21 research outputs found

    Hidden Markov models for labeled sequences

    Get PDF

    The posterior-Viterbi: a new decoding algorithm for hidden Markov models

    Full text link
    Background: Hidden Markov models (HMM) are powerful machine learning tools successfully applied to problems of computational Molecular Biology. In a predictive task, the HMM is endowed with a decoding algorithm in order to assign the most probable state path, and in turn the class labeling, to an unknown sequence. The Viterbi and the posterior decoding algorithms are the most common. The former is very efficient when one path dominates, while the latter, even though does not guarantee to preserve the automaton grammar, is more effective when several concurring paths have similar probabilities. A third good alternative is 1-best, which was shown to perform equal or better than Viterbi. Results: In this paper we introduce the posterior-Viterbi (PV) a new decoding which combines the posterior and Viterbi algorithms. PV is a two step process: first the posterior probability of each state is computed and then the best posterior allowed path through the model is evaluated by a Viterbi algorithm. Conclusions: We show that PV decoding performs better than other algorithms first on toy models and then on the computational biological problem of the prediction of the topology of beta-barrel membrane proteins.Comment: 23 pages, 3 figure

    Hidden neural networks: application to speech recognition

    Get PDF

    A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins

    Get PDF
    BACKGROUND: Structure prediction of membrane proteins is still a challenging computational problem. Hidden Markov models (HMM) have been successfully applied to the problem of predicting membrane protein topology. In a predictive task, the HMM is endowed with a decoding algorithm in order to assign the most probable state path, and in turn the labels, to an unknown sequence. The Viterbi and the posterior decoding algorithms are the most common. The former is very efficient when one path dominates, while the latter, even though does not guarantee to preserve the HMM grammar, is more effective when several concurring paths have similar probabilities. A third good alternative is 1-best, which was shown to perform equal or better than Viterbi. RESULTS: In this paper we introduce the posterior-Viterbi (PV) a new decoding which combines the posterior and Viterbi algorithms. PV is a two step process: first the posterior probability of each state is computed and then the best posterior allowed path through the model is evaluated by a Viterbi algorithm. CONCLUSION: We show that PV decoding performs better than other algorithms when tested on the problem of the prediction of the topology of beta-barrel membrane proteins

    Training Bayesian networks for image segmentation

    Get PDF
    We are concerned with the problem of image segmentation in which each pixel is assigned to one of a predefined finite number of classes. In Bayesian image analysis, this requires fusing together local predictions for the class labels with a prior model of segmentations. Markov Random Fields (MRFs) have been used to incorporate some of this prior knowledge, but this not entirely satisfactory as inference in MRFs is NP-hard. The multiscale quadtree model of Bouman and Shapiro (1994) is an attractive alternative, as this is a tree-structured belief network in which inference can be carried out in linear time (Pearl 1988). It is an hierarchical model where the bottom-level nodes are pixels, and higher levels correspond to downsampled versions of the image. The conditional-probability tables (CPTs) in the belief network encode the knowledge of how the levels interact. In this paper we discuss two methods of learning the CPTs given training data, using (a) maximum likelihood and the EM algorithm and (b) emphconditional maximum likelihood (CML). Segmentations obtained using networks trained by CML show a statistically-significant improvement in performance on synthetic images. We also demonstrate the methods on a real-world outdoor-scene segmentation task

    Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discriminative models are designed to naturally address classification tasks. However, some applications require the inclusion of grammar rules, and in these cases generative models, such as Hidden Markov Models (HMMs) and Stochastic Grammars, are routinely applied.</p> <p>Results</p> <p>We introduce Grammatical-Restrained Hidden Conditional Random Fields (GRHCRFs) as an extension of Hidden Conditional Random Fields (HCRFs). GRHCRFs while preserving the discriminative character of HCRFs, can assign labels in agreement with the production rules of a defined grammar. The main GRHCRF novelty is the possibility of including in HCRFs prior knowledge of the problem by means of a defined grammar. Our current implementation allows <it>regular grammar </it>rules. We test our GRHCRF on a typical biosequence labeling problem: the prediction of the topology of Prokaryotic outer-membrane proteins.</p> <p>Conclusion</p> <p>We show that in a typical biosequence labeling problem the GRHCRF performs better than CRF models of the same complexity, indicating that GRHCRFs can be useful tools for biosequence analysis applications.</p> <p>Availability</p> <p>GRHCRF software is available under GPLv3 licence at the website</p> <p><url>http://www.biocomp.unibo.it/~savojard/biocrf-0.9.tar.gz.</url></p

    An empirical analysis of training protocols for probabilistic gene finders

    Get PDF
    BACKGROUND: Generalized hidden Markov models (GHMMs) appear to be approaching acceptance as a de facto standard for state-of-the-art ab initio gene finding, as evidenced by the recent proliferation of GHMM implementations. While prevailing methods for modeling and parsing genes using GHMMs have been described in the literature, little attention has been paid as of yet to their proper training. The few hints available in the literature together with anecdotal observations suggest that most practitioners perform maximum likelihood parameter estimation only at the local submodel level, and then attend to the optimization of global parameter structure using some form of ad hoc manual tuning of individual parameters. RESULTS: We decided to investigate the utility of applying a more systematic optimization approach to the tuning of global parameter structure by implementing a global discriminative training procedure for our GHMM-based gene finder. Our results show that significant improvement in prediction accuracy can be achieved by this method. CONCLUSIONS: We conclude that training of GHMM-based gene finders is best performed using some form of discriminative training rather than simple maximum likelihood estimation at the submodel level, and that generalized gradient ascent methods are suitable for this task. We also conclude that partitioning of training data for the twin purposes of maximum likelihood initialization and gradient ascent optimization appears to be unnecessary, but that strict segregation of test data must be enforced during final gene finder evaluation to avoid artificially inflated accuracy measurements

    Fast MCMC sampling for hidden markov models to determine copy number variations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hidden Markov Models (HMM) are often used for analyzing Comparative Genomic Hybridization (CGH) data to identify chromosomal aberrations or copy number variations by segmenting observation sequences. For efficiency reasons the parameters of a HMM are often estimated with maximum likelihood and a segmentation is obtained with the Viterbi algorithm. This introduces considerable uncertainty in the segmentation, which can be avoided with Bayesian approaches integrating out parameters using Markov Chain Monte Carlo (MCMC) sampling. While the advantages of Bayesian approaches have been clearly demonstrated, the likelihood based approaches are still preferred in practice for their lower running times; datasets coming from high-density arrays and next generation sequencing amplify these problems.</p> <p>Results</p> <p>We propose an approximate sampling technique, inspired by compression of discrete sequences in HMM computations and by <it>kd</it>-trees to leverage spatial relations between data points in typical data sets, to speed up the MCMC sampling.</p> <p>Conclusions</p> <p>We test our approximate sampling method on simulated and biological ArrayCGH datasets and high-density SNP arrays, and demonstrate a speed-up of 10 to 60 respectively 90 while achieving competitive results with the state-of-the art Bayesian approaches.</p> <p><it>Availability: </it>An implementation of our method will be made available as part of the open source GHMM library from <url>http://ghmm.org</url>.</p

    Unsupervised Similarity-Based Risk Stratification for Cardiovascular Events Using Long-Term Time-Series Data

    Get PDF
    In medicine, one often bases decisions upon a comparative analysis of patient data. In this paper, we build upon this observation and describe similarity-based algorithms to risk stratify patients for major adverse cardiac events. We evolve the traditional approach of comparing patient data in two ways. First, we propose similarity-based algorithms that compare patients in terms of their long-term physiological monitoring data. Symbolic mismatch identifies functional units in long-term signals and measures changes in the morphology and frequency of these units across patients. Second, we describe similarity-based algorithms that are unsupervised and do not require comparisons to patients with known outcomes for risk stratification. This is achieved by using an anomaly detection framework to identify patients who are unlike other patients in a population and may potentially be at an elevated risk. We demonstrate the potential utility of our approach by showing how symbolic mismatch-based algorithms can be used to classify patients as being at high or low risk of major adverse cardiac events by comparing their long-term electrocardiograms to that of a large population. We describe how symbolic mismatch can be used in three different existing methods: one-class support vector machines, nearest neighbor analysis, and hierarchical clustering. When evaluated on a population of 686 patients with available long-term electrocardiographic data, symbolic mismatch-based comparative approaches were able to identify patients at roughly a two-fold increased risk of major adverse cardiac events in the 90 days following acute coronary syndrome. These results were consistent even after adjusting for other clinical risk variables.National Science Foundation (U.S.) (CAREER award 1054419
    corecore