.009516 14.83869

16 1.80409 9.56192 11.36601
32 2.307998 6.024164 8.332162
64 1.232224 4.73545 5.830922
128 1.027945 3.049212 4.077157
256 1.483622 3.626692 5.110314

Table 2.8: Static KD-tree construction time, uniform distribution,10million points

51

Figure 2.11: Static KD-tree, strong scaling, uniform distribution, midpoint splitter

Before closing the section on static kd-trees, we present strong scaling results for
kd-tree building on a single node. The testcase used was a uniform distribution with
100million points in 3D. Midpoint splitter was used for constructing the tree. Number
of threads were varied from 8 to 256. All tests were conducted on Intel KNL nodes. We
used the high bandwidth memory (MCDRAM) as L3 cache. Results are tabulated in
tables 2.7 and 2.8 and the corresponding graph is shown in 2.11. The values plotted
on the y-axis are based on logarithmic scale. There are 34 functional tiles, 68 cores and
272 hardware threads per KNL node. Out of these resources, we have used at most 32
tiles and 256 threads. The performance of static tree building shows good scaling for
number of threads≥ 64, when there is at least one thread executing on each core.

2.7 LINEARIZING RECURSION

Tree building can be linearized by replacing recursion with while loops that index
the arrays. Separate arrays are maintained for offsets and number of points that lie
within a node. The indices to points are stored in contiguous memory locations like in
previous implementations. For the top nodes, we used specific indices for the lower
and upper sub cells of a node. For example, the children of a node with index x will

52

have indices 2 ∗ x + 1 and 2 ∗ x + 2. We could avoid storing links between nodes
with this numbering, but there were huge gaps at the lower levels of the tree where
majority of leaf nodes were located. To avoid this, we used contiguous indices for
tree nodes and maintained three separate arrays for storing lower, upper and parent
node numbers. The diagram in figure 2.12 shows the data structure with separate
linked lists for each link. For a mesh element with index a, the straight line shows all
associated indices, i.e the location of its parent node id and the ids of its sub cells -
lower and upper. When the number of nodes reached a threshold (>= r ∗ p, r >= 1),
the algorithm shifted to independent parallel execution streams, one for each thread.
offsets, num_points,lower,upper and parent nodes were thread-local vectors for the
second stage. The improvement from previous versions comes from lack of synchro-
nization in this implementation.

Figure 2.12: Linear Tree Data structure

The only stage which requires any synchronization is the first stage where the top
nodes of the tree are built. Addition of blocks to linked-lists is done by thread0 in
this stage. All data structures in the second stage are thread-local. There is no need
to synchronize during addition of blocks to local lists. The algorithms for splitters
are also independent computations. This was the implementation that gave the best

53

performance with increasing number of threads, especially 256 threads per KNL node,
i.e at most 4 hardware threads per CPU. It is difficult to get good performance for
this configuration because of possible thrashing in L2 caches. This was one of those
implementations that scaled well.

Converting the tree building algorithm to an iterative while loop does a BFS explo-
ration of the tree. The iterations end when there are no more non-terminal nodes to
explore. When new nodes are added to the tree, their offsets and sizes are stored start-
ing from the last index of the current iteration. The iteration indices are updated for
another step. All data structures in this implementation are dynamic arrays. To avoid
frequent reallocation and copying of memory, we used blocked linked-lists. The ele-
ments of a block are unsigned long integers, each 8-bytes wide. The number of integers
in a block is configurable, using the BLOCKSIZE parameter.

We used this version for clustered datasets, compared the tree building times for
both midpoint and median selection splitters.

#threads num_points num_nodes bsize init_time build_time total_time
64 1m_3D 89899 32 0.3610058 1.947036 2.3080418

128 1m_3D 89899 32 0.3982278 2.267358 2.6655858
256 1m_3D 89899 32 1.205302 3.912588 5.11789
64 1m_10D 108943 32 0.5000978 4.136794 4.6368918

128 1m_10D 108943 32 0.6220068 5.401862 6.0238688
256 1m_10D 108943 32 2.385004 7.770392 10.155396
64 10m_3D 908319 32 1.190618 27.34488 28.535498

128 10m_3D 908319 32 0.865415 31.8203 32.685715
256 10m_3D 908319 32 1.534156 57.12622 58.660376
64 10m_10D 1004789 32 0.867095 58.75598 59.623075

128 10m_10D 1004789 32 0.8979384 77.10398 78.0019184
256 10m_10D 1004789 32 2.54122 112.5628 115.10402
64 100m_3D 2243267 128 10.5093 340.76 351.2693

128 100m_3D 2243267 128 6.30947 395.114 401.42347
256 100m_3D 2243267 128 5.9469 696.769 702.7159

Table 2.9: Linear KD-tree construction time, cluster, midpoint selection splitter,
scheduled and pinned

The results for building linear trees are shown in figure 2.13 and observations are
tabulated in tables 2.9 and 2.10. All results presented in this section for linear trees
are for a clustered dataset. We have kept both implementations in our partitioner. The
programmer may choose either based on his application requirements. If a simple SFC
order of leaf nodes is all that is required, then linear trees may be a good option.

54

#threads num_points num_nodes bsize init_time build_time total_time
64 1m_3D 90111 32 0.698046 0.1546014 0.8526474

128 1m_3D 90061 32 0.9939328 0.07971194 1.07364474
256 1m_3D 90191 32 3.131826 0.06130304 3.19312904
64 1m_10D 110903 32 0.802467 0.149431 0.951898

128 1m_10D 110979 32 1.329398 0.10008498 1.42948298
256 1m_10D 111103 32 4.50117 0.08380948 4.58497948
64 10m_3D 914973 32 2.108454 1.778088 3.886542

128 10m_3D 914925 32 2.121596 0.8367502 2.9583462
256 10m_3D 917107 32 5.654932 0.5720838 6.2270158
64 10m_10D 1032089 32 1.827046 2.056782 3.883828

128 10m_10D 1032133 32 2.14331 1.340482 3.483792
256 10m_10D 1032357 32 6.637326 0.8479562 7.4852822
64 100m_3D 221459 128 13.35354 19.69582 33.04936

128 100m_3D 2211355 128 9.365504 10.67308 20.038584
256 100m_3D 2198161 128 12.45152 7.156178 19.607698

Table 2.10: Linear KD-tree construction time, cluster, median selection
splitter,scheduled and pinned

Figure 2.13: Static KD-tree, cluster, linear, scheduled and pinned

55

2.8 DYNAMIC KD-TREE

In this section, we discuss dynamic kd-trees that involve addition and deletion of
points. This is a set of benchmarks in some sense for the management of dynamic
trees. The dataset covered by these trees are subject to change over time, new points
are added to the current set and some existing points are marked for deletion. The
benchmark models a continuously changing domain, that needs to be updated real-
time without additional memory copies or data transfers. We have modeled the bench-
mark based on iterative methods, the body of the loop is repeated in time. At certain
fixed timesteps, we check for new points in the pending lists for addition and deletion.
These lists are serviced, and the tree is updated if necessary. In our current implemen-
tation, tree adjustments are done lazily. But these are parameters that can be adjusted
by the programmer to suit the needs of the application. Dynamic kd-trees are also
summaries of partitions that are updated incrementally with new data. They can be
used for applications with rapidly changing datasets, where frequent incremental load
balancing is cheaper than full repartitioning for every addition and/or deletion.

The data structures used for maintaining dynamic datasets have different needs
compared to linked lists for static data. They should support the following operations,
with minimum overhead:

1. Lookup of points in the tree

2. Addition of points to the tree

3. Deletion of points from the tree

4. Split a leaf node when its weight exceeds bucket size

5. Remove leaf nodes that are empty

6. Combine leaf nodes with sum of weights < K*bucket size, K < 1

The data structure used for storing co-ordinates is different in this implementation to
accomodate frequent addition and deletion of points. To reduce multiple deallocation,
allocation and copying of points in an iteration, we use a dynamic data structure called
point_blocks, which allows addition of new points and lazy deletion of unused points.
The vector of indices is reallocated whenever additional memory is required. Mem-
ory for points is allocated in blocks, new blocks are added atomically when necessary.
Points are deleted from point_blocks, by marking them as invalid. When all points in

56

a block are marked as invalid, it is removed from the set. The index vector stores the
indices of valid points at any timestep. This set is updated as points are inserted or
deleted. At any given timestep, the kd-tree, its partition and operations are defined
on the current index vector, i.e. the valid/active points in the domain. Permutations,
like Morton, Hilbert are defined on the active points. This type of partitioning where
an initial partition is incrementally adjusted for load balance is used in many appli-
cations, both in scientific computing and databases. The programmer can request a
full re-partition of point_blocks if necessary. We provide the pseudocode for such an
application here 2.8 :

Algorithm 2.8 Dynamic_Pointset

1: procedure Dynamic_tree_building(max_iter,step_size,num_samples)
2: BUILD_DY_TREE()
3: for doiter ← 1,max_iter
4: if then!iter%step_size
5: add_list← NEW_POINTS(num_samples)
6: del_list← REM_POINTS(num_samples)
7: bucket_list← FIND_BUCKETS(add_list)
8: UPDATE_INDEX_ARRAY(bucket_list, add_list)
9: bucket_list← FIND_BUCKETS(del_list)

10: UPDATE_INDEX_ARRAY(bucket_list, del_list)
11: end if
12: if then!iter%2 ∗ step_size
13: heavy_buckets← LEAF_TRAVERSE()
14: SPLIT_NODES(heavy_buckets)
15: empty_buckets← LEAF_TRAVERSE()
16: DELETE_NODES(empty_buckets)
17: merge_buckets← LEAF_TRAVERSE()
18: MERGE_NODES(merge_buckets)
19: end if
20: end for
21: end procedure

max_iter is the maximum number of iterations over which the loop executes. step_size
is the timestep at which pending lists are checked. There are two pending lists -
add_list and del_list. num_samples is the number of points added or deleted from
pending lists every step_size iterations. The current tree is adjusted every 2 ∗ step_size
iterations. The leaf nodes of the tree are buckets of granularity >= 1. BUCKETSIZE
is a parameter that can be tuned by the programmer. New points are added to the
domain by searching for the smallest enclosing sub-cell in the tree. If the sub-cell is a
leaf, then the point is added to a pending insertion list. If a matching leaf node was not

57

found, then starting from the smallest enclosing subcell, all nodes along the path to a
bucket are expanded to include the point. Inclusion ensures node boundaries are not
crossed, i.e. overlap is avoided. Inclusion by expanding nodes is done in parallel by
sharing the list of new points (add_list) and dividing subtrees between threads. Once
all points have found buckets, the new indices are inserted into the index array. Points
are added to the dataset sequentially by starting from the last point_block. New blocks
are added as point_blocks fill up. Pseudocode for addition of points is provided below
in algorithms 2.9 and 2.10. The pseudocode shows the execution sequence for a single
thread. Expansion of nodes is implemented by adjusting the corners of their bounding
boxes.
Algorithm 2.9 Dynamic_Pointset

1: procedure Addition_of_points(add_list)
2: for doi← 1, add_list.size
3: n← add_list(i)
4: pos← −1
5: for doj ← 1, local_nodes.size
6: cnode← node_array[offset+ j]
7: if thenCNODE.IS_INCLUDED(n)
8: if thencnode > pos
9: pos← cnode

10: end if
11: end if
12: end for
13: pos← THREAD_REDUCE(pos,MAXIMUM)
14: add_pos[i]← pos
15: end for
16: end procedure

Suppose there are T points in the add_list, N nodes in the tree, including leaf nodes
and p threads. Let n be the number of points, d the number of dimensions and b the
BUCKETSIZE. The average number of leaf nodes in the tree is dn

b
e. The value of

N is 2 ∗ dn
b
e for balanced kd-trees, which is the implementation in this thesis. These

nodes are divided equally among threads. Each thread has at most dN
p
e local nodes.

Threads traverse the entire list of pending points and searches for them in their set
of local nodes. A point is included in a node if its co-ordinates are within the node’s
extents. For example, for d = 3, the condition to check for inclusion of a point with
co-ordinates (x, y, z) is the following invariant for node n :

58

(x ≥ n.minx)∧(x ≤ n.maxx)∧(y ≥ n.miny)∧(y ≤ n.maxy)∧(z ≥ n.minz)∧(z ≤ n.maxz)

(2.11)

For each point in the list, threads search for the smallest node (highest id) that con-
tains it. If such a node exists, it is saved in a local variable. Threads synchronize to
determine the smallest such node by computing the maximum over all node ids. This
is the final node id that is saved for that point.

For T points, the cost of searching for the smallest containing node in the tree Taa
is:

Taa = O(T ∗ N
p
) + T ∗O(p) (2.12)

If the smallest containing node for a point is not a leaf, node extents need to be
adjusted in the current subtree. Threads share the pending lists. Node adjustments
are computed by threads for points lying within their subtrees, in parallel. The maxi-
mum number of node adjustments for any point is equal to the depth of the tree. The
ADJUST_NODE function in the pseudocode is recursive and terminates when a leaf
node is found. The depth of a tree with dn

p
e points and bucket size b is log(n

p∗b).

Algorithm 2.10 Dynamic_Pointset

1: procedure Find_buckets_points(add_list)
2: for doi← 1, add_list.size
3: p← add_list(offset+ i)
4: n← add_pos(offset+ i)
5: if then!IS_LEAF(n)
6: lpos← ADJUST_NODE(n)
7: add_pos(offset+ i)← lpos
8: end if
9: end for

10: end procedure

Deletion of points is also a two-step algorithm. The pending list called del_list is
shared between threads. Suppose there are T points in the pending deletion list, N
nodes in the tree, BUCKETSIZE = b and p threads. Number of nodes owned by a
thread is at most dN

p
e. All threads iterate over the entire pending list, but search for

points only within their local node sets. Threads search for the bucket containing a

59

Algorithm 2.11 Dynamic_Pointset

1: procedure Deletion_of_points(del_list)
2: for doi← 1, del_list.size
3: n← del_list(i)
4: pos← −1
5: for doj ← 1, local_nodes.size
6: cnode← node_array[offset+ j]
7: if thenCNODE.IS_INCLUDED(n)&IS_LEAF(cnode)
8: pos← cnode
9: end if

10: end for
11: pos← THREAD_REDUCE(pos,MAXIMUM)
12: del_pos[i]← pos
13: end for
14: end procedure

Algorithm 2.12 Dynamic_Pointset

1: procedure Del_bucket(del_list)
2: for doi← 1, del_list.size
3: n← del_list(i)
4: b← del_pos(i)
5: pos← −1
6: for doj ← 1, local_nodes.size
7: if thenb == node_array[offset+ j]
8: pos← SEARCH_BUCKET(node_array[offset+ j], n)
9: end if

10: end for
11: end for
12: end procedure

60

point in its local node set. If such a bucket exists, its node id is saved. This is deter-
mined by a single synchronization step that computes the maximum of all such ids. In
the second phase, buckets are searched to compute the exact location of a point within
it. If the point exists in the bucket, it’s index is deleted from the vector of indices.

Worst case computation cost for algorithm 2.10 Tab is :

Tab = O(T ∗ log(n

p ∗ b
)) (2.13)

Total computation cost is Ta :

Ta = Taa + Tab (2.14)

For T points, worst case computation cost of locating enclosing buckets in the tree is
:

Tba = O(T ∗ N
p
) + T ∗O(p) (2.15)

For T points, the worst case cost of searching buckets is:

Tbb = O(T ∗ b) (2.16)

Total cost of deleting T points from a tree with N nodes and p threads is:

Tb = Tba + Tbb (2.17)

2.8.1 Tree Adjustment

One of the methods in which we construct new partitions is by incrementally modi-
fying existing partitions. We define two operations on the kd-tree for this.

1. Split heavy buckets

2. Merge light buckets

61

At certain timesteps during the evolution of the pointset, the programmer has the
option to adjust the existing kd-tree. This is done primarily for better load distribution
between buckets. The frequency of invoking this routine depends on the application
and the rate at which its workload evolves. Addition and deletion of points changes
the number of points in leaf nodes and their offsets in the index array. Although these
values are updated for leaf nodes, non-terminal nodes are untouched during addi-
tion/deletion. In our benchmark these nodes are updated lazily, depending on inputs
from the application. For example, re-distribution can be done when the minimum
bucket size drops to zero or the maximum bucket size is more than twice the average
bucket size. Non-terminal nodes are updated bottom_up by computing their offsets
and number of points recursively. The top nodes of the tree are assigned to threads
which recursively update the weights of subtrees they own. Later the weights of nodes
from top nodes to the root are updated by thread0. Each thread owns dn

p
e points in the

domain, divided into buckets. The average depth of the subtree is log(n
p∗b). For each

node update, on an average O(log(n
p∗b)) intermediate nodes need to be visited before

arriving at leaf nodes. The direction of data propagation is from leaf nodes to the root.
The most recent bucket sizes of leaf nodes are propagated up the subtrees.

The cost of updating non-terminals is:

Tad = O(
n

p ∗ b
∗ log(n

p ∗ b
)) (2.18)

where log(n
p∗b) is the average depth of the tree for BUCKETSIZE = b.

Tree adjustments are performed once non-terminal data are consistent with leaf data.
To adjust the tree, threads traverse the current node list in parallel and mark leaf
nodes that are heavy (total weight > BUCKETSIZE). Heavy buckets are split re-
cursively until leaves are within BUCKETSIZE. Non-terminal nodes that have total
weight (sum of lower and upper leaf nodes) less than BUCKETSIZE are marked for
merging. Leaves are deleted by marking them invalid and replacing them with their
parent nodes, which become new leaves. New leaves will have the same offsets as its
their previous lower children and number of points that are sum of points in lower and
upper cells. Both operations are simple to implement in parallel, without additional
synchronization. When a node is split into two, the total number of points remains
unchanged, which means it doesn’t affect other nodes in the tree. Similarly, merging
of leaf nodes, will not affect neighboring nodes in the tree. There is no need to update

62

non-terminals after these modifications to the tree, because we start from a consistent
set and restrict adjustments to leaf nodes. Also, the total data size remains unchanged
after adjustments. Things can get complicated if we allow adjustments that affect non-
terminals, so we restrict ourselves to leaf nodes. The cost of tree adjustments is constant
in the number of modified leaf nodes. Suppose K buckets are split or merged during
an adjustment phase. Let Tdd be the cost of adjusting buckets :

Tdd = c ∗K (2.19)

where c is the constant number of operations required for splitting a heavy bucket
or merging light leaves.

2.8.2 Testcases

Testcases for evaluating the dynamic kd-tree partitioner are built around the pseudo-
code provided in 2.8. The behavior of a dynamic dataset is modeled as snapshots of
a point distribution that evolves over time. The test program runs iteratively, starting
each iteration with a particular point distribution and two pending lists. After the lists
are serviced, the underlying point distribution gets updated. The program starts with
an initial tree building and partitioning phase.

The same datasets from the previous section were used to initialize the dynamic tree.
New points are added to the domain by sampling from the bounding box at the root.
Points for deletion are generated by sampling from the current dataset. Addition and
deletion operations are performed on the most recent dataset at regular timesteps. For
testcases in this section, new points are sampled every 100 iterations and appended to
the lists. These are added to or deleted from the tree when the lists reach a certain size.
Adjustments to the tree, i.e. splitting and merging are performed every 500 iterations.
We have provided timing measurements for all operations which constitute one phase
- tree building, addition of data, deletion of data and tree adjustments. There is also
an option to rebuild the kd-tree from scratch if necessary. This can be used when the
tree statistics, such as midpoint and median, that were used to build the initial tree, no
longer hold. A full rebuild can be requested by the application at regular timesteps or
based on performance data. We have a test case in the later sections for which we have

63

used these techniques. Although this test case comes from adaptive meshes in scien-
tific computing, the behavior is found to be same. The dynamic tree-building program
was executed for a maximum of 1000 iterations. All experiments were carried out on
Stampede2 supercomputer. A single Intel KNL node was used for measuring perfor-
mance of the multi-threaded program on shared memory. The results are tabulated
below, for an initial dataset of size 1m points and 10m points for 3D and 10D.

#th points nodes bsize buildtime addtime deltime adjtime total
64 1m3D 90771 32 1.0326 0.25673 0.901217 3.9307441 78.8781
128 1m3D 90909 32 1.60241 1.39667 0.185382 0.714679 16.4273522
256 1m3D 90853 32 2.79706 3.32358 0.223829 1.74972 36.03697506
64 1m10D 94823 32 3.35145 1.13261 0.230857 0.850745 5.7140883
128 1m10D 94577 32 3.97817 1.32123 0.162733 0.71896 17.84933349
256 1m10D 94731 32 6.06864 2.76369 0.238967 1.15153 47.4207711
64 10m3D 289371 100 24.6541 15.1704 3.61651 16.9726 61.04216976
128 10m3D 289339 100 20.3154 17.6134 2.22621 15.591 87.5369396
256 10m3D 289737 100 23.7506 40.6131 2.2948 26.7047 164.1104614
64 10m10D 314629 100 52.9961 15.7457 4.19934 18.4795 91.9965334
128 10m10D 315361 100 58.2669 20.1613 2.85784 14.8437 129.6039031
256 10m10D 315277 100 73.2034 47.3685 2.81898 26.0353 226.457175

Table 2.11: Dynamic KD-tree construction time, midpoint splitter

There is no change in the tree building time. The results provided in table 2.11 are for
uniform distribution with midpoint splitters. Addition of a point to the tree involves
three main steps - identifying the leaf node which includes possible expansion of nodes
along the path from the root of the largest subtree containing the point, linear search for
location of the point within a bucket, deletion of current index vector and reallocation
with newly included points. Deletion of an existing point is comparatively a cheaper
operation. Tree adjustment depends on the amount of load imbalance - number of
heavy buckets and light buckets. Since we are restricting modifications to the leaf
nodes of the tree, this step has not been a serious bottleneck so far. The total time
taken includes synchronization time and one parallel sorting step (for sorting the list
of leaf nodes in the tree, arranged by their offsets). Poor quality of the kdtree can affect
the total computation time, whatever that may be for the application. If datasets are
derived from meshes, a poor-quality partition can increase the communication time
during halo exchange. For pointsets without edges, the quality metric is not well-
defined. If the kd-tree becomes unbalanced after some iterations, there may be long
paths in the tree which affect the total search and update times. The definition of
metrics is left to the programmer. If desired by the application, the partitioner will

64

rebuild the kd-tree using the current dataset and return a new order of leaf nodes. The
graph in figure 2.14 is a graphical representation of the same results in table 2.11.

Figure 2.14: Dynamic KD-tree, uniform, scheduled and pinned

2.9 DISTRIBUTED KD-TREE

For large problems where it becomes difficult to assemble the entire mesh or dataset
on a single node, we resort to distributed systems with multiple storage locations.
This is also true when files require frequent backup to account for errors in software
or failures in hardware. Distributed tree building handles scenarios where the data
is stored in some random order across multiple nodes. The implementation is hy-
brid, where explicit messages are sent/received between nodes for synchronization
and multi-threading is enabled on each node. The communication library used for
off-node communication is MPI [85]. Multiple MPI processes with distinct ranks are
instantiated and the kdtree tree is built by collaboration across ranks. We have used
the words process and rank interchangeably in this document. The number of ranks per
node depends on the node architecture. For KNLs we have used one MPI rank per
node and at least one thread per CPU. For some multi-core nodes with larger caches
and fewer CPUs, it may benefit if multiple ranks are placed on a node. Processes en-

65

Figure 2.15: Parallel data packing and unpacking

sure memory isolation. Explicit messages need to be sent/received for on-node com-
munication. The programmer can use his discretion for deciding the number of ranks
per node. Since processes have different address spaces, explicit send/receive mes-
sages are required for computing splitters. This computation can become expensive if
the algorithms requires them to synchronize over a network for every node creation.
Moreover, additional buffers need to be allocated for sending and receiving messages
between ranks. We try to reduce communication between processes by stopping tree
building when there are enough tree nodes that can be distributed, without idling any
process. Once nodes are assigned to processes, a data exchange routine is invoked.
This first set of tree nodes are called top-nodes. The programmer has the option to re-
order top nodes. In the default implementation, top nodes of the tree are built from a
BFS traversal. We have applied Morton order permutation to these nodes. This can be
replaced by other space-filling curve orders as well. Data is sorted partially by trans-
ferring points to processes that own enclosing top-nodes. In the worst case, there will
be a full data-exchange at this stage. Data-exchange is done over several rounds to
accommodate send/receive of large messages. We place an upper bound on the max-
imum number of bytes that can be transferred between any two processes in a single
round. MAX_MSG_SIZE is a parameter that can be tuned by the programmer.

We have made packing and unpacking of MPI messages thread-parallel by creat-

66

ing non-overlapping regions in the buffers for different threads, shown in figure 2.15.
Distinct offsets are used to isolate the buffer space owned by threads.

A single round of data-exchange performs the following operations :

1. parallel packing - off-node data are assigned to distinct threads. Threads compute
the location of local data in the send buffer using a parallel-prefix operation. After
determining offsets, off-node data are packed in parallel.

2. Collective data exchange - We have used a single MPI call for data exchange.
Thread0 on every process gets involved in this AlltoAllv [86] communication. We
tried to minimize the number of edges in the communication graph by aggregat-
ing messages. But if required, threads can start multiple simultaneous collective
calls using different communication buffers.

3. parallel unpacking - Contents of the receive buffer are unpacked in parallel by
threads, after determining offsets and counts.

After data exchange, tree building is resumed locally within each process. We have
two versions here - static or dynamic subtrees. For the top nodes of the tree, the as-
sumption is that data is randomly distributed across nodes. The points that lie within a
tree node are usually scattered across many processes. Each MPI process stores the lo-
cal dataset, arranged according to tree node indices. Splitters are decided collectively
by all processes that participate in building the current tree node. We use collective
operations such as Allreduce and Allgather for decisions on splitters. A pseudocode
for a simple implementation is provided in algorithm 2.13, which computes midpoints
for a set of top nodes. In our current implementation, top nodes are built by all pro-
cesses in the groupMPI_COMM_WORLD. In a general version of the algorithm, top
nodes will be built by multiple MPI groups each working on non-overlapping subsets
of tree-nodes. This program in algorithm 2.13 is executed by all MPI ranks in a group.
All of them will have a private copy of the top-node list in the same order, but with
local offsets and numbers of points. Some processes may not have any membership in
a node, but we maintain empty nodes for now, because this portion of the tree should
be globally consistent. A simple implementation of a distributed splitter is provided
in algorithm 2.14. We have implemented, distributed midpoint and median selection
algorithms.

Our implementation is hybrid, with pthreads used for computation within a pro-
cess. For example, we use pthreads for computing local minimum and maximum for

67

Algorithm 2.13 Initialize_Dist_tree

1: procedure init_dist_tree(pointset)
2: init_list← root
3: while
4: init_list.size() < THRESHOLD
5: cnode← init_list.pop()
6: SPLIT_DIST(cnode)
7: l← LOWER(cnode)
8: u← UPPER(cnode)
9: !IS_LEAF(l)

10: init_list.push(l)
11: !IS_LEAF(u)
12: init_list.push(u)
13: end procedure

the pseudocode given here. A similar implementation is used for median selection
splitter. Let P be the number of processes in the group, ranked from 0, ..., P − 1, p the
number of threads per rank, numbered 0, ..., p− 1. Let N be the total number of points
in the domain where each rank has at most dN

P
e elements in some random order. In al-

gorithm 2.14 compute_min and compute_max are functions that are local to each process.
These functions are multi-threaded and compute the local bounding box widths. The
cost Tl of computing local box widths for one node in d dimensions is :

Tl = O(d ∗ N

P ∗ p
) +O(d ∗ p) (2.20)

The O(d ∗ p) communication cost is for combining local minimum and maximum
values in d dimensions.

After computing the corners of local sub-regions, all ranks share the co-ordinates of
their bounding boxes through two allreduce [86] invocations. Assuming a PRAM delay
model for interprocess communication, the cost of an allreduce collective operation is
O(α ∗ logP + β ∗ c ∗ logP), where α is the latency per message, β is the transfer cost
per byte and c is the number of bytes transferred per process. Two such allreduce

operations with short messages is the communication overhead per node-split when
points are distributed. In the actual implementation, we have aggregated data for a set
of top-nodes to reduce the number of collective operations.

Distributed median computation is more expensive compared to midpoint splitters.
Each rank samples a set of points, a larger set of samples is created by concatenating

68

Algorithm 2.14 Dist_Splitter

1: procedure split_dist(n)
2: for doi← 1, NDIM
3: local_min[i]← COMPUTE_MIN(i)
4: local_max[i]← COMPUTE_MAX(i)
5: end for
6: global_min←MPI_AllReduce(MINIMUM, local_min)
7: global_max←MPI_Allreduce(MAXIMUM, local_max)
8: d← COMPUTE_MAX_DIM(global_min, global_max)
9: m← global_min[d] + (global_max[d]− global_min[d])/2

10: end procedure

all samples, using an allgather invocation. The communication overhead of allgather
is O(α ∗ logP + β ∗ c ∗ PlogP), where c is the message size per rank. The final message
size is c ∗ P , which is the concatenation of messages from all processes.

The load balancing routine is a replicated computation at all ranks. Provided all
ranks perform the same computation, the final load assignment is deterministic. It is
a simple greedy assignment of load to bins. A similar pseudocode is provided in sec-
tion 5.3.4 in Chapter4. We used allreduce and parallel_prefix to determine some statis-
tics regarding the load distribution, such asmaximum_load, total_load, minimum_load
and rank of a node in the top-node list.

The data-exchange following load balancing is the most communication intensive
part of the implementation since it may require a full data exchange in the worst case. If
the data exchange takes place over r rounds, the cost of a single round is the time taken
to transfer the largest message between any two nodes. Let Tcommi

be the maximum
communication cost in round i, the total communication cost Tcomm is,

Tcomm =
r∑

i=1

Tcommi
(2.21)

Data exchange ensures that a process is home to all points that lie within the nodes
it owns. It is left to the programmer to decide whether to pick a static subtree per pro-
cess or have dynamic subtrees that are modified iteratively to accommodate adaptive
partitions. Final permutation of buckets is distributed across processes in sorted order.
The keys/ids of points on Pi < Pj where i < j.

69

2.9.1 Testcases

The first testcase was used to analyze the performance of a distributed static kd-tree
implementation with one MPI process per KNL node and >= 64 threads. These ex-
periments are strong scaling, with the same dataset, but with increasing number of
nodes and CPUs. The number of MPI ranks was varied from 16 − 256. There are
three values for number of threads - 64, 128 and 256. The total number of cores ranges
from [1024 − 16384]. Total number of threads ranges from [1024 − 65536]. We used a
uniform distribution with 1billion 3D points sampled from [1, 1000000000] to test this
implementation. The STL random distributions were used to generate uniform sam-
ples within a certain range. Time taken for building the distributed kd-tree is divided
into three components:

#ranks threads top_nodes lb_time transfer_time local_subtree total
16 64 9.63115 0.000856329 3.986062 61.9971158 75.61518413
32 64 3.7515925 0.000914826 2.400112 11.6435904 17.79620973
64 64 3.2753625 0.001162399 1.436562 6.000608 10.7136949
100 64 1.983095 0.001199494 0.9691276 2.813082 5.766504094
128 64 2.18574 0.001254128 3.789026 2.7854376 8.761457728
150 64 1.750285 0.00121716 6.310382 2.320145 10.38202916
200 64 1.62908 0.001136252 5.757782 1.8497324 9.237730652
256 64 1.696865 0.001835986 6.03519 1.8342938 9.568184786
16 128 6.174555 0.001240974 6.510466 48.8319268 61.51818877
32 128 4.1130975 0.001121844 3.866482 9.5244262 17.50512754
64 128 3.103545 0.001386724 2.328766 3.1429028 8.576600524
100 128 2.7942025 0.001428744 2.227704 2.7292164 7.752551644
128 128 2.7067625 0.001594928 3.804966 2.145137 8.658460428
150 128 2.6590975 0.001387716 11.03982 1.8678144 15.56811962
200 128 2.5737725 0.001774634 5.33363 1.5153696 9.424546734
256 128 2.594755 0.001698394 6.977644 1.36721 10.94130739
16 256 4.3497675 0.00260731 12.75062 38.2026036 55.30559841
32 256 3.2551125 0.002927878 7.05198 12.1406462 22.45066658
64 256 2.7115925 0.003721518 4.08766 5.6249762 12.42795022
100 256 2.54733 0.003735332 3.444074 3.8978448 9.892984132
128 256 2.5200075 0.003117306 5.604658 2.7971492 10.92493201
150 256 2.4508075 0.003417202 11.419 2.9936656 16.8668903
200 256 2.4658225 0.0033248 7.607246 2.9016206 12.9780139
256 256 2.5727175 0.003032592 6.224126 2.286735 11.08661109

Table 2.12: Distributed KD-tree construction time, midpoint splitter

1. Top nodes: This is the distributed code section which requires data-sharing across
MPI ranks. The number of top nodes is a configurable parameter. For the test-

70

Figure 2.16: Distributed KD-tree top-nodes construction

case in this section, this value was 256. The graph in figure 2.16 is the cost of
building top nodes for increasing number of MPI ranks and threads. Maximum
BUCKET_SIZE = 100.

2. Load balancing and data exchange: The load balancing routine assigns top nodes
to MPI ranks. After mapping nodes to ranks, non-local data are transferred to
owning processes. This is a relatively expensive stage. In the worst case, the com-
munication pattern is an all-to-all, where every process has at least one message
to send/receive from every other remote process. Communication is performed
in stages to accomodate exchange of large datasets. Maximum message size in
each stage is capped by the parameterMAX_MSG_SIZE. For the testcases here,
MAX_MSG_SIZE = 10000 bytes per thread.

3. Local subtrees: We re-use the routines from the static parallel kdtree implemen-
tation discussed in the previous sections.

The graph in figure 2.17 is the sum of all components, including load balancing and
data exchange. The values on the y-axis of the graph are based on log scale. The graph
shows some variation in scaling after 100 MPI processes. The pre-dominant cost in this
region is data exchange compared to local subtree building. The time taken for data
transfer depends on various factors, such as maximum number of messages, maximum
message size, latency and bandwidth.

71

Figure 2.17: Distributed KD-tree total time

2.10 PARALLEL QUICKSORT

This section has a brief description of the parallel quicksort implementation we used
as a component in the partitioner. We used this implementation for sorting samples
and co-ordinates in the splitter routines and re-order leaf nodes in the dynamic kd-tree
implementation. Pthreads are used for partitioning and exchanging data. Unsorted
data is assumed to lie in a contiguous vector. We have not used any synchronization
primitives to control access to the shared vector. Threads are assigned non-overlapping
sub-regions in the vector. Execution is controlled using thread barriers and offsets
are computed using parallel prefix. The recursion in quicksort is a binary tree, with
each node representing an unsorted section of the array. The problem of parallelizing
quicksort is equivalent to scheduling the nodes of this binary tree on threads, satisfying
their node dependencies. The dependencies are simple, the children of a node can be
scheduled to run only after the parent node has completed execution. The children of
a node are created when a node is partitioned around a pivot. All elements less than
and equal to the pivot constitute the left child, the remaining elements form the right
child.

72

Figure 2.18: Data decomposition for parallel quicksort,top nodes

Data partitioning for sorting follows the same model as tree-building, both prob-
lems being recursive. The top nodes of the recursion tree operate on large sections of
unsorted data. The time-consuming step of parallel quicksort is rearranging the array
into two sections - less than and equal to pivot and greater than pivot. For the top
nodes, data partitioning is done collaboratively by threads until there are enough in-
dependent nodes that can be executed by different threads. One thread picks a pivot
and shares it with other threads. The unsorted section is divided between threads
in a load balanced manner. For a section of size n elements and p threads, each thread
works on a piece of size at most dn

p
e. Threads rearrange portions of the array they own.

These partially sorted chunks are copied to a temporary buffer, concatenated and relo-
cated in the source vector. Figure 2.18 shows pivoting for top nodes using a temporary
buffer. We use reduction and parallel prefix to compute the source and destination
indices. The top recursion ends when there are enough sub lists to be distributed be-
tween threads, at least one sub list per thread. These sub lists have non-overlapping
offsets, and they are sorted in parallel. The total sorting time depends on the number
of elements and maximum depth of the recursion tree.

Choosing good pivots that split the array into roughly equal parts is an important
criterion for reducing the depth of recursion. The selection of pivots is randomized
for this reason. There are similar implementations of parallel quicksort optimized for
GPUs. Suppose the top recursion stops when there are r ∗ p, r >= 1 non-overlapping
subsets. Let Tqs be the average cost of parallel quicksort. The average cost of building
the top nodes Tqp is:

73

#threads num_points init_time build_time
64 100000 0.211413 0.0268961
128 100000 0.3876418 0.02666706
256 100000 0.9851252 0.02966264
64 1000000 0.253258 0.136962
128 1000000 0.486924 0.2733168
256 1000000 1.020914 0.2215962
64 10000000 0.3304084 2.227984
128 10000000 0.5166522 2.708028
256 10000000 1.024476 1.783118
64 100000000 0.9890994 21.646294
128 100000000 0.8240288 21.078394
256 100000000 0.9782016 39.97772
64 250000000 2.141636 91.25146
128 250000000 1.576726 56.5622
256 250000000 1.537538 64.83902
64 500000000 4.077758 97.29324
128 500000000 2.87157 117.51094
256 500000000 2.375654 203.4084
64 1000000000 6.570702 270.5132
128 1000000000 5.533122 213.0476
256 1000000000 4.39892 357.143

Table 2.13: Sorting time for different data sizes and thread counts

Figure 2.19: Sorting time for different data sizes and thread counts

74

Tqp = O(
n

p
∗ log(r ∗ p)) (2.22)

where O(n
p
) is the cost of rearranging data at level i in the recursion tree.

Assuming the top nodes are load balanced, where each thread has dn
p
e elements on

average for r = 1, the cost of sorting at the lower levels of the recursion tree is :

Tlp = O(
n

p
∗ log(n

p
)) (2.23)

Tqs = Tqp + Tlp +O(p)) (2.24)

where O(p) is any additional synchronization.

All experiments in this section were carried out on Intel KNL nodes [80]. The re-
sults presented in this section are for sorting doubles. Inputs range from 100000 to
1000000000 doubles, all generated from uniform random distributions. Threads can
migrate between cores during the top level of recursion since unsorted sections can
be anywhere along the array. Thread scheduling is left to the operating system. Once
threads are assigned lists in local queues, there are pinned to cores. Each thread works
on restricted sections of the array, pinning them to cores increases cache re-use after
this point. For large data sizes and multiple threads per core, the performance de-
grades, due to threads sharing lower level cache. There is possible thrashing for these
configurations. Tests were conducted using three thread counts - 64, 128, 256 and 64

CPUs. Inputs are random doubles generated from a uniform distribution. Some of
them are more expensive than others to sort. We have reported the average of 5 distri-
butions. The observations are tabulated in table 2.13. A graph with the results is shown
in figure 2.19. The performance of sorting drops for large datasets, especially for 256

threads. This is probably due to thrashing in L2 which is shared by four threads. KNL
was used in cache-quadrant mode where the entire MCDRAM is used as cache.

75

Figure 2.20: Morton Order Figure 2.21: Hilbert Order

2.11 SPACE-FILLING CURVES

After the kd-tree is constructed, its nodes are traversed using space-filling curves.
In the next two chapters we discuss these traversals in detail for 2D and 3D points.
Define a discrete space-filling curve as the inverse of a function (F) defined on points
along a curve C to points in d-dimensional space Rd. For every point in Rd, there is
a corresponding point on the curve that identifies it. These functions can be defined
algebraically, as geometric series, with different geometric ratios for each curve. There
are three properties that define any function that is a space-filling curve:

1. Space-filling: The curve should be space-filling, i.e it should exist on every point
in the domain.

2. Single visits: Each point in the domain should be visited exactly once. No edges
along the traversal should be visited more than once. SFC traversal of a domain is
a solution to the travelling salesman problem (TSP) [87]. The solution using SFCs
is a Hamiltonian on the points, in which no vertex is visited more than once [87].

3. Surjective: The function that maps from Rd to curve C is not one-to-one. There
are points in the domainRd for which membership to sub-domains is ambiguous.
For example, in the figure 2.21, if a point exists at the center of the domain it can
belong to any of the four sub-domains, according to the way the curve is defined.
But once a decision is taken, the point should not be revisited.

Geometric constructions of these curves are recursive. A pattern is defined at the top-
level, which is scaled down and repeated in the sub-domains, subject to some other
transformations (like rotation and reflection). The curves differ based on the num-
ber of sub-domains at each level of recursion and the repeating pattern. They are

76

well-defined for 2D and extended to higher dimensions algebraically, but the recur-
sive geometric constructions are not clear for dimensions greater than 2. An increase
in the number of dimensions affects the degrees of freedom in the curve and its pos-
sible transformations. There are several algebraic definitions of space-filling curves,
some of which are more complicated to construct compared to others. Sagan [13] has
a good description of SFCs and fractals. The most commonly used SFCs are Hilbert,
Peano and Morton. Hilbert and Morton divide the domain into 2d sub-domains at
each level and apply the repeating pattern connecting them at edges. Peano curve has
3d sub-domains at each level.

Figure 2.22: Communication pattern example - 5pt stencil

Several metrics are defined to compare the quality of different curves. But, since we
use these curves to partition data for parallel applications, metrics are defined accord-
ingly. For a given communication pattern, we define locality of a space-filling curve
as the number of communicating neighbors that lie outside a given volume, usually
a hypercube. This value is related to the edge-cut (communication volume) of a par-
tition. An example for nearest neighbor exchange in 2D is shown in the figure 2.23.
Data is exchanged between grid elements that share a common face. If a space-filling
curve has few outgoing edges for a given volume of points, it is considered to have
better locality. In order to have good locality, it is necessary for the curve to maintain
the following condition: adjacent points on the curve are neighbors in higher dimen-
sions. The definition is not clear for points in 3D. A 3D-curve is face-continuous if any
two adjacent points share a common face. A curve can also be edge-continuous where
adjacent points share a common edge. For our 3D SFC, we consider both as neighbors
in 3D. Any other pair of points is treated as a discontinuity in the curve. If a curve is
used to traverse a set of points without any communication pattern defined on them,
it is difficult to define locality. One of the metrics that can be used is the average length
of the curve that traverses a given volume in Rd. Consider three points p1, p2 and p3,

77

where dij is the Euclidean distance between any pair of points (pi, pj). If the curve at
p1 picks p2 as the next point instead of p3, although d13 < d12, it can be considered as
a discontinuity. Between any two curves c1 and c2, the better curve should be able to
traverse the same volume with fewer discontinuities. The total length of the curve that
covers all points in volume V should be lower for c1 compared to c2 for it to be a better-
quality order. The length of a space-filling curve is the sum of Euclidean distances of
all adjacent points on the curve.

Figure 2.23: Communication pattern example - 5pt stencil

Several metrics are defined to compare the quality of different curves. But, since we
use these curves to partition data for parallel applications, metrics are defined accord-
ingly. For a given communication pattern, we define locality of a space-filling curve
as the number of communicating neighbors that lie outside a given volume, usually
a hypercube. This value is related to the edge-cut (communication volume) of a par-
tition. An example for nearest neighbor exchange in 2D is shown in the figure 2.23.
Data is exchanged between grid elements that share a common face. If a space-filling
curve has few outgoing edges for a given volume of points, it is considered to have
better locality. In order to have good locality, it is necessary for the curve to maintain
the following condition: adjacent points on the curve are neighbors in higher dimen-
sions. The definition is not clear for points in 3D. A 3D-curve is face-continuous if any
two adjacent points share a common face. A curve can also be edge-continuous where
adjacent points share a common edge. For our 3D SFC, we consider both as neighbors
in 3D. Any other pair of points is treated as a discontinuity in the curve. If a curve is
used to traverse a set of points without any communication pattern defined on them,
it is difficult to define locality. One of the metrics that can be used is the average length
of the curve that traverses a given volume in Rd. Consider three points p1, p2 and p3,
where dij is the Euclidean distance between any pair of points (pi, pj). If the curve at
p1 picks p2 as the next point instead of p3, although d13 < d12, it can be considered as

78

a discontinuity. Between any two curves c1 and c2, the better curve should be able to
traverse the same volume with fewer discontinuities. The total length of the curve that
covers all points in volume V should be lower for c1 compared to c2 for it to be a better-
quality order. The length of a space-filling curve is the sum of Euclidean distances of
all adjacent points on the curve.

Algorithm 2.15 Slicing Algorithm

1: procedure SLICING
2: avg_wt← avg(w1, w2, ..., wn)
3: max_wt← max(w1, w2, ..., wn)
4: cur_wt← 0
5: cur_bin← 0
6: for doi← 1, n
7: if thencur_wt+ wi < (cur_bin+ 1) ∗ avg_wt+max_wt
8: cur_wt← cur_wt+ wi
9: else

10: cur_bin← cur_bin+ 1
11: end if
12: end for
13: end procedure

The space-filling curves in figures 2.20 and 2.21 are Morton and Hilbert curves that
cover the same set of points in 2D. The domain is symmetric and has grid dimensions
that are powers of 2. Both curves can be sliced into segments of almost equal lengths,
where the length of a segment is the sum of the weights of all points on the curve. If
each segment is assigned to a partition, the maximum load imbalance of an assignment
is the weight of the heaviest mesh element. As far as load balance is concerned, there
is no difference between segments generated by different space-filling curves. How-
ever, the edge-cuts or communication volume are different, especially for partitions of
lengths that are non-powers of 2. There is a direct relationship between discontinuities
and edge-cut of partitions. Since a discontinuity places non-local points next to each
other on a curve, when it is sliced and assigned to processes, these add to the total
number of out-going edges from the partition. For any set of non-neighbors in a par-
tition, the total contribution to the edge-cut is the sum of their neighbors. This can be
reduced if neighbors are assigned to the same partition by a curve that is continuous.
The discontinuities in Morton order are shown in the diagram 2.20. Points 1 and 2 are
not neighbors but they may be assigned the same partition which will increase com-
munication volume. The algorithm we used for slicing the curve into roughly equal
length segments is given in algorithm 2.15. The slicing method is a greedy assignment

79

of points to bins, where bins are partitions. Each bin has a desired weight, equal to the
average weight of the distribution. If the assignment is optimal, maximum bin weight
will be equal to the desired value. The membership of a point in a bin is decided
based on its current weight, weight of the point and the desired weight. The maxi-
mum weight of any bin depends on the weight distribution, which in-turn depends on
the order of traversal. Morton and Hilbert orders produce different orders of weights
for the same dataset. But the maximum bin weight for greedy assignment is at most
2 ∗M , where M is the maximum weight of any point [87].

80

CHAPTER 3: 2D SPACE-FILLING CURVES

3.1 2D TRAVERSAL RULES

In this section, we discuss a general 2D Space-filling curve that can be applied to ir-
regular point distributions and resembles a Hilbert curve when the domains are square
symmetric [13]. We compare this space-filling curve to Morton order. At every inter-
nal node of the kd-tree, its resolution is checked. A node is considered fully-resolved in
2D, if it has four grandchildren or sub-domains that are generated from hyperplanes
perpendicular to each other. For the fully resolved cases, traversal rules are optimized
to match Hilbert rules. Rules are recursively defined and derived by applying trans-
formations to a base rule. If a node is partially-resolved, which can happen for domain
sizes that are uneven and not powers of two, we pick traversal rules that reduce the
distance between adjacent points on the curve. The rules are explained in detail later.
This curve can also be used for traversing domains with shapes that are not squares.
In our implementation, the following transformations can be applied to the base rule.
The inputs to a transformation function are a set of subcells and a rule specifying a
traversal order on them. The output is the permuted set of subcells:

1. Reflection: This transformation reverses the order of traversing subcells. Geomet-
rically, it corresponds to the mirror reflection of a rule. A rule may be reflected
along any of the two axes. For example, reflection can change clockwise traversal
to anti-clockwise.

2. Rotation: This transformation traverses sub cells after applying a circular shift to
the base order, that corresponds to a 90 or 180-degree rotation about any axis.

Transformations are composite functions. A series of transformations can be applied
to the base rule, to generate all possible traversal orders. We picked a base rule with X
as major axis and Y as minor axis. It is possible to pick another base rule and arrive at
a different set of rules. But it can be proved without difficulty that both sets are equiv-
alent. There exists some set of transformations that convert one set of rules to the other
and vice versa. In short, reflection and rotation are minimal transformations required
to generate Hilbert like space-filling curves in 2D. The sizes of sub cells decrease at
every level of recursion.

81

Figure 3.1: Transformations of 2D Hilbert
curve

Figure 3.2: 2D Refinement rules

The diagrams for a base rule and some of its transformations for fully resolved nodes
are provided in the figure 3.1:

The rules for partially refined nodes are provided in figure 3.2. For symmetric grids
with dimensions that are powers of 2, all internal nodes will pick Hilbert rules, be-
cause all of them will be fully-resolved. For odd dimensions and irregular distribu-
tions, there will be bounding boxes in the domain that are partially resolved. For such
cases, traversals for sub cells are assigned using the rules in 3.2. There are two such
rules - when the entry direction is perpendicular to the splitting dimension or parallel
to it. If the entry direction is parallel to the splitting dimension, there are two options
for traversing the sub cell. We pick the option which is closest to entry. If it is perpen-
dicular, there are no ambiguities in how the sub-domains are refined.

3.2 EMPIRICAL MEASUREMENTS

Programs to construct the general SFC and its evaluation were written in C/C++.
There are routines to estimate quality metrics (load balance and communication vol-
ume) for a partition and communication pattern. The communication pattern and
weights (optional) have to be provided as secondary inputs to the program. We have
used VTK [88] for visualizing the SFC. The first set of testcases are empirical measure-
ments used to compare the quality of SFC partitions to those generated by multilevel
implementations in Metis and in Scotch. All the testcases and experiments in this sec-

82

tion use sequential kd-tree and space-filling curve implementations.

Here we provide a brief explanation of tuning parameters in Metis:

1. ufactor - This is used to specify the maximum load imbalance that can be toler-
ated in terms of number of vertices (mesh cells). An integer value of 30 (default)
generates partitions with maximum load imbalance of 1.03. We used two values
for this parameter, the least possible value 1, and 30.

2. niter - This parameter decides the number of iterations in the refinement phase.
The values we used are 10 (default) and 400.

Scotch computes a mapping of the input graph onto the machine. Since our perfor-
mance metrics do not include machine topology, we used a complete graph. Scotch
was configured to use a multi-level scheme for each bipartition. The default options in
Scotch seemed exhaustive enough. Besides, in the default case, Scotch generates two
independent partitions and outputs the best of the two. The only tuning parameter
we used was the load balance constraint which was set to 0.01, for a maximum of 1%
imbalance. Although recent versions of Scotch can compute a direct k-way partition
instead of a bipartition, we found its load balance and edge-cut values much worse
than the bipartition implementation for our inputs.

The choice of refinement algorithms we used in Metis and Scotch are described be-
low:

1. Greedy refinement (Metis) : For any coarse graph Gi , this algorithm greedily
picks a random boundary vertex V j that results in maximum decrease in edge-
cut without violating load balance constraints. This vertex is moved to the neigh-
boring partition.

2. Scotch : The default refinement strategy in Scotch uses a combination of several
schemes. All refinements are computed on a band graph of width 3, which is
a graph consisting of only those vertices at a maximum distance of 3 from the
separators. The refinement phase does 40 passes of diffusion followed by several
iterations of Fidducia-Matteyses until convergence.

83

3.2.1 Structured Grids

3.2.1.1 Uniformly Refined

#procs maxload max_degree max_comm_vol
256 3456 13 1140
512 1728 13 804

1024 864 14 564
1500 590 13 464
2048 432 14 396
3000 295 14 320
4096 216 14 276
6000 148 14 226
8192 108 14 192

Table 3.1: Degree and Edge cuts for Morton Partitions of Structured 768X1152 grid
#procs maxload max_degree max_comm_vol

256 3456 9 1092
512 1728 9 710

1024 864 9 540
1500 590 9 464
2048 432 9 350
3000 295 10 324
4096 216 9 264
6000 148 9 222
8192 108 9 170

Table 3.2: Degree Edge cuts for Hilbert Partitions of structured 768X1152 grid
#procs maxload max_degree max_comm_vol

256 3456 8 716
512 1728 9 572

1024 864 8 356
1500 590 9 464
2048 432 9 284
3000 295 10 326
4096 216 8 176
6000 148 9 226
8192 108 9 140

Table 3.3: Degree Edge cuts for gensfc Partitions of structured 768X1152 grid

A 2D rectangular grid with 1152 co-ordinate values in the y-dimension and 768 val-
ues in the x-dimension was used as testcase. We chose arbitrary values for k1 and k2

84

here, to evaluate the effectiveness of GenSFC in partitioning asymmetric structured
grids. A midpoint splitter was used along the longest dimension. The communication
pattern is a simple 9-pt stencil and we assume that a cell sends one byte of different
data to each of its neighbors. Therefore, in this case, the communication volume of a
partition is exactly equal to its edge-cut. Tables 3.1, 3.2 and 3.3 compares the quality of
partitions produced by GenSFC against those generated by Morton and Hilbert curves.
We do better than both Morton and Hilbert when the number of processors is a power
of two. We have better partitions for most cases since we split along the dimension
of maximum spread unlike Hilbert and Morton which alternate between splitting di-
mensions. When the number of processors is not a power of two, a GenSFC partition
is spread across multiple subtrees leading to an increase in its surface area. In these
cases, the communication volume is comparable to Hilbert partitions.

#procs maxload max_degree max_comm_vol
128 5164 8 684
180 3679 8 588
256 2592 8 504
380 1767 9 434
512 1308 8 350
750 900 9 308

1024 659 11 298
1500 450 9 204
2048 329 9 188
3000 225 9 144
4096 164 9 134

Table 3.4: Degree Edgecuts for Metis partitions of structured 768X1152 grid

The partitioning time for space-filling curve partitions was found to be lower than
that of Metis and Scotch. Moreover, for a given input mesh it is constant. For multi-
level methods, partitioning time increases with increasing number of partitions.

The next set of experiments were designed to better understand the behavior of mul-
tilevel schemes implemented in Metis and Scotch and the impact of tuning parameters
on resulting partitions. Since SFCs guarantee partitions with load imbalance of at most
1 element, we tried tightening the load balance constraint in Metis for a fair compar-
ison. We set ufactor = 1 to decrease the maximum load imbalance to 1.001%. Metis
partitions are much worse with higher values for communication volume and degree.
The behavior of the algorithm seems to be unpredictable, results are shown in table 3.4.
The partitions improved when we increased the number of iterations of refinement, but

85

the performance was not consistent, especially for large partition counts. One possible
way to get around this erratic behavior would be to generate multiple sets of partitions
and choose the best one like Scotch does. We did not explore that option. The best
Metis partitions we obtained for this grid, are tabulated in table 3.5 alongside the best
Scotch partitions. These results were obtained for default values for all its input param-
eters. Scotch partitions seem to have better load balance than Metis, but the maximum
communication volume and maximum degree are worse. Both multilevel schemes do
better than Morton and Hilbert curves for all cases. The general SFC algorithm does
much better than Metis and Scotch when the number of partitions is a power of 2. For
non powers of 2, the two paradigms are comparable, with better load balance provided
by the general SFC algorithm, and much faster partitioning time.

#procs maxload max_degree max_comm_vol
128 5160 8 760
180 3677 9 656
256 2583 8 506
380 1738 10 462
512 1292 8 388
750 881 10 330

1024 646 10 290
1500 441 11 258
2048 323 10 210
3000 221 11 166
4096 162 10 152

Table 3.5: Degree Edgecuts for Scotch Partitions of structured 768X1152 grid

3.2.1.2 Unstructured Meshes

Traditional SFCs fail to generate good quality partitions of unstructured meshes due
to their arbitrary point distributions. GenSFC traverses random point distributions
quite well. Figure 3.3 is GenSFC on a set of randomly located points in 2D. One of the
meshes that has posed a challenge to geometric partitioners is that covering a volume
(a shell). We applied the general SFC algorithm to such a mesh commonly used in
climate simulations. The meshes we used come from the Model for Prediction Across
Scales (MPAS) project [89]. They are constructed using Voronoi tessellations on the sur-
face of a sphere and the cells are mostly hexagons with some pentagons and heptagons.
A cell is represented by a point at its center of mass. MPAS currently uses the multi-
level methods of Metis to partition these meshes. The partitions are generated off-line

86

Figure 3.3: GenSFC on irregular points

and read from a file at the start of the simulation. Since the cells lie on the surface of a
sphere (earth), we cannot use a 2D SFC directly on the cell centers. We first projected
the points onto a plane. To obtain good quality partitions, we chose a projection with
minimum distortion. It is impossible to project the entire sphere onto a plane without
any distortion. So we divided the sphere into two hemispheres (north and south), pro-
jected them separately and generated SFCs for each half. We assigned initial directions
to the kd-trees so that the SFCs are connected. The northern hemisphere was traversed
from Left_to_Right and the southern hemisphere from Right_to_Left. We used the
Azimuthal Equidistant projection [90] for each hemisphere. This projection preserves
area and, hence, preserves locality reasonably well. If φ and λ indicate the latitude and
longitude values of a cell center, the equations for projection are

x = ρ ∗ cos(θ) (3.1)

y = ρ ∗ sin(θ) (3.2)

For the northern hemisphere,

ρ = (
π

2
− φ) ∗R (3.3)

θ = λ (3.4)

87

For the southern hemisphere,

ρ = (
π

2
+ φ) ∗R (3.5)

θ = −λ (3.6)

3.2.2 Uniformly Refined

Figure 3.4: GenSFC on MPAS 30KM atmospheric mesh

Now the inputs to the general SFC algorithm are projected x and y co-ordinates of
cell centers. Tables 3.6, 3.7 and 3.8 compare the quality of partitions generated by three
different SFCs : Morton, Hilbert and general SFC. Unlike structured grids, the gen-
eral SFC does much better than Morton and Hilbert curves even when the number of
partitions are not powers of 2. These partitions were generated by splitting along the
midpoint of the dimension of maximum spread. We generated Metis and Scotch par-
titions for comparison with our SFC partitions. For Metis, we have only included the
best values we obtained for ufactor = 30 and niter = 10. The comparison between
Metis and Scotch partitions is tabulated in tables 3.9 and 3.10. Metis seems to produce
partitions with consistently better edge-cut and degree values and Scotch partitions
have better load balance. The general SFC does better than Metis and Scotch for most

88

Figure 3.5: Uniformly Refined Atmospheric Mesh Partitioned using GenSFC

of these cases, especially at large values of #procs. The best Metis partitions were ob-
tained at the cost of a small load imbalance and they are comparable to the general SFC
partitions when the number of processors is a power of 2. For non powers of 2, our
partitions are slightly worse than the best Metis ones.

#procs maxload max_degree max_comm_vol
128 5121 11 2104
180 3641 12 1680
256 2561 13 1481
380 1725 13 1180
512 1281 13 1076
750 874 12 880

1024 641 12 752
1500 437 13 632
2048 321 13 548
3000 219 13 456
4096 161 13 384

Table 3.6: Morton Order on Uniformly Refined 30KM Mesh

89

#procs maxload max_degree max_comm_vol
128 5121 8 1180
180 3641 8 1038
256 2561 8 734
380 1725 8 762
512 1281 8 612
750 874 9 554

1024 641 9 456
1500 437 10 378
2048 321 9 290
3000 219 13 292
4096 161 9 230

Table 3.7: Hilbert Curve on Uniformly Refined 30KM Mesh

#procs maxload max_degree max_comm_vol
128 5121 7 717
180 3641 10 889
256 2561 8 485
380 1725 9 615
512 1281 8 370
750 874 10 448

1024 641 9 268
1500 437 10 324
2048 321 9 196
3000 219 11 228
4096 161 9 131

Table 3.8: GenSFC on Uniformly Refined 30KM Mesh

#procs maxload max_degree max_comm_vol
128 5164 8 684
180 3679 8 588
256 2592 8 504
380 1767 9 434
512 1308 8 350
750 900 9 308

1024 659 11 298
1500 450 9 204
2048 329 9 188
3000 225 9 144
4096 164 9 134

Table 3.9: Metis partitions on uniformly refined 30KM Mesh

90

#procs maxload max_degree max_comm_vol
128 5160 8 760
180 3677 9 656
256 2583 8 506
380 1738 10 462
512 1292 8 388
750 881 10 330

1024 646 10 290
1500 441 11 258
2048 323 10 210
3000 221 11 166
4096 162 10 152

Table 3.10: Scotch partitions on uniformly refined 30KM Mesh

#nodes load/task max_deg_inter max_comm_vol_inter
24 878 76 2713
32 659 52 1486
40 527 77 2137
64 329 53 1084

100 210 85 1436
200 105 87 1018

Table 3.11: Clustering(32 tasks per node) of Metis Partitions for 30KM unstructured
Mesh

3.2.3 Two-level Partitions

In the final set, we explored the the quality of a two-level layout (nodes and cores)
using partitions generated by Metis, Scotch and our SFC algorithm. The SFC algorithm
used a midpoint splitter along the dimension of maximum spread. The coarse parti-
tions were created by grouping fine partitions in the order of their partition numbers
(index). The number of partitions in a group corresponds to the number of cores per
node and the number of groups is equal to the number of nodes. We measured the de-
gree and edge-cut values for inter-node communication. As expected, Metis partitions
fail in this regard because Metis has no notion of groups. The quality of clustering
for Metis worsens with increasing number of partitions per node. We have analytical
results for 32 Metis partitions per node, tabulated in table 3.11. We have assumed that
inter-node communication is fully serialized. Therefore, the degree and edge-cut val-
ues for the results in this section are computed as the sum of outgoing messages and
edges over all tasks on a node. All values in table 3.11 are the maximum observed

91

numbers across all nodes. We utilized the mapping option in Scotch to estimate the
quality of clustering in our SFC algorithm. We used a two- level tree topology as input
to Scotch. The inter-node edges were made ten times as heavy as the intra-node edges
to reflect the hierarchical structure of the machine. Scotch results are tabulated in 3.12.
As shown in 3.13 our SFC partitions match up to the mapping produced by Scotch for
most node counts. The degree and edge-cut values of the SFC partitions are slightly
worse than the Scotch mapping when the number of partitions is not a power of 2. We
are able to generate good quality two-level partitions naturally, without any additional
work.

#nodes load/task max_deg_inter max_comm_vol_inter
24 862 51 1611
32 646 51 1410
40 517 58 1396
64 323 53 976

100 207 58 882
128 162 58 714
200 104 62 638
256 81 59 552

Table 3.12: Clustering(32 tasks per node) of Scotch Partitions for 30KM unstructured
Mesh

#nodes load/task max_deg_inter max_comm_vol_inter
24 854 58 2150
32 641 53 1248
40 513 63 1590
64 321 53 955

100 205 68 1098
128 162 60 717
200 103 72 862
256 81 58 489

Table 3.13: Clustering(32 tasks per node) of GenSFC partitions for 30KM unstructured
Mesh

3.2.4 Adaptively Refined Meshes

The general SFC algorithm can handle adaptive meshes quite well. Figure 3.6 shows
the SFC on the northern hemisphere of an adaptive atmosphere mesh with 163842 cells.
The points are XY projections of cell centers as explained in the previous section. Cell

92

Figure 3.6: GenSFC partitions of unstructured adaptive mesh

shapes are mostly hexagonal and the refinement region extends over approximately 60
degrees of latitude/longitude. Our results are consistent with previous sections. The
general SFC does better than Morton and Hilbert in all cases. In this testcase, we used
an exact median splitter along the dimension of maximum spread. Like in the case of
uniformly refined unstructured meshes, general SFC partitions seem to match up to
Metis partitions. Edge-cuts for SFC partitions are higher than those for the best Metis
partitions when the number of partitions is not a power of 2, but the SFC load balance
guarantees are better. Tables 3.14, 3.15 and 3.16 compares Metis and Scotch partitions
for the same mesh. Scotch partitions have better load balance than Metis, but edge-cuts
are worse. The general SFC displays good clustering for the adaptive mesh as well. The
maximum total inter-node degree and edge-cut values for Metis, Scotch and GenSFC
partitions were computed. Tables 3.17, 3.18 and 3.19 show the computed values for
groups of 32 tasks per node. The clustering property of general SFC is comparable to
the mapping produced by Scotch for adaptive unstructured mesh, especially when the
number of nodes is a power of two.

93

#procs maxload max_degree max_comm_vol
128 1281 13 1024
256 641 12 720
380 432 12 620
512 321 13 508
750 219 12 440

1024 161 12 380
1500 110 14 308

Table 3.14: Morton Partitions of unstructured adaptive atmospheric mesh

#procs maxload max_degree max_comm_vol
128 1281 8 584
256 641 8 472
380 432 9 384
512 321 8 334
750 219 9 214

1024 161 9 202
1500 110 10 170

Table 3.15: Hilbert Partitions of unstructured adaptive atmospheric mesh

#procs maxload max_degree max_comm_vol
128 1281 9 390
256 641 9 280
380 432 10 305
512 321 10 218
750 219 9 216

1024 161 10 160
1500 110 10 154

Table 3.16: GenSFC Partitions of unstructured adaptive atmospheric mesh

#nodes load/task max_deg_inter max_comm_vol_inter
10 526 75 2056
16 329 50 984
20 263 81 1605
32 164 52 768
50 105 84 1033
64 82 54 548

Table 3.17: Clustering(32 tasks per node) of Metis for adaptive unstructured mesh

94

#nodes load/task max_deg_inter max_comm_vol_inter
10 517 52 1153
16 323 51 938
20 258 54 859
32 162 56 724
50 103 57 615
64 81 54 502

Table 3.18: Clustering(32 tasks per node) of Scotch for adaptive unstructured mesh

#nodes load/task max_deg_inter max_comm_vol_inter
10 513 55 1500
16 323 53 942
20 258 59 1180
32 162 55 710
50 103 65 812
64 81 57 515

Table 3.19: Clustering(32 tasks per node) of GenSFC for adaptive unstructured mesh

3.2.5 Running Time of Simulations

Figure 3.7: Execution Times for Unstructured MPAS mesh with resolution 120km

We validated our calculations by executing the MPAS- Atmosphere core (with physics
turned off). MPAS uses Metis by default. The partitioner was modified to accept
GenSFC partitions. The execution time reported is the time per iteration of the dynam-
ics module, averaged over 15 iterations. All experiments were carried out on Mira, a
Blue Gene Q (BG/Q) machine [91] at Argonne National Laboratory [92]. The MPAS

95

Figure 3.8: Execution Times for Unstructured MPAS mesh with resolution 120km

Figure 3.9: Execution Times for Unstructured MPAS mesh with resolution 30km

96

code is distributed with one MPI rank per process. The version we used was not
multi-threaded. We found the intra-node communication cost on Mira to be as sig-
nificant as off-node communication for this assignment. Both values were comparable
for short messages. The intra-node message latency for 0 byte messages was found
to be 3.01 microseconds, while the inter-node message latency was 3.40 microseconds.
Therefore, for short messages we did not notice a big difference between the measured
execution times. The contributing factor to the communication time in this case is the
maximum degree of any partition. The maximum degree distributions for the different
partitioners are similar. But, the intra-node bandwidth is much higher than the inter-
node bandwidth. To improve the overall performance of the application, we increased
the cut-off for MPI eager protocol for intra-node communication using the BG/Q en-
vironment variable PAMID_EAGER_LOCAL. The default value for this parameter
on BG/Q is 4096 bytes, same as that for inter-node communication. When this cut-off
was increased to 1MB ,all MPI intra-node messages are were sent eagerly. The plot in
figure 3.7 is the measured execution time for three partitioners - a bad Metis partition
(ufactor = 1), a good Metis partition and GenSFC partitions. Figure 3.8 shows the ex-
ecution times with 16 MPI ranks per node after changing PAMID_EAGER_LOCAL
value. A good metis partition was used for comparison. Although total maximum
degree and maximum edge-cuts were better for GenSFC partitions, the performance
was worse than the best Metis partitions for few nodes. This is probably due to the
increased problem size and therefore memory accesses per node. We ran similar ex-
periments for the high resolution 30 km mesh. The graphs in figure 3.9 show the
measured execution times per step, for Metis (good) and SFC partitions. There are two
configurations for MPAS in this experiments - short messages and long messages. In
this experiment we increased the message size by increasing the number of halo layers.
For two halo layers, messages are short, therefore, we don’t see any impact of cluster-
ing here. To demonstrate the difference between partitions, we increased the number
of halo layers to eight. The lower execution time per step achieved by clustering in
SFC partitions is seen at large messages.

97

CHAPTER 4: 3D SPACE-FILLING CURVES

4.1 3D TRAVERSAL RULES

LT
RT

TP

BM

FT

BK

Figure 4.1: 3D bounding box with axes and corners

This section describes rules for a 3D space-filling curve, along the lines of the 2D
curve. Non-terminal nodes of the kd-tree are axis-parallel bounding boxes, figure 4.1.

A bounding box in 3D has 6 faces and 8 corners. Faces and corners are labeled
according to the orientation of the axes. For example, top-left corner of the box in
figure 4.1 is labeled FTL where F stands for front (position along the Y-axis), T for
top, (Z-axis) and L for left,(X-axis). At the intermediate nodes, boxes are split into two,
non-overlapping sub cells of smaller volumes.

After tree-building, the curve is constructed by traversing it top-down, closely fol-
lowing a set of 3D rules. Rules are uniquely identified by two directions (entry, exit)
and two corners. Traversal is initialized by specifying a rule for the root node. Traver-
sals for sub-domains are generated top-down, independently, connected by their entry
and exit faces, edges or corners. In this section, we describe traversal rules optimized
for points in 3D.

Traversals are defined with respect to a bounding box of arbitrary size. Although
there are 30 different ways to enter and exit a box with 6 faces, we consider two base
cases; the remaining cases are generated as permutations of the two traversals. The
base cases are called cis and trans depending on whether entry and exit faces are ad-
jacent to or opposite to each other. The base cases are explained briefly in 4.2a and
4.2b.

1. Cis - This case covers traversals where entry and exit faces are adjacent to each

98

(a) Cis Base case (b) Trans Base case

Figure 4.2

other. The splitting plane can be perpendicular to any of the three dimensions.
Entry and exit directions for sub cells are generated by connecting them along
their common face (splitting plane). For example, suppose for cell A, a traver-
sal is specified as entry = left , exit = top and entry_point = FBL and let the
splitting hyperplane be XY . The hyperplane along XY creates two sub cells, one
containing points whose z co-ordinates are <= to the splitter (lower sub cell) and
the other containing points that are strictly greater than the splitter (upper sub
cell). The lower sub cell is assigned directions entry = left, exit = top and the
upper sub cell gets entry = bottom and exit = top for the next level of recursion.
This is shown in the bottom figure of 4.2a. The top figure of 4.2a has the same
entry, exit and entry_pt values, but the splitter is the XZ plane. Here sub cells
can be assigned directions entry = left, exit = back and entry = front, exit = top

respectively. The other option is to assign directions entry = left,exit = front

and entry = back,exit = top. Both are shown in 4.2a.

2. Trans - This case covers traversals where entry and exit faces are opposite to each
other. If the splitting plane is perpendicular to the entry direction, traversals for
sub cells are generated without any ambiguity. For example, suppose a cell is
assigned directions entry = left and exit = right, and the splitting plane is Y Z
perpendicular to left − right (X) axis, the lower sub cell is assigned directions
entry = left, exit = right and the upper sub cell directions entry = left,exit =
right. This is the case covered in figure 4.2b.

99

We allow additional degrees of freedom by specifying orientation for the curves. For
the same entry, exit directions and corners, there are more than one ways to orient the
curve from entry to exit. The figure in fig 4.3 shows two ways of traversing a bounding
box from FBL corner to FBR corner, using Hilbert curves. All variations of Hilbert
curves can be generated from a base-rule and a minimal set of transformations. A base-
rule for a set of 8 sub cells and one of its variations is shown in 4.3. Similarly, for a set
of four sub cells we use the 2D rules explained earlier. Remaining rules are generated
from the base-rule by applying two transformation functions - rotation and reflection.
Consistent with the discussion in previous sections, transformation functions are com-
posite. Once can find equivalence between any two 3D Hilbert curves using these set
of transformations. In the figure 4.3, the base-rule for 8 points is the traversal on the
left. The traversal on the right is obtained by a 900 rotation of the base-rule about the
X−axis, followed by a reflection about theZ−axis or Y −axis, depending the choice of
rotation (+/-). We have restricted ourselves to curves that are symmetric, i.e. if one face
of a cell is traversed in the clockwise direction, the other is traversed in anti-clockwise
direction and vice versa. If this restriction is removed, there can be many more curves
with the same entry, exit directions and corners, some of them non-contiguous (not
face or edge contiguous). When curves are symmetric there is more similarity in the
traversals which reduces average length of the curve covering a volume.

Figure 4.3: Two possible orientations of a Hilbert curve from left to right

If the set of points form a 2k × 2k × 2k regular grid then our rules generate a Hilbert-
like curve in 3D that is face-continuous. The curve is smooth and adjacent boxes share a
common face. For non-powers of two, adjacent boxes may be connected by a common
face, a common edge or in the worst case, a common vertex.

100

(a) 3D Hilbert Rule (b) 2D Hilbert Rule

Figure 4.4: 2D and 3D Hilbert Rules

Figure 4.5: A 3D Space-filling Curve

101

4.2 OPTIMIZATIONS

Figure 4.6: A 3D Space-filling Curve on Irregular Distribution

Algorithm 4.1 Optimizations

1: procedure LOOKAHEAD OPTIMIZATIONS(node *n)
2: r ← n.resolution
3: if thenn == 8
4: HILBERT3DRULE(n)
5: else
6: if thenn == 4
7: HILBERT2DRULE(n)
8: end if
9: end if

10: end procedure

We have included optimizations in this implementation that identifies groups of 8 or
4 sub cells of approximately equal aspect ratio. In such cases, since the number of sub
cells are powers of 2, the curve benefits from applying a symmetric Hilbert-like rule
to the subset. Such groups are identified by checking the resolution of a node during
traversal. A cluster of 8 sub cells has 3 splitting hyperplanes that are perpendicular
to each other. A cluster of 4 sub cells has two perpendicular hyperplanes. These opti-
mizations are briefly explained below :

102

4.2.1 Two-lookahead Optimization

This optimization is applied if a cell n is split into 8 almost equal sub cells. A shortcut
link is added to the tree, from n to its eight grandchildren. A permutation of the 3D
Hilbert rule, shown in figure 4.4a is used to traverse this set.

4.2.2 One-lookahead Optimization

Suppose a group of 4 sub cells is identified at cell n which lie on a plane, we use
one of the 2D Hilbert rules, shown in figure 4.4b, to traverse this set. The base rule is
rotated appropriately, using permutations, depending on the entry and exit directions
at n.

4.3 PUTTING IT TOGETHER

Figure 4.7: A 3D Space-filling Curve on Irregular Cluster

The pseudo-code for recursive SFC traversal is provided below. The pseudo-code
in algorithm 4.4 is the top-level call that initiates SFC traversal of the kd-tree. The
algorithm optimizes the curve if it can identify clusters, else defaults to the cis, tran
rules explained earlier. The pseudo-code in algorithm 4.3 invokes cis or trans rules at

103

Algorithm 4.2 Node Resolution

1: procedure CHECK RESOLUTION(node ∗ n)
2: r ← 2
3: d1← n.dim
4: subcells← level1_subcells(n)
5: if ∀i ∈ [0, 2)subcells[i].leaf then return
6: else
7: if ∀i, j ∈ [0, 2)subcells[i].dim 6= subcells[j].dim then return
8: else
9: if ∀i ∈ [0, 2)subcells[i].dim 6= d1 then

10: res← 4
11: d2 = subcells[0].dim
12: subcells← level2_subcells(n)
13: if ∀i ∈ [0, 4), subcells[i].leaf then return
14: else
15: if ∀i, j ∈ [0, 4]subcells[i].dim 6= subcells[j].dim then return
16: else
17: if ∀i ∈ [0, 4)(subcells[i].dim 6= d2 ∧ subcells[i].dim 6= d1) then
18: res← 8
19: d3 = subcells[0].dim
20: end ifreturn
21: end if
22: end if
23: end if
24: end if
25: end if
26: end procedure

Algorithm 4.3 CisTran Rules

1: procedure CISTRAN(node ∗ n)
2: split_dim← n.dim()
3: entry ← n.entry()
4: exit← n.exit()
5: axis← n.axis()
6: if thenopposite(split_dim, entry, exit)
7: TRANS(n)
8: else
9: CIS(n)

10: end if
11: end procedure

104

a node depending on whether the entry and exit faces are along adjacent or opposite
faces. The algorithm 4.2 is used to identify clusters of 4 or 8 sub cells. At each node,
we check the splitting dimensions of its sub cells at the next two levels of recursion
if they are non-terminals. If all the sub cells at a particular level have the same split-
ting dimension and it is not equal to the dimensions at the previous levels, then, we
increase the resolution r of the node to 2∗ r. r is initialized to 2 for a non-terminal node
in the tree. If the resolution returned is 4, then we have identified a group of sub cells
that lie in a plane. If the resolution is 8, then the sub cells lie at the corners of a cube,
forming a cluster of 8. The pseudo-code in algorithm 4.1 is the method that invokes
the 2D and 3D Hilbert rules if clusters were found in the kd-tree. Figure 4.5 shows
GenSFC traversing a set of points that are equi-distant from each other. This could
represent a finite-difference mesh where the SFC traverses the centroids of mesh ele-
ments. Figure 4.6 is the traversal of a uniform distribution of points in 3D, where point
co-ordinates are random numbers in a volume ranging from 0− 1000. The figure 4.7 is
a uniform distribution with a cluster in the lower left corner. GenSFC traverses this do-
main without large jumps where the distributions change. Transition from the cluster
to the rest of the domain is smooth.
Algorithm 4.4 Recursive SFC Construction

1: procedure TRAVERSE(node ∗ n)
2: if n.leaf then return
3: else
4: r ← CHECK RESOLUTION(n)
5: if thenr == 8||r == 4
6: subcells← LOOKAHEAD OPTIMIZATIONS(n)
7: else
8: subcells← CISTRAN(n)
9: end if

10: end if
11: for doi← 1, subcells.size()
12: TRAVERSE(subcells(i))
13: end for
14: end procedure

105

4.4 3D SFC EMPIRICAL EVALUATION

In this section we present several test cases which address the problem of partition-
ing large datasets. The data is represented as a mesh of points, with elements and
neighbors defined for each element. Empirical evaluation was done on the sequential
implementation and not the parallel versions. The experiments in this section evaluate
partitioning overheads (execution time and memory consumption) as well as the qual-
ity of partitions. All experiments in this section were performed on TACC’s Stampede1
cluster. The compute nodes of Stampede1 contain two Intel Xeon E5 Sandy Bridge pro-
cessors [84]. Measurements of partitioning overheads (memory and partitioning time)
were conducted on a single Sandy Bridge compute node.

We used Metis with its default tuning parameters, i.e. randomized heavy edge
matching algorithm for coarsening and about 20 iterations of greedy refinement [29].
Between SFCs GenSFC was compared with two implementations of Morton Order.

One of the implementations, generated bit-string keys by interleaving the binary
values of node co-ordinates [93]. The co-ordinates of the centroid of a tetrahedron
were converted to 64-bit strings by rounding floating point values. Concatenated key
strings (3 ∗ 64 = 192) bits wide, were sorted using STL sorting routines.

The other implementation was based on GenSFC. We built the kd-tree and per-
formed its in-order traversal for sorting them by Morton order. All experiments in
this section are sequential. We have used midpoint splitters along the dimensions of
maximum spread.

4.4.1 Structured Meshes

Structured meshes were generated by fixing the number of elements in each dimen-
sion and the number of neighbors per element (referred to as stencil). We used sym-
metric and asymmetric structured meshes for these experiments, with 7 neighbors per
element. To clarify, a 7-point stencil has one neighbor in each direction (+x,-x,+y,-y,+z
and -z). A mesh is considered symmetric if it has the same extent in all dimensions,
otherwise it is treated as an asymmetric mesh.

The first set of experiments measures the partitioning overheads of SFCs vs multi-

106

level schemes. Two meshes were used for this purpose, a 100x100x100 mesh with
1000000 elements and a larger 200x200x200 mesh with 8000000 elements, both having
7 neighbors per element. The graph in figure 4.8 contains a plot of the memory con-
sumed during graph partitioning by Metis and SFCs for both meshes. Memory used
by a partitioning algorithm includes storage space for the mesh dataset along with any
auxiliary data structures required by the algorithm. For a given mesh, the memory
consumed by Metis is a function of the number of partitions. The amount of memory
used by SFC algorithms is independent of the number of partitions. Between the three
partitioners, our implementation consumes more memory, has lower data movement,
which resulted in lower partitioning time. The trade-offs between memory consump-
tion, data movement and execution time become apparent as we increase the size of the
dataset. Notice the difference in performance of the three algorithms for 200x200x200
mesh.

Figure 4.8: Memory Consumption of Metis partitioner for 100x100x100 mesh and
200x200x200 mesh

The quality of SFC partitions are comparable to Metis partitions for 100X100X100

mesh, observations are recorded in tables 4.1, 4.2 and 4.3. Between Morton and GenSFC,
our partitions have lower degree and communication volume. For meshes where el-
ements have equal weights, SFC partitions guarantee load balance, i.e. the difference
between maximum and average loads of a partition is at most one mesh element. For

107

Figure 4.9: Partitioning Time for 100x100x100 mesh and 200x200x200 mesh

#cores avg_load max_load max_deg max_edge_cut
512 1953.125 1954 20 1286

1000 1000 1030 20 842
1024 976.5625 1005 20 838
2000 500 515 24 554
2048 488.28125 502 21 542
4096 244.140625 251 21 334
5000 200 206 22 302
6000 166.67 171 23 262
8192 122.0703 125 23 216

16384 61.035 62 23 142
32768 30.5175 31 22 91

Table 4.1: Metis Results for Structured Mesh (100x100x100) 7-point stencil

108

#cores avg_load max_load max_deg max_edge_cut
512 1953.125 1954 15 1380

1000 1000 1001 17 892
1024 976.5625 977 16 884
2000 500 501 16 574
2048 488.281 489 17 566
4096 244.140 245 17 314
5000 200 201 17 314
6000 166.67 167 18 282
8192 122.0703 123 19 232

16384 61.035 62 18 150
32768 30.5175 31 18 92

Table 4.2: Morton Results for Structured Mesh (100x100x100) 7-point stencil

#cores avg_load max_load max_deg max_edge_cut
512 1953.125 1954 12 1218

1000 1000 1001 15 828
1024 976.5625 977 14 800
2000 500 501 15 536
2048 488.281 489 15 516
4096 244.140 245 15 354
5000 200 201 16 310
6000 166.67 167 15 270
8192 122.0703 123 15 214

16384 61.035 62 16 150
32768 30.5175 31 16 96

Table 4.3: GenSFC Results for Structured Mesh (100x100x100) 7-point stencil

109

Metis, maximum load imbalance is tuned for the default value of 3percent.

Figure 4.10: Edge Cut of 100x100x100 mesh partitions
#cores avg_load max_load max_deg max_edge_cut
1000 8000 8001 15 3508
1024 7812.5 7813 17 3468
2000 4000 4001 15 2260
2048 3906.25 3907 16 2240
4096 1953.125 1954 17 1400
5000 1600 1601 17 1194
6000 1333.33 1334 18 1072
8192 976.56 977 17 892

16384 488.281 489 17 568
32768 244.006 245 17 360
65535 122.07 123 18 232
131070 61.036 62 19 150

Table 4.4: Morton Results for Structured Mesh (200x200x200) 7-point stencil

The results for 200X200X200 mesh are presented in tables 4.4 and 4.5. Between the
two space-filling curves, our algorithm produces consistently better partitions than
Morton. Partitions have lower degree and edge-cut values for all process counts, in-
cluding non-powers of 2, when gensfc partitions are spread across multiple subtrees of
the kd-tree.

The third experiment in this category, uses an asymmetrical mesh with different
extents in each dimension. We used an asymmetric mesh of size 200X100X150. Results
are recorded in tables 4.6 and 4.7.

The difference between Morton and gensfc partitions is more apparent when the

110

#cores avg_load max_load max_deg max_edge_cut
1000 8000 8001 15 3316
1024 7812.5 7813 12 2718
2000 4000 4001 15 2128
2048 3906.25 3907 12 1920
4096 1953.125 1954 13 1224
5000 1600 1601 16 1192
6000 1333.33 1334 16 1038
8192 976.56 977 16 800

16384 488.281 489 16 516
32768 244.006 245 16 354
65535 122.07 123 18 214
131070 61.036 62 17 150

Table 4.5: GenSFC Results for Structured Mesh (200x200x200) 7-point stencil

#cores avg_load max_load max_deg max_edge_cut
1000 3000 3001 15 1994
1024 2929.687 2930 15 1990
2000 1500 1501 16 1284
2048 1464.843 1465 16 1264
4096 732.421 733 16 780
5000 600 601 17 698
6000 500 501 18 596
8192 366.21 367 17 520

16384 183.105 184 17 342
32768 91.502 92 18 208
65535 45.77 46 18 134

Table 4.6: Morton Results for Asymmetric Structured Mesh (200x100x150) 7-point
stencil

111

#cores avg_load max_load max_deg max_edge_cut
1000 3000 3001 16 1832
1024 2929.687 2930 15 1796
2000 1500 1501 17 1164
2048 1464.843 1465 16 1152
4096 732.421 733 16 720
5000 600 601 17 622
6000 500 501 18 560
8192 366.21 367 17 458

16384 183.105 184 17 302
32768 91.502 92 18 190
65535 45.77 46 18 120

Table 4.7: GenSFC Results for Asymmetric Structured Mesh (200x100x150) 7-point
stencil

Figure 4.11: Edge Cut of 200x100x150 mesh partitions

112

meshes are asymmetric. The edge cuts of SFC partitions for 200X100X150 mesh are
plotted in figure 4.11. Morton order is defined on meshes of dimensions that are pow-
ers of two. For non-powers of two, the discontinuities in the curve resulted in parti-
tions with higher degree and edge-cut.

4.4.2 Unstructured Meshes

Figure 4.12: Partition time for unstructured tetrahedral mesh with 100745239
elements

We used tetrahedral meshes generated using Tetgen [94] for empirical evaluation.
Uniform random distributions of points were provided as inputs to Tetgen, which con-
structed tetrahedral meshes by triangulating them (Delaunay methods). The Delaunay
algorithm used by Tetgen has options to improve the quality of the mesh by refining
it and adding Steiner points [94]. We used Metis as baseline for comparing quality of
partitions. Each element has exactly four neighbors with which it shares a common
face. We have included only face neighbors in our calculations for degree and edge-
cut.

Input to space-filling curves is a set of points which correspond to centroids of mesh
elements. Traversal of these points is a traversal on the tetrahedrons since elements are
not split. When the curve is sliced, we get a partition of the mesh elements. To improve
the partitioning time of space-filling curves for large meshes, kd-tree construction was

113

modified to reduce data copying and total memory consumption, described in the ear-
lier chapters. The plot in figure 4.13 compares partitioning time for the two Morton
order implementations for 50million elements.

Figure 4.13: Morton order partitions for unstructured tetrahedral mesh with 51443520
elements

Figure 4.14: Edge Cut of unstructured mesh partitions (100m elements)

Partition qualities of SFC and Metis were compared for a tetrahedral mesh with
100million elements, shown in figures 4.14 and 4.15. Metis partitions had consistently
lower edge-cut values. The measured values are tabulated in the tables 4.8, 4.9 and

114

#cores avg_load max_load max_degree max_edge_cut
512 196768.044 196769 33 23328
800 125931.548 125932 33 17528

1000 100745.239 100746 34 15232
1024 98384.022 98385 35 15008
1500 67163.492 67164 34 11696
2000 50372.619 50373 33 9528
2048 49192.011 49193 34 9438
2500 40298.095 40299 33 8198
3000 33581.746 33582 33 7322
4096 24596.005 24597 34 5986
5000 20149.047 20150 35 5286
6000 16790.873 16791 34 4780
8192 12298.002 12299 34 3880
16384 6149.001 6150 34 2440
32768 3074.5 3075 33 1576
65536 1537.25 1538 35 1022
131072 768.625 769 35 690
262144 384.312 385 36 442

Table 4.8: Morton Results for Unstructured Mesh with Tetrahedral elements
#cores avg_load max_load max_degree max_edge_cut

512 196768.044 196769 26 22610
800 125931.548 125932 26 17484

1000 100745.239 100746 26 13944
1024 98384.022 98385 26 14066
1500 67163.492 67164 26 10654
2000 50372.619 50373 25 9220
2048 49192.011 49193 25 9188
2500 40298.095 40299 26 7688
3000 33581.746 33582 25 7200
4096 24596.005 24597 27 5854
5000 20149.047 20150 27 5142
6000 16790.873 16791 26 4438
8192 12298.002 12299 26 3614
16384 6149.001 6150 26 2378
32768 3074.5 3075 27 1552
65536 1537.25 1538 27 982
131072 768.625 769 26 634
262144 384.312 385 27 432

Table 4.9: GenSFC Results for Unstructured Mesh with Tetrahedral elements

115

#cores avg_load max_load max_degree max_edge_cut
512 196768.044 201297 21 13190
800 125931.548 129145 22 9632

1000 100745.239 103181 21 8628
1024 98384.022 101164 21 8206
1500 67163.492 68944 23 6662
2000 50372.619 51707 22 5450
2048 49192.011 50502 22 5364
2500 40298.095 41441 22 4622
3000 33581.746 34507 22 4124
4096 24596.005 25334 22 3602
5000 20149.047 20752 22 3078
6000 16790.873 17295 26 2772
8192 12298.002 12667 25 2386
16384 6149.001 6333 27 1440
32768 3074.5 3166 27 974
65536 1537.25 1583 32 654
131072 768.625 791 33 436
262144 384.312 395 35 272

Table 4.10: Metis Results for Unstructured Mesh with Tetrahedral elements

Figure 4.15: Max Degree of mesh partitions

116

4.10. Between the two space-filling curves, GenSFC has lower edge-cut and degree
compared to Morton. This is due to better clustering and locality in our curves. The
maximum degree of Metis partitions increased at large number of partitions. GenSFC
had the lowest communicating neighbors for partitions >= 6000.

4.5 PARALLEL CONSTRUCTION OF GENERAL SPACE-FILLING CURVES

#threads tree_time trav_time total
8 8.05007 0.25999 8.31006

16 8.08956 0.14347 8.23303
32 4.71578 0.0935593 4.8093393
64 2.48088 0.148985 2.629865

128 1.58521 0.105974 1.691184
256 2.86065 0.11795 2.9786

Table 4.11: Parallel SFC traversal time for 10million points, bucket size=32

Figure 4.16: Parallel SFC on 256X256X256 mesh and 10m points, single-node
performance

Hierarchical domain decomposition using kd-trees was discussed in detail in pre-
vious chapters, along with rules for a 3D space-filling curve to traverse them. In this
section, we discuss the cost of constructing these curves in parallel.

Given BUCKETSIZE = b, the average number of leaves in the kd-tree is dn
b
e.

Assuming a balanced tree, the average depth of a tree with dn
b
e leaves is log(n

b
). Each

bucket or leaf node is visited at most once during traversal. Time taken to reach a leaf

117

node is equal to its depth in the tree, log(n
b
). Average cost of sequential tree traversal,

Ttrav is :

Ttrav =
n

b
∗ log(n

b
) (4.1)

Although the cost of traversal is less than the cost of tree-building, for large meshes
or point distributions, traversal can become an overhead. Following along the lines
of parallel tree-building, traversal costs can be reduced by allowing threads to traverse
subtrees in parallel. The top nodes of the tree are traversed by a single thread, assigning
directions(entry and exit) to each node. The number of top-nodes is k∗P, k >= 1 where
P is the number of threads. For the experiments in this thesis where P >= 64, we fixed
the number of top-nodes to lie between 128 − 256, 256 being the largest number of
threads per MPI rank. In the next phase, top nodes are assigned to threads which
build subtrees independently. After subtrees are built, a second pass traverses them in
parallel, creating local orders for the leaf nodes owned by each thread. These segments
are concatenated to create the final permutation of all leaf nodes in the tree.

Top nodes are traversed following a breadth-first order, assigning directions to coarse
partitions. Subtrees are traversed in depth-first order.

There are dependencies in our SFC algorithm. The entry_pt of a box, depends on
where the curve exited the previous box. For lower nodes of the tree which are tra-
versed in depth-first order, this information is not available until the entire sub-tree is
traversed. This would make the traversal algorithm sequential. To avoid this, direc-
tions and entry points are assigned to top nodes of the tree by thread0, after which
these nodes are disconnected from each other. Each tree in the forest produces a seg-
ment of the final space-filling curve. There is no further communication between
threads to determine directions in their portions of the SFC. A parallel-prefix on the
number of points owned by each thread determines locations in the permutation array
where local orders are copied.

One can further optimize the solution, by traversing sub-cells while the tree is being
built. In the current version, traversal starts after the entire tree is built.

Assuming the assignment of top-nodes to threads is load-balanced, there are at most
d n
P
e points per thread. Average number of leaf nodes per thread is d n

P∗be. Traversal
cost is the maximum across P threads. For the load balanced case, average parallel

118

traversal cost is

Ttravp = d
n

P ∗ b
e ∗ log(d n

P ∗ b
e) (4.2)

#threads tree_time trav_time total
8 123.926 38.0506 161.9766

16 121.983 40.9924 162.9754
32 95.5164 54.4375 149.9539
64 83.9269 56.55 140.4769

128 69.1433 47.69 116.8333
256 46.3058 30.811 77.1168

Table 4.12: Parallel SFC traversal time for 100million points, bucket size=100

Figure 4.17: Parallel SFC on 100m points, single-node performance

4.5.1 Testcases

The parallel SFC implementation was tested on both structured and unstructured
data in 3D. For the structured testcase, we used a regular grid, that is symmetric in
all dimensions. The grid dimensions were 256X256X256 and BUCKETSIZE = 32.
The performance of parallel SFC includes both tree building and traversal times. We
measured the performance of this implementation on a single KNL node, with differ-
ent thread counts. For the testcase with unstructured data, we sampled points from a
uniform distribution [1, 1000000000]. The SFC was used to traverse these points in par-

119

Figure 4.18: Parallel SFC on a uniform distribution of 8 billion points

allel. Although we have used points, they can also be centroids of mesh elements. The
traversal does not depend on the shape of the mesh element - co-ordinates of centroids
are sufficient. We have used two datasets - 10million and 100million points each.

The graph in figure 4.16 shows the performance of parallel traversal on a 256X256X256

grid and 10m points. Number of threads ranges from 8 to 256. Both traversals seem to
scale well with increasing thread counts. The graph in 4.17 shows the performance of
the 100m points testcase for the same number of threads. These results are tabulated
in tables 4.11 and 4.12. Besides shared memory implementations, parallel SFC traver-
sal is also done on distributed kd-trees that are split across multiple processes. After
constructing top nodes of the tree, they are assigned rules for traversal. Assignment of
rules to top nodes is deterministic and therefore a replicated computation, performed
at all processes. There is no communication involved in this step. Top nodes are dis-
tributed to processes in a load balanced manner and subtrees are built locally. For
subtree traversal, we used the shared memory implementation described here. A par-
allel SFC traversal on 8 billion points is tabulated in table 4.13. The results are also
plotted in the graph in figure 4.18. The values on the y-axis of graph 4.18 are based on
log scale.

120

#ranks th topnodes lbtime subtree init travtime total
32 64 13.5496 18.3857 815.362 0.0552484 277.092 1124.444548
64 64 7.31554667 12.6197 249.98367 0.033392033 14.7868 284.7391054
100 64 4.942162 9.04777 131.481 0.02884408 5.76071 151.2604861
128 64 4.290788 15.697054 92.66934 0.0282573 4.046772 116.7322113
150 64 3.625778 17.216508 62.96438 0.02017692 3.1467006 86.97354352
200 64 3.14199 26.43724 55.5043 0.03217158 0.634003 85.74970458
256 64 2.785552 26.79584 36.38254 0.03332384 0.38015788 66.37741372
32 128 23.155 27.7989 616.395 0.0596033 129.759 797.1675
64 128 14.0693 16.1688 186.635 0.0345392 21.5781 238.4857
100 128 9.6632 14.12866 76.2568 0.03096324 4.995312 105.0749352
128 128 8.160532 26.41452 56.06118 0.02689906 1.983812 92.64694306
150 128 7.30167 24.79238 57.51528 0.02695494 1.6494634 91.28574834
200 128 5.897814 30.05282 31.96828 0.02426034 0.5758874 68.51906174
256 128 5.237004 34.56682 19.73738 0.02584964 0.50309744 60.07015108
32 256 16.358 53.4606 236.004 0.0652721 59.9075 365.7954
64 256 8.98341 31.2315 52.4176 0.0435525 8.85853 101.5346
100 256 6.418946 23.20536 45.4614 0.04460024 2.924508 78.05481424
128 256 5.408766 33.33038 24.8794 0.04159662 0.454452 64.11459782
150 256 5.025954 37.23808 27.99508 0.04817824 0.5353426 70.84263484
200 256 4.306316 41.9783 21.42474 0.04149962 0.3287752 68.07963082
256 256 3.862756 36.50002 11.40896 0.04921726 0.219206 52.04015926

Table 4.13: Parallel SFC traversal time for 8 billion points, bucket size=200

121

CHAPTER 5: BENCHMARKS

In this section we discuss suitable testcases for space-filling curve partitions. There
are several applications in scientific computing that use space-filling curves, espe-
cially Morton order [95], [96], [97], [98], [99], [100], [101], [102]. These are usually
adaptive computations which require frequent re-partitioning, e.g [17]. We have used
miniapps [103], which are stripped down versions of large applications, as testcases.
These programs are benchmarks for analysing computation costs, communication costs
or both in the applications that they model. Such benchmarks help in isolating and
identifying potential bottlenecks in large applications. They are fertile environments
for developing and testing new algorithms, programming models, etc. We used bench-
marks to evaluate various overheads of load-balancing and data partitioning. Later,
we used them for developing low overhead hybrid algorithms that involve both dis-
tributed and shared memories. The objective is to reduce the total execution time of
parallel programs. These are the observations we have had from our experiments with
benchmarks :

1. Reduce communication between processes by using better data decompositions.

2. Reduce load-balancing overheads by keeping the cost of load-balancing decisions
to a minimum.

3. Reduce frequency of re-partitioning by identifying the best timesteps to load bal-
ance.

4. Reduce data migration during load balancing and re-assignment.

5. Re-write algorithms to suit the architecture of the processor.

6. Reduce synchronization and use low-overhead synchronization between threads
in a process.

7. Use data-structures that favour parallelism e.g shared queues and hash tables vs
shared stacks.

8. Use data-structures that favour spatial locality if the architecture has memory
hierarchies.

The testcases used here have simple computation kernels as we were focused on
load-balancing and communication costs. To model compute intensive kernels, com-

122

putation time can be replaced by a scaled constant factor α, which is the work per data
point, or replace the kernel routines. For the default kernel, α = 1. Default kernels
compute the average of a measured parameter, over a pre-defined stencil. Testcases
are iterative in nature, where computation and communication are repeated over many
timesteps. We have identified two types of testcases based on workload distribution
and its rate of change. Total computation work per partition is defined as the number
of data points multiplied by the work per data point.

1. Static Workload - Total workload is constant in these applications. Load-balancing
is performed once to distribute the workload across partitions. Processes per-
form computation and communication at every iteration/time-step without any
changes to the workload. Poisson process [104] on a structured mesh is an ex-
ample for static workload. There are two ways in which computation and com-
munication can be arranged - blocking kernel and non-blocking kernel, shown in
algorithms 5.1 and 5.2. A blocking kernel performs computation and commu-
nication in stages. Threads synchronize at a barrier until the computation phase
is over. They enter communication routines together, exchange boundaries and
update their blocks with new data from neighbors. In these kernels threads are
idle until remote messages are received. A faster approach in some cases is to
overlap computation and communication. If using MPI for communication, non-
blocking messages containing boundaries are posted before computation. Once
the computation step is over, threads wait for communication to complete. The
messages received are used to update boundaries of blocks. Processes require ad-
ditional buffers to receive and save incoming data when there is overlap. If pro-
cesses synchronize between computation and communication stages messages
can be ordered and partial results accumulated without allocating extra memory
to store messages from remote neighbors. There is a trade-off between these two
approaches. We pick one over the other depending on the number of parameters
observed and total message size. For large messages, if the communication cost
is predominant, overlapping the two may be a better option. In our testcases,
blocksizes are non-trivial and there are 10 observed parameters at every point.
We have overlapped communication and computation stages in the stencil rou-
tine (referred to as kernel here) for all testcases. For other code sections, we have
used the blocking model, e.g mesh refinement. Refinement algorithms are ex-
plained in detail later, but to be brief, there is very little computation involved in
these methods. They are communication-based, with short messages exchanged

123

until consensus is achieved. The pseudo-codes below show the difference be-
tween these two kernels in the way they are programmed.

Algorithm 5.1 Blocking Kernel

1: procedure BLOCKING_KERNEL(ts)
2: COMPUTATION_STEP
3: COMMUNICATION_STEP
4: BOUNDARY_COMPUTATION
5: end procedure

Algorithm 5.2 Non-Blocking Kernel

1: procedure NONBLOCKING_KERNEL(ts)
2: COMMUNICATION_BEGIN
3: COMPUTATION_STEP
4: COMMUNICATION_END
5: BOUNDARY_COMPUTATION
6: end procedure

2. Dynamic Workload

Workloads can be dynamic in two ways :

(a) Total size of the mesh changes over time by the addition and deletion of
points to the domain. This may be due to changes in the underlying physics
that the mesh models, e.g : turbulence. More points are sampled in ar-
eas of rapid change, while fewer points need to be sampled from stable
regions [105]. The sampling rate may depend on the simulation timestep
as well as the parameters being monitored. Some parameters change faster
than others. All these criteria lead to different snapshots of the domain with
regions of clustering and sparse data. Each version of the mesh has differ-
ent statistics - total mesh size, number of coarse cells, number of fine cells,
maximum number of cell neighbors etc.

(b) Shape of the mesh may change over time ,e.g moving dataset in collision de-
tection problems [106], climate simulation [99], tracking problems [67]. The
total number of points may or maynot change. Load balancing for these
problems extends to changes in communication workload. We have param-
eterized communication cost using two metrics - maximum number of mes-
sages and maximum communication volume between any two processes.
Changes in shape may affect the total execution time by producing parti-
tions with large boundaries, although the computation cost is load balanced.

124

These problems may or maynot require frequent load balancing depending
on the application, i.e its ratio of communication cost vs computation cost.
We have provided an option for the programmer to request full re-partition
even if the computation cost is balanced between threads.

An example for programming adaptive meshes with dynamic workloads is pro-
vided below. There are two versions provided here - blocking and non-blocking
kernels.

Algorithm 5.3 Blocking Kernel with Dynamic Workload

1: procedure BLOCKING_KERNEL(maxts)
2: for dots← 1,maxts
3: if thents%refine_freq == 0
4: REFINE_COARSEN
5: delta← LOAD_IMBALANCE
6: if thendelta > threshold
7: REPARTITION
8: end if
9: end if

10: COMMUNICATION_STEP
11: COMPUTATION_STEP
12: BOUNDARY_COMPUTATION
13: ts← ts+ 1
14: end for
15: end procedure

All the testcases we used belong to the second category - dynamic workloads.
We have developed our own benchmarks for adaptive mesh refinement, based
on MiniAMR, from Sandia. The kernels described in algorithms 5.3 and 5.4 are
descriptions of our implementation. The refine_coarsen step marks blocks for
refinement, based on a marking function. The base implementation generated
different patterns for marking. We used some of them in the sequential version
for the sake of comparison. Otherwise, our marking function generates a set of
random points for refinement in the next timestep. Mesh points are aggregated
into blocks, where each block has a refinement level associated with it. In this
thesis we discuss refinement that is subject to one constraint : adjacent levels dif-
fer by at most one level. The refinement algorithm has a domino effect, where
refinement of a block can trigger the refinement of other blocks in the neighbor-
hood to satisfy level constraints. The algorithm terminates at steady state, when
all blocks have satisfied their level constraints. Out of all remaining blocks, those

125

Algorithm 5.4 Non-Blocking Kernel with Dynamic Workload

1: procedure NONBLOCKING_KERNEL(maxts)
2: for dots← 1,maxts
3: if thents%refine_freq == 0
4: REFINE_COARSEN
5: delta← LOAD_IMBALANCE
6: if thendelta > threshold
7: REPARTITION
8: end if
9: end if

10: COMMUNICATION_BEGIN
11: COMPUTATION_STEP
12: COMMUNICATION_END
13: BOUNDARY_COMPUTATION
14: ts← ts+ 1
15: end for
16: end procedure

which can coarsen, will be replaced. Although refinement check is performed
every refine_freq steps, addition and deletion of blocks may happen at a slower
pace depending on how the simulation evolves. This is especially true in the case
of simulations that model natural phenomenon [105]. Refinement rate may be
much higher for other simulations like car simulations [106] and [107]. A simple
implementation of the load_imbalance routine computes average and maximum
number of blocks per thread/process. Differences between maximum and aver-
age number of blocks is delta, which is the measure of load imbalance. The repar-
tition phase reassigns blocks to threads/processes following some pre-defined
order, usually Morton or Hilbert. One can choose an order that minimizes de-
gree and edge-cut of the communication graph, without increasing the cost of
re-partitioning and data migration.

5.1 MINIAMR - BLOCK-STRUCTURED AMR

MiniAMR focuses on octree meshes which are block-structured. For a given level
of refinement, mesh points are sampled from a domain with uniform resolution in all
dimensions. Let the resolution be r at level l, level l+ 1 has resolution r

2
and level l− 1

has resolution 2 ∗ r. Points are grouped into axis-parallel hypercubes, the dimensions

126

of which are configurable. All blocks have the same blocksizes, i.e the same number of
points in all dimensions. Blocks at different levels cover different volumes in the phys-
ical domain, but they contain the same number of points. If a block at level l encloses
a volume v, the same block at level l + 1 covers 1

8

th the volume v. Conversely, when
the block is at level l − 1, it covers 8 times the volume v. Since the volume per block is
not uniform, these meshes are considered separate from structured grids. The purpose
behind using blocks is aggregation of nearby points, which gives spatial and temporal
locality in the computation kernels, depending on block and cache sizes. Each block
has a halo region defined around its mesh points, which is used for exchanging bound-
aries with neighboring blocks, irrespective of whether they are remote or lie within the
same process. Blocks constituting a mesh are susceptible to refinement and coarsening
operations.

1. Refinement : Splitting of a block into 8 new blocks.

2. Coarsening : Combining a group of 8 blocks into a single block.

Both refinement and coarsening should maintain 2:1 balance between neighbor blocks,
where no two neighboring blocks differ by more than one refinement level. The miniapp
uses a 7-point stencil with at least one neighbor in each direction, except at the bound-
aries. Neighbors are defined at block surfaces. The maximum number of neighbors
in any direction is four. Relationships between refined and coarsened blocks are main-
tained using an octree. The mesh is present only at the leaves of the tree - it is the union
of all leaf nodes. Therefore, kernels are executed at leaf nodes. From the perspective of
trees, mesh refinement is better understood as tree manipulations that either remove a
sub-tree of 8 leaves or add a new sub-tree of 8 leaves.

G2

G1
G0

G3

(a) Adaptively Refined Mesh

G0

G1

G2

G3 G3 G3 G3

G2 G2 G2

G1 G1

G2 G2 G2 G2

G1

(b) Quadtree

Figure 5.1

The base implementation from Sandia has a distributed memory model with MPI for

127

inter-process communication. The program per process is sequential, with one thread
per MPI rank. The initial mesh can be a saved one from some previous simulation or
created by the user. At least one block is placed per process to initialized it. Rest of the
mesh is generated during simulation by continuous refinement and coarsening. The
dual graph of this mesh is defined using leaf blocks as vertices and their neighbors as
edges. During the simulation , blocks are refined, coarsened and data is exchanged be-
tween neighboring blocks. Workload is reassigned at fixed intervals for load balancing.
Typical overheads in this program are the following :

Computation overheads :

• Storage and accesses : The storage of mesh blocks themselves can become cum-
bersome if block sizes are large.

• Meta-data representation and accesses : The mesh meta-data describing relation-
ships need to be stored/represented efficiently.

Every operation in the benchmark accesses one or both of these data-structures. It
is important that these data structures are fast and efficient and allow quick updates
which may increase/decrease their sizes and modify access patterns.

Communication overheads :

• Refinement propagation: The refinement of a node may require refining adja-
cent nodes, in order to maintain the balance condition. These operations require
communication between a node, its siblings and its neighbors.

• Halo-exchange: Blocks exchange boundary data with their neighbors at every
time step of the simulation. Although overheads are different for each kernel
type, all variants benefit from better load balance and data locality.

The overheads from a parallel adaptation are load balancing and re-partitioning. These
depend on the data decomposition, assignment of tasks to threads/processes and map-
ping to cores. The most expensive part of load balancing is data migration to new
threads/processes, which results in communication (including cache misses).

An entire simulation of MiniAMR is divided into well-defined stages, consisting of
refinement and coarsening, stencil computation, nearest neighbor boundary updates
and load balancing. Here we discuss briefly the different stages and their contributions
to the total execution time of the simulation.

128

Let Nij be the number of blocks located at process j at timestep i and P be the num-
ber of processes/threads. Let C be the computation cost per block. The simulation is
initialized in a load balanced configuration. Let ref_freq be the refinment frequency.
Assume a model where the kernel is blocked, i.e computation and communication are
performed in stages. Let Tcompi be the computation and Tcommi

, the communication
components of the stencil phase at timestep i. Trefi and Tlbi are the refinement and load
balancing costs respectively at step i . We use the following notation; Tlbij is the load
balancing cost measured at process j during step i. The first index is the timestep and
the second index is the process id.

Let maxts be the total number of timesteps executed by the simulation. Processes
and threads synchronize after refinement, stencil and load balancing stages. The costs
per timestep are summed over the total number of timesteps and the frequency with
which each of these routines are invoked by the application.

The stencil stage is executed in all timesteps. Let Tsten be the maximum time spent
in the stencil routine by P processes accumulated over all timesteps. Similarly, Tref is
the total refinement cost for r refinements where r = d maxts

ref_freqe and Tlb is the total load
balancing cost over k load balancing steps. We have used a PRAM delay model for
communication where α is the latency and β the cost of transferring a byte across the
network. Let dij be the number of messages and mij be the number of bytes sent/re-
ceived by process j at timestep i.

Tcompi =
P

max
j=1

(C ∗Nij) (5.1)

Tcommi
=

P
max
j=1

(α ∗ dij + β ∗mij) (5.2)

Tsteni
= Tcompi + Tcommi

(5.3)

Tsten =
maxts∑
i=1

Tsteni
(5.4)

Trefi =
P

max
j=1

Trefij (5.5)

129

Tref =
r∑

j=1

Trefj (5.6)

Tlbi =
P

max
j=1

Tlbij (5.7)

Tlb =
k∑

j=1

Tlbj (5.8)

Texec = Tsten + Tref + Tlb (5.9)

For non-blocking kernels, we replace the stencil cost at step i with the following
equations. Tstenij

is the cost of stencil computation and communication on process j at
step i.

Tstenij
= max(C ∗Nij, α ∗ dij + β ∗mij) (5.10)

Tsteni
= maxPj=1Tstenij

(5.11)

This is also the model we have used for measuring time in our testcases. The syn-
chronization points in the program closely follow this model. The total execution time
should be the sum of the values for each phase.

In the next sections of this chapter, we discuss our implementations in detail.

5.2 MINIAMR IMPROVEMENTS

Although partitions have good empirical performance, sometimes they do not trans-
late well into measured execution times. These are two possible reasons why the gap
exists between predicted models and measured performance.

1. Datastructures without spatial locality. This was an issue in the base version
that made it difficult to analyse the dependence of total execution time on load

130

imbalance. Most of the execution time was spent dealing with cache misses.

2. Poor algorithm design. Algorithms with high computation and communication
complexities will contribute more towards the measured execution time. It may
be difficult to isolate the contributions from load imbalance and kernel execution
time in such scenarios.

Considerable time was also spent on developing a light-weight load balancing schemes.
Load balancing at fixed intervals without examining the load distribution is usually
wasteful.

The base version from Sandia is publicly available for download. This benchmark
was modified in stages. All optimizations and their benefits/trade-offs are discussed
in detail in the following subsections.

5.2.1 Optimization 1 : Block data structure

The base implementation uses an array of pointers for blocks. Blocks may be allo-
cated anywhere in memory, therefore all memory accesses in the program were irreg-
ular, without any spatial locality. We have used flat arrays to store mesh elements and
their data. The mesh meta-data (octree) is not stored explicitly, instead it is maintained
using references to mesh elements by storing their keys. The mesh data structure has
two levels :

1. Dictionary for locating mesh elements, neighbors, sibling and ancestors - the oc-
tree links.

2. Mesh data is stored in contiguous blocks. Assuming symmetric blocks, each
block has a local co-ordinate system with dimensions ranging from 0 − (b − 1),
where b is the blocksize. Blocks themselves have centroids derived from their
positions in the global mesh. Global-to-local address translation is computed us-
ing the dictionary. When a neighbor block with centroid (x, y, z) is located in the
mesh, we are indirectly accessing points in the range [x−b/2, x+b/2), [y−b/2, y+
b/2), [z − b/2, z + b/2).

Each block in the AMR tree has a unique key associated with it, that is derived from
its relative position in the octree. The dictionary uses these keys as hash functions to

131

locate the mesh block in memory. If blocks need to be re-ordered for better cache re-
use, SFC keys can also be used as hash keys. One can define various traversals on the
AMR tree to map keys to blocks. The only criteria here is to keep block relationships
intact. Some mappings are better than others at maintaining spatial locality in block
accesses. For good mappings, keys assigned to blocks derived from the same coarse
block should be numerically closer than keys assigned to neighboring subtrees. This is
natural for SFC orders. We have used both Morton and Hilbert space-filling curves for
key assignment.

All keys local to a process are stored in the dictionary. For typical problem sizes, the
dictionary is small enough to fit in lower level caches where it can be re-used. Every
access to a block, first looks for its key in the dictionary to identify the location of the
block in memory. Although each block access requires at least two reads, this did not
create additional overheads for us, because of cache re-use. It also provided a natural
mechanism for global-to-local address translation and vice-versa. There is no need for
explicit communication to locate non-local neighbors [93], [95]. Keys within a dictio-
nary are arranged according to the order of blocks in memory. In our implementations,
this is usually some space-filling curve order. If the dictionary is a vector of size n, at
most O(n) accesses are required to locate a block. In our sequential implementations,
we have used binary search to locate keys. This reduced the average access time to at
most log(n) per block. We used a balanced binary tree implementation from Boost to
store local keys [108].

A diagram showing the two-level data structure is provided in figure 5.2.

Figure 5.2: Two level Mesh Datastructure

In the sequential version, blocks are not arranged in memory in SFC order.

132

5.2.2 Optimization 2 : Refinement/Coarsening Algorithm

Figure 5.3: Test case 1 on Vesta and Stampede for Refinement and Coarsening

Figure 5.4: Test case 1 on Vesta and Stampede for Stencil Computation

Each AMR block is in one of three states - refine, coarsen and stay. All blocks are
marked for coarsening by default. Some blocks in the domain may be marked for
refinement or forced to stay at the current level. These blocks propagate their state
information to siblings and neighbors. When blocks receive state updates from sib-
lings and neighbors they store these values locally and use them to update their own
states. For every refinement phase, this algorithm runs iteratively until a steady state
is reached when there are no more transitions. If all siblings can coarsen, the entire
group of 8 subcells is replaced by a single coarse cell, with updated neighbors and
datapoints. Blocks update their neighbors keys depending on the state information
received. The base implementation uses a version that involves both leaf nodes and
non-terminals for decision making. Each leaf node sends its state to its parent node

133

which decides the final state of its children. The algorithm is iterative and terminates
when there are no more messages exchanged between blocks. This implementation
suffered from high communication costs. The block decomposition of leaf nodes was
entirely different from that of non-terminals. This irregular communication lead to a
slow implementation. Moreover messages were not aggregated. The maximum de-
gree and edge-cut of the communication graph were very high. We had to re-design
the algorithm for these reasons.

A pseudo-code for the improved refinement/coarsening algorithm is provided be-
low:

The algorithm has two phases: the Consensus phase and the Addition-Deletion phase.
Our implementation is similar to the prioritized ripple propagation algorithm in [109],
but we have lower overheads due to better data layout and nearest neighbor commu-
nication. Besides, the algorithm in [109] does not allow blocks to coarsen.

1. Consensus

This phase is iterative and repeated until quiescence.

Each process maintains a local queue of blocks marked for refinement or forced
to stay at the current level. A single iteration of the consensus algorithm performs
the following steps :

(a) Process entries in the local queue until it is empty.

(b) Update states of neighbors that are local.

(c) Aggregate messages to non-local neighbors in message queues. A message
queue is maintained for every neighbor in the communication graph.

This communication is highly localized and can be executed concurrently for dif-
ferent regions of the mesh since the region of influence of a block is limited. We
make two assumptions here, that the input mesh is balanced and a block changes
by no more than one level during a single refinement phase.

The messages aggregated by a process during an iteration are exchanged using
Sparse Collective routines [110] in MPI. This exchange of states could trigger fur-
ther refinement of blocks, which are added to local queues for processing in the
next iteration. The consensus algorithm terminates when local queues and mes-
sage queues on all processes are empty. This state is defined as quiescence: when

134

all processes in the system are idle. We check for quiescence at the end of every it-
eration of the consensus algorithm. A pseudo-code for the algorithm is provided
below (Algorithm 1).

Algorithm 5.5 Parallel Consensus Algorithm

1: procedure PARALLELCONSENSUS
2: while ¬Terminate do
3: while ¬q.empty() do
4: n = q.pop()
5: nbrs = blocks[n].nbrlist()
6: sibs = blocks[n].slist()
7: for all nbr ∈ nbrs do
8: if nbr.is_local() then
9: local_update(n, nbr)

10: else
11: aggregate_msg(nbr)
12: end if
13: end for
14: for all sib ∈ sibs do
15: if sib.is_local() then
16: local_update(n, sib)
17: else
18: aggregate_msg(sib)
19: end if
20: end for
21: end while
22: MPI_Neighbor_alltoallw()
23: MPI_alltoall(quiescence)
24: end while
25: end procedure

There are non-iterative versions of the parallel-consensus algorithm [111], [112].
However, in practice we found our algorithm converges quickly since refinement
and coarsening are localized operations.

2. Addition/Deletion of blocks

Refined blocks are added to the end of the block array without preserving SFC
key order. Blocks that are marked for deletion during coarsening are removed
and the holes are filled by shrinking the array. A new dictionary is created after
this phase, because block locations have changed. This phase is relatively more
expensive because blocks and data need to be copied in memory. We compared
the effects of our optimizations with the base version from Sandia on two ma-

135

chines - Vesta, which is a supercomputer at ANL based on IBM powerpc nodes
and Stampede1, a supercomputer at TACC, based on Intel Sandybridge nodes.

The graphs in figures 5.3 and 5.4 show differences in peformance between base-
line Sandia version and our version with two optimizations enabled. This test
case models an immersed moving sphere with refinement along its surface. The
refinement frequency was set to 3 time steps, although addition and deletion of
blocks took place every 6− 9 timesteps.

The version of MPI which has optimized on-node communication, Nemesis [113]
was used on both machines. We placed one MPI rank per core. All results are
reported for number of cores and not nodes. The experiments in this section show
weak scaling results with approximately 300 blocks per process. Each block has
exactly 4×4×4 grid cells and 10 variables per point. The graphs in figure 5.3 show
the total refinement time for 100 time steps on both machines. Figure 5.4 shows
the total stencil time for 100 timesteps. The compute nodes and interconnection
networks on these machines differ greatly. Hence, the comparisons are relevant
and give valuable insights into useful program optimizations for each machine.

5.2.3 Optimization 3 : Load balancing

The frequency of load balancing is a critical determinant in the total execution time
of the simulation. In the extreme case, one could trigger load balancing after every
refinement/coarsening or have no load balancing at all. The base version partitions
leaf nodes using a recursive bi-partitioning algorithm which is executed every lb_freq
steps. Frequent load balancing creates good partitions at the cost of high partitioning
overheads. In order to balance the two competing needs, we introduce the idea of
Amortization [114] to load balancing. The cost of a load balancing phase (including
data migration) is amortized over subsequent refinement and stencil phases. Formally,
split the computation into segments of ref_reg iterations. If ref_freq is the frequency
with which the refinement algorithm is invoked, each ref_reg segment consists of k
subsegments, where each subsegment has ref_freq timesteps with stencil invocations
followed by one timestep that includes a refinement phase. The load balancing routine
is invoked at the end of a ref_reg segment if it satisfies the following cost model.
Suppose the last load balancing invocation was at the end of timestep t0, we number

136

this as subsegment 0; let Clb denote the load balancing cost and let T (t) be the time
taken for the execution of subsegment t.

The next load balancing phase will be at the end of subsegment k where tk is the first
timestep that :

Clb ≤
k∑

t=1

(T (t)− T (1)) (5.12)

This equation essentially captures by how much the current partition deviates from
a good partition that was obtained immediately after load balancing, and when the
difference is large enough, it automatically triggers load balancing.

Figure 5.5: Test case for amortized load balancing on Stampede1

The graphs in figure 5.6 show the execution times obtained for a simulation with 800

time steps on Stampede1.

Both test cases had an initial domain covered by 64 × 64 × 64 blocks and created a
mesh with 220, 000 blocks (14, 080, 000 points). The explosion started as a point located
at the center of this domain. The base case performs load balancing once every 6 time
steps. The difference between test cases a and b is in the rate at which the explosion
front expands. This affects the rate of change of computational load in the domain. Test
case a evolves slower than test case b. In the case of test case b, frequent load balancing
resulted in higher data migration costs. Therefore, we obtained better results with
amortized load balancing for this experiment. To benefit from amortization, the load
balancing overhead should be low compared to the other phases, including decision
making and reassignment costs. This will allow the amortization equation to quickly
detect variations in load across partitions.

137

The cost function Clb can detect not only changes in load, but also changes in the
total cost, including overheads from bad communication patterns (high degree and
edge-cuts). The implementation of load balancing is relatively cheap. Every MPI rank
sorts and computes the ranks of its local keys on the global SFC. Ranking blocks using
SFC keys is a simple operation. An inclusive scan is performed on the sorted SFC keys,
followed by local ranking. After ranking keys, the SFC is sliced into equal length seg-
ments. AMR blocks are packed and transferred to processes that own their keys.

5.2.4 Optimization 4 : SFC Partitions and Splitters

Figure 5.6: Clustered mesh on Vesta and Stampede1

Another optimization is the use of space-filling curve keys to order AMR blocks and
the parallel generation of block keys. When new blocks are added during refinement,
the keys for refined blocks are generated by concatenating three bits to the parent key,
according to some space-filling curve. Position of the new block on the SFC is deter-
mined by the location of its key in the sorted key list. This technique was explored in
other AMR packages like [101]. We ran the simulation for 800 timesteps with incre-
mental SFC refinement when new blocks were added and deleted. Experiments were
performed using two space-filling curves, Morton and GenSFC. For regular meshes,
there was no difference between the execution times. But for clustered meshes, gensfc
partitions had lower maximum degree and communication volume. The test case used
for comparing curves, models turbulent flows by simulating the slow movement of a
dense cluster of points. This test case has much more clustering than others. We cre-
ated a slightly asymmetrical domain which is longer in the X dimension than Y and Z

138

dimensions. Our domain size is 32 × 16 × 16 and we used 5 levels of refinement. The
cluster is modeled using a sphere located at the lower left corner of the pipe. It slowly
moves along the x direction as the simulation evolves. Refinement occurs throughout
the volume of the sphere instead of just the boundary. The SFC is skewed with most
of the load lying in the volume of the sphere. This leads to irregular communication
since the few partitions that cover the remaining geometry of the domain communicate
with those covering the cluster and end up as hotspots in the communication graph.
They have very high degrees compared to the other partitions which lead to increased
refinement and stencil time. The Morton order we used had a midpoint splitter. We
used two versions of GenSFC, with midpoint and median splitters. The median split-
ter generated partitions with uniform communication degree and edge-cut. This test
case reached a final mesh size of 500000 blocks (32000000 cells) both on Vesta and Stam-
pede1. The results shown here are over a small simulation window of 800 time steps
where the position of the cluster does not vary significantly. We used amortized load
balancing for GenSFC partitions.The use of amortization and a median splitter reduced
the execution time of the simulation by a maximum of 49% and an average of 32% on
Vesta. We were able to improve the performance of this test case on Stampede1 by a
maximum of 90% and an average of 69%.

5.3 MULTI-THREADED ADAPTIVE MESH REFINEMENT

This section discusses the distributed and multi-threaded versions of our AMR bench-
marks. Baseline code is our distributed version discussed in the previous section, with
one thread per MPI rank. We have not compared against the Sandia implementation
in this section. All experiments were carried out on Stampede2 and measurements are
consistent with the equations in 2.2. Introduction of multi-threading to the benchmark
required considerable programming effort in terms of understanding dependencies in
the algorithms as well as architecture of many-core nodes. All code sections were par-
allelized using threads, except the communication routines.

We adopted a SIMD [78] programming style for this program for the following rea-
sons :

1. The baseline implementation of AMR has well-defined synchronization points
where it is necessary for active threads to halt and collaborate before proceeding

139

with any further computation

2. All experiments were carried out on Intel KNL nodes, which are many-core with
at most 8 NUMA nodes and 4 NUMA regions. Each KNL node consists of 34
tiles, two cores per tile and 4 hardware threads per core. All the cores on a tile
share 1MB L2 cache. It was important to ensure that none of the cpus on the
node are idle at any point during execution. Also, we took extra care to load bal-
ance workload between threads, and maximize cache re-use by mapping nearest
neighbors to the same tile.

3. Construct testcases for hierarchical partitioning, enabled by space-filling curves.

4. Build a benchmark with little thread synchronization and scheduling overheads,
make the algorithms contention-free and use lock-free data structures if nec-
essary. An important observation from the previous chapters is to reduce re-
partitioning overheads, include amortization and other load-balancing schemes
in the AMR simulation.

5.3.1 Memory Model

The approach used for multi-threading is similar to that described for kd-trees. Posix
threads were used as sequential units of execution, where each thread has thread-local
parameters, variables, as well as pointers to shared data structures. Co-ordination be-
tween threads is achieved with shared-memory mail-boxes, i.e by reading and writing
from shared locations. There are no guarantees on the memory model unless spec-
ified by the programmer. Shared variables which are multi-reader and multi-writer
are declared as atomic with a memory consistency model selected by the programmer.
We used sequential consistency [115], [116] for all atomic variables in our programs,
which were mainly shared counters, pointers in linked lists and block addresses so
that the view within a thread is sequential for such variables. The consistency model
for other locations with mutually exclusive accesses, including multi-reader locations
is left unspecified. For multi-reader memory locations, explicit memory fences were
used to ensure loads return the most recent values [117]. Three basic synchronisation
primitives are used in these programs - reductions, prefixes and barriers. This has been
explained in detail in the previous section along with performance numbers for each
primitive.

140

The refinement/coarsening and load balancing algorithms went through several
changes during the transition from sequential to multi-threaded. Stencil computation
was straight-forward to parallelize. Similar to the sequential AMR discussion, various
levels of optimizations were introduced and the pros and cons of each were analysed
in isolation and with each other.

Finally, two versions of multi-threaded AMR were used for experiments :

Figure 5.7: Concurrent Linked list of AMR blocks

1. Shared block array : Memory for AMR blocks local to an MPI rank are allocated
in chunks and stored in a single concurrent linked list 5.7. Blocks are numbered
starting from 0 to N − 1 on each process. These blocks are assigned to threads
in the order of thread ids. New blocks may be added during refinement and
existing blocks may be deleted during coarsening. Frequent changes in the num-
ber of blocks leads to load imbalance which is removed by reassigning blocks
to threads. Load balance across MPI ranks is handled by the amortization rou-
tine which triggers reassignment automatically. All accesses to the linked list of
blocks are through atomic load/store instructions. In this version of AMR, only
the leader thread (thread 0) can add and delete block chunks. Mapping of blocks
to threads is unique, any thread can traverse the linked list in parallel, access the
blocks it owns and modify its data. This works out fine, because the simulation
progresses in stages. Links are added or deleted from the list only after refine-
ment. Thread 0 counts the number of new blocks required and attaches them to
the list. This is a constant time operation. After blocks are allocated, threads copy
their data in parallel to the list. They synchronize after refinement and update the
dictionary.

2. Thread local arrays of blocks : In this version, instead of a single linked-list, we
maintain a vector of linked-lists, one list for each thread. Like in the previous
implementation, blocks are allocated and deleted in chunks. The addition and
deletion of blocks after refinement are contention-free operations local to each
thread.

141

5.3.2 Multi-threaded Algorithms for AMR

We have tried to make the algorithms as contention free as possible by partitioning
blocks between threads, where each thread owns a set of blocks. Auxiliary vectors
were used as scratchpad to remember state information during the execution of these
algorithms.

5.3.2.1 Multi-threaded Refinement

We have tried to make the algorithms as contention free as possible by partitioning
blocks between threads, where each thread owns a set of blocks. Auxiliary vectors
were used as scratchpad to remember state information during the execution of these
algorithms.

5.3.2.2 Multi-threaded Refinement

The pseudo-codes for modified refinement algorithms are provided in algorithm 5.6
and 5.7. Thread_prefix is a function that computes parallel prefix over the values pro-
vided by each thread. Each block has integer fields it shares with each of its neighbors
for communicating with them, called nbr_ref. These fields store refinement states of
block neighbors as {−1, 0, 1}. This communication is contention free since fields are
updated by neighbors and read by owning threads at different points in time. These
writes and reads are ordered and separated in time by a fence and a thread barrier.
The vector refine_list marks all blocks that are ready for a transition in the current iter-
ation. If a block is marked for transition (nbr_ref = 1), it enters the refinement routine
and conveys this information to siblings and neighbors. If siblings or neighbors are
local, these exchanges occur through reads and writes. If they are remote, a message
is created for each non-local sibling and neighbor and aggregated like in the previous
version. Message aggregation is done in parallel by threads. After traversing through
blocks once, threads block and enter a round of update, called State_transition, where
they read nbr_ref fields and update their own states. The State_transition routine is in-
voked twice in this implementation. The first execution of this routine is to incorporate
local neighbor updates. The second execution is after exchanging remote neighbor up-
dates. Whenever a block transitions to stay or refine, its location in the refine_list is set.
Otherwise, the corresponding refine_list value is reset. This updated refine_list is used

142

Algorithm 5.6 Multi-threaded Consensus Algorithm

1: procedure M_CONSENSUS
2: THREAD_PREFIX(prefix,mylocal)
3: while ¬Terminate do
4: while ¬Local_Terminate do
5: for all n ∈ range[1 : mylocal] do
6: if refine_list[prefix+ n] then
7: refine_list[prefix+ n]← 0
8: nbrs = blocks[n].nbrlist()
9: sibs = blocks[n].slist()

10: for all nbr ∈ nbrs do
11: if nbr.is_local() then
12: LOCAL_UPDATE_NBR_REF(n, nbr)
13: else
14: aggregate_msg(nbr)
15: end if
16: end for
17: for all sib ∈ sibs do
18: if sib.is_local() then
19: LOCAL_UPDATE_SIB_REF(n, sib)
20: else
21: aggregate_msg(sib)
22: end if
23: end for
24: end if
25: end for
26: STATE_TRANSITION
27: end while
28: MPI_Neighbor_alltoallv()
29: STATE_TRANSITION
30: MPI_alltoall(quiescence)
31: end while
32: end procedure

143

in the next iteration.
Algorithm 5.7 local_state_update

1: procedure STATE_TRANSITION
2: THREAD_PREFIX(prefix,mylocal)
3: for all n ∈ range[1 : mylocal] do
4: sibs = blocks[n].slist()
5: nbrs = blocks[n].nbrlist()
6: for all dosib ∈ sibs
7: if thenCANNOT_COARSEN(n, sib, state)
8: blocks[n].refine← state
9: refine_list[prefix+ n]← 1

10: end if
11: end for
12: for all donbr ∈ nbrs
13: if thenREFINE_OR_STAY_BLOCK(n, nbr, state)
14: blocks[n].refine← state
15: refine_list[prefix+ n]← 1
16: end if
17: end for
18: end for
19: end procedure

In our current implementation, the refine_list is implemented as a vector, unlike
the previous worklist implementation. This made the implementation contention-free
since array locations are distinct. A multi-producer, multi-consumer concurrent queue
can become a bottleneck in the refinement algorithm if used as worklist. There are
two atomic variables that are used as entry gates to the refinement algorithm - termi-
nate and local_terminate. For an MPI rank, if all entries in its refine_list are reset, the
local_terminate variable tests true. Remote data is exchanged using an MPI_Alltoallv
call after this phase. The refine_list is examined after the second State_transition call. If
all entries in the refine_list are reset, a token variable is assigned 0, else it is assigned 1,
indicating membership in the next refinement iteration. All token variables are com-
bined using MPI_allreduce and the MAXIMUM operation. If the result is 0, then
terminate turns true. In this version, although packing and unpacking of messages is
done by threads in parallel, MPI calls are invoked only by thread 0. The remaining
threads block until the communication is over. The first set of testcases cover shared
memory performance on a single node, for various memory configurations. Intel KNL
nodes have two types of memory - DDR and MCDRAM. DDR is low latency and low
bandwidth memory, while MCDRAM has high latency and high bandwidth. A table

144

of latencies for both memory units on KNL can be found here [80].

A brief discussion of the memory modes [80] used in our experiments are provided
here:

1. Cache Quadrant : The fast memory (MCDRAM) is used as shared L3 cache, with
total size 16GB. The tiles on KNL are divided into 4 groups, hence it is also called
as quadrant mode. The cache is direct-mapped and address look-up is done in a
distributed manner in quadrants. The percentage of fast memory used as cache
is configurable. We used the configuration where the entire MCDRAM was used
as cache. This configuration gave good performance for most of the testcases
discussed in this thesis. Unless otherwise mentioned, this is the default configu-
ration in which we have used KNL nodes.

2. Flat Quadrant : This configuration has one NUMA region and two NUMA nodes
- MCDRAM and DDR. Memory allocation can be done selectively in each of these
memories depending on the size of data, and its frequency of access. For the
AMR testcases, the largest data structures are the blocks, which are frequently
read and written by every routine in every timestep. They were allocated in fast
memory and auxiliary arrays were allocated in DDR. When the fast memory was
not enough, allocation was shifted to DDR.

3. SNC4 : This configuration has 4 NUMA regions and 8 NUMA nodes - 4 DDR
nodes and 4 MCDRAM nodes.

The testcase used for on-node performance measurements had an initial mesh of
2048 blocks, blocksize is 14X14X14 and each point had 10 variables. The average num-
ber of blocks per thread is shown in the tables. The blocks are arranged in Morton order
after load balancing. We did not optimize load balancing for these experiments. The
graphs below show strong scaling for increasing number of threads per node. All mea-
surements were taken on Intel KNL nodes for a total of 1000 iterations. The reported
times are aggregated over 1000 iterations.

The tables 5.1 and 5.2 and the graph 5.8 measure the performance of the refinement
algorithm and stencil phase. New blocks created during refinement are added to the
block array in random order. At the end of the refinement stage, SFC order of blocks
is violated. Load balancing was invoked after every refinement stage to re-order the
blocks. This included sorting blocks in memory. The refinement frequency for this
testcase was 2, and load balancing was performed 500 times out of 1000 iterations. We

145

Figure 5.8: AMR Performance on single KNL node for DDR and MCDRAM, with
shared block array

#threads avg_blocks Ref.Time Stencil.time Lb.Time Total.Time
8 344 25.2134 680.301 157.067 866.692

16 172 17.7512 353.855 85.5643 459.657
32 84 14.5228 184.724 47.3972 248.213
64 43 12.0266 95.6273 28.8518 137.768
128 22 11.2854 50.1697 20.0627 82.6781
256 12 11.7977 29.5161 19.5418 62.1841
272 11 11.7816 29.484 19.4494 62.1486

Table 5.1: AMR shared memory performance : flat quadrant DDR

#threads avg_blocks Ref.Time Stencil.time Lb.Time Total.Time
8 344 24.8698 663.91 152.104 844.941

16 172 17.6279 349.369 81.5142 451.076
32 84 14.3761 182.096 47.0013 245.022
64 43 11.9677 94.5218 37.0457 144.797
128 22 11.1479 51.9063 35.6126 99.8848
256 12 10.7662 36.3458 38.1115 86.5989
272 11 11.8714 35.2775 38.0808 86.8349

Table 5.2: AMR shared memory performance : flat quadrant MCDRAM

146

changed this implementation later to lower load balancing cost. The optimizations are
explained in detail below.

#threads avg_blocks Ref.Time Stencil.time Lb.Time Total.Time
8 473 11.7909 584.12 3.33322 604.568

16 237 7.5639 321.268 2.53552 334.374
32 119 5.49214 268.981 2.15876 278.503
64 60 3.94208 185.125 1.78557 192.024
128 30 3.52678 159.139 1.7984 165.491
256 15 4.29064 131.326 2.00158 139.047
272 14 4.78033 124.817 2.65953 133.929

Table 5.3: AMR shared memory performance : SNC4 DDR
#threads avg_blocks Ref.Time Stencil.time Lb.Time Total.Time

8 473 11.8432 588.002 3.32723 608.495
16 237 7.55572 313.182 2.44411 326.179
32 119 5.40252 169.19 1.74717 178.214
64 60 3.95622 94.0587 1.26582 100.464
128 30 3.71264 66.9747 1.14642 72.8951
256 15 4.56711 46.998 1.4305 54.3404
272 14 5.06215 45.9796 1.74826 54.4818

Table 5.4: AMR shared memory performance : SNC4 MCDRAM

The second testcase is initialized to the same size, 2048 blocks. Coarsening was
turned off for this test. All measurements were performed in the SNC mode with
numa-aware memory allocation. The table 5.3 is SNC mode with DDR memory, which
uses 4 of the 8 numa nodes. All block arrays were allocated on two of the numa nodes,
without considering the cores to which threads were pinned. No memory was allo-
cated on MCDRAM. The second table has the same testcase with memory allocated on
4 MCDRAM numa nodes. The difference in performance is attributed to a couple of
factors :

1. Hierarchical load balancing, with Morton order preserved in each thread local
array

2. Cheaper load balancing, since blocks are already in sorted order across threads.

3. Careful memory allocation, arrays were allocated on the numa node closest to
the quadrant which contained the thread.

A graph containing the comparison is plotted in 5.9;

147

Figure 5.9: AMR Performance on single KNL node for DDR and MCDRAM with 8
numa nodes and thread local arrays

5.3.3 Stencil Computation

The stencil computation phase has full overlap of computation and communication.
Threads accumulate messages for remote neighbors and pack them in the send buffer
in parallel. If running with multiple MPI ranks, thread 0 on every MPI rank starts a
non-blocking neighbor collective (alltoallv) to exchange these messages. While waiting
for the nearest neighbor communication to complete, threads work on computing the
stencil at points within the volume of each block. They also exchange boundaries with
local neighbors. Each block has one extra buffer in every dimension to store in-coming
halo messages from neigbors. When the neighbor collective completes, the receive
buffer is unpacked in parallel and halo messages are stored in their intended blocks.
After all halos are received, new boundaries are computed.

5.3.4 Load Balance

Load balancing is done in stages. All current versions of multi-threaded AMR main-
tain blocks in sorted order at all times. Let Ri indicate the rank of an MPI process with

148

Algorithm 5.8 Multi-threaded_SFC_slicing

1: procedure MULTI-THREADED_SFC_SLICING
2: PARALLEL_SFC_SLICING
3: for all don ∈ range[1 : myload]
4: if thenn.assign 6= mype
5: PACK_IN_BUFFER(n)
6: end if
7: end for
8: MPI_Neighbor_alltoallv()
9: for don ∈ range[1 : recvblocks]

10: if thenrecv_proc(n) < mype
11: UNPACK_BLOCK(n, 0)
12: elseUNPACK_BLOCK(n, num_threads− 1)
13: end if
14: end for
15: end procedure

index i. SFC keys on all MPI processes are stored in sorted order. Between processes,
they are stored in increasing order, according to process ranks. For any two MPI ranks
Ri and Rj , all keys on Ri are strictly less than keys on Rj where Ri < Rj . Refinement
and coarsening do not violate this condition. Suppose two blocks bi and bj are refined,
and key(bi) < key(bj). Let bi1, ..., bi8 be the keys of bi’s subcells and bj1, ..., bj8 be the keys
of bj’s subcells. Then, all keys belonging to the set {bi1, ..., bi8} < {bj1, ..., bj8}.

When new blocks are added, existing blocks are shifted to reserve space and they
are inserted into their correct position.

In the version with shared arrays, thread 0 computes the new location of blocks, cre-
ates the communication graph, along with source and destination processes. If running
with multiple MPI ranks, blocks are packed into the send buffer by owning threads in
parallel and thread0 on all ranks executes the sparse collective for data transfer. The
receive buffer is unpacked in parallel by threads and new blocks inserted into the lo-
cations they belong to.

We have called this incremental load balancing. The pseudo-code for the slicing
algorithm, that does incremental load balancing is provided below :

149

5.3.5 Distributed AMR

This is the hybrid version of AMR with one MPI rank per node and multiple threads
per node. The initial partitions and orders are generated by our partitioning frame-
work, by first constructing a distributed kd-tree, followed by parallel SFC traversal. We
have used Morton order for the results in this section. The initial mesh had 64X64X32

blocks, where each block had dimensions 14X14X14 and 10 observations per point.
The total initial mesh size is 359661568 points with 10 doubles per point. The domain
had an object in its lower left corner, which caused the mesh to refine every 2 timesteps.
The maximum refinement level is 5. The number of processes ranges from 8− 256 and
the number of threads from 64 − 256. The number of cores ranges from [512 − 16384]

and the total number of threads from [512− 65536]. Total execution time is the sum of
Ref +Data and stencil. All reported times are measured according to the equations in
2.2.

Amortized load balancing was enabled in the hybrid version to detect variations in
load. Load balancing in the hybrid version was done in three stages :

1. On-node load balancing : This is the re-assignment of blocks within threads on a
node. Its a simple parallel prefix operation, relatively cheap, if blocks are already
sorted.

2. Incremental adjustments : Processes compute a parallel-prefix with their local
loads and determine the ranks of all blocks they own. If ranks are out of range,
then those blocks are packed and sent to their home processes. But for small vari-
ations in load, this is an incremental exchange where processes exchange blocks
with their neighbors.

3. Full re-assignment : For large variations in load and/or significant changes in
the domain, it may be beneficial to re-compute the kd-tree and traverse blocks to
generate a new permutation.

For the test case here, full re-assignment was done once when the simulation was
initialized. On-node load balancing was done at every step. Incremental changes
were detected by the amortization equation. This is included in the total execution
time.

The measured values are tabulated in table 5.5. The implementation seems to scale

150

#ranks th avgblocks Ref.Time Ref+copy Sten.time Total.Time
8 64 17088 2.35669 112.519 38.422 189.37
8 128 17088 2.6576 140.442 26.6923 211.702
8 256 17088 4.62349 267.926 27.4765 377.958
16 64 8544 1.08933 57.034 16.8705 93.2348
16 128 8544 1.17652 71.584 12.7828 107.255
16 256 8544 2.08195 134.572 13.7747 190.748
32 64 4272 0.554039 29.7559 8.58164 48.6074
32 128 4272 0.664393 38.9083 6.94482 58.8311
32 256 4272 1.1517 69.4193 7.14011 100.579
64 64 2136 0.338868 17.1698 4.60219 28.0335
64 128 2136 0.486048 22.6756 3.78187 35.1796
64 256 2136 0.855437 37.5925 4.02513 54.5667
100 64 1367 0.277801 12.8137 3.20701 20.6649
100 128 1367 0.446624 17.2612 2.53417 26.1836
100 256 1367 0.780824 27.6433 2.61986 39.5421
128 64 1068 0.259182 10.7914 2.61336 17.3003
128 128 1068 0.411999 14.245 2.18787 21.4391
128 256 1068 0.751798 23.2749 2.28296 33.269
150 64 911 0.24468 9.87265 2.38948 15.9123
150 128 911 0.485077 14.5655 2.00325 21.5884
150 256 911 0.759823 21.0147 2.01838 30.2441
200 64 683 0.228815 8.5146 1.83267 13.4199
200 128 683 0.437202 12.1182 1.5976 17.8738
200 256 683 0.737671 18.8441 1.65367 27.3698
256 64 534 0.229304 7.45703 1.55439 11.6733
256 128 534 0.475408 10.7538 1.44482 15.9098
256 256 534 0.724172 15.6654 1.51874 22.6364

Table 5.5: AMR Hybrid Shared

151

well, with increasing number of MPI ranks, but not with increasing number of threads.
The graphs are plotted in figure 5.10. We have used the shared memory version with
a single linked-list here. This version didnot scale well. This performance is expected.
Ref +Data includes the time for refinement/coarsening as well as re-ordering blocks
according to their keys, i.e insert new blocks in key order and remove holes in the
arrays where blocks are deleted.

#MPI_ranks threads Ref.Time Stencil.time Total.Time
8 64 4.76182 32.5261 43.0979
8 128 5.10738 21.5452 33.1129
8 256 8.51228 20.9566 38.7395
16 64 4.11538 17.2043 25.8236
16 128 4.80708 12.663 22.8252
16 256 8.04316 12.3869 28.6362
32 64 3.91559 9.69997 17.8178
32 128 4.71262 7.37938 16.7505
32 256 7.78562 7.89839 22.6205
64 64 4.21512 6.14988 13.3933
64 128 4.66342 4.7967 12.9276
64 256 7.42973 5.59758 18.3588

100 64 3.97731 4.49775 10.9322
100 128 4.55437 3.77888 11.1412
100 256 4.9076 10.7202 19.7556
128 64 3.75452 3.94103 9.8955
128 128 4.62398 3.40179 10.9427
128 256 4.86113 10.2732 19.0711
150 64 3.92705 3.59772 9.64096
150 128 2.87188 7.44273 12.7336
150 256 3.4613 5.83619 12.8414
200 64 3.86591 3.10235 9.0912
200 128 3.50961 2.28771 7.80373
200 256 3.3612 5.57249 12.0393
256 64 3.9594 2.97883 9.01548
256 128 2.90627 6.92563 12.1595
256 256 3.4317 5.42846 12.0124

Table 5.6: AMR Hybrid Thread Local Arrays

The improved version with thread local arrays for blocks had better performance
due to higher parallelism and lower synchronization. All algorithms in the multi-
threaded version benefit from reduced synchronization. The total refinement time is
considerably lower for this version, addition and deletion of blocks is done in paral-
lel by threads to their local arrays. In the shared array, some of these operations are
sequential. The observations with reduced execution times for thread local arrays are

152

tabulated in table 5.6. They are also plotted in the graph 5.11. This version scales well
until 128 threads. The performance dropped at 256 threads. A comparison between
both implementations is provided in the graph 5.12.

Figure 5.10: AMR Performance on multiple KNL nodes, with shared array
implementation

Figure 5.11: AMR Performance on multiple KNL nodes, with thread local arrays
implementation

153

Figure 5.12: Comparison of distributed AMR implementation (shared vs with thread
local arrays)

154

CHAPTER 6: CONCLUSION

We have developed a distributed multi-threaded data partitioner that can be used
to partition meshes, points with co-ordinates. The partitioner is compared to multi-
level graph partitioners like Metis and Scotch. We have also evaluated the perfor-
mance of the partitioner for various dimensions, data sizes, number of processes and
threads. Strong scaling results are presented for different splitters and space-filling
curves. We have also evaluated the management of dynamic data, using an iterative
benchmark. Incremental modifications to partitions are evaluated for different dimen-
sions and problem sizes. The partitioner is included in a benchmark for adaptive mesh
refinement. We have presented both strong and weak scaling results for this AMR
benchmark, with options for incremental load balancing within a process and across
processes. Besides incremental adjustments, there are times when a full re-partition
is desired. This depends on the application and the total number of timesteps in the
simulation. An example would be the simulation of a moving object which changes its
location in the mesh. The dataset for such a simulation will have clusters around the
center of gravity of the object, which shifts when the object moves. For such testcases,
the hierarchical tree decomposition can become unbalanced, with long paths in the tree
which make its maximum depthO(n), instead ofO(logn). A space-filling curve defined
on this tree looses its shape and it is highly likely that partitions have higher surface
area for the same volume. To accomodate such cases, we have options to invoke a full
repartition and re-assignment at certain timesteps during a large simulation. The other
option is to allow incremental adjustments to the kd-tree that re-balance it whenever
nodes are adjusted. One can choose any balance criteria and ensure it is not violated,
e.g the maximum depth of any two sibling subtrees should not differ by more than one.
Re-balancing tree nodes is an option to track midpoints and medians of a dynamic data
distribution. We have not implemented this yet, it is a possible option for future work.
Another direction for future work is to include adjacency edges in splitter computa-
tion. This may make a difference to the quality of unstructured mesh partitions. There
are two possible ways to partition general graphs using SFCs - either partition the ad-
jacency matrix or partition the embedded mesh. Embedding is a pre-processing step
required before partitioning general graphs, if this direction seems feasible. It has been
adopted for partitioning graphs from social networks which tend to have very high
vertex degrees. Finding good embedding functions that satisfy constraints and rela-
tionships in the original graph is a hard problem that requires further investigation.

155

Statistical evaluation of pointsets to reduce the number of dimensions is a possible op-
timization that can greatly reduce the problem size and improve execution time. A
combination of these two approaches need to be applied to general graphs before they
are partitioned - find a minimal set of relationships that need to be maintained, fol-
lowed by embedding. These relationships are also susceptible to change depending on
the problem or query set. Therefore, we are in a domain with dynamic graphs with
changing relationships (edges) that need efficient embeddings and partitioning. There
is some recent work in this direction [118].

156

REFERENCES

[1] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, “Optimizing matrix multiply
using phipac: A portable, high-performance, ansi c coding methodology,” in
Proceedings of the 11th International Conference on Supercomputing, ser. ICS ’97.
ACM, 1997. [Online]. Available: http://doi.acm.org/10.1145/263580.263662 pp.
340–347.

[2] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and
optimizations of blocked algorithms,” SIGPLAN Not., vol. 26, no. 4, pp. 63–74,
Apr. 1991. [Online]. Available: http://doi.acm.org/10.1145/106973.106981

[3] M. Hall, J. Chame, C. Chen, J. Shin, G. Rudy, and M. M. Khan, “Loop trans-
formation recipes for code generation and auto-tuning,” in Proceedings of the
22Nd International Conference on Languages and Compilers for Parallel Computing,
ser. LCPC’09. Springer-Verlag, 2010, pp. 50–64.

[4] K. Schloegel, G. Karypis, and V. Kumar, Wavefront Diffusion and LMSR:
Algorithms for Dynamic Repartitioning of Adaptive Meshes. IEEE Press, May 2001,
vol. 12, no. 5. [Online]. Available: http://dx.doi.org/10.1109/71.926167

[5] C. Chevalier and F. Pellegrini, “Pt-scotch: A tool for efficient parallel graph
ordering,” Parallel Comput., vol. 34, no. 6-8, pp. 318–331, July 2008. [Online].
Available: http://dx.doi.org/10.1016/j.parco.2007.12.001

[6] W. Wang, J. Yang, and R. Muntz, Information Organization
and Databases, K. Tanaka, S. Ghandeharizadeh, and Y. Kam-
bayashi, Eds. Kluwer Academic Publishers, 2000. [Online]. Available:
http://dl.acm.org/citation.cfm?id=571220.571247

[7] H. Samet, Foundations of Multidimensional and Metric Data Structures (The Morgan
Kaufmann Series in Computer Graphics and Geometric Modeling). San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2005.

[8] D. Miranker, W. Xu, and R. Mao, “Mobios: a metric-space dbms to support
biological discovery,” in 15th International Conference on Scientific and Statistical
Database Management, 2003., July 2003, pp. 241–244.

[9] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity search
in sequence databases,” in Proceedings of the 4th International Conference on
Foundations of Data Organization and Algorithms, ser. FODO ’93. Springer-Verlag,
1993. [Online]. Available: http://dl.acm.org/citation.cfm?id=645415.652239 pp.
69–84.

[10] V. S. Subrahmanian, Principles of Multimedia Database Systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1998.

157

[11] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing the
positions of continuously moving objects,” SIGMOD Rec., vol. 29, no. 2, pp. 331–
342, May 2000. [Online]. Available: http://doi.acm.org/10.1145/335191.335427

[12] V. Pascucci and R. J. Frank, “Global static indexing for real-time explo-
ration of very large regular grids,” in Proceedings of the 2001 ACM/IEEE
Conference on Supercomputing, ser. SC ’01. ACM, 2001. [Online]. Available:
http://doi.acm.org/10.1145/582034.582036 pp. 2–2.

[13] H. Sagan, “A three-dimensional hilbert curve,” International Journal of Mathemat-
ical Education in Science and Technology, vol. 24, no. 4, pp. 541–545, 1993.

[14] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2007.

[15] A. J. Smith, “Cache memories,” ACM Comput. Surv., vol. 14, no. 3, pp. 473–530,
Sep. 1982. [Online]. Available: http://doi.acm.org/10.1145/356887.356892

[16] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan,
P. Colella, D. Graves, M. Lijewski, F. Löffler, B. O’Shea, E. Schnetter,
B. Van Straalen, and K. Weide, “A Survey of High Level Frameworks in
Block-structured Adaptive Mesh Refinement Packages,” J. Parallel Distrib.
Comput., vol. 74, no. 12, pp. 3217–3227, Dec. 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2014.07.001

[17] J. Barnes and P. Hut, “A hierarchical O(N log N) force-calculation algorithm,”
Nature, vol. 324, pp. 446–449, Dec. 1986.

[18] G. Karypis and V. Kumar, “Multilevel k-way hypergraph par-
titioning,” ser. DAC ’99. ACM, 1999. [Online]. Available:
http://doi.acm.org/10.1145/309847.309954 pp. 343–348.

[19] D. Delling, A. V. Goldberg, I. P. Razenshteyn, and R. F. F. Werneck, “Exact
combinatorial branch-and-bound for graph bisection,” in Proceedings of the
14th Meeting on Algorithm Engineering & Experiments, ALENEX 2012, The
Westin Miyako, Kyoto, Japan, January 16, 2012, 2012. [Online]. Available:
https://doi.org/10.1137/1.9781611972924.3 pp. 30–44.

[20] W. W. Hager, D. T. Phan, and H. Zhang, “An exact algorithm for graph
partitioning,” Math. Program., vol. 137, no. 1-2, pp. 531–556, 2013. [Online].
Available: https://doi.org/10.1007/s10107-011-0503-x

[21] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms,” J. ACM, vol. 46, no. 6, pp. 787–832,
Nov. 1999. [Online]. Available: http://doi.acm.org/10.1145/331524.331526

[22] D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck, Graph Partitioning
with Natural Cuts, 2011.

158

[23] A. H. Gebremedhin, A. Tarafdar, F. Manne, and A. Pothen, “New acyclic
and star coloring algorithms with application to computing hessians,” SIAM
J. Sci. Comput., vol. 29, no. 3, pp. 1042–1072, May 2007. [Online]. Available:
http://dx.doi.org/10.1137/050639879

[24] A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen,
ColPack: Software for Graph Coloring and Related Problems in Scientific Computing.
New York, NY, USA: ACM, Oct. 2013, vol. 40, no. 1. [Online]. Available:
http://doi.acm.org/10.1145/2513109.2513110

[25] W. E. Donath and A. J. Hoffman, “Lower bounds for the partitioning of graphs,”
IBM J. Res. Dev., vol. 17, no. 5, pp. 420–425, Sep. 1973. [Online]. Available:
http://dx.doi.org/10.1147/rd.175.0420

[26] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathemat-
ical Journal, vol. 23, no. 2, pp. 298–305, 1973. [Online]. Available:
http://dml.cz/dmlcz/101168

[27] T. M. S. U. Maxim Naumov (NVIDIA), “Parallel spectral graph partitioning,”
NVIDIA, Tech. Rep., 2016.

[28] S. B.W.Kernighan, “An efficient heuristic procedure for partitioning graphs,”
Tech. Rep., 1970.

[29] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving
network partitions,” in Proceedings of the 19th Design Automation Conference,
ser. DAC ’82. Piscataway, NJ, USA: IEEE Press, 1982. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800263.809204 pp. 175–181.

[30] J. W. Marks, “Graph partitioning system,” Patent, 1998.

[31] J. R. Gilbert, G. L. Miller, and S.-H. Teng, “Geometric mesh partitioning:
Implementation and experiments,” SIAM J. Sci. Comput., vol. 19, no. 6, pp. 2091–
2110, 1998. [Online]. Available: http://dx.doi.org/10.1137/S1064827594275339

[32] I. Stanton and G. Kliot, “Streaming graph partitioning for large distributed
graphs,” in Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’12. ACM, 2012. [Online].
Available: http://doi.acm.org/10.1145/2339530.2339722 pp. 1222–1230.

[33] J. Leskovec and R. Sosič, SNAP: A General-Purpose Network Analysis and
Graph-Mining Library. New York, NY, USA: ACM, July 2016, vol. 8, no. 1.
[Online]. Available: http://doi.acm.org/10.1145/2898361

[34] S. Sakr, F. M. Orakzai, I. Abdelaziz, and Z. Khayyat, Large-Scale Graph Processing
Using Apache Giraph, 1st ed. Springer Publishing Company, Incorporated, 2017.

159

[35] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, “Graphx: Graph processing in a distributed dataflow framework,”
in Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’14. USENIX Association, 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2685048.2685096 pp. 599–613.

[36] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed
data-parallel programs from sequential building blocks,” SIGOPS Oper.
Syst. Rev., vol. 41, no. 3, pp. 59–72, Mar. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1272998.1273005

[37] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad:
A timely dataflow system,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, ser. SOSP ’13. ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2517349.2522738 pp. 439–455.

[38] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,
“Distributed graphlab: A framework for machine learning and data mining in
the cloud,” Proc. VLDB Endow., vol. 5, no. 8, pp. 716–727, Apr. 2012. [Online].
Available: https://doi.org/10.14778/2212351.2212354

[39] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, “Mizan: A system for dynamic load balancing in large-scale
graph processing,” in Proceedings of the 8th ACM European Conference
on Computer Systems, ser. EuroSys ’13. ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2465351.2465369 pp. 169–182.

[40] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph process-
ing,” in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’10. ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807184 pp. 135–146.

[41] R. A. Johnson and D. W. Wichern, Eds., Applied Multivariate Statistical Analysis.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[42] R. J. Lipton, D. J. Rose, and R. E. Tarjan, “Generalized nested dissection,”
SIAM Journal on Numerical Analysis, vol. 16, no. 2, pp. 346–358, 1979. [Online].
Available: http://www.jstor.org/stable/2156840

[43] M. T. Heath and P. Raghavan, “A cartesian parallel nested dissection algorithm,”
SIAM Journal on Matrix Analysis and Applications, vol. 16, no. 1, pp. 235–253, 1995.

[44] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric
matrices,” in Proceedings of the 1969 24th National Conference, ser. ACM ’69.
ACM, 1969. [Online]. Available: http://doi.acm.org/10.1145/800195.805928 pp.
157–172.

160

[45] S.-H. Teng, “Fast nested dissection for finite element meshes,” SIAM Journal on
Matrix Analysis and Applications, vol. 18, no. 3, pp. 552–565, 1997.

[46] W. Aiello, F. Chung, and L. Lu, “A random graph model for power law graphs,”
Experimental Math, vol. 10, pp. 53–66, 2000.

[47] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392,
Dec. 1998. [Online]. Available: http://dx.doi.org/10.1137/S1064827595287997

[48] C. Chevalier and F. Pellegrini, “Improvement of the efficiency of genetic algo-
rithms for scalable parallel graph partitioning in a multi-level framework,” in
Euro-Par 2006 Parallel Processing: 12th International Euro-Par Conference, Dresden,
Germany, August 28 –September 1, 2006. Proceedings. Springer Berlin Heidelberg,
2006, pp. 243–252.

[49] F. Pellegrini, “A parallelisable multi-level banded diffusion scheme
for computing balanced partitions with smooth boundaries,” in Pro-
ceedings of the 13th International Euro-Par Conference on Parallel Pro-
cessing, ser. Euro-Par’07. Springer-Verlag, 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2391541.2391566 pp. 195–204.

[50] M. C. Walshaw and K.McManus, “Multiphase mesh partitioning,” Applied Math-
ematical Modelling, pp. 123–140, 2000.

[51] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdağ, R. T. Heaphy, and
L. A. Riesen, “A repartitioning hypergraph model for dynamic load balancing,”
J. Parallel Distrib. Comput., vol. 69, no. 8, pp. 711–724, Aug. 2009. [Online].
Available: http://dx.doi.org/10.1016/j.jpdc.2009.04.011

[52] B. Hendrickson, “Graph partitioning and sequencing software, version 00,”
Tech. Rep., 9 1995.

[53] P. Sanders and C. Schulz, “Think Locally, Act Globally: Highly Balanced Graph
Partitioning,” in Proceedings of the 12th International Symposium on Experimental
Algorithms (SEA’13), ser. LNCS, vol. 7933. Springer, 2013, pp. 164–175.

[54] B. Monien and S. Schamberger, “Graph partitioning with the party library:
helpful-sets in practice,” in 16th Symposium on Computer Architecture and High
Performance Computing, 2004, pp. 198–205.

[55] Ü. V. Çatalyürek and C. Aykanat, “Patoh (partitioning tool for hypergraphs),” in
Encyclopedia of Parallel Computing, 2011, pp. 1479–1487.

[56] H. Meyerhenke, B. Monien, and T. Sauerwald, “A new diffusion-based
multilevel algorithm for computing graph partitions,” J. Parallel Distrib.
Comput., vol. 69, no. 9, pp. 750–761, Sep. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2009.04.005

161

[57] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph partitioning for com-
plex networks,” in 2015 IEEE International Parallel and Distributed Processing Sym-
posium, 2015, pp. 1055–1064.

[58] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessellations:
Applications and algorithms,” SIAM Rev., vol. 41, no. 4, pp. 637–676, Dec. 1999.
[Online]. Available: http://dx.doi.org/10.1137/S0036144599352836

[59] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Overmars, Computational Geome-
try: Algorithms and Applications, 3rd ed. Santa Clara, CA, USA: Springer-Verlag
TELOS, 2008.

[60] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990. [Online]. Available:
http://doi.acm.org/10.1145/79173.79181

[61] J. Kim, S.-G. Kim, and B. Nam, “Parallel multi-dimensional range query process-
ing with r-trees on gpu,” J. Parallel Distrib. Comput., vol. 73, no. 8, pp. 1195–1207,
Aug. 2013. [Online]. Available: http://dx.doi.org/10.1016/j.jpdc.2013.03.015

[62] I. Al-Furaih, S. Aluru, S. Goil, and S. Ranka, “Parallel construc-
tion of multidimensional binary search trees,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 11, no. 2, pp. 136–148, Feb. 2000. [Online]. Available:
http://dx.doi.org/10.1109/71.841750

[63] M. J. Atallah, S. R. Kosaraju, L. L. Larmore, G. L. Miller, and S.-H. Teng,
“Constructing trees in parallel,” in Proceedings of the First Annual ACM
Symposium on Parallel Algorithms and Architectures, ser. SPAA ’89. ACM, 1989.
[Online]. Available: http://doi.acm.org/10.1145/72935.72980 pp. 421–431.

[64] K. Hinrichs, “Implementation of the grid file: Design concepts and
experience,” BIT, vol. 25, no. 4, pp. 569–592, Dec. 1985. [Online]. Available:
http://dx.doi.org/10.1007/BF01936137

[65] J. L. Bentley, “Multidimensional binary search trees used for associative search-
ing,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[66] T. J. Tauges and R. Jain, “Creating geometry and mesh models for nuclear reac-
tor core geometries using a lattice hierarchy-based approach,” Engineering with
Computers, vol. 28, pp. 319–329, 2012.

[67] A. Appel, “Some techniques for shading machine renderings of solids,”
in Proceedings of the April 30–May 2, 1968, Spring Joint Computer
Conference, ser. AFIPS ’68 (Spring). ACM, 1968. [Online]. Available:
http://doi.acm.org/10.1145/1468075.1468082 pp. 37–45.

[68] M. C. Lin, “Efficient collision detection for animation and robotics,” Ph.D. dis-
sertation, 1993, aAI9430587.

162

[69] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time kd-tree construction on
graphics hardware,” ACM Trans. Graph., vol. 27, no. 5, pp. 126:1–126:11, Dec.
2008. [Online]. Available: http://doi.acm.org/10.1145/1409060.1409079

[70] M. Shevtsov, A. Soupikov, and A. Kapustin, “Highly parallel fast kd-tree con-
struction for interactive ray tracing of dynamic scenes.” Comput. Graph. Forum,
vol. 26, no. 3, pp. 395–404, 2007.

[71] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan, “Time bounds for
selection,” J. Comput. Syst. Sci., vol. 7, no. 4, pp. 448–461, Aug. 1973. [Online].
Available: http://dx.doi.org/10.1016/S0022-0000(73)80033-9

[72] Standard for Information Technology–Portable Operating System Interface (POSIX(R))
Base Specifications, Issue 7, Std., Sept 2016.

[73] B. Stroustrup, The C++ Programming Language, 4th ed. Addison-Wesley Profes-
sional, 2013.

[74] L. Dagum and R. Menon, “Openmp: An industry-standard api for shared-
memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1, pp. 46–55, Jan.
1998.

[75] R. C. Murphy, K. B. Wheeler, and D. Thain, “Qthreads: An api for programming
with millions of lightweight threads,” in 2008 IEEE International Parallel and
Distributed Processing Symposium(IPDPS), vol. 00, 04 2008. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/IPDPS.2008.4536359 pp. 1–8.

[76] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[77] M. E. Conway, “A multiprocessor system design,” in Proceedings of the November
12-14, 1963, Fall Joint Computer Conference, ser. AFIPS ’63 (Fall). ACM, 1963.
[Online]. Available: http://doi.acm.org/10.1145/1463822.1463838 pp. 139–146.

[78] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition: A Quanti-
tative Approach, 5th ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2011.

[79] M. Snir, “Depth-size trade-offs for parallel prefix computation,” J. Al-
gorithms, vol. 7, no. 2, pp. 185–201, June 1986. [Online]. Available:
http://dx.doi.org/10.1016/0196-6774(86)90003-9

[80] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High Performance
Programming: Knights Landing Edition 2Nd Edition, 2nd ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2016.

[81] OpenMP Architecture Review Board, “OpenMP application pro-
gram interface version 4.5,” May 2013. [Online]. Available:
http://www.openmp.org/specifications

163

[82] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious
algorithms,” in Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, ser. FOCS ’99. IEEE Computer Society, 1999. [Online].
Available: http://dl.acm.org/citation.cfm?id=795665.796479 pp. 285–.

[83] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator,” ACM Trans.
Model. Comput. Simul., vol. 8, no. 1, pp. 3–30, Jan. 1998. [Online]. Available:
http://doi.acm.org/10.1145/272991.272995

[84] “Texas advanced computing center (tacc).” [Online]. Available:
http://www.tacc.utexas.edu

[85] M. P. Forum, MPI: A Message-Passing Interface Standard, Std., 1994.

[86] J. Bruck, C.-T. Ho, E. Upfal, S. Kipnis, and D. Weathersby, “Efficient algorithms
for all-to-all communications in multiport message-passing systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 8, no. 11, pp. 1143–1156, Nov. 1997. [Online].
Available: https://doi.org/10.1109/71.642949

[87] J. Kleinberg and E. Tardos, Algorithm Design. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2005.

[88] W. Schroeder, K. M. Martin, and W. E. Lorensen, “The visualization toolkit (2nd
ed.): An object-oriented approach to 3d graphics,” Upper Saddle River, NJ, USA,
Tech. Rep., 1998.

[89] T. Ringler, L. Ju, and M. Gunzburger, “A multiresolution method for climate sys-
tem modeling: application of spherical centroidal voronoi tessellations,” Ocean
Dynamics, vol. 58, no. 5-6, 11 2008.

[90] J. Snyder, “Map projections – a working manual,” Tech. Rep., 01 1987.

[91] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam,
P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, a. gara, G. Chiu,
P. Boyle, N. Chist, and C. Kim, “The ibm blue gene/q compute chip,”
IEEE Micro, vol. 32, no. 2, pp. 48–60, Mar. 2012. [Online]. Available:
http://dx.doi.org/10.1109/MM.2011.108

[92] “Argonne national laboratory(anl).” [Online]. Available: www.anl.gov

[93] M. S. Warren and J. K. Salmon, “A parallel hashed oct-tree n-body algorithm,”
in Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, ser.
Supercomputing ’93. New York, NY, USA: ACM, 1993. [Online]. Available:
http://doi.acm.org/10.1145/169627.169640 pp. 12–21.

[94] H. Si, “Tetgen, a delaunay-based quality tetrahedral mesh generator,” ACM
Trans. Math. Softw., vol. 41, no. 2, pp. 11:1–11:36, Feb. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2629697

164

[95] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb,
P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo, “Flash: An adaptive mesh
hydrodynamics code for modeling astrophysical thermonuclear flashes,” The
Astrophysical Journal Supplement Series, vol. 131, no. 1, p. 273, 2000. [Online].
Available: http://stacks.iop.org/0067-0049/131/i=1/a=273

[96] P. Colella, D. T. Graves, J. N. Johnson, H. S. Johansen, N. D. Keen, T. J. Ligocki,
D. F. Martin, P. W. Mccorquodale, D. Modiano, P. O. Schwartz, T. D. Sternberg,
and B. V. Straalen, “Chombo software package for amr applications design doc-
ument,” LBNL, Tech. Rep., 2003.

[97] W. Zhang, A. S. Almgren, M. Day, T. Nguyen, J. Shalf, and D. Unat, “Boxlib
with tiling: An adaptive mesh refinement software framework,” SIAM J. Scien-
tific Computing, vol. 38, no. 5, 2016.

[98] A. M. Wissink, R. D. Hornung, S. R. Kohn, S. S. Smith, and N. El-
liott, “Large scale parallel structured amr calculations using the samrai
framework,” in Proceedings of the 2001 ACM/IEEE Conference on Supercom-
puting, ser. SC ’01. New York, NY, USA: ACM, 2001. [Online]. Available:
http://doi.acm.org/10.1145/582034.582040 pp. 6–6.

[99] P. H. Worley, A. A. Mirin, A. P. Craig, M. A. Taylor, J. M. Dennis, and
M. Vertenstein, “Performance of the community earth system model,” in
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063457 pp. 54:1–54:11.

[100] G. L. Bryan, M. L. Norman, B. W. O’Shea, T. Abel, J. H. Wise, M. J. Turk, D. R.
Reynolds, D. C. Collins, P. Wang, S. W. Skillman, B. Smith, R. P. Harkness, J. Bor-
dner, J. hoon Kim, M. Kuhlen, H. Xu, N. Goldbaum, C. Hummels, A. G. Kritsuk,
E. Tasker, S. Skory, C. M. Simpson, O. Hahn, J. S. Oishi, G. C. So, F. Zhao, R. Cen,
Y. Li, and T. E. Collaboration, “Enzo: An adaptive mesh refinement code for
astrophysics,” The Astrophysical Journal Supplement Series, vol. 211, no. 2, p. 19,
2014.

[101] M. Parashar, James, and C. Browne, “Systems engineering for high performance
computing software: The hdda/dagh infrastructure for implementation of par-
allel structured adaptive mesh refinement,” in In Structured Adaptive Mesh Refine-
ment Grid Methods, IMA Volumes in Mathematics and its Applications. Springer-
Verlag, 1997, pp. 1–18.

[102] P. MacNeice, K. M. Olson, C. Mobarry, R. de Fainchtein, and C. Packer,
“Paramesh: A parallel adaptive mesh refinement community toolkit,” Computer
Physics Communications, vol. 126, no. 3, pp. 330 – 354, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010465599005019

165

[103] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards,
A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich,
“Improving performance via mini-applications,” Sandia National Laboratories,
Tech. Rep. SAND2009-5574, 2009.

[104] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.). Baltimore, MD,
USA: Johns Hopkins University Press, 1996.

[105] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial dif-
ferential equations,” Journal of computational Physics, vol. 53, no. 3, pp. 484–512,
1984.

[106] C. Ericson, Real-Time Collision Detection. Boca Raton, FL, USA: CRC Press, Inc.,
2004.

[107] T. W. Crockett, “An introduction to parallel rendering,” Parallel Com-
put., vol. 23, no. 7, pp. 819–843, July 1997. [Online]. Available:
http://dx.doi.org/10.1016/S0167-8191(97)00028-8

[108] B. Schling, “The boost c++ libraries,” Tech. Rep., 2011.

[109] O. D. R. Tu Tiankai and G. Omar, “Scalable Parallel Octree Meshing for
Terascale Applications,” in Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, ser. SC ’05. IEEE Computer Society, 2005. [Online]. Available:
http://dx.doi.org/10.1109/SC.2005.61 pp. 4–.

[110] T. Hoefler and J. L. Traff, “Sparse Collective Operations for MPI,” in
Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed
Processing, ser. IPDPS ’09. IEEE Computer Society, 2009. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2009.5160935 pp. 1–8.

[111] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable Algorithms for Par-
allel Adaptive Mesh Refinement on Forests of Octrees,” SIAM Journal on Scientific
Computing, vol. 33, no. 3, pp. 1103–1133, 2011.

[112] R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and G. Biros,
“Dendro: Parallel Algorithms for Multigrid and AMR methods on
2:1 Balanced Octrees,” in Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, ser. SC ’08. IEEE Press, 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1413370.1413389 pp. 18:1–18:12.

[113] D. Buntinas, G. Mercier, and W. Gropp, “Design and evaluation of Nemesis, a
scalable, low-latency, message-passing communication subsystem,” in Proceed-
ings of the 6th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid2006), S. J. Turner, B. S. Lee, and W. Cai, Eds., 2006, pp. 521–530.

[114] R. E. Tarjan, “Amortized computational complexity,” SIAM Journal on Algebraic
Discrete Methods, vol. 6, no. 2, pp. 306–318, 1985.

166

[115] D. Mosberger, “Memory consistency models,” SIGOPS Oper. Syst.
Rev., vol. 27, no. 1, pp. 18–26, Jan. 1993. [Online]. Available:
http://doi.acm.org/10.1145/160551.160553

[116] S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A
tutorial,” Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996. [Online]. Available:
http://dx.doi.org/10.1109/2.546611

[117] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
“Memory consistency and event ordering in scalable shared-memory multipro-
cessors,” SIGARCH Comput. Archit. News, vol. 18, no. 2SI, pp. 15–26, May 1990.
[Online]. Available: http://doi.acm.org/10.1145/325096.325102

[118] G. Quercini and H. Samet, “Uncovering the spatial relatedness in wikipedia,”
in Proceedings of the 22Nd ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, ser. SIGSPATIAL ’14. New York, NY, USA:
ACM, 2014. [Online]. Available: http://doi.acm.org/10.1145/2666310.2666398
pp. 153–162.

167

