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ABSTRACT 

In this paper we evaluate the Hidden Neural Network HMMrNN 
hybrid presented at last years ICASSP on two speech recognition 
benchmark tasks; 1) task independent isolated word recognition on 
the PHONEBOOK database, and 2) recognition of broad phoneme 
classes in continuous speech from the TIMI’T database. It is shown 
how Hidden Neural Networks (HNNs) with much fewer parame- 
ters than conventional HMMs and other hybrids can obtain com- 
parable performance, and for the broad class task it is illustrated 
how the HNN can be applied as a purely transition based system, 
where acoustic context dependent transition probabilities are esti- 
mated by neural networks. 

1. INTRODUCTION 

Although the HMM is good at capturing the temporal nature of 
processes such as speech it has a very limited capacity for recog- 
nizing complex patterns involving more than first order dependen- 
cies in the observed data. This is primarily due to the first order 
state process and the assumption of state conditional observation 
independence. Neural networks and in particular multi-layer per- 
ceptrons (MLP) are almost the opposite: they cannot model tem- 
poral phenomena very well, but are good at recognizing complex 
patterns in a very parameter efficient way. 

The Hidden Neural Network hybrid introduced in [16] is a 
very flexible architecture, where the probability parameters of an 
HMM are replaced by the outputs of small state specific neural 
networks. The model is estimated by the discriminative Condi- 
tional Maximum Likelihood (CML) critenon and is normalized 
globally. The global normalization works at the sequence level and 
ensures a valid probabilistic interpretation as opposed to the often 
approximate local normalization enforced in many other hybrids. 
Furthermore, instead of training the HMM and NNs separately, all 
parameters in the HNN are estimated simultaneously. 

2. THEHNN 

The HNN is a very natural extension of the so-called class HMM 
(CHMM) introduced in [lo], which is basically a standard HMM 
where each state, in addition to the emission or match distribu- 
tion, also has assigned a distribution over labels (classes). The 
basic idea is to replace the probability para.meters of the CHMM 
by the outputs of state specific neural networks. Thus, it is possible 
to assign up to three networks to each state: 1 )  a match nerwork 
qbi ( S I ;  w’) estimating the “probability” that the current observation 
matches a given state, 2) a transition network B i j  (SI; u i )  that es- 
timates transition “probabilities” conditioned on observations, and 

finally 3) a label network $ i k ( s l ;  v i )  estimating the probability of 
label y~ = k in state i at time 1. We have put probabilities in 
quotes because we do not require that the network outputs normal- 
ize locally in the HNN, e.g. the outputs of the transition network 
assigned to a state need not,sum to one. The match-network is 
parameterized by weights w’ and has only one output, which re- 
places the usual emission probability. Similarly the transition net- 
work is parametrized by weights U’, and has the same number of 
outputs as there are non-zero transitions from state i to state j. The 
label network is parameterized by weights U’ and has one output 
for each of the possible labels in this state. Note that a given state 
can be restricted to model only a subset of the possible labels, i.e., 
some labels have probability zero. The input sf to the networks 
will usually be a window of context around the current observa- 
tion 21, e.g., a symmetrical context window of 2K + 1 observation 
vectors, sf = z f - K ,  zf--K+1, . . . , z f + K .  It can, however, be any 
sort of information related to zf or even the observation sequence 
in general. We will call SJ the context. Each of the three types of 
networks in each HNN state can be omitted and replaced by stan- 
dard CHMM parameters. In fact all sorts of combinations with 
standard CHMM states are possible. In this work we assume, that 
the label networks are just delta-functions, i.e., each state can only 
model one particular label and $;k (SI; U’) = 6 k , c i ,  where ci is the 
label of state i. Similarly we here restrict ourselves to use MLP 
match and transition networks, although they can in principle be 
any kind of mapping defined on the space of observations. 

It is well known that Maximum Likelihood (ML) estimation 
is not optimal when the models are used for recognition especially 
when the training data is limited. We therefore choose parameters 
so as to maximize the probability of the correct labeling y associ- 
ated with observation sequence 2, 

as we have previously proposed in [lo]. Maximizing (1) is known 
as Conditional Maximum Likelihood estimation (CML) and is equ- 
ivalent to Maximum Mutual Information estimation (MMI) [ 1, 81 
if the language model is fixed during training. For an observation 
sequence of length L, the labeling y can be either complete, i.e., 
there is one label for each observation (y = y1,. . . , y ~ ) ,  or in- 
complete, i.e., the label sequence y = y1,. . . , ys is shorter than 
the observation sequence (5’ < L). The latter case is more com- 
mon in speech recognition since we usually only know the spoken 
words in the training set (and thereby the phonetic transcription), 
whereas the former is more common in e.g. biological sequence 
analysis. From (1) we see, that in order to compute the probability 
of the labeling we need to do two forward passes; once in the free- 
running or recognition time phase to compute P (x1M)  and once 
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in the clampedphase to compute P ( y ,  x lM) .  

the HNN 
Similar to the likelihood for a standard HMM, we define for 

R(z lM)  = C R ( z , 4 M )  
7T 

L 
= c n &-17r~(sl-l;u=~-1 M T ,  (a; W X ’ )  (2) 

T 1=1 

where 7r = TI, . . . , 7 r ~  is a path through the model corresponding 
to the observation sequence x = X I ,  . . . , X L .  Since we do not re- 
quire, that the neural network outputs normalize locally, R(z1M) 
will generally not be a probability. However, if we only allow one 
label in each state we can define R(z ,  ylM) in a way similar to 
equation (2) by only extending the sum over paths that are consis- 
tent with the observed complete or incomplete labeling. Then it is 
straightforward to show that,’ 

(3) 

and the model is normalized at a global level, see [ l l ,  151 for fur- 
ther d e t ~ l s .  Both R(z1M) and R ( x ,  ylM) can be calculated by a 
straight-forward extension of the forward algorithm for complete 
as well as incomplete labeling, see e.g. [lo, 111 

To maximize (3) we use stochastic online gradient ascent aug- 
mented by a momentum term, where the parameter update is per- 
formed after each observation sequence. As shown in [ 111 it tums 
out that the networks in the HNN are trained by standard back- 
propagation where the error to backpropagate is computed by run- 
ning two forward-backward passes on the model; once for the free- 
running phase, and once for the clamped phase. 

In agreement with results reported in [7], we have observed 
an increased performance for CML estimated models when us- 
ing full-likelihood based decoders instead of a Viterbi best-path 
decoder. The reason for this is primarily that several paths have 
been observed to contribute significantly to the optimal labeling 
in the CML estimated models, see [ 1 I]. In the case of small vo- 
cabulary isolated word recognition the likelihood of the model for 
each word can be computed using the forward algorithm, whereas 
in the case of continuous speech recognition or large vocabulary 
isolated word recognition one can use stack decoding [13] or ap- 
proximative algorithms like the N-best decoder [17]. In this work 
we use standard full-forward decoding for the PHONEBOOK ex- 
periments and N-best decoding for the broad class experiments. 
The N-best decoder allows 10 active hypothesis during decoding, 
and only the top-scoring hypothesis is used for recognition at the 
end of decoding. 

3. COMPARISON TO OTHER HYBRIDS 

Instead of training the HMM and the NN separately as in the work 
by e.g. Renals et al. [14] several authors have recently proposed 
architectures where all parameters are estimated simultaneously as 
in the HNN, see e.g. [2,3,5,7,9]. An example of such an approach 
is to use the neural network as an adaptive input transformation, 
where the network outputs are used as new observation vectors in 
a continuous HMM [7]. Our approach is somewhat similar to the 
idea of adaptive input transformations, but instead of retaining the 
computationally expensive mixture densities we replace these by 
match networks. This is also done in [3], where a large network 

’If more than one label have non-zero probability in each state equation 
(3) is still valid provided that the outputs of the label networks normalize 
locally, E , $ i k ( s l ; v Z )  = lforV’i,l,see[15]. 

with the same number of outputs as there are states in the HMM 
is optimized using the CML criterion by backpropagating errors 
calculated by the HMM. Instead of backpropagating errors from 
the HMM into the neural network some researchers [5] have pro- 
posed to let the HMM iteratively reestimate new “soft” targets for 
the network and then train the network to leam these targets. This 
method extends the approach by Renals et al. [ 141 to use global es- 
timation where training can be done by a Generalized EM (GEM) 
algorithm. 

The HNN is very closely related to the IOHMM [2]. In fact 
the IOHMM can be considered a special case of the HNN where 
each state has assigned a label network and a transition network, 
but no match network. If the transition and label networks all 
have a softmax output function then, in the free-running phase, 
R(z lM)  = ET R(z,  T IM)  = 1 independent of the observa- 
tions, and thus P(y12,M) = R(z ,y lM) .  For this model only 
one forward pass is needed to compute the probability of the la- 
beling and similarly only one forward-backward pass is needed 
to find the gradient. Furthermore, this model can be trained by a 
GEM algorithm. An additional assumption of only one label in 
each state renders the HNN similar to the purely transition based 
discriminant H M M ”  hybrid discussed in [9]. 

4. PHONEBOOK EXPERIMENTS 

Often speech recognizers are trained using a fixed vocabulary, i.e., 
the models are designed only to recognize words also used for esti- 
mation. For utterances containing out-of-vocabulary (OOV) words 
a very poor performance can be expected from such models unless 
the model incorporates some sort of OOV word detection. There- 
fore it would be desirable to train the models for task independent 
recognition, where the vocabulary used for training can be entirely 
different from that used during recognition. In this section we eval- 
uate the HNN on task independent recognition of isolated words, 
where there are no identical words in the training and test set. The 
words are taken from the PHONEBOOK database [ 121, which is a 
phonetically-rich isolated word database. The words in PHONE- 
BOOK are uttered by 1300 native American English speakers over 
a public American telephone line. In PHONEBOOK each of al- 
most 8000 different words are uttered by an average of more than 
1 I speakers yielding a total of about 92,000 utterances. 

We use a training set of 9,000 words randomly selected from 
the 21 PHONEBOOK wordlists ([a-d][a,h,m,q,t]+ea), see e.g. [4, 
121, and a crossvalidation set of 1,893 utterances (wordlists ao and 
ay). The test set is composed of 8 wordlists ([a,b,c,d][d,r]) and 
results are reported as an unweighted average over the 8 lists. This 
is identical to the test sets used in [4, 51. The results are reported 
for a dictionary size of either about 75 words (one dictionary for 
each of the 8 wordlists) or a larger dictionary of about 600 words 
(all 8 wordlists). The 110,000-word CMU 0.4 dictionary was used 
for phonetically transcribing the words. 

For speech corrupted by linear additive channel noise RASTA- 
PLP cepstral features have been shown to be very robust [6]. We 
therefore use a RASTA-PLP cepstral preprocessor yielding a fea- 
ture vector each lOms based on a 30ms window. The 26 dimen- 
sional feature vector is composed of 12 RASTA-PLP cepstral fea- 
tures, the corresponding A-features and the A- and AA-energy. 

For each of the 46 phonemes occurring in the transcriptions 
we use a phoneme submodel with a number of states equal to half 
the average duration of the phonemes as obtained from an initial 
forced Viterbi alignment of the training set. No skips are allowed, 
and the transition probabilities between states in a phoneme sub- 
model are fixed to 112. We use a zero-gram grammar between 
phoneme models to avoid unintended introduction of priors for 
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Table 1: HNN error rates on PHONEBOOK. K is the context-size, 
i.e., si = X I - K ,  . . . ,xl,. . . , XZ+K.  

Model 
I-state, Match 
1-state, Transition (sigmoid) 

75 word dictionary 1 # P a r m s m ]  
Context K = 0,O hidden I 1,242 20.8 

#Parms Accuracy 
4,030 80.0 
4,225 81.6 

Context K = 1, Ohidden 
Context K = 1, 10 hidden 
600 word dictionary 
Context K = 1, IO hidden 

words in the training vocabulary due to a limited size training 
set. All states in a phoneme submodel share one match network, 
which replaces the usual emission distribution. All 46 match net- 
works are fully connected MLPs, have the same number of hidden 
units, share the same input sz and use sigmoid output functions. 
The match networks are initially trained to classify the observa- 
tion vectors into each of the 46 phonemes by a few iterations of 
standard backpropagation. This speeds up training of the HNN 
and the model is less prone to getting stuck in local minima. Fur- 
thermore the HNN is bootstrapped by a few iterations (usually less 
than five) of complete label training. 

In Table 1 the results obtained by the HNN is shown. First 
of all it is observed that full-forward decoding gives considerably 
better results than Viterbi decoding. This can be attributed to two 
facts: 1) in the CML estimated models several paths contribute to 
the optimal labeling as discussed above, and 2) the architecture of 
the phoneme submodels implies a Poisson-like duration distribu- 
tion when psing full-forward decoding, whereas a much weaker 
exponential duration distribution is implied when using Viterbi 
decoding. From the table it is also observed that contextual in- 
put increases performance considerably. Thus, for a model using 
a context of one left and right frame and no hidden units an er- 
ror rate of 13.3% is obtained for the 75 word dictionary. With 
only 3634 parameters this model is very small and it is interesting 
that the match networks in this model actuallly just implement lin- 
ear weighted sums of the input features (passed through a sigmoid 
output). No futher improvements in perform‘ance was observed For 
lager contexts. The best model with a context of one frame and 10 
hidden units obtains an error rate of 4.8% for the 75 word dictio- 
nary. In [4] a continuous density HMM with more than four times 
as many parameters (162k) is reported to have an error rate of 5% 
when using a training set of 19,000 words. Similarly, for a Viterbi 
trained HMWNN hybrid with 166k parameters an error rate of 
1.5% is reported. This is somewhat better than the HNN, but the 
larger training set contributes significantly to the lower error rate 
as discussed below. 

The effect of using the larger 600 word dictionary is reflected 
in the higher error rates shown in Table 1. For a model with con- 
text K = 1 and 10 hidden units an error rate of 14.2% is achieved. 
For the same training set as used here, Hennebert et al. [5 ]  reports 
an error rate of 13.7% for a Viterbi trained HMM/” hybrid con- 
taining 166k parameters. By iteratively reestimating “soft”-targets 
for the neural network instead of Viterbi “hard’-target training the 
error rate drops to 12.2%. For a 19,000 word training set Dupont 
et al. [4] reports an error rate of only 5.3% for the Viterbi trained 
HMM/” hybrid. Thus, the size of the training set is indeed very 
important for the performance of the models. 

3,634 I yf I y: 1 36,846 
#Parms ml 
36,846 18.4 

5. BROAD PHONEME CLASS EXPERIMENTS 

In this section we discuss some improvements on results reported 
at last years ICASSP [ 161 on the recognition of five broad phoneme 

Table 2: HNN accuracies on TIMIT broad class experiments. 

3-state, Mixed (sigmoid) 

classes in continuous speech from the TIMIT database. The broad 
classes are Vowels (V), Consonants (C), Nasals (N), Liquids (L) 
and Silence ( S )  and cover all phonetic variations in American En- 
glish. We use one sentence from each of the 462 speakers in the 
TIMIT training set for training, and the results are reported for the 
recommended TIMIT core test set. The preprocessor is a standard 
me1 cepstral preprocessor, which gives a 26 dimensional feature 
vector each lOms (12 me1 cepstral coefficients-kl log energy coef- 
ficient and the corresponding A-coefficients). 

In the experiments reported in [ 161 we used a simple left-to- 
right three state model for each of the five classes, where the the 
match distributions were replaced by match networks. However, 
one major advantage of the HNN is that it allows for using tran- 
sition probabilities that can depend on the observation context 31. 

This can be important in tasks like speech recognition, where the 
acoustics of one phoneme is indeed highly influenced by the pho- 
netic context in which it is uttered. Here we report results for two 
different kinds of HNNs with acoustic context dependent transi- 
tions: 1) a purely transition based model and 2) a mixed model. In 
the transition based HNN the transition probabilities in each state 
are modeled by a transition network and the match distributions are 
replaced by a constant. The mixed model is based on the 3-state 
left-to-right submodels also used in [16]. The first two states use 
standard transitions and match networks and in the last state tran- 
sitions are modeled by a transition network. The transition based 
HNN is similar to the discriminant HMM/” hybrid proposed in 
[9], except that we do not have to enforce locally normalizing tran- 
sitions. 

For the broad class experiments all match and transition net- 
works have 10 hidden units and use a context of one left and right 
frame as input (SI = Z I - ~ , X I , X L + I ) .  The match networks use 
sigmoid output functions and the transition networks use either a 
locally normalizing softmax output function or sigmoid outputs. 
Initialization of the match networks is done in the same way as for 
the PHONEBOOK experiments, whereas the transition networks 
are initialized by duplicating the hidden to output weights of a pre- 
trained match network as many times as there are non-zero tran- 
sitions. For a state with only a transition network assigned, this 
initially corresponds to a state with a match network and uniform 
standard HMM transition probabilities. 

In table 2 the results for the TIMIT broad class experiments 
are shown. For a very simple model with only one state per class, 
where the match distributions are replaced by match networks, an 
accuracy of 80.0% is obtained. This compares favorably with a 
result of 69.3% accuracy on the same test set reported for a 3- 
state ML estimated HMM with six diagonal covariance Gaussians 
in each state (4,799 parameters) [7].  The purely transition based 
HNN with one state per class and non-normalizing transitions ob- 
tains an accuracy of 81.6%. The same result is obtained if lo- 
cally normalizing transitions are enforced by softmax output func- 
tions. These results indicate that the purely transition based 1-state 
model is much better capable of modelling the five broad classes 
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than the model with standard transition probabilities and match 
networks. It is interesting that this very simple model outperforms 
an HMWadaptive linear input transformation hybrid with three 
states per class, which was reported to have an accuracy of 81.3% 
in [7] for the same training and test set. If we use 3-state sub- 
models with match networks and standard transition probabilities 
in all states the accuracy increases to 83.8%. Similar to the transi- 
tion based model above, we tried a 3-state model where the match 
distributions and standard transition probabilities are replaced by 
transition networks. If we enforce local normalization of the tran- 
sitions by using a softmax output function the accuracy drops sig- 
nificantly compared to the 3-state model with match networks and 
standard transitions, see table 2. This can be explained as fol- 
lows: assume that in a particular path we have just entered the 
consonant submodel. Then the next label in this path will also 
be a consonant with probability one because of the softmax func- 
tion. That is, after entering a submodel, the path through this 
submodel will never be terminated due to a very low probabil- 
ity, since no matter what state we make a transition to this will 
always be with a fairly high probability. This is a fundamental 
problem, which makes minimum duration modeling very difficult 
in transition based models. However, the problem can be elimi- 
nated in practice by using non-normalizing transition “probabili- 
ties’’, whereby a path can be terminated if all outgoing transition 
“probabilities” from a state are close to zero. Such a model ob- 
tains a performance of 83.7%, which is practically identical to 
the 3-state model with standard transitions and match networks, 
see table 2. By replacing the match network and standard tran- 
sition probabilities in the last state of each 3-state submodel with 
a transition network, the transitions between submodels become 
dependent on the acoustic context around the boundaries between 
the broad phoneme classes. This increases the performance of the 
HNN to 84.4% accuracy. 

These results clearly illustrate the advantage of using transi- 
tion networks. However, an even larger gain is expected for tasks, 
where there is a more pronounced context dependency between 
the phoneme classes like, e.g., the well known TIMIT 39 phoneme 
recognition task. We are currently investigating this issue. 

6. CONCLUSION 

The globally normalized HNN has been introduced as a very flex- 
ible HMM/” hybrid that allows for acoustic context dependent 
transitions. Furthermore, a comparison to other hybrids was given, 
and the similarity of the HNN to the IOHMM [2 ]  and the discrim- 
inant HMWNN hybrid [9] was discussed. Through a series of ex- 
periments it was shown how the HNN in a very parameter efficient 
way can yield state-of-the-art performance on two different speech 
recognition benchmarks. The results obtained on PHONEBOOK 
are slightly inferior to results reported for the HMMNN hybrid 
discussed in [4, 51, where a much larger training set is used. On 
the TIMIT broad class experiments the HNN has been evaluated 
as a purely transition based model and as a “mixed” model. These 
experiments clearly illustrated the advantage of using transitions 
that depend on the acoustic context. 
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