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Abstract

In medicine, one often bases decisions upon a comparative analysis of patient data. In this paper,
we build upon this observation and describe similarity-based algorithms to risk stratify patients
for major adverse cardiac events. We evolve the traditionalapproach of comparing patient data in
two ways. First, we propose similarity-based algorithms that compare patients in terms of their
long-term physiological monitoring data. Symbolic mismatch identifies functional units in long-
term signals and measures changes in the morphology and frequency of these units across patients.
Second, we describe similarity-based algorithms that are unsupervised and do not require compar-
isons to patients with known outcomes for risk stratification. This is achieved by using an anomaly
detection framework to identify patients who are unlike other patients in a population and may
potentially be at an elevated risk. We demonstrate the potential utility of our approach by showing
how symbolic mismatch-based algorithms can be used to classify patients as being at high or low
risk of major adverse cardiac events by comparing their long-term electrocardiograms to that of
a large population. We describe how symbolic mismatch can beused in three different existing
methods: one-class support vector machines, nearest neighbor analysis, and hierarchical cluster-
ing. When evaluated on a population of 686 patients with available long-term electrocardiographic
data, symbolic mismatch-based comparative approaches were able to identify patients at roughly
a two-fold increased risk of major adverse cardiac events inthe 90 days following acute coronary
syndrome. These results were consistent even after adjusting for other clinical risk variables.

Keywords: risk stratification, cardiovascular disease, time-seriescomparison, symbolic analysis,
anomaly detection

1. Introduction

In medicine, as in many other disciplines, decisions are often based upon a comparative analy-
sis. Patients are given treatments that worked in the past on apparently similarconditions. When
given simple data (e.g., demographics, comorbidities, and laboratory values) such comparisons are
relatively straightforward. For more complex data, such as continuous long-term signals recorded
during physiological monitoring, they are harder. Comparing such time-series is made challenging
by three factors: the need to capture the many different changes that occur over long periods, for
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SYED AND GUTTAG

Figure 1: 24 hour ECG signals from two patients. Each time-series is over tenmillion samples long
and contains patient-specific differences in the shape, frequency andtime scale of activity
over the recording duration. These differences need to be captured while comparing these
data.

example, in the shape, frequency, or time scale of activity; the need to efficiently compare very
long signals across a large number of patients; and the need to deal with patient-specific differences
(Figure 1).

Despite these challenges, comparative analyses of long-term physiological time-series can po-
tentially offer clinically useful prognostic information. While there is an extensive body of research
focussed on comparing relatively short time-series, including measures such as dynamic time warp-
ing (Keogh and Pazzani, 2001; Keogh and Ratanamahatana, 2005), longest common subsequence
(Vlachos et al., 2002), edit distance with real penalty (Cheng and Ng, 2004), sequence weighted
alignment (Morse and Patel, 2007), spatial assembling distance (Chen et al., 2007), this work does
not directly focus on comparing very long time-series (e.g., millions of samples long). In this pa-
per, we investigate the hypothesis that comparative analyses of long-termphysiological activity can
aid risk stratification and present symbolic mismatch as a way to quantify differences between the
physiological signals of patients. Symbolic mismatch compares long-term time-series by mapping
the original signals into a symbolic domain and quantifying differences between the morphology
and frequency of prototypical functional units. The use of symbolizationis an abstraction process
that greatly reduces the size of the data to be compared. For example, comparing the long-term
electrocardiographic (ECG) activity between two patients may involve comparing over a hundred
thousand beats (with each beats having roughly 500 samples per beat). Using symbolization to
reduce this data to a small number of representative units can greatly decrease the size of this prob-
lem. This reduction allows for symbolic mismatch to be useful in analyzing very long time-series.
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We describe how this measure can be modified in a reasonably simple manner for use with kernel
classifiers.

We also present different ways in which symbolic mismatch can be used to identify high risk
patients in a population. The methods we propose are motivated by the observation that high risk
patients typically constitute a small minority in a population. For example, cardiac mortality over a
90 day period following acute coronary syndrome (ACS) was reported tobe 1.79% for the SYM-
PHONY trial involving 14,970 patients (Newby et al., 2003) and 1.71% for theDISPERSE2 trial
with 990 patients (Cannon et al., 2007). The rate of myocardial infarction (MI) over the same pe-
riod for the two trials was 5.11% for the SYMPHONY trial and 3.54% for the DISPERSE2 trial.
Our hypothesis is that these patients can be discovered as anomalies in the population, that is, their
physiological activity over long periods of time is dissimilar to the majority of the patients in the
population. In contrast to algorithms that require labeled training data, we propose identifying these
patients using unsupervised approaches based on three methods previously reported in the litera-
ture: one-class support vector machines (SVMs) (Scholkopf et al., 2001), nearest neighbor analysis
(Cover and Hart, 1967) and hierarchical clustering (Ward Jr, 1963).

In the remainder of this paper, we describe our work in the context of riskstratification for
cardiovascular disease. Cardiovascular disease is the leading cause of death globally and causes
roughly 17 million deaths each year (World Health Organization, 2009). By 2030, this number is
expected to grow to nearly 24 million deaths annually (World Health Organization, 2009). Most of
these cases are expected to be the result of coronary attacks. Despite improvements in survival rates,
in the United States, 1 in 4 men and 1 in 3 women still die within a year of a recognizedfirst heart
attack (Mackay et al., 2004). This risk of death can be substantially lowered with an appropriate
choice of treatment (e.g., drugs to lower cholesterol and blood pressure, aspirin; operations such
as coronary artery bypass graft and balloon angioplasty; and medicaldevices such as pacemakers
and implantable cardioverter defibrillators) (World Health Organization, 2009). However, matching
patients with treatments that are appropriate for their risk has proven to be challenging (Bailey et al.,
2001; Lopera and Curtis, 2009). Existing techniques based upon conventional medical knowledge
continue to be inadequate for risk stratification. This leads us to explore methods with fewa priori
assumptions. We focus, in particular, on identifying patients at risk of major adverse cardiac events
(death, myocardial infarction and severe recurrent ischemia) followingcoronary attacks. This work
uses long-term ECG signals recorded during patient admission for acute coronary syndrome. These
signals are routinely collected, potentially allowing for the work presented here to be deployed
easily without imposing additional needs on patients, caregivers, or the healthcare infrastructure.
We demonstrate that it is possible to do long-term ECG-based risk stratificationwithout defining a
set of features, performing cross-patient symbol or feature alignment,or having any labeled data.

The main contributions of our work are: (1) we describe a novel approach for cardiovascular
risk stratification that is complementary to existing clinical approaches, (2) weexplore the idea
of similarity-based clinical risk stratification where patients are categorized interms of their simi-
larities rather than specific features based on prior knowledge, (3) we develop the hypothesis that
patients at future risk of adverse outcomes can be detected using an unsupervised approach as out-
liers in a population, (4) we present symbolic mismatch, as a way to efficiently compare very long
time-series without first reducing them to a set of features or requiring symbol registration across
patients, and (5) we present a rigorous evaluation of unsupervised similarity-based risk stratifying
using long-term data in a population of 700 patients with detailed admissions and follow-up data.
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While this manuscript focuses on cardiovascular disease, we believe thatthe ideas presented here
can potentially be extended to other data sets in a relatively straightforward manner.

2. Background

We start by briefly reviewing the clinical background for our research. We focus, in particular, on
aspects of cardiac function related to electrophysiology. This is followed by a discussion of acute
coronary syndromes (ACS) and a summary of recently proposed long-term ECG metrics for risk
stratification following ACS. Finally, we present a short overview of survival analysis methods used
to evaluate metrics for risk stratification.

2.1 Electrocardiogram

An electrocardiogram (ECG) is a continuous recording of the electrical activity of the heart muscle
or myocardium (Lilly, 2007). A cardiac muscle cell at rest maintains a negative voltage with respect
to the outside of the cell. During depolarization, this voltage increases and mayeven become
positive. Consequently, when depolarization is propagating through a cell, there exists a potential
difference on the membrane between the part of the cell that has been depolarized and the part of
the cell at resting potential. After the cell is completely depolarized, its membraneis uniformly
charged again, but at a more positive voltage than initially. The reverse situation takes place during
repolarization, which returns the cell to baseline.

These changes in potential, summed over many cells, can be measured by electrodes placed on
the surface of the body. For any pair of electrodes, a voltage is recorded whenever the direction of
depolarization (or repolarization) is aligned with the line connecting the two electrodes. The sign
of the voltage indicates the direction of depolarization, and the axis of the electrode pair is termed
the lead. Multiple electrodes along different axes can be used so that the average direction of de-
polarization, as a three-dimensional vector, can be reconstructed fromthe ECG tracings. However,
such multi-lead data is not always available, especially for portable ECG monitors that maximize
battery life by reducing the number of electrodes used. Much of our workis therefore designed for
the single ECG lead case. As we show subsequently, there is sufficient information even within a
single lead of ECG to risk stratify patients.

ECG data is routinely recorded for hospitalized patients, since it is useful for determination of
heart rate and pulse, and for the detection of progressive cardiac disease and complicating arrhyth-
mias (Goldstein, 1997). ECG has the advantage of being easy to acquire; the electrical activity of
the heart can be measured on the surface of the body in an inexpensiveand non-invasive manner. In
an in-patient setting, the ECG is typically captured by bedside monitors. In an out-patient setting, a
Holter monitor (a portable ECG device worn by patients) can record data continuously over multiple
days.

The ECG is a quasi-periodic signal (i.e., corresponding to the quasi-periodic nature of cardiac
activity). Three major segments can be identified in a normal ECG. TheP wave is associated with
depolarization of cardiac cells in the upper two chambers of the heart (i.e., the atria). TheQRS
complex (comprising the Q, R and S waves) is associated with depolarization of cardiac cells in the
lower two chambers of the heart (i.e., the ventricles). TheT wave is associated with repolarization
of the cardiac cells in the ventricles. The QRS complex is larger than the P wavebecause the
ventricles are much larger than the atria. The QRS complex also coincides with the repolarization
of the atria, which is therefore usually not seen on the ECG. The T wave has a larger width and
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Figure 2: Schematic representation of the normal ECG for a single heart beat.

smaller amplitude than the QRS complex because repolarization takes longer thandepolarization
(Lilly, 2007). Figure 2 presents a schematic representation of the normal ECG.

2.2 Acute Coronary Syndromes

In our research, we mainly focus on identifying high risk patients following acute coronary syn-
drome (ACS), an umbrella term covering clinical symptoms compatible with reduced blood supply
to the heart (i.e., myocardial ischemia). Heart attacks and unstable angina are included in this group.
An ACS is an event in which the blood supply to the myocardium is blocked or severely reduced.
The most common symptom of ACS is unusual and unprovoked chest pain, but this may often be ab-
sent (most notably in patients with diabetes who experience “silent” heart attacks). Other symptoms
may include shortness of breath, profuse sweating, and nausea.

An ACS is usually caused by the rupture of an atherosclerotic plaque producing a clot within a
coronary artery. This restricts blood flow to the heart, causing ischemia and potentially cell death in
the myocardium. Various sub-classifications of ACS are distinguished by thepresence of myocar-
dial necrosis (cell death) and by ECG diagnosis (Lilly, 2007).

Unstable angina refers to an ACS event in which necrosis does not occur, whilemyocardial
infarction (MI) refers to one in which it does. Usually, we distinguish between ACS where the
ECG shows an ST segment elevation (indicative of complete occlusion of an artery with myocardial
necrosis) and ACS where the ECG does not show an ST segment elevation(indicative of partal
occlusion of an artery with or without myocardial necrosis). Patients with STsegment elevation
are given the diagnosis of ST-elevation MI (STEMI) while patients without STsegment elevation
are given the diagnosis of non-ST-elevation ACS (NSTEACS). NSTEACS can correspond to either
unstable angina or non-ST-elevation MI (NSTEMI). Patients with STEMI are typically at a higher
risk relative to patients with NSTEACS. The differentiation between whether the NSTEACS corre-
sponds to unstable angina or NSTEMI is done on the basis of whether necrosis occurs. This involves
blood tests to measure the levels of two serum biomarkers, cardiac-specifictroponin and creatine
kinase MB, which are chemicals released into the bloodstream when myocardial cells die.
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2.3 Post-ACS Risk Stratification and Long-Term ECG Techniques

Since patients who experience ACS remain at an elevated risk of death evenafter receiving treatment
for the initial index event (Newby et al., 2003), post-ACS risk stratification isan important clinical
step in determining which patients should be monitored and treated more (or less) aggressively
subsequently. Roughly speaking, the goal of risk stratification is to identifygroups of patients
within the post-ACS population with different rates of adverse outcomes despite receiving similar
care. This information can provide an important basis to deliver customized care and to perform
clinical cost-benefit analyses.

A number of different methods have been proposed to risk stratify patientsfollowing ACS with
an excellent review provided by Breall and Simons (2010) and Alpert (2010). We focus here on re-
cent techniques for risk stratification based on information in long-term ECG. A variety of methods
have been proposed that assess risk based on automated analysis of long-term ECG data collected
in the hours or days following admission. Such data is routinely collected during a patient’s stay
and therefore these risk assessments can be obtained at almost no additional cost. We discuss three
ECG-based methods that have been proposed in the literature:heart rate variability (HRV) (Malik
et al., 1996; Kleiger et al., 2005),heart rate turbulence (HRT) (Barthel et al., 2003), anddecel-
eration capacity (DC) (Bauer et al., 2006). Each of these measures has been shown to correlate
with an increased risk of adverse events in the period following an ACS. One additional long-term
ECG-based risk stratification technique, T-wave alternans (TWA) (Smith etal., 1988; Rosenbaum
et al., 1994), has also shown promise. However, evaluating TWA typically requires the use of spe-
cialized recording equipment, patient maneuvers or chemical agents to elevate heart rate, and input
by a human expert for signal selection. As a result we do not consider TWA in our present study,
while focusing on automated methods that can be applied to data collected routinely from post-ACS
patients.

The class of ECG-based risk stratification techniques that has been discussed most extensively
in the literature is HRV (Malik et al., 1996; Kleiger et al., 2005). The theory underlying HRV-
based techniques is that in healthy people, the body should continuously compensate for changes in
oxygen demand by changing the heart rate. The heart rate should also change as a result of phys-
iological phenomena such as respiratory sinus arrhythmia (Lilly, 2007). Aheart rate that changes
little suggests that the heart or its control systems are not actively responding to stimuli.

HRT (Barthel et al., 2003) is related to HRV in that it studies the autonomic tone ofpatients (i.e.,
control of the heart rate by the nervous system). HRT studies the return toequilibrium of the heart
rate after premature beats. Typically, following a premature beat there is a brief speed-up in heart
rate followed by a slow decrease back to the baseline rate. This corresponds to the “turbulence” in
the heart rate and is present in patients with a healthy autonomic nervous system. HRT is essentially
a reflex phenomenon. When a premature beat interrupts the normal cardiac cycle, the ventricles
have not had time to fill to their normal levels, resulting in a weaker pulse. This triggers pressure
reflex mechanisms that compensate by increasing the heart rate. This compensatory increase in heart
rate causes blood pressure to overcompensate and actives the pressure reflex in reverse. Patients that
have diminished HRT responses after premature beats are believed to be athigh risk due to abnormal
nervous control of the cardiovascular system.

DC (Bauer et al., 2006) is an extension of work on HRV and HRT, and alsostudies information
in the heart rate signal. The theory underlying DC is that decreased decelerations in the heart rate
suggest an increased unresponsiveness of the heart to cardioprotective signals from the vagal system
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for the heart to slow down. This is often the first line of defense against major adverse events such
as fatal arrhythmias.

2.4 Survival Analysis

Metrics for risk stratification are typically evaluated using survival analysis techniques. These meth-
ods study the rates of adverse outcomes in patients assigned to different groups (e.g., high and low
risk groups in the context of risk stratification post-ACS). In general, such analyses can be carried
out in terms of sensitivity and specificity. However, data from clinical studies often consists of a
mix of patients who either remain event free throughout the duration of the study, experience events
at fairly different times within the study, or leave the study before it is complete(a phenomenon
termed censoring). Survival analysis focuses on using information in allthese cases, that is, by
factoring in both the timing of events in patients who experience adverse outcomes, and by using
data from patients who leave the study early for the period during which theyparticipated.

Survival data is commonly visualized as a Kaplan-Meier survival curve (Efron, 1988), which
reflects the event rate over time in patients belonging to different groups. We present examples of
Kaplan-Meier survival curves subsequently in this manuscript. Visually observed differences be-
tween Kaplan-Meier survival curves (i.e., differences in the rates of events over time in patients
belonging to two or more groups) can be quantified through a variety of methods. The Cox propor-
tional hazards test is most widely used (Cox, 1972) and corresponds toa regression-based approach
to determine how the relative risk between populations varies over time in response to explanatory
covariates. The outcomes of this analysis are typically a hazard ratio estimatingthe multiplica-
tive increase in the rate of events over time between populations, and a measure of the statistical
strength of this estimate (a 95% confidence interval for the hazard ratio or ap value). Findings are
usually considered to be significant if thep value is less than 0.05 (corresponding to a 5% chance
of rejecting the null hypothesis, that is, a Type I error).

3. Symbolic Mismatch

In this section, we describe the process through which symbolic mismatch is computed between a
pair of long-term ECG time-series. The use of symbolic mismatch for risk stratification is presented
in Section 4.

3.1 Symbolization

As a first step, the ECG signalzm for each patientm = 1, ...,n is symbolized using the technique
proposed by Syed et al. (2007). To segment the ECG signal into beats, we use two open-source
QRS detection algorithms (Hamilton and Tompkins, 1986; Zong et al., 2003). QRS complexes are
marked at locations where both algorithms agree. A variant of dynamic time-warping (DTW) (My-
ers and Rabiner, 1981) is then used to quantitatively measure differences in morphology between
beats. Using this information, beats with distinct morphologies are partitioned intogroups, with
each group being assigned a unique label or symbol. This is done by meansof a Max-Min iterative
clustering algorithm that starts by choosing the first observation as the first centroid,c1, and initial-
izes the setS of centroids to{c1}. During thei-th iteration,ci is chosen such that it maximizes the
minimum difference betweenci and observations inS:
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ci = argmax
x/∈S

min
y∈S

C(x,y)

whereC(x,y) is the DTW difference betweenx andy. The setS is incremented at the end of each
iteration such thatS = S∪ ci.

The number of clusters discovered by Max-Min clustering is chosen by iterating until the maxi-
mized minimum difference falls below a thresholdθ (chosen empirically as the ’knee’ of the maxi-
mized minimum difference curve). At this point, the setS comprises the centroids for the clustering
process, and the final assignment of beats to clusters proceeds by matching each beat to its nearest
centroid. Each set of beats assigned to a centroid constitutes a unique cluster. The final number of
clusters,γ, obtained using this process depends on the separability of the underlyingdata.

Intuitively, the Max-Min clustering algorithms attempts to partition the data into groups such
that the similarity of points within the same groups is minimized, while the similarity of points
within different groups is maximized. Theoretical analyses of Max-Min cut-based methods show
that this approach leads to more balanced separations of the data than otherapproaches (Ding et al.,
2001).

The overall effect of DTW-based partitioning of beats is to transform theoriginal raw ECG
signal into a sequence of symbols, that is, into a sequence of labels corresponding to the different
beat morphology classes that occur in the signal. Our approach differsfrom the methods typically
used to annotate ECG signals in two ways. First, we avoid using specialized knowledge to parti-
tion beats into known clinical classes. There is a set of generally acceptedlabels that cardiologists
use to differentiate distinct kinds of heart beats. For example, the Association for the Advance-
ment of Medical Instrumentation (AAMI) standards define five basic beatclasses (AAMI, 1998,
1987; de Chazal et al., 2004), while the Physionet MIT-BIH Arrhythmia database sub-divides these
classes to produce 18 different heart beat labels (Physionet, 2005). However, in some cases, even
finer distinctions than provided by these labels can be clinically relevant (Syed et al., 2007). Our
use of beat clustering rather than beat classification allows us to identify a set of characteristic mor-
phology classes dynamically from the data that capture these finer-grained distinctions. Second, our
approach does not involve extracting features (e.g., the length of the beat or the amplitude of the P
wave) from individual beats. Instead, our clustering algorithm compares the entire raw morphology
of pairs of beats. This approach is potentially advantageous, because itdoes not assumea priori
knowledge about what aspects of a beat are most relevant. It can alsobe easily extended to other
time-series data (e.g., blood pressure waveforms and respiratory activity).

3.2 Measuring Mismatch in Symbolic Representations

Denoting the set of symbol centroids for patientp asSp and the set of frequencies with which these
symbols occur in the electrocardiogram asFp (for patientq an analogous representation is adopted),
we define the symbolic mismatch between the long-term ECG time-series for patientsp andq as:

ψp,q = ∑
pi∈Sp

∑
q j∈Sq

C(pi,q j)Fp[pi]Fq[q j] (1)

whereC(pi,q j) corresponds to the DTW cost of aligning the centroids of symbol classespi andq j.
Intuitively, the symbolic mismatch between patientsp andq corresponds to an estimate of the

expected difference in morphology between any two randomly chosen beats from these patients.
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The symbolic mismatch computation achieves this by weighting the difference between the cen-
troids for every pair of symbols for the patients by the frequencies with which these symbols occur.

An important feature of symbolic mismatch is that it is explicitly designed to avoid the need to
set up a correspondence between the symbols of patientsp andq. In contrast to cluster matching
techniques (Chang et al., 1997; Cohen and Richman, 2002) to compare data for two patients by first
making an assignment from symbols in one patient to the other, symbolic mismatch does not require
any cross-patient registration of symbols. Instead, it performs weightedmorphologic comparisons
between all symbol centroids for patientsp andq. As a result, the symbolization process does not
need to be restricted to well-defined labels and is able to use a richer set of patient-specific symbols
that capture fine-grained activity over long periods of time.

3.3 Spectrum Clipping

The formulation for symbolic mismatch in Equation 1 gives rise to a symmetric dissimilarityma-
trix. For methods that are unable to work directly from dissimilarities, this can betransformed
into a similarity matrix using a generalized radial basis function (Vanschoenwinkel and Manderick,
2005). For both the dissimilarity and similarity case, however, symbolic mismatch can produce a
matrix that is indefinite. This can be problematic when using symbolic mismatch with kernel-based
algorithms because the optimization problems become non-convex and the underlying theory is in-
validated (Chen et al., 2009b). In particular, kernel-based classification methods require Mercer’s
condition (Scholkopf and Smola, 2002) to be satisfied by a positive semi-definite kernel matrix.
This creates the need to transform the symbolic mismatch matrix before it can be used as a kernel
in these methods.

We use spectrum clipping to generalize the use of symbolic mismatch for classification. This
approach has been shown both theoretically and empirically to offer advantages over other strategies
(e.g., spectrum flipping, spectrum shifting, spectrum squaring, and the use of indefinite kernels)
(Chen et al., 2009a). The symmetric mismatch matrixΨ has an eigenvalue decomposition:

Ψ =UT ΛU

whereU is an orthogonal matrix andΛ is a diagonal matrix of real eigenvalues:

Λ = diag(λ1, ...,λn).

Spectrum clipping makesΨ positive semi-definite by clipping all negative eigenvalues to zero.
The modified positive semi-definite symbolic mismatch matrix is then given by:

Ψclip =UT ΛclipU

where:

Λclip = diag(max(λ1,0), ...,max(λn,0)).

Using Ψclip as a kernel matrix is then equivalent to using(Λclip)
1/2ui as the representation of

thei-th training sample.
We note that while we introduce spectrum clipping mainly for the purpose of broadening the

applicability of symbolic mismatch to kernel-based methods, this approach offers additional advan-
tages. Some researchers, for example, assume that negative eigenvalues of the similarity matrix are
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caused by noise and view spectrum clipping as a denoising step (Wu et al., 2005). The results of
our experiments, presented later in this paper, support the view of spectrum clipping being useful in
a broader context.

4. Risk Stratification Using Symbolic Mismatch

We now present three different approaches using symbolic mismatch to identify high risk patients
in a population. We choose these algorithms consistent with Eskin et al. (2002), as methods that
can operate on high dimensional data, and that each detect points lying in sparse regions of the
feature space in different ways. The first of these approaches uses a one-class SVM and a symbolic
mismatch similarity matrix obtained using a generalized radial basis transformation.The other
two approaches, nearest neighbor analysis and hierarchical clustering, use the symbolic mismatch
dissimilarity matrix. In each case, the symbolic mismatch matrix is processed using spectrum clip-
ping. All three of our approaches focus on finding patients with long-termECG time-series that are
anomalies in the population.

4.1 Classification Approach

Our first approach is based on SVMs. SVMs have been applied to anomalydetection in the one-class
setting. Scholkopf et al. (2001) propose a method of adapting the SVM methodology to the one-
class classification problem. This is done by mapping the data into the feature space corresponding
to the kernel and separating instances from the origin with the maximum margin. To separate data
from the origin, the following quadratic program is solved:

min
w,ξ,p

1
2
‖w‖2+

1
vn ∑

i

ξi − p

subject to:

(w ·Φ(zi))≥ p−ξi i = 1, ...,n ξi ≥ 0

wherev reflects the tradeoff between incorporating outliers and minimizing the size of the support
region.

For a new instance, the label is determined by evaluating which side of the hyperplane the in-
stance falls on in the feature space. The resulting predicted label in terms ofthe Lagrange multipliers
αi and the spectrum clipped symbolic mismatch similarity matrixΨclip is then:

ŷ j = sgn(∑
i

αiΨclip(i, j)− p).

We apply this approach to train a one-class SVM on all patients. Patients who lieoutside the
enclosing boundary are then labeled as anomalies. The parameterv can be varied to control the size
of this group.

4.2 Nearest Neighbor Approach

Our second approach is based on the concept of nearest neighbor analysis. The assumption under-
lying this approach is that normal data instances occur in dense neighborhoods, while anomalies
occur far from their closest neighbors.
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We use an approach similar to that in Eskin et al. (2002). In this case, the anomaly score of
each patient’s long-term time-series is computed as the sum of its distances from time-series for its
k-nearest neighbors, as measured by symbolic mismatch. Patients with anomaly scores exceeding a
thresholdθ are labeled as anomalies.

4.3 Clustering Approach

Our third approach is based on agglomerative hierarchical clustering. We begin by putting each
patient in a separate cluster, and then proceed in each iteration to merge the two clusters that are
most similar to each other. The distance between two clusters is defined as the average of the
pairwise symbolic mismatch of the patients in each cluster. The clustering process terminates when
it enters a region of diminishing returns (i.e., at a ’knee’ of the curve corresponding to the distance
of clusters merged together at each iteration). At this point, all patients outside the largest cluster
are labeled as anomalies.

5. Evaluation Methodology

We evaluated our work on patients enrolled in the DISPERSE2 trial (Cannonet al., 2007). Patients
in the study were admitted to a hospital with non-ST-elevation acute coronary syndrome (non-
ST-elevation myocardial infarction or unstable angina). Three lead continuous ECG monitoring
(LifeCard CF / Pathfinder, DelMar Reynolds / Spacelabs, Issaqua WA) was performed for a median
duration of 4 days at a sampling rate of 128 Hz. The endpoints of cardiovascular death, myocardial
infarction and severe recurrent ischemia were adjudicated by a blinded panel of clinical experts
for a median follow-up period of 60 days. The maximum follow-up was 90 days. Data from
686 patients was available after removal of noise-corrupted signals. During the follow-up period
there were 14 cardiovascular deaths, 28 myocardial infarctions, and 13 cases of severe recurrent
ischemia. We define a major adverse cardiac event to be any of these threeadverse events. The
clinical characteristics of this patient population are presented in Table 1.

We studied the ability of each approach (i.e., classification, nearest neighbor analysis and clus-
tering) to identify a high risk group of patients. Consistent with earlier studiesto evaluate new
methods for risk stratification in the setting of acute coronary syndrome (Shlipak et al., 2008), we
classified patients in the highest quartile as the high risk group. For the classification approach, this
corresponded to choosingv such that the group of patients lying outside the enclosing boundary
constituted roughly 25% of the population. For the nearest neighbor approach we investigated all
odd values ofk from 3 to 9, and patients with anomaly scores in the top 25% of the population were
classified as being at high risk. For the clustering approach, the varyingsizes of the clusters merged
together at each step made it difficult to select a high risk quartile. Instead,patients lying outside
the largest cluster were categorized as being at risk. In the tests reported later in this paper, this
group contained roughly 23% the patients in the population. We used the LIBSVM implementation
for our one-class SVM. Both the nearest neighbor and clustering approaches were carried out using
MATLAB implementations.

We employed Kaplan-Meier survival analysis (Efron, 1988) to comparethe rates for major ad-
verse cardiac events between patients declared to be at high and low risk for all three approaches.
Hazard ratios (HR) and 95% confidence interval (CI) were estimated using a Cox proportional
hazards regression model (Cox, 1972). The predictions of each approach were studied in univari-
ate models, and also in multivariate models that additionally included other clinical risk variables
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Age (years) 62 (53 to 70)
Age≥65 years 41%
Female Gender 36%
Current Smoker 57%
Hypertension 69%
Diabetes Mellitus 23%
Hyperlipidemia 64%
History of COPD 9%
History of CHD 37%
Previous MI 25%
Previous angina 58%
ST depression>0.5mm 66%
Index diagnosis of MI 49%

Table 1: Clinical characteristics of patient population used for study.

(age≥65 years, gender, smoking history, hypertension, diabetes mellitus, hyperlipidemia, history
of chronic obstructive pulmonary disorder (COPD), history of coronary heart disease (CHD), pre-
vious MI, previous angina, ST depression on admission, index diagnosisof MI) as well as ECG
risk metrics proposed in the past such as heart rate variability (HRV) (Maliket al., 1996), heart rate
turbulence (HRT) (Barthel et al., 2003), and deceleration capacity (DC) (Bauer et al., 2006).

For HRV, we used metrics proposed by the Task Force of the European Society of Cardiology
and the North American Society of Pacing and Electrophysiology: the standard deviation of normal-
to-normal intervals (SDNN), standard deviation of sequential five minute normal-to-normal means
(SDANN), mean of the standard deviation of sequential five minute normal-to-normal intervals
(ASDNN), root mean square successive differences (rMSSD), heart rate variability index (HRVI),
percent of normal-to-normal interval increments greater than 50 ms (pNN50) and the ratio of low
frequency power to the high frequency power (LF/HF). While we computed all HRV measures, we
only report results for the best performing one, that is, LF/HF. HRV-LF/HF was dichotomized at
0.95 using the results reported earlier in the literature (Malik et al., 1996).

We measured HRT and DC for each patient using the libRASCH software shared for research
use by the inventors of the method (Technische Universitat Munchen, Munich, Germany). HRT
was trichotomized based on the turbulence onset (TO) and turbulence slope (TS) as follows: HRT0
(TO<0 and TS>2.5ms), HRT1 (either TO>0 or TS<2.5ms), and HRT2 (TO>0 and TS<2.5ms)
(Barthel et al., 2003). DC was trichotomized as follows: category 0 (>4.5ms), category 1 (2.5 ms-
4.5 ms), and category 2 (<2.5ms) (Bauer et al., 2006). Both HRT and DC were treated as continuous
variables in our study.

We did not compare our work to T-wave alternans (TWA) (Rosenbaum etal., 1994) as TWA is
typically measured using specialized hardware and maneuvers to increasethe heart rate. While we
experimented with a TWA algorithm that has recently been proposed to measure TWA on ECG data
collected routinely during admission (Nearing and Verrier, 2002), this algorithm did not produce
good results. We believe these results reflect an inability to measure TWA without specialized
hardware and manoeuvres, as opposed to the lack of predictive discrimination for the method. We
therefore excluded TWA from our analysis, as an ECG approach that ismore appropriate for ECG
signals collected under specialized conditions.
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Method HR P Value 95% CI
One-Class SVM 1.38 0.033 1.04-1.89

3-Nearest Neighbor 1.91 0.031 1.06-3.44
5-Nearest Neighbor 2.10 0.013 1.17-3.76
7-Nearest Neighbor 2.28 0.005 1.28-4.07
9-Nearest Neighbor 2.07 0.015 1.15-3.71

Hierarchical Clustering 2.04 0.017 1.13-3.68

Table 2: Univariate association of high risk predictions from different approaches using symbolic
mismatch with major adverse cardiac events over a 90 day period following acute coronary
syndrome.

6. Results

We divide our results into two broad groups: univariate results (symbolic mismatch-based ap-
proaches in univariate models), and multivariate results (symbolic mismatch-based approaches in
multivariate models). We also report on the effect of spectrum clipping on performance and provide
some brief results regarding the runtime performance of our approach.

6.1 Univariate Results

Results of univariate analysis for all three unsupervised symbolic mismatch-based approaches are
presented in Table 2. The predictions from all methods showed a statistically significant (i.e.,
p < 0.05) association with major adverse cardiac events following acute coronary syndrome. The
results in Table 2 can be interpreted as roughly a doubled rate of adverseoutcomes per unit time in
patients identified as being at high risk by the nearest neighbor and clustering approaches. For the
classification approach, patients identified as being at high risk had a nearly 40% increased risk of
adverse outcomes. Kaplan-Meier survival curves for all three methods are shown in Figures 3 to 5.
For the nearest neighbor approach, we present only the results for the best performingk (i.e.,k = 7).

For comparison, we also include the univariate association of the other clinical and ECG risk
variables in our study (Tables 3 and 4). Both the nearest neighbor and clustering approaches had a
higher hazard ratio in this patient population than any of the clinical and ECG risk variables studied.
Of the clinical risk variables, only age was found to be associated on univariate analysis with major
cardiac events after acute coronary syndrome. Diabetes (p=0.072) was marginally outside the 5%
level of significance. Of the ECG risk variables, both HRT and DC showeda univariate association
with major adverse cardiac events during follow-up.

These results suggest that unsupervised risk stratification using symbolicmismatch can suc-
cessfully identify patients at an elevated risk of major adverse cardiac events following ACS. In
particular, our data shows that patients categorized as high risk by our methods continue to experi-
ence an increased risk of adverse outcomes throughout the entire 90 day period post-ACS (Figures
3-5). Our findings are also encouraging in that the relative increase in patient risk found using our
methods compares quite favorably with other metrics based on specialized knowledge that are used
in existing cardiac risk scoring tools. While the size of our patient population leads us to avoid state-
ments about the nearest neighbor and clustering approaches being better than the other variables in
our study (i.e., on the basis of having a higher observed hazard ratio thanthese other variables), we
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Figure 3: Kaplan-Meier major cardiac event curve for the one-class SVM approach. Ticks represent
patient censoring (i.e., patients leaving the study before completion). The top(green) line
corresponds to patients with anomaly scores in the top quartile of the population.

Figure 4: Kaplan-Meier major cardiac event curve for the 7-nearest neighbor approach. Ticks rep-
resent patient censoring (patients leaving the study before completion). The top (green)
line corresponds to patients with anomaly scores in the top quartile of the population.
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Figure 5: Kaplan-Meier major cardiac event curve for the hierarchicalclustering approach. Ticks
represent patient censoring (patients leaving the study before completion). The top
(green) line corresponds to patients with anomaly scores in roughly the top quartile of
the population.

Clinical Variable HR P Value 95% CI
Age≥65 years 1.82 0.041 1.02-3.24
Female Gender 0.69 0.261 0.37-1.31
Current Smoker 1.05 0.866 0.59-1.87
Hypertension 1.44 0.257 0.77-2.68

Diabetes Mellitus 1.95 0.072 0.94-4.04
Hyperlipidemia 1.00 0.994 0.55-1.82

History of COPD 1.05 0.933 0.37-2.92
History of CHD 1.10 0.994 0.37-2.92

Previous MI 1.17 0.630 0.62-2.22
Previous angina 0.94 0.842 0.53-1.68

ST depression>0.5mm 1.13 0.675 0.64-2.01
Index diagnosis of MI 1.42 0.134 0.90-2.26

Table 3: Univariate association of existing clinical risk variables with major adverse cardiac events
over a 90 day period following acute coronary syndrome.

believe that our data provides strong support for the ability of unsupervised risk stratification to add
information beyond these existing metrics.
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ECG Variable HR P Value 95% CI
HRV 1.56 0.128 0.88-2.77
HRT 1.64 0.013 1.11-2.42
DC 1.77 0.002 1.23-2.54

Table 4: Univariate association of existing ECG risk variables with major adverse cardiac events
over a 90 day period following acute coronary syndrome.

Age Fem Smo Hpt Dia Lip COPD CHD MI Ang ST Ind
One-Class SVM -0.07 0.02 -0.03 -0.08 -0.06 0.03 -0.03 0.03 -0.07 0.01 0.06 -0.02

3-Nearest Neighbor 0.11 0.00 -0.02 0.05 0.03 -0.05 0.04 -0.09 0.08 0.04 0.01 0.02
5-Nearest Neighbor 0.12 0.01 -0.03 0.05 0.05 -0.04 0.04 -0.10 0.09 0.05 0.02 0.02
7-Nearest Neighbor 0.11 0.00 -0.03 0.05 0.06 -0.04 0.04 -0.10 0.09 0.06 0.02 0.02
9-Nearest Neighbor 0.11 0.00 -0.02 0.05 0.06 -0.04 0.05 -0.10 0.09 0.07 0.01 0.02

Hierarchical Clustering 0.16 0.03 -0.04 0.05 0.08 -0.05 0.05 -0.08 0.04 0.00 0.03 0.04

Table 5: Correlation of high risk predictions with clinical risk variables (Age=age≥65,
Fem=female gender, Smo=current smoker, Hpt=hypertension, Dia=diabetes mellitus,
Lip=hyperlipidemia, COPD=history of COPD, CHD=history of CHD, MI=previous MI,
Ang=previous angina, ST=ST depression>0.5mm, Ind=Index diagnosis of MI).

HRV HRT DC
One-Class SVM -0.14 -0.01 -0.09

3-Nearest Neighbor 0.16 0.00 0.02
5-Nearest Neighbor 0.16 0.01 0.03
7-Nearest Neighbor 0.15 0.01 0.03
9-Nearest Neighbor 0.17 0.01 0.04

Hierarchical Clustering 0.20 0.06 0.08

Table 6: Correlation of high risk predictions with ECG risk variables.

6.2 Multivariate Results

We measured the correlation between the predictions of the unsupervised symbolic mismatch-based
approaches and both the clinical and ECG risk variables. These results are shown in Tables 5 and
6. All of the unsupervised symbolic mismatch-based approaches had low correlation with both the
clinical and ECG variables (R ≤ 0.2).

Our results on multivariate analysis reflect this low correlation between the symbolic mismatch-
based approaches and existing clinical and ECG risk variables. On multivariate analysis, both the
nearest neighbor approach and the clustering approach were independent predictors of adverse out-
comes (Table 7). In our study, the nearest neighbor approach (fork > 3) had the highest hazard ratio
on both univariate and multivariate analysis. Both the nearest neighbor and clustering approaches
predicted patients with an approximately two-fold increased risk of adverseoutcomes. This in-
creased risk did not change much even after adjusting for other clinical and ECG risk variables.
While the classification approach did not perform as well, we note that this result may potentially
be improved with availability of a larger data set to learn an enclosing boundary and by only using
data from patients known to remain event-free on follow-up.
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Method Adjusted HR P Value 95% CI
One-Class SVM 1.32 0.074 0.97-1.79

3-Nearest Neighbor 1.88 0.042 1.02-3.46
5-Nearest Neighbor 2.07 0.018 1.13-3.79
7-Nearest Neighbor 2.25 0.008 1.23-4.11
9-Nearest Neighbor 2.04 0.021 1.11-3.73

Hierarchical Clustering 1.86 0.042 1.02-3.46

Table 7: Multivariate association of high risk predictions from different approaches using symbolic
mismatch with major adverse cardiac events over a 90 day period following acute coronary
syndrome. Multivariate results adjusted for age≥65 years, gender, smoking history, hy-
pertension, diabetes mellitus, hyperlipidemia, history of COPD, history of CHD, previous
MI, previous angina, ST depression on admission, index diagnosis of MI, HRV-LF/HF,
HRT and DC.

Method HR P Value 95% CI
One-Class SVM 1.36 0.038 1.01-1.79

3-Nearest Neighbor 1.74 0.069 0.96-3.16
5-Nearest Neighbor 1.57 0.142 0.86-2.88
7-Nearest Neighbor 1.73 0.071 0.95-3.14
9-Nearest Neighbor 1.89 0.034 1.05-3.41

Hierarchical Clustering 1.19 0.563 0.67-2.12

Table 8: Univariate association of high risk predictions without the use of spectrum clipping. None
of the approaches showed a statistically significant association with the studyendpoint
in any of the multivariate models including other clinical risk variables when spectrum
clipping was not used.

Method AUROC (Model 1) AUROC (Model 2)
One-Class SVM 0.683 0.705

3-Nearest Neighbor 0.683 0.713
5-Nearest Neighbor 0.683 0.721
7-Nearest Neighbor 0.683 0.725
9-Nearest Neighbor 0.683 0.719

Hierarchical Clustering 0.683 0.711

Table 9: Improvement in discrimination when information obtained through unsupervised risk
stratification is added to multivariate models containing age≥65 years, gender, smoking
history, hypertension, diabetes mellitus, hyperlipidemia, history of COPD, history of CHD,
previous MI, previous angina, ST depression on admission, index diagnosis of MI, HRV-
LF/HF, HRT and DC (Model A: existing risk variables, Model B: existing risk variables
combined with unsupervised risk stratification).

Consistent with the univariate case above, we consider these findings to be encouraging. Our
data suggests that the information available through unsupervised risk stratification based on sym-
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bolic mismatch is generally independent of the information available through other specialized met-
rics. Moreover, our approach can potentially be used in a synergistic manner with these other metrics
to improve risk stratification. For example, our study found that nearest neighbor-based risk strati-
fication using symbolic mismatch can identify individuals who are at a two- to three-fold increased
risk of adverse outcomes, even after adjusting for an extensive set ofexisting risk variables. This
provides strong support for the potential ability of our research to complement present approaches
to prognosticate cardiac patients. We hypothesize that these results are largely due to our focus on
capturing information that is quite distinct from existing metrics. In particular, both our approach of
risk stratifying patients within an unsupervised anomaly detection framework,and our focus on ex-
ploiting large volumes of long-term ECG data that is not well-suited for human analysis, predispose
to capturing information that is clinically useful but not reflected in currentmetrics.

To quantify this effect better, we also studied how the area under the receiver operating char-
acteristic curve (AUROC) changed for multivariate models constructed with and without the use of
information obtained through unsupervised risk stratification. Table 9 presents the results obtained
for this experiment. For each of the unsupervised risk stratification approaches, the addition of the
information produced by these methods increased the ability of models developed using existing
risk variables to discriminate between high and low risk patients. Consistent withthe earlier results,
this improvement was greatest for the 7-nearest neighbor approach. The results here provide fur-
ther support for the information provided by our methods being potentially complementary to that
captured by current risk variables.

6.3 Effect of Spectrum Clipping

We also investigated the effect of spectrum clipping on the performance ofour different risk strati-
fication approaches. Table 8 presents the associations when spectrum clipping was not used. For all
three methods, performance was improved when spectrum clipping was used. We note that while
our motivation for using spectrum clipping was largely to broaden the applicability of symbolic mis-
match to kernel-based methods, the ability of spectrum clipping to reduce noiseprovided a positive
effect for all methods.

6.4 Runtime Performance

Figure 6 presents a histogram of the number of heart beats in each patient’s long-term ECG signal
over the first 24 hours following admission. The median number of beats perpatient was 99,581,
with an interquartile range of 89,051 to 110,337. The minimum number of beats was 45,330 while
the maximum was 161,696.

Figure 7 presents similar information for the number of symbols obtained per patient through
the clustering process described in Section 3.1. The median number of symbols per patient was
66, with an interquartile range of 37 to 114. The minimum number of symbols was 1while the
maximum was 284.

On a dual-core Intel Pentium 4 3.06 GHz platform with 4GB RAM running MATLAB R2007a
with Ubuntu 9.10 the symbolization of each patient’s data (24 hours of ECG sampled at 128 Hz) took
around 10 minutes. Roughly speaking, the use of symbolization compressedaround 100,000 beats
per patient to below 70 symbols (i.e., a reduction by a factor of just under 1,500). The corresponding
improvement in the runtime of comparing long-term ECG signals was quadratic in this reduction,
since (roughly speaking) instead of 100,000-by-100,000 comparisonsof heart beats in the original
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Figure 6: Histogram of the heart beats per patient over 24 hours (x-axis scale:×105).

Figure 7: Histogram of the number of symbols per patient.

signals, only 70-by-70 symbol centroid and symbol frequency comparisons were necessary. The
overall runtime complexity of our analysis was thereforeO(n2θ2l2) + O(nθml2), where the left
term corresponds to the runtime of finding anomalies using symbolized data andthe right term
corresponds to the runtime of creating symbolic representations of the original ECG signals. We
denote the number of patients byn, the maximum number of symbols for any patient byθ, the
maximum number of heart beats for any patient bym, and the maximum length of any heart beat (in
samples) byl. The left term of the runtime above is quadratic in the number of patients (sinceall
pairs of patients are compared to find anomalies), the number of symbols (since all pairs of symbols
are compared for any pair of patients), and the length of symbol centroids(since DTW compares
all the samples for each pair of symbol centroids). The right term of the runtime above is linear in
the number of patients (since each patient’s data is symbolized once), withθm corresponding to the
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time taken to make a pass through allm beats in each of theθ iterations of Max-Min clustering,
and l2 being the cost of using DTW to compare heart beats. While the computational cost of
clustering is significant, it leads to aθ2 factor in the runtime associated with finding anomalies
using symbolic mismatch rather than anm2 factor (wherem is much larger thanθ as shown by our
results). The use of symbolization therefore represents one of the key sources of speedup in our
study, reducing the runtime fromO(n2m2l2) without symbolization toO(n2θ2l2)+O(nθml2) with
symbolization. We note that while other sources of runtime improvement are alsopossible (e.g., by
addressing the quadratic runtime of DTW or by avoiding comparisons between all pairs of patients
in the population for anomaly detection), the values ofn andl are both much smaller, and therefore
represent smaller gains, than them2 factor reduced by symbolization.

7. Related Work

Previous work on comparing time-series can be divided into two broad classes: methods to compare
signals based on their raw samples, and methods to compare signals by extracting features from the
data.

Most previous work on comparing signals in terms of their raw samples, including metrics such
as dynamic time warping (Keogh and Pazzani, 2001; Keogh and Ratanamahatana, 2005), longest
common subsequence (Vlachos et al., 2002), edit distance with real penalty (Cheng and Ng, 2004),
sequence weighted alignment (Morse and Patel, 2007), spatial assemblingdistance (Chen et al.,
2007), focuses on relatively short time-series. This is due to the runtime ofthese methods (quadratic
for many methods) and the need to reason in terms of the frequency and dynamics of higher-level
signal constructs (as opposed to individual samples) when studying systems over long periods.
These existing methods do not, therefore, directly focus on comparing very long signals (e.g., tens
of millions of samples).

In contrast to this, the vast majority of prior research on comparing long-term time-series fo-
cuses on extracting specific features from long-term signals and quantifying the differences between
these features. For example, in the context of cardiovascular disease,long-term ECG is often re-
duced to features (e.g., mean heart rate or heart rate variability) and compared in terms of these
features. These approaches, unlike our symbolic mismatch based approaches, draw upon signifi-
canta priori knowledge. Our belief was that for applications like risk stratifying patients for major
cardiac events, focusing on a set of specialized features leads to important information being poten-
tially missed. In our work, we focus instead on developing an approach that avoids use of significant
a priori knowledge by comparing the raw morphology of long-term time-series. We propose do-
ing this in a computationally efficient and systematic way through symbolization. Whilethis use
of symbolization represents a lossy compression of the original signal, the underlying process of
quantifying differences between long-term time-series remains groundedin the comparison of raw
morphology.

The process of symbolization maps the problem of comparing long-term time-series into the do-
main of sequence comparison. There is an extensive body of prior workfocusing on the comparison
of sequential or string data. Algorithms based on measuring the edit distancebetween strings are
widely used in disciplines such as computational biology (Jones and Pevzner, 2004; Durbin et al.,
1998), but are typically restricted to comparisons of short sequences because of their computational
complexity. More closely related to our research is previous work on the use of profile hidden
Markov models (Krogh, 1994; Jaakkola et al., 1999) to optimize recognitionof binary labeled se-
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quences. This work focuses on learning the parameters of a hidden Markov model that can represent
approximations of sequences and can be used to score other sequences. Generally, this approach re-
quires large amounts of data or sophisticated priors to train the hidden Markov models. Computing
forward and backward probabilities from the Baum-Welch algorithm is also very computationally
intensive. Subsequent research in this area focuses on mismatch tree-based kernels (Leslie et al.,
2003), which use the mismatch tree data structure (Eskin and Pevzner, 2002) to quantify the dif-
ference between two sequences based on the approximate occurrenceof fixed length subsequences
within them. Similar to this approach is work on using a “bag of motifs” representation (Ben-Hur
and Brutlag, 2006), which provides a more flexible representation than fixed length subsequences
but usually requires prior knowledge of motifs in the data (Ben-Hur and Brutlag, 2006).

In contrast to these efforts, we use a simple, computationally efficient approach to compare
symbolic sequences without prior knowledge. Most importantly, our approach helps address the
scenario where symbolizing long-term time-series in a patient-specific mannerleads to the sym-
bolic sequences for patients being drawn from different alphabets (Syed et al., 2010). In this case,
hidden Markov models, mismatch trees or a “bag of motifs” approach trained on one patient cannot
be easily used to score the sequences for other patients. Instead, any comparative approach must
maintain a hard or soft registration of symbols across individuals. Symbolic mismatch addresses
this scenario and complements existing work on sequence comparison through a simple, computa-
tionally efficient measure that quantifies differences across patients whileretaining information on
how the symbols for these patients differ.

Finally, we also distinguish our work from earlier efforts to risk stratify patients using long-term
data. In particular, we supplement our symbolic mismatch kernel with the idea ofdetecting high risk
patients as those individuals in the population with unusual long-term time-series. For example, in
the context of cardiovascular disease, techniques such as heart ratevariability (Malik et al., 1996),
heart rate turbulence (Barthel et al., 2003), and t-wave alternans (Smithet al., 1988; Rosenbaum
et al., 1994) have all been shown to be useful in risk stratifying patients atrisk for future cardio-
vascular events following acute coronary syndromes. The focus of these methods is to calculate a
particular pre-defined feature from the raw ECG signal, and to use it to rank patients along a risk
continuum. Our approach, focusing on detecting patients with high symbolic mismatch relative to
other patients in the population, is orthogonal to the use of specialized high risk features along two
important dimensions. First, it does not require the presence of significant prior knowledge. For
the cardiovascular care, we only assume that ECG signals from patients who are at high risk differ
from those of the rest of the population. There are no specific assumptions about the nature of these
differences. Second, the ability to partition patients into groups with similar ECG characteristics
and potentially common risk profiles potentially allows for a more fine-grained understanding of a
how a patient’s future health may evolve over time. Matching patients to past cases with similar
ECG signals could lead to more accurate assignments of risk scores for particular events such as
death and recurring heart attacks.

8. Discussion

In this paper, we proposed using symbolic mismatch to quantify differences inlong-term physiologi-
cal time-series. Our approach uses a symbolic transformation to measure changes in the morphology
and frequency of prototypical functional units observed over long periods in two signals.
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In addition to proposing symbolic mismatch, which avoids feature extraction anddeals with
inter-patient differences in a parameter-less way, we also explored the hypothesis that high risk
patients in a population can be identified as individuals with anomalous long-termsignals. We de-
veloped multiple comparative approaches to detect such patients, and evaluated these methods in a
real-world application of risk stratification for major adverse cardiac events following acute coro-
nary syndrome. Our results suggest that symbolic mismatch-based comparative approaches may
have clinical utility in identifying high risk patients, and can provide information that is comple-
mentary to existing clinical risk variables.

In particular, we note that the hazard ratios we report are typically considered clinically mean-
ingful. Risk stratification following ACS is an extremely challenging goal. In a different study of
118 variables in 15,000 post-ACS patients with 90 day follow-up similar to our population, Newby
et al. (2003) did not find any variables with a hazard ratio greater than 2.00. We observed a sim-
ilar result in our patient population, where all of the existing clinical and ECGrisk variables had
a hazard ratio less than 2.00. In contrast to this, our nearest neighbor-based approach achieved a
hazard ratio of 2.28, even after being adjusted for existing risk measures. We believe that these
results provide strong support for the potential role of our research inimproving the management
of patients post-ACS.

We envision our techniques being primarily useful in their ability to enrich modelsfor cardio-
vascular risk stratification. In other words, we expect the risk scores generated by our methods to
serve as features that can be combined with other features based on specialized knowledge while
assessing the overall health of patients. While we dichotomized the results of all of our methods for
evaluation consistent with the way most new cardiovascular risk metrics are validated, we believe
that the best use of this information is in its original continuous form to providea finer grained
distinction between high and low risk patients. We further believe that the eventual use case of
our tools will be to assess individual patients that present at different times as anomalies relative
to a continuously increasing data set of patients seen previously. Aspectsof our research, such as
symbolic mismatch, may also have a role in a supervised setting, as we discuss later in this section.

In the context of cardiovascular disease, techniques such as heart rate variability, heart rate
turbulence, T wave alternans, and morphologic variability have all been shown to be useful in risk
stratifying patients at risk for future cardiovascular events following acute coronary syndromes. The
focus of these methods is to calculate a specific pre-defined feature fromthe raw ECG signal, and
to use it to rank patients along a risk continuum. Our approach, focusing ondetecting patients
with high symbolic mismatch relative to other patients in the population, is orthogonal(and perhaps
complementary) to the use of specialized high risk features. First, it does not require the presence
of significant prior knowledge. For the cardiovascular care, we only assume that ECG signals from
patients who are at high risk differ from those of the rest of the population. There are no specific
assumptions about the nature of these differences. Second, the ability to partition patients into
groups with similar ECG characteristics and potentially common risk profiles potentially allows
for a more fine-grained understanding of a how a patient’s future health may evolve over time.
Matching patients to past cases with similar ECG signals could lead to more accurate assignments
of risk scores for particular events such as death and recurring heart attacks.

We conclude with some limitations of our work. While our decision to compare the morphology
and frequency of prototypical functional units leads to a measure that is computationally efficient
on large volumes of data, this process does not capture information relatedto the dynamics of these
prototypical units or in specific sequences of symbols. We also observe that all three of the com-
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parative approaches investigated in our study focus only on identifying patients who are anomalies.
Although we believe that symbolic mismatch may have further use in supervised learning, the size of
our patient population and the small number of adverse cardiac outcomes over the 90 day follow-up
meant that dividing the patients into separate training and testing groups wouldmake it challenging
to learn models that generalized well. This hypothesis, that is, of symbolic mismatch being useful
in the setting of supervised learning, therefore needs to be evaluated more fully on larger patient
populations. Finally, we note that we did not have echocardiographic datafor patients in the DIS-
PERSE2 trial. As a result, we did not include a comparison in our study to metricssuch as left
ventricular ejection fraction (LVEF). We believe that our research warrants further investigation on
larger data sets, with a more comprehensive set of existing clinical metrics, and longer follow-ups
in the future.
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