7 research outputs found

    Improvement of Single Seeded Region Growing Algorithm on Image Segmentation

    Get PDF
    To form a hybrid approach for image segmentation, several researches have been done to combine some techniques for better improvements. This article is concerned with image segmentation using combined methods. To separate foreground from background in image the pixel intensities have been considered. For image segmentation region growing with seed pixel is one of the most important segmentation methods. In single seeded region growing, it is very difficult to find out the proper position of the pixel during the selection. By considering the limitation of single seeded region growing an improved algorithm for region growing has proposed. The position of the seed pixel can be chosen before growing the region for segmentation using the proposed technique. Then combine this method with existing single seeded region growing algorithm. After the comparison using segmentation evaluation parameters it can be seen that, this combined method works better than others existing methods

    Quantitative analysis of Mouza map image to estimate land area using zooming and Canny edge detection

    Get PDF
    In Bangladesh, mouza map is used to maintain the record of land measurement, which is a form of interpreting land ownership as well as estimation. Unfortunately, the automatic determination of land is still under development. As a result, land administrators have to encounter multiple hurdles while evaluating any area by employing local civil engineers. Thus, our country needs an automated land estimation system so that it can reduce time, cost and other difficulties which inspired us to develop a system that requires only mouza map image. Once image acquisition is done, we applied the curvature interpolation techniqueto zoom the map that helps to select any area by the Area Selection Method. The selected area is then segmented by employing the Canny edge detection method. Finally, the area is calculated from the segmented image and extracted features of the selected location. Compared to the field measurement, the system gave the accuracy of 89.8%. Hence, the land administrators will be able to provide the land information to the landowners promptly

    Constrained Distance Based Clustering for Satellite Image Time-Series

    Get PDF
    International audienceThe advent of high-resolution instruments for time-series sampling poses added complexity for the formal definition of thematic classes in the remote sensing domain-required by supervised methods-while unsupervised methods ignore expert knowledge and intuition. Constrained clustering is becoming an increasingly popular approach in data mining because it offers a solution to these problems, however, its application in remote sensing is relatively unknown. This article addresses this divide by adapting publicly available constrained clustering implementations to use the dynamic time warping (DTW) dissimilarity measure, which is sometimes used for time-series analysis. A comparative study is presented, in which their performance is evaluated (using both DTW and Euclidean distances). It is found that adding constraints to the clustering problem results in an increase in accuracy when compared to unconstrained clustering. The output of such algorithms are homogeneous in spatially defined regions. Declarative approaches and k-Means based algorithms are simple to apply, requiring little or no choice of parameter values. Spectral methods, however, require careful tuning, which is unrealistic in a semi-supervised setting, although they offer the highest accuracy. These conclusions were drawn from two applications: crop clustering using 11 multi-spectral Landsat images non-uniformly sampled over a period of eight months in 2007; and tree-cut detection using 10 NDVI Sentinel-2 images non-uniformly sampled between 2016 and 2018

    CHARACTERIZING RICE RESIDUE BURNING AND ASSOCIATED EMISSIONS IN VIETNAM USING A REMOTE SENSING AND FIELD-BASED APPROACH

    Get PDF
    Agricultural residue burning, practiced in croplands throughout the world, adversely impacts public health and regional air quality. Monitoring and quantifying agricultural residue burning with remote sensing alone is difficult due to lack of field data, hazy conditions obstructing satellite remote sensing imagery, small field sizes, and active field management. This dissertation highlights the uncertainties, discrepancies, and underestimation of agricultural residue burning emissions in a small-holder agriculturalist region, while also developing methods for improved bottom-up quantification of residue burning and associated emissions impacts, by employing a field and remote sensing-based approach. The underestimation in biomass burning emissions from rice residue, the fibrous plant material left in the field after harvest and subjected to burning, represents the starting point for this research, which is conducted in a small-holder agricultural landscape of Vietnam. This dissertation quantifies improved bottom-up air pollution emissions estimates through refinements to each component of the fine-particulate matter emissions equation, including the use of synthetic aperture radar timeseries to explore rice land area variation between different datasets and for date of burn estimates, development of a new field method to estimate both rice straw and stubble biomass, and also improvements to emissions quantification through the use of burning practice specific emission factors and combustion factors. Moreover, the relative contribution of residue burning emissions to combustion sources was quantified, demonstrating emissions are higher than previously estimated, increasing the importance for mitigation. The dissertation further explored air pollution impacts from rice residue burning in Hanoi, Vietnam through trajectory modelling and synoptic meteorology patterns, as well as timeseries of satellite air pollution and reanalysis datasets. The results highlight the inherent difficulty to capture air pollution impacts in the region, especially attributed to cloud cover obstructing optical satellite observations of episodic biomass burning. Overall, this dissertation found that a prominent satellite-based emissions dataset vastly underestimates emissions from rice residue burning. Recommendations for future work highlight the importance for these datasets to account for crop and burning practice specific emission factors for improved emissions estimates, which are useful to more accurately highlight the importance of reducing emissions from residue burning to alleviate air quality issues
    corecore