94 research outputs found

    A Study on Intrusion Detection System in Wireless Sensor Networks

    Get PDF
    The technology of Wireless Sensor Networks (WSNs) has become most significant in present day. WSNs are extensively used in applications like military, industry, health, smart homes and smart cities. All the applications of WSN require secure communication between the sensor nodes and the base station. Adversary compromises at the sensor nodes to introduce different attacks into WSN. Hence, suitable Intrusion Detection System (IDS) is essential in WSN to defend against the security attack. IDS approaches for WSN are classified based on the mechanism used to detect the attacks. In this paper, we present the taxonomy of security attacks, different IDS mechanisms for detecting attacks and performance metrics used to assess the IDS algorithm for WSNs. Future research directions on IDS in WSN are also discussed

    Rule-based inference and decomposition for distributed in-network processing in wireless sensor networks

    Get PDF
    Wireless sensor networks are application specific and necessitate the development of specific network and information processing architectures that can meet the requirements of the applications involved. A common type of application for wireless sensor networks is the event-driven reactive application, which requires reactive actions to be taken in response to events. In such applications, the interest is in the higher-level information described by complex event patterns, not in the raw sensory data of individual nodes. Although the central processing of information produces the most accurate results, it is not an energy-efficient method because it requires a continuous flow of raw sensor readings over the network. As communication operations are the most expensive in terms of energy usage, the distributed processing of information is indispensable for viable deployments of applications in wireless sensor networks. This method not only helps in reducing the total amount of packets transmitted in the network and the total energy consumed by the sensor nodes, but also produces scalable and fault-tolerant networks. For this purpose, we present two schemes that distribute information processing to appropriate nodes in the network. These schemes use reactive rules, which express relations between event patterns and actions, in order to capture reactive behavior. We also share the results of the performance of our algorithms and the simulations based on our approach that show the success of our methods in decreasing network traffic while still realizing the desired functionality. © 2016, Springer-Verlag London

    Policy-based management of medical devices and applications

    Get PDF
    Die Arbeit präsentiert einen erweiterten Ansatz zum autonomen technischen Management, der das innovative Modell-basierte Management mit dem etablierten Policy-basierten Management kombiniert. Zur Planung des Systems wird ein umfassendes Modell des Management- und des zu verwaltenden Systems entworfen. Beide Systeme werden auf drei Abstraktionsschichten („Use Cases“, „Services“, „Components“) modelliert. Auf Basis der vorgestellten Ableitungsmuster (Evaluierungs-, Kontroll- und Verfeinerungsmuster) und der Zwischenschichtassoziationen wird der Prozess der Ableitung der Management-Policies automatisiert mit Hilfe eines Modellierungstools durchgeführt. Am Ende werden die zur Laufzeit vom Management ausführbaren Policies generiert. Der Ansatz wird im Rahmen des medizinischen Anwendungsfeldes erprobt. Es wird gezeigt, dass der Ansatz die Entwicklung und Verlässlichkeit sowie den Betrieb des medizinischen Geräte- und Anwendungsensembles unterstützt.This work presents an extended approach to the autonomous technical management, which combines the innovative model-based management with the established policy-based management technique. A comprehensive model of the managed and the management system is created. Both systems are modeled on three abstraction layers („Use Cases“, „Services“, „Components“). On the basis of the introduced policy derivation patterns (evaluation, control and refinement patterns) and intra-layer associations the policy derivation process is conducted automated by means of a modeling tool. Finally, runnable policies are generated which are enforced by the management at runtime. The approach is applied within the medical application field. It is demonstrated, that the presented technical management supports the development and dependable behavior of medical devices and applications

    Investigation of a hierarchical context-aware architecture for rule-based customisation of mobile computing service

    Get PDF
    The continuous technical progress in mobile device built-in modules and embedded sensing techniques creates opportunities for context-aware mobile applications. The context-aware computing paradigm exploits the relevant context as implicit input to characterise the user and physical environment and provide a computing service customised to the contextual situation. However, heterogeneity in techniques, complexity of contextual situation, and gap between raw sensor data and usable context keep the techniques from truly integration for extensive use. Studies in this area mainly focus on feasibility demonstration of the emerging techniques, and they lack general architecture support and appropriate service customisation strategy. This investigation aims to provide general system architecture and technical approaches to deal with the heterogeneity problem and efficiently utilise the dynamic context towards proactive computing service that is customised to the contextual situation. The main efforts of this investigation are the approaches to gathering, handling, and utilising the dynamic context information in an efficient way and the decision making and optimisation methods for computing service customisation. In brief, the highlights of this thesis cover the following aspects: (1) a hierarchical context-aware computing architecture supporting interoperable distribution and further use of context; (2) an in-depth analysis and classification of context and the corresponding context acquisition methods; (3) context modelling and context data representation for efficient and interoperable use of context; (4) a rule-based service customisation strategy with a rule generation mechanism to supervise the service customisation. In addition, feasibility demonstration of the proposed system and contribution justification of this investigation are conducted through case studies and prototype implementations. One case study uses mobile built-in sensing techniques to improve the usability and efficiency of mobile applications constrained by resource limitation, and the other employs the mobile terminal and embedded sensing techniques to predict users’ expectations for home facility automatic control. Results demonstrate the feasibility of the proposed context handling architecture and service customisation methods. It shows great potential for employing the context of the computing environment for context-aware adaptation in pervasive and mobile applications but also indicates some underlying problems for further study

    Generic autonomic adapter architecture and policy model for semantic socio-cyber-physical collaborative network

    Get PDF
    The cyber-physical system aims to improve the quality of life of citizens by providing intelligent and automated services in a wide variety of sectors like transportations, healthcare,enterprises, self-driving cars, energy sectors and so forth. Recently, considerable amounts of researches have focused on integrating cyber-physical systems in a social context. The idea is to socially connect cyber-physical resources (i.e., physical devices, software elements,networked components, digital contents, etc.) so that they can interact and collaborative for autonomous decision making like humans social networking. However, several challenges remain concerning the designing appropriate methodologies, frameworks and techniques for supporting cyber-physical relation and collaboration within the social context. Most of the existing social software modelling focuses on maintaining human-to-human or human-to object centric interaction only. Existing systems do not recognise how socio-cyber-physical resources can maintain their social status, communicate and interact with both humans and non human entities. The reason may be the lack of understanding and limited approaches or methodologies to semantically (a formal characterisation of the information) represent the socio-cyber-physical resources relation and interactions in a collaborative network. This limits data integration, interoperability, and knowledge discovery from its underlying data sources. Semantic Web’s ontology with a software agent model can help to overcome this limitation by describing and interconnecting socio-cyber-physical objects in a social space.The software agents can act as a representative of these resources to track, manage and update their collaborative activities in a social world.Nevertheless, due to the exponential network growth and uncertainties, the states and relations among socio-cyber-physical objects may keep changing when they are in different situations. Therefore, it is an ardours task and error-prone for humans or traditional software agents to keep track, manage and maintain the larger number of socio-cyber-physical resources and their social dynamics. One potential and flexible solution to this problem is to leverage the autonomic computing approach with social and adaptive goals to make the socio-cyber physical network self-managed and adaptive. Autonomic Computing (AC) approach has laid the necessary foundation to tackle this challenge by developing policy-based Autonomic Adapter (AA) model (e.g., autonomous agent). The AAs can continuously monitor socio cyber-physical resource status, analyse the situation and make a collaborative decision based on the policy knowledge defined by the system administrator. However, autonomic computing model must rely on input knowledge to decide self management operations such as “what”, “where” and “how” to perform the adaptation to the system. Previously, adaptation approaches in a different context have been done in an ad-hoc manner based on the algorithms to predict future circumstances and embed in the program code. This approach is inflexible to dynamic and uncertain environments where system configuration needs to adjust frequently. Defining a flexible policy model and integrating policy into knowledge repository outside the code itself is the most appropriate to manage the autonomic system behaviours during the run-time. Sadly, there has been relatively a little work on developing appropriate policy model and specification language for domain neutral autonomic system.To fulfil the above gaps, our proposed solutions in this thesis has three core contribution to the knowledge. First, we address the establishment of both socio-cyber-physical and human relations and interactions within a social-collaborative network. To achieve this, we propose a software agent-centric Semantic Social-Collaborative Network (SSCN) that provides the functionality to represent and manage cyber-physical resources in a social network. We discuss how nonhuman resources can be represented as socially connected nodes and manage by the software agents. The SSCN is supported by an extended ontology model for semantically describing the concept, properties and relations of human and nonhuman resources. A Java-based software agent API has been implemented to demonstrate some actions performed on behalf of the nonhuman resources in a real-world collaborative healthcare system called, GRiST (www.egrist.org). Second, we propose a Generic Autonomic Social-Collaborative Framework (GASCF) with a policy-based Autonomic Adapter (AA) architecture. The AAs are capable of monitoring system resources, analysing context information, and act accordingly using high-level policy. The AAs can also communicate and exchange data with other AAs through a social network for collaborative decisions making like human social interaction.Third, we propose Event-Condition-Action (ECA) rule-based policy model and specification language for AA by defining Policy Schema Definition (PSD) and Policy Script Specification(PSS) languages, modelled with XML syntax. Finally, we test and evaluate our approach by implementing it to the extended GRiST socio-healthcare service context and eGRiST clinical decision support system. We demonstrate and evaluate how socio-cyber-physical relation,interaction and autonomous decision-making is achieved by integrating AAs and using policy specification to manage AAs behaviour within socio-cyber-physical medical context

    AN INVESTIGATION INTO CONTEXT-AWARE AUTOMATED SERVICE IN SMART HOME FACILITIES: SEARCH ENGINE AND MACHINE LEARNING WITH SMARTPHONE

    Get PDF
    Technological advances, in general, coupled with the widespread use of smartphones, create ever more opportunities for mobile applications. This thesis considers the use of such devices within embedded systems to provide automated services in smart home automation. The overall approach links together context-aware data from the physical environment, sensors and actuators for domestic appliances and statistics-based decision-making. A prototype system named ‘Wireless Sensor/Actuator Mobile Computing in the Smart Home’ (WiSAMCinSH) is developed, which in turns aims to provide services that can benefit clients who are currently dependent on others in their daily activities. This research highlights and covers the following concepts. Firstly, it addresses the need to improve the prototypical decision-making model by enabling it to take into account context-aware information as conditions under which particular action decisions are appropriate. Secondly, an essential aspect of context-aware performance architecture is that its features must be of high accuracy, explicitly readable and fast. Thirdly, it is necessary to determine which probability-based rules are most effective in generating the dynamic environment to control the home facilities. Finally, it is important to analyse and classify in depth the accuracy of context acquisition and the corresponding context control using cross-validation methods. A case study uses integrated mobile detection technology to improve the efficiency of mobile applications, taking into account the resource limitations forced on the use of mobile devices. It also utilises other embedded sensing technologies to predict expectations, thereby enabling automatic control of facilities in the home. The main approach is to combine search engines and machine learning to create a system architecture for a context-aware computing service. Among the major challenges are finding the best statistics-based rules for decision-making and overcoming the heterogeneous character of the many devices which are used together. The results achieved show very promising potential for the use of mobile applications within a context-aware computing service, albeit one which still presents problems to be resolved through future research

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-

    Principles and Applications of Data Science

    Get PDF
    Data science is an emerging multidisciplinary field which lies at the intersection of computer science, statistics, and mathematics, with different applications and related to data mining, deep learning, and big data. This Special Issue on “Principles and Applications of Data Science” focuses on the latest developments in the theories, techniques, and applications of data science. The topics include data cleansing, data mining, machine learning, deep learning, and the applications of medical and healthcare, as well as social media

    4th International Symposium on Ambient Intelligence (ISAmI 2013)

    Get PDF
    Ambient Intelligence (AmI) is a recent paradigm emerging from Artificial Intelligence (AI), where computers are used as proactive tools assisting people with their day-to-day activities, making everyone’s life more comfortable. Another main concern of AmI originates from the human computer interaction domain and focuses on offering ways to interact with systems in a more natural way by means user friendly interfaces. This field is evolving quickly as can be witnessed by the emerging natural language and gesture based types of interaction. The inclusion of computational power and communication technologies in everyday objects is growing and their embedding into our environments should be as invisible as possible. In order for AmI to be successful, human interaction with computing power and embedded systems in the surroundings should be smooth and happen without people actually noticing it. The only awareness people should have arises from AmI: more safety, comfort and wellbeing, emerging in a natural and inherent way. ISAmI is the International Symposium on Ambient Intelligence and aiming to bring together researchers from various disciplines that constitute the scientific field of Ambient Intelligence to present and discuss the latest results, new ideas, projects and lessons learned, namely in terms of software and applications, and aims to bring together researchers from various disciplines that are interested in all aspects of this area
    corecore