69,662 research outputs found

    How Do Tor Users Interact With Onion Services?

    Full text link
    Onion services are anonymous network services that are exposed over the Tor network. In contrast to conventional Internet services, onion services are private, generally not indexed by search engines, and use self-certifying domain names that are long and difficult for humans to read. In this paper, we study how people perceive, understand, and use onion services based on data from 17 semi-structured interviews and an online survey of 517 users. We find that users have an incomplete mental model of onion services, use these services for anonymity and have varying trust in onion services in general. Users also have difficulty discovering and tracking onion sites and authenticating them. Finally, users want technical improvements to onion services and better information on how to use them. Our findings suggest various improvements for the security and usability of Tor onion services, including ways to automatically detect phishing of onion services, more clear security indicators, and ways to manage onion domain names that are difficult to remember.Comment: Appeared in USENIX Security Symposium 201

    The Profiling Potential of Computer Vision and the Challenge of Computational Empiricism

    Full text link
    Computer vision and other biometrics data science applications have commenced a new project of profiling people. Rather than using 'transaction generated information', these systems measure the 'real world' and produce an assessment of the 'world state' - in this case an assessment of some individual trait. Instead of using proxies or scores to evaluate people, they increasingly deploy a logic of revealing the truth about reality and the people within it. While these profiling knowledge claims are sometimes tentative, they increasingly suggest that only through computation can these excesses of reality be captured and understood. This article explores the bases of those claims in the systems of measurement, representation, and classification deployed in computer vision. It asks if there is something new in this type of knowledge claim, sketches an account of a new form of computational empiricism being operationalised, and questions what kind of human subject is being constructed by these technological systems and practices. Finally, the article explores legal mechanisms for contesting the emergence of computational empiricism as the dominant knowledge platform for understanding the world and the people within it

    Agent oriented AmI engineering

    Get PDF

    Evaluating the End-User Experience of Private Browsing Mode

    Get PDF
    Nowadays, all major web browsers have a private browsing mode. However, the mode's benefits and limitations are not particularly understood. Through the use of survey studies, prior work has found that most users are either unaware of private browsing or do not use it. Further, those who do use private browsing generally have misconceptions about what protection it provides. However, prior work has not investigated \emph{why} users misunderstand the benefits and limitations of private browsing. In this work, we do so by designing and conducting a three-part study: (1) an analytical approach combining cognitive walkthrough and heuristic evaluation to inspect the user interface of private mode in different browsers; (2) a qualitative, interview-based study to explore users' mental models of private browsing and its security goals; (3) a participatory design study to investigate why existing browser disclosures, the in-browser explanations of private browsing mode, do not communicate the security goals of private browsing to users. Participants critiqued the browser disclosures of three web browsers: Brave, Firefox, and Google Chrome, and then designed new ones. We find that the user interface of private mode in different web browsers violates several well-established design guidelines and heuristics. Further, most participants had incorrect mental models of private browsing, influencing their understanding and usage of private mode. Additionally, we find that existing browser disclosures are not only vague, but also misleading. None of the three studied browser disclosures communicates or explains the primary security goal of private browsing. Drawing from the results of our user study, we extract a set of design recommendations that we encourage browser designers to validate, in order to design more effective and informative browser disclosures related to private mode

    Privacy in Public and the contextual conditions of agency

    Get PDF
    Current technology and surveillance practices make behaviors traceable to persons in unprecedented ways. This causes a loss of anonymity and of many privacy measures relied on in the past. These de facto privacy losses are by many seen as problematic for individual psychology, intimate relations and democratic practices such as free speech and free assembly. I share most of these concerns but propose that an even more fundamental problem might be that our very ability to act as autonomous and purposive agents relies on some degree of privacy, perhaps particularly as we act in public and semi-public spaces. I suggest that basic issues concerning action choices have been left largely unexplored, due to a series of problematic theoretical assumptions at the heart of privacy debates. One such assumption has to do with the influential conceptualization of privacy as pertaining to personal intimate facts belonging to a private sphere as opposed to a public sphere of public facts. As Helen Nissenbaum has pointed out, the notion of privacy in public sounds almost like an oxymoron given this traditional private-public dichotomy. I discuss her important attempt to defend privacy in public through her concept of ‘contextual integrity.’ Context is crucial, but Nissenbaum’s descriptive notion of existing norms seems to fall short of a solution. I here agree with Joel Reidenberg’s recent worries regarding any approach that relies on ‘reasonable expectations’ . The problem is that in many current contexts we have no such expectations. Our contexts have already lost their integrity, so to speak. By way of a functional and more biologically inspired account, I analyze the relational and contextual dynamics of both privacy needs and harms. Through an understanding of action choice as situated and options and capabilities as relational, a more consequence-oriented notion of privacy begins to appear. I suggest that privacy needs, harms and protections are relational. Privacy might have less to do with seclusion and absolute transactional control than hitherto thought. It might instead hinge on capacities to limit the social consequences of our actions through knowing and shaping our perceptible agency and social contexts of action. To act with intent we generally need the ability to conceal during exposure. If this analysis is correct then relational privacy is an important condition for autonomic purposive and responsible agency—particularly in public space. Overall, this chapter offers a first stab at a reconceptualization of our privacy needs as relational to contexts of action. In terms of ‘rights to privacy’ this means that we should expand our view from the regulation and protection of the information of individuals to questions of the kind of contexts we are creating. I am here particularly interested in what I call ‘unbounded contexts’, i.e. cases of context collapses, hidden audiences and even unknowable future agents

    Slave to the Algorithm? Why a \u27Right to an Explanation\u27 Is Probably Not the Remedy You Are Looking For

    Get PDF
    Algorithms, particularly machine learning (ML) algorithms, are increasingly important to individuals’ lives, but have caused a range of concerns revolving mainly around unfairness, discrimination and opacity. Transparency in the form of a “right to an explanation” has emerged as a compellingly attractive remedy since it intuitively promises to open the algorithmic “black box” to promote challenge, redress, and hopefully heightened accountability. Amidst the general furore over algorithmic bias we describe, any remedy in a storm has looked attractive. However, we argue that a right to an explanation in the EU General Data Protection Regulation (GDPR) is unlikely to present a complete remedy to algorithmic harms, particularly in some of the core “algorithmic war stories” that have shaped recent attitudes in this domain. Firstly, the law is restrictive, unclear, or even paradoxical concerning when any explanation-related right can be triggered. Secondly, even navigating this, the legal conception of explanations as “meaningful information about the logic of processing” may not be provided by the kind of ML “explanations” computer scientists have developed, partially in response. ML explanations are restricted both by the type of explanation sought, the dimensionality of the domain and the type of user seeking an explanation. However, “subject-centric explanations (SCEs) focussing on particular regions of a model around a query show promise for interactive exploration, as do explanation systems based on learning a model from outside rather than taking it apart (pedagogical versus decompositional explanations) in dodging developers\u27 worries of intellectual property or trade secrets disclosure. Based on our analysis, we fear that the search for a “right to an explanation” in the GDPR may be at best distracting, and at worst nurture a new kind of “transparency fallacy.” But all is not lost. We argue that other parts of the GDPR related (i) to the right to erasure ( right to be forgotten ) and the right to data portability; and (ii) to privacy by design, Data Protection Impact Assessments and certification and privacy seals, may have the seeds we can use to make algorithms more responsible, explicable, and human-centered

    Privacy and Accountability in Black-Box Medicine

    Get PDF
    Black-box medicine—the use of big data and sophisticated machine learning techniques for health-care applications—could be the future of personalized medicine. Black-box medicine promises to make it easier to diagnose rare diseases and conditions, identify the most promising treatments, and allocate scarce resources among different patients. But to succeed, it must overcome two separate, but related, problems: patient privacy and algorithmic accountability. Privacy is a problem because researchers need access to huge amounts of patient health information to generate useful medical predictions. And accountability is a problem because black-box algorithms must be verified by outsiders to ensure they are accurate and unbiased, but this means giving outsiders access to this health information. This article examines the tension between the twin goals of privacy and accountability and develops a framework for balancing that tension. It proposes three pillars for an effective system of privacy-preserving accountability: substantive limitations on the collection, use, and disclosure of patient information; independent gatekeepers regulating information sharing between those developing and verifying black-box algorithms; and information-security requirements to prevent unintentional disclosures of patient information. The article examines and draws on a similar debate in the field of clinical trials, where disclosing information from past trials can lead to new treatments but also threatens patient privacy
    • 

    corecore