47 research outputs found

    Understanding Algorithm Performance on an Oversubscribed Scheduling Application

    Full text link
    The best performing algorithms for a particular oversubscribed scheduling application, Air Force Satellite Control Network (AFSCN) scheduling, appear to have little in common. Yet, through careful experimentation and modeling of performance in real problem instances, we can relate characteristics of the best algorithms to characteristics of the application. In particular, we find that plateaus dominate the search spaces (thus favoring algorithms that make larger changes to solutions) and that some randomization in exploration is critical to good performance (due to the lack of gradient information on the plateaus). Based on our explanations of algorithm performance, we develop a new algorithm that combines characteristics of the best performers; the new algorithms performance is better than the previous best. We show how hypothesis driven experimentation and search modeling can both explain algorithm performance and motivate the design of a new algorithm

    Greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness penalties

    Get PDF
    In this paper, we present greedy randomized dispatching heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs, and no machine idle time. The several heuristic versions differ, on the one hand, on the strategies involved in the construction of the greedy randomized schedules. On the other hand, these versions also differ on whether they employ only a final improvement step, or perform a local search after each greedy randomized construction. The proposed heuristics were compared with existing procedures, as well as with optimum solutions for some instance sizes. The computational results show that the proposed procedures clearly outperform their underlying dispatching heuristic, and the best of these procedures provide results that are quite close to the optimum. The best of the proposed algorithms is the new recommended heuristic for large instances, as well as a suitable alternative to the best existing procedure for the larger of the middle size instances.scheduling, single machine, early/tardy, quadratic penalties, greedy randomized dispatching rules

    Fair division of indivisible goods under risk

    No full text
    International audienceWe consider the problem of fairly allocating a set of m indivisible objects to n agents having additive preferences over them. In this paper we propose an extension of this classical problem, where each object can possibly be in bad condition (\textite.g broken), in which case its actual value is zero. We assume that the central authority in charge of allocating the objects does not know beforehand the objects conditions, but only has probabilistic information. The aim of this work is to propose a formal model of this problem, to adapt some classical fairness criteria to this extended setting, and to introduce several approaches to compute optimal allocations for small instances as well as suboptimal good allocations for real-world inspired allocation problems of realistic size

    Traverse Planning with Temporal-Spatial Constraints

    Get PDF
    We present an approach to planning rover traverses in a domain that includes temporal-spatial constraints. We are using the NASA Resource Prospector mission as a reference mission in our research. The objective of this mission is to explore permanently shadowed regions at a Lunar pole. Most of the time the rover is required to avoid being in shadow. This requirement depends on where the rover is located and when it is at that location. Such a temporal-spatial constraint makes traverse planning more challenging for both humans and machines. We present a mixed-initiative traverse planner which addresses this challenge. This traverse planner is part of the Exploration Ground Data Systems (xGDS), which we have enhanced with new visualization features, new analysis tools, and new automation for path planning, in order to be applicable to the Re-source Prospector mission. The key concept that is the basis of the analysis tools and that supports the automated path planning is reachability in this dynamic environment due to the temporal-spatial constraints

    Multiagent Connected Path Planning: PSPACE-Completeness and How to Deal with It

    Get PDF
    open5openD. Tateo, J. Banfi, A. Riva, F. Amigoni, A. BonariniTateo, Davide; Banfi, J.; Riva, Alessandro; Amigoni, F.; Bonarini, A

    Cyber–Physical Optimization for Unmanned Aircraft Systems

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140662/1/1.i010105.pd

    Meta-heuristic combining prior online and offline information for the quadratic assignment problem

    Get PDF
    The construction of promising solutions for NP-hard combinatorial optimization problems (COPs) in meta-heuristics is usually based on three types of information, namely a priori information, a posteriori information learned from visited solutions during the search procedure, and online information collected in the solution construction process. Prior information reflects our domain knowledge about the COPs. Extensive domain knowledge can surely make the search effective, yet it is not always available. Posterior information could guide the meta-heuristics to globally explore promising search areas, but it lacks local guidance capability. On the contrary, online information can capture local structures, and its application can help exploit the search space. In this paper, we studied the effects of using this information on metaheuristic's algorithmic performances for the COPs. The study was illustrated by a set of heuristic algorithms developed for the quadratic assignment problem. We first proposed an improved scheme to extract online local information, then developed a unified framework under which all types of information can be combined readily. Finally, we studied the benefits of the three types of information to meta-heuristics. Conclusions were drawn from the comprehensive study, which can be used as principles to guide the design of effective meta-heuristic in the future
    corecore