11,191 research outputs found

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs

    Multi-domain Modelling in DESTECS and Ptolemy - a Tool Comparison

    Get PDF
    Developing embedded systems with high performance and safety requirements is notoriously hard. It is not enough to have a thorough understanding of the control algorithms used, but a deep understanding of the monitored and controlled physical environment is required to ensure that performance and safety requirements are met. Various tools deal with modeling such multi-domain systems and provide evaluation through simulation. Two such tools — DESTECS and Ptolemy — are examined and compared in this paper, using a case study of an aircraft fuel system. Usability, quantitative, and qualitative comparison criteria are used to give a thorough analysis of the capabilities of the two tools. The contribution of this paper is a description of pros and cons of each tool, helping future users to choose the right tool that suits their needs

    Proceedings of the 2nd EICS Workshop on Engineering Interactive Computer Systems with SCXML

    Get PDF
    • …
    corecore