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Training Bayesian networks for image segmentation
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ABSTRACT

We are concerned with the problem of image segmentation in which each pixel is assigned to one of a predefined finite
number of classes. In Bayesian image analysis, this requires fusing together local predictions for the class labels with
a prior model of segmentations. Markov Random Fields (MRF's) have been used to incorporate some of this prior
knowledge, but this not entirely satisfactory as inference in MRFs is NP-hard. The multiscale quadtree model of
Bouman and Shapiro (1994) is an attractive alternative, as this is a tree-structured belief network in which inference
can be carried out in linear time (Pearl 1988). It is an hierarchical model where the bottom-level nodes are pixels,
and higher levels correspond to downsampled versions of the image.

The conditional-probability tables (CPTs) in the belief network encode the knowledge of how the levels interact.
In this paper we discuss two methods of learning the CPTs given training data, using (a) maximum likelihood and
the EM algorithm and (b) conditional maximum likelihood (CML). Segmentations obtained using networks trained
by CML show a statistically-significant improvement in performance on synthetic images. We also demonstrate the
methods on a real-world outdoor-scene segmentation task.
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1. INTRODUCTION

We are concerned with the problem of image segmentation in which each pixel is assigned to one of a predefined
finite number of classes. In Bayesian image analysis, this requires fusing together local predictions for the class labels
with a prior model of segmentations.

Recently, much work has been directed toward stochastic model-based techniques. In such techniques, the image
classes are modelled as random fields and the segmentation problem is posed as a statistical optimization problem.
A Markov Random Field (MRF) model, where at each pixel the random variable would be the choice of label, is the
most influential statistical model of this kind (see, e.g. Mardia et al.!). However, there are some problems with MRF
models, particularly that inference procedures are NP-hard. Also, it can be difficult to incorporate longer-range
information into the prior if a small neighbourhood size are used.

One alternative to MRFs is to use tree-structured belief network (TSBN) models of images®? . In recent work*®
we have used TSBNs as prior models in image segmentation. For TSBNs inference can be carried out in time linear
in the number of pixels using Pearl’s message-passing scheme® . Williams and Feng* showed on a particular problem
that classification accuracy was improved on 9 out of 11 classes by using the trained TSBN in image segmentation.
Williams and Feng® also showed that a learned TSBN model is a better model of test images (as judged by average
log likelihood) than models based on independent blocks of varying sizes.

An important disadvantage of TSBN models is that pixels that are spatially adjacent may not have common par-
ents. Therefore, the models do not enforce continuity of regions, and this leads to the well-known “blocky” artifacts
in segmentation results. New models have been studied to avoid the drawbacks. For example, Bouman and Shapiro?
used a cross-connected pyramidal graphical model in which the number of parents (coarse scale neighbour for each
pixel) has been increased. The disadvantage of the cross-connected graph structure is that it contains cycles, leading
to inference computations that are exponential in the size of the network.

Rather than using more complex models, our aim in this paper has been to improve the performance of TSBNs
by training them explicitly for the purpose of image segmentation. This has led to us using conditional maximum
likelihood (CML) estimation of the parameters in the TSBN, rather than maximum likelihood (ML) estimation.
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The method of parameter estimation that has been used with TSBNs in our previous papers*° is maximum

likelihood estimation (MLE). The MLE is by far and away the most common method of parameter estimation in
pattern recognition. There are many very important properties of the MLE, but most of them based on an implicit
assumption of model correctness. The objective in MLE is to do as good as a job as possible of deriving the
true model parameters. However, the observed distribution of visual images is complex and the training data is
indeed limited. Currently, we do not know of a correct model, but we can be almost certain that TSBNs are not
totally correct. Thus, the justification for MLEs is based on premises which are simply not valid in our case. In
certain statistical problems, such as estimation of hidden Markov model (HMM) parameters for speech recognition,
it was found empirically that estimation of parameters via some other criteria that used conditional likelihood (see,
e.g. Krogh's paper”) and/or mutual information (see e.g. Bahl et al.® and Brown?) can give better results than
estimation via maximum likelihood. We will describe and compare the maximum likelihood and the conditional
maximum likelihood approaches in TSBN training for image segmentation.

The data we have available consists of both colour (rgb pixel) images and also label images, where the label
indicates classes such as “sky”, “road” etc. In ML training, we simply adjust the parameters in the TSBN to give
high likelihood to the correct label images in the training set. On the other hand, for CML estimation, on each
image we again try to increase the likelihood to the correct label image, but also try to decrease the likelihood for
every incorrect label image by using the information from the rgh image.

The remainder of this paper is organised as follows: In Section 2 we describe the basic TSBN architecture, and
how the inference can be carried out. In Section 3 we described in details of the training of TSBNs by using ML
and CML methods. In section 4 we give experimental details and results of applying the trained TSBNs to image
segmentation.

2. MODELLING
2.1. Generative model

The basis of our segmentation approach is a hierarchical model as illustrated in Figure 1la. A 1-D model illustrating
a small (four level) TSBN is shown in Figure 1b.

The observed data Y (e.g. the rgh values of the pixels) is assumed to have been generated from an underlying
process X. X is a tree-structured belief network. At the highest level (level 0) there is one node X°, which has
children in level 1. Typically in our experiments each parent node has four children, giving rise to a quadtree-type
architecture as used by Bouman and Shapiro? . Each X-node is a multinomial variable, taking on one of C' class
labels. These labels are those used for the segmentation, e.g. road, sky, vehicle etc. The links between the nodes are
defined by conditional probability tables (CPTs). The critical property of TSBNs is the conditional independencies
which makes the computation more efficient.

At the lowest level L of the tree, we find the leaf nodes denoted X*. The ith leaf node is denoted XF. The leaf
nodes correspond to small regions of the image (in our case 4 x 4 pixel regions). The model for the observation Y; in
each region is that it is generated according to P(Y;|X) = P(Y;|X}), i.e. that Y; depends only on the corresponding
leaf node X[. In addition we assume that the distribution P(Y;|X}) is independent of i.

2.2. Inference (Segmentation)

Given a new image Y = y we wish to carry out inference on X T, given the probabilistic model. Computing the
posterior P(X1 = zL|Y = y) would be highly expensive, as it would require enumerating all possible C¥ states
in X L. There are two alternatives that are computationally feasible, (i) the computation of the posterior marginals
P(X} = zL|Y = y) and (ii) the overall most likely interpretation of the data z* = argmax,P(X = z|Y = y).
These can be achieved by Pearl’s message passing schemes® . These computations require a generative model for
P(Y;|X}).

An alternative to using a model for P(Y;|X}) is to make use of predictions giving P(X|Y;), as may be obtained
from a neural network or some other classifier. As P(Y;|X}) = P(XF|Y;)P(Y;)/P(XF) and P(Y;) is fixed when
performing inference, we can define the scaled likelihood for location i as L(Y;) = P(XF|Y;)/P(XF). To make use of
our predictor we replace L(Y;) with L(Y;) = P(XZ|Y;)/P(X}), where P denotes an estimated probability. P(XF)
is obtained from the overall frequency of each class in a set of training images. This method of combining neural
networks with belief networks has been suggested (for HMMSs) in Smyth!? and Morgan and Bourlard!! . A potential
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Figure 1. (a) Illustration of the three-level quadtree model. (b)A 1-D graphical model illustrating a small tree-
structured belief network. The network nodes are partitioned into three categories: Y denotes the raw image
information; X T denotes the leaf nodes of X which are observed during training. The nodes in the layers above
labelled X©,..., X2 are always unobserved.

advantage of using the scaled-likelihood method is that the generative model for P(Y;|X;) may be quite complex,
although the predictive distribution P(X;]Y;) is actually quite simple, i.e. the generative approach may spend a lot
of resources on modelling P(Y;|X;) which are not particularly relevant to the task of inferring X.

3. TRAINING A TREE-STRUCTURED BELIEF NETWORK

Above it was assumed that the CPTs (denoted ) used to define P(X) are known. In fact we estimated these from
training data. Let z;, [ = 1,...,C denote the the possible values of X;, and let pa;;, K = 1,...,C denote the set of
possible values taken on by Pa;, the parent of X;. The parameter 6;;; denotes the CPT entry P(X; = z;|Pa; = pa;i).
For simplicity the symbols X; and Pa; are dropped, and the probability is written as P(z;|pa;i).

For training the prior model it is assumed that a number of observation images y™ and associated labelled images
™ are available, where m = 1,---, M is the index to the images in the training set. We discuss in turn maximum
likelihood training (§3.1) and conditional maximum likelihood training (§3.2).

3.1. Maximum likelihood

In maximum likelihood a parameter vector, 6, is estimated so that

M
= argmeaxH P(z"™,y™|0)
m=1
M
= argmax P(y™|zt™, 0)P(xt™|6).
g ma IT Pw™ )P(z"™(6)
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We can see that the likelihood model parameters and the prior model parameters can be estimated separately by
choosing the likelihood model parameters to maximise the P(y™|z™, 8) and the prior model parameters to maximise
P(2™|@). Assuming that the likelihood model is fixed, we obtain

M
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Hence the maximum likelihood estimator & can be obtained by maximising the likelihood of [], P(z™|0)
only. The Baum-Welch algorithm is well known in maximising the likelihood function in an HMM. The generalisation



of the Baum-Welch algorithm for HMM to the TSBN was used to maximise P(2™|@). This algorithm is a special
case of EM that uses the bottom-up and top-down message passing to infer the posterior probabilities of the hidden
nodes in the E-steps and uses the expected counts of the transitions to reestimate the CPT!2 . The re-estimation
formulas can be derived directly by maximising Baum’s auxiliary function,

M
Q(8.0)= > > Playz"™,0) log [ P(zn,z"™|6) ], (1)

m=1 Ly,

over @ (the new estimated parameter vector). The maximisation problem in (1) is a constrained optimisation problem
because our solutions must be legal assignment of the CPT entries in the network. Then the update for each entry
in CPTs is given by

S Pz, pais|zt™, 0)
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The joint probability P(z,pa;;|2*™,6) can be obtained locally using the A-value of node X;, the m-value of the
parent node Pa; and the A-messages from the siblings of node X;. This gives,

Oiry =
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P(zi, pai|a™™, 0) = A(@al0) i m(pai8) [ Av(pairl6),
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where s(X;) is the set of nodes that are siblings of node X; and ), (.) is the A\-message sent to node Pa; by node y.

This update gives a separate update for each link in the tree. Given limited training data this is undesirable. If
the set of variables sharing a CPT is denoted as X, then the EM parameter update is given by

M m
Y omet x,e X, Pl@i, pai|z"™, 0)
2%21 ineX, > Plzir, paix|zt™, 0)

O =

3.2. Conditional maximum likelihood

In the CML procedure, the objective is to predict correctly the labels & associated with “virtual” evidence y. The
parameters are then estimated by maximising the probability of the correct labelling given the evidence y.

M
arg max P(zf™y™ 6
gma IT P@*"1y™6)
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By analogy to the Boltzmann machine, we observe that computing the conditional probability requires computation
of (1) the probability P(zX™,y™|@) in the clamped phase (i.e. with L™ and y™ fixed), and (2) the probability
p(y™|@) in the free-running phase (with only y™ fixed).

To carry out the optimisation in (2) we switch to logarithms and define

M
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Since we have assumed the likelihood model is fixed, L.(0) can be further simplified as

M M M
L(6) = ) log] P(y™[a"™)P(z"™0) | = > log P(y™|a"™) + ) log P(x"™6).

m=1 m=1 m=1
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Here we have used the subscripts ¢ and f to mean “clamped” and “free”. Then, to find 6 in (2) we need to
maximise
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Unfortunately the EM algorithm is not applicable to the CML estimation, because the CML criterion is expressed
as a rational function® . However, maximisation of equation (3) can be carried out in various ways based on the
gradient of L. In speech analysis”'* , methods based on gradient ascent have been used. The scaled conjugate
gradient optimisation algorithm!®'® was used in our work. Firstly, we need to calculate the gradient of L w.r.t. 8.

The probability P(y™|6) can be written as a sum over all nodes in a TSBN, P(y™|0) = )", P(x|0)P(y™|x,0),
where the sum is over all possible values of . Using the conditional independence relations, P(x|8) is easily
decomposed into a product of the transition probabilities on all links.

Following the ideas in Krogh” for HMMs, the derivative of L;(0) w.r.t 6; is
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Let n}, = P(zf},pali|y™, 6), then
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The derivative of the other term, L.(0), can be calculated in a similar manner. We have,
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where we have let ;, = z\z’ denote the “hidden” « variables. Let m[}, = P(z}', pa’t |xL™, ), then
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Finally the derivative of the total log likelihood L(8) is obtained by using equations (4) and (5),

M
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where m;; and n;; can be obtained by propagating y™ and ™ respectively.

When maximising L(6) it must be ensured that the probability parameters remain positive and properly nor-
malised. The softmax function is used to meet these constraints. We define

ezikl
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where z;;; are the new unconstrained auxiliary variables and 6;;; always sum to one by construction. The gradients
w.r.t. 2z;;; can be expressed entirely in terms of 6,3, and m},; and n},;,
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On iteration 7 z is updated by z("t1) = 2(7) 4 Az(7), This yields a change in 6;;; given by
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To understand the differences between ML and CML estimation, we consider equation (3) in more detail. The
first term on the right is equivalent to finding the MLE of 0; the difference between MLE and CMLE is the second
term. To have an insight into the effect of this term, let us first sum over all possible label images & and then
factorize the joint probability. This gives

(y™(0) = Z P(&"",y™|0) = Y P(y™|#"™)P(&"").
iLm

Let ¢(zL™|@) = OP(xX™|6)/00;1;. Following Brown® , we consider the derivative of L(8) w.r.t. 6;1,
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#(xL™|0) is the the derivative of the objective function used in ML estimation. From P(zl™,y™|8) < P(y™|0), it
is easy to show that 1/P(xf™) > P(y™|zl™)/P(y™|0). Thus, the first term in (6) is in the same direction as the

MLE derivative. The second term subtracts a component in the direction of ¢(&“™|0) for each incorrect label image
~Lm Lm

4. EXPERIMENTS

In this section, we describe the performance of TSBNs trained by using the ML and CML algorithms on synthetic
images and real-world outdoor images.



4.1. Synthetic images

The synthetic label images are generated from a cross-connected pyramidal graphical model? .
between two levels in a pyramidal graphical model is shown in Figure 2a. Figure 2b illustrates a 1-D analogue of
a four-level pyramidal graphical model. At each level, each inner node has three parents, for example, node X;;
has three parents, natural parent X;4, column-parent X;5 and row-parent X;s; each edge node has two parents, for
example, node X;> has parents X;4 and X;6; and each corner node has only one parent, for example, node X;3 has
only its natural parent X;4. Corresponding to the difference in the number of parents, three different conditional
probability functions are designed. Let P(m|i, j, k) be the conditional probability for child node to be in class m
given that its natural parent is in class ¢ and the other two parents are in classes j and k respectively; P(mli, j) be
the conditional probability for the child node to be in class m given that its natural parent is in class i and the other

parent is in class j; P(m|i) be the conditional probability for the child node to take on class m given its only parent

is in class i. We define

The cross connection

[ 1-6
P(mli,j,k) = = (38mi+20mj + 26m1) + —5
PR _ el 1—91
P(ml|i,j) = 7(4 B50m.i + 2.50m,5) + o
. 1-6
Pmli) = 85t 2

where the parameter §; = (L1 for 1 <1< L (with the root node at level 0) determines the probability that the
label of the child node will be the same as one of its parents. Note that the natural parent has a stronger influence
than the other parents. In our experiments, 6 is set to be 0.85. As the size of the generated images is 16 x 16
pixels, there are 5 levels in the each belief network so L = 4. Parameter C' denotes the number of classes. We have
used three classes, denoted the Red class, Green class and Blue class. The prior over the classes at the root was

(0.7,0.2,0.1) for classes R, G, B respectively.

Xisi / \ X°
Xi4 . ’j // i6

1
foa ) ! ’y,
/AT ! ’,
Ly | s,
oy \ L
1
I’ | \ [
oy f \ [
) | N A
// 1 . S
7
WX
AP
/( V/X VV/
i3 i2

Figure 2. (a) Illustration of cross connection between two levels in graphical model. (b)A 1-D analogue of three-
level pyramidal graph-structured model. The network nodes are partitioned into three categories: Y denotes the
raw image information; X denotes the leaf nodes of X which are observed during training.

e

%

=<

Colour images were generated from the label images by adding Gaussian noise to the mean rgb value for each
class. The means were pup = (150,0,0)7, pus = (0,150,0)T and pgz = (0,0,150)T for Red class, Green class and
Blue class respectively. All three classes had the same covariance matrix, a diagonal matrix with standard deviation
75 on each dimension.

To investigate the effect of training set size, training sets of size 10, 102, 10% and 10* were generated randomly
from the cross-connected model. To help investigate the effects of training-set variability, three training sets were
generated for each size (except for size 10%). A test set of size 10° was also generated. Three label images and

associated colour noise images are shown in Figure 3.



As we know the generative model for producing pixel values from labels, it is possible to invert this to make
predictions using just the local rgb values. The local prediction for each pixel was obtained from the values of
likelihood function, and the class with largest value was chosen. The local prediction accuracies for the test set were
86.57%, 86.62%, and 86.51% for class R, G, and B respectively and the overall local prediction accuracy was 86.57%.

After generating the label and colour images from a cross-connected graphical model, we modeled the training
label images by using a standard five-level quadtree belief network as shown in Figure 1. We used parameter sharing,
with one distinct CPT per level in the TSBN. To reduce the effect of initial values for parameters 8 on training results,
the TSBNs were initialized at ten randomly-chosen starting points. For each training set/initialization combination,
a TSBN was trained by using both ML and CML algorithms. Thus 30 trained TSBNs were obtained for training sets
of size 10, 102 and 103, and 10 for training sets of size 10*. For ML training, the EM updates were terminated when
the difference between the marginal log likelihood (averaged over the number of training samples) on successive steps
was less than e = 1072, For CML training, a similar criterion was applied on the log conditional likelihood, and
training was also terminated if the absolute difference between the values of the CPTs between two successive steps
was less than ¢ = 10729, The ML/EM algorithm took 52 iterations to convergence on average, compared to 182 for
CML/SCG. Note also that each iteration of CML/SCG is more expensive, because (i) it requires both P(z™|6)
and P(y™|0) and thus needs two bottom-up/top-down sweeps and (ii) the scaled conjugate gradient algorithm uses
two function evaluations per iteration.

Each trained TSBN was used in the image segmentation task, by calculating the mazimum a posteriori configura-
tion for & given an image y. Examples are shown of the segmentations obtained on three test images in Figure 3. The
average percentage of each class label that was correctly classified and the overall average classification accuracies
for the test set are shown in Table 1, along with the standard deviations of these figures due to the randomness
induced by training set and initialization variability. Notice that for each training set size, the CML result for the
overall average is always superior to the ML result. This also holds for the R and G results individually, although
for training set sizes of 10 and 100, the performance on class B is slightly worse for the CML method. To test the
statistical significance, a paired comparison between the overall classification accuracies was used. The differences
between the EM and CML learning methods were computed on the same training set/initialization parings. Using a
two-tailed t-test we found that the differences were statistically significant at better than the 0.01 level for all sizes
of training set.

Measuring pixelwise classification accuracy is not the only way to evaluate the quality of the segmentation
obtained from the belief network. For example this measure says nothing about over- or under-segmentation of the
result obtained compared to the reference label image. Nor does it take into account any loss function in evaluating
mis-classifications. Also, note that the TSBN does not simply produce a single segmentation, but a probability
distribution P(zL™|y™) over labelling ™. Thus we can investigate distribution further; for example, calculating
the entropy of the posterior marginal distribution for each pixel would indicate how uncertain the classification
decision is at each site.

Table 1. Average percentage of each class that was correctly classified and the overall average percentage classifi-
cation accuracy for the test set.

ML CML
Class label Class label
R G B Average R G B Average
10 | 92.71 88.71 85.89 89.82+0.056 | 94.55 90.18 85.53 90.99+0.186
102 | 92.66 88.50 86.70 89.944+0.021 | 94.51 90.81 86.36 91.3740.037
103 | 92.79 88.39 86.66 89.954+0.007 | 94.64 90.72 86.66 91.4840.004
10% | 92.82 88.39 86.65 89.98+0.001 | 94.65 90.98 86.68 91.6040.003




4.2. Real images

Colour images of out-door scenes from the Sowerby Image Database of British Aerospace are used in our experiments.
Both colour images and their corresponding label images are provided in this database. The original 104 images were
divided randomly into independent training and test sets of size 61 and 43 respectively. There are 7 different labels in

all, namely “sky”, “vegetation”, “road markings”, “road surface”, “building”, “street furniture” and “mobile object”.

The original label images of size 512 by 768 pixels were subsampled into 128 by 192 regions to form the reduced
label images. The label of the reduced region was chosen by majority vote, with ties being resolved by an ordering
on the label categories. From now on we will refer to the reduced label images as label images because the original
label images will no longer be used. Twenty-one features including colour features'” , location and texture features,
e.g. entropy, contrast and local homogeneity of the gray-level different vectors (GLDV)819 | were calculated for each
region. These features were fed to a Multi-Layer Perceptron (MLP) with 21 input nodes, 7 output nodes and one
hidden layer which was used to classify each region into one of the 7 classes. The activation functions of the output
nodes and hidden nodes were the softmax function and tanh sigmoid functions respectively. The error function used
in the training process was cross-entropy for multiple classes. A scaled conjugate gradient algorithm was used to
minimise the error function. About 150 regions for each class were chosen randomly from each image to form training
and validation datasets. The validation dataset was used in order to choose the optimal number of hidden nodes
in the MLP; eventually a MLP with 30 hidden nodes was selected. The neural network predictions were input as
virtual evidence to the belief network using the scaled-likelihood method described in Section 2.2.

The belief network structure used was basically a quadtree, except that there were six children of the root node
(reflecting the aspect ratio of the images). In our experiments all of the CPTs in each level were constrained to
be equal, except for the transition from layer 0 to layer 1, where each table was separate. This allows knowledge
about the broad nature of scenes (e.g. sky occurs near to the top of images) to be learned by the network, as is
indeed reflected in the learned CPTs. In the data some pixels are unlabelled; assuming these values are “missing at
random”, we treated them as uninstantiated nodes, which can easily be handled in a belief network framework.

In the learning phase, we initialised the network parameters 6 in a number of different ways. It was found that
the highest marginal likelihood on the training data was obtained when the initial values of 8 were computed using
probabilities derived from downsampled versions of the images. The plot of log marginal likelihood against iteration
number levelled off after 30 iterations when the EM method was used in obtaining the MLE. CML training was run
for 32 iterations using scaled conjugate gradient optimization.

The overall classification accuracies for the testing images were 83.38%, 87.13% and 91.64% for the MLP, the
TSBN trained by the ML algorithm and TSBN trained by the CML algorithm respectively.

5. CONCLUSIONS

In this paper we have investigated the training of tree-structured belief networks for the image segmentation task. Our
results show that superior classification performance can be obtained using conditional maximum likelihood training
as compared to maximum likelihood training. However, we note that classification accuracy is just one measure
of comparison between segmentations, and one strength of probabilistic formulations of the problem (including the
belief network method) is that a posterior distribution over segmentations is returned, rather than just a single label
image. One disadvantage of CML training is that it typically requires more training time as gradient-based search
methods must be used instead of the EM algorithm.
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