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Abstract

In the Multiagent Connected Path Planning problem (MCPP),
a team of agents moving in a graph-represented environment
must plan a set of start-goal joint paths which ensures global
connectivity at each time step, under some communication
model. The decision version of this problem asking for the
existence of a plan that can be executed in at most a given
number of steps is claimed to be NP-complete in the liter-
ature. The NP membership proof, however, is not detailed.
In this paper, we show that, in fact, even deciding whether a
feasible plan exists is a PSPACE-complete problem. Further-
more, we present three algorithms adopting different search
paradigms, and we empirically show that they may efficiently
obtain a feasible plan, if any exists, in different settings.

Introduction
The Multiagent Connected Path Planning problem, MCPP
for short, was formally introduced in (Hollinger 2010;
Hollinger and Singh 2012) as a simpler version of the Multi-
robot Informative Path Planning with Periodic Connectivity
problem (MIPP-PC). In MCPP, a team of agents moving in a
graph-represented environment must plan a set of start-goal
joint paths which ensures global (multi-hop) connectivity at
each time step, under some communication model.

Besides being useful in the context of MIPP-PC, the com-
putational study of this problem is interesting on its own
since it may silently appear as a subproblem in several
information-gathering missions. For instance, in multirobot
exploration, adopting continuous connectivity with a super-
vising base station can ensure the possibility of manually in-
tervening in case of robots’ faults and of delivering video
streams from the robots to the base station (Rooker and
Birk 2007). Another example is given by connectivity-aware
planning for search and rescue (Feo Flushing et al. 2013),
where particular connectivity requirements can give rise to
a MCPP subproblem to solve. In (Bhattacharya, Likhachev,
and Kumar 2010), distance constraints are incorporated in
a simultaneous path planning and task execution problem.
Distance constraints can be interpreted as particular commu-
nication constraints when full communication within a given
range is assumed.
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In (Hollinger 2010; Hollinger and Singh 2012), it is
claimed that the decision version of MCPP asking for the
existence of a plan that can be executed in at most a
given number of steps is NP-complete. The NP member-
ship proof, however, is not detailed. In this paper, we show
that, in fact, even deciding whether a feasible plan exists is
a PSPACE-complete problem. Our theoretical result implies
that, not only a polynomial-time feasibility algorithm is un-
likely to exist (unless P=PSPACE), but also feasibility cer-
tificates of polynomial size might be out of reach (unless
NP=PSPACE). We also consider a variation of MCPP able
to model collisions among agents, generalizing the graph-
based Multirobot Path Planning problem (MPP) introduced
by (Yu and LaValle 2013b), and show that our proof holds
even in this case. This is interesting, since the MPP feasi-
bility decision problem is in P (Yu and Rus 2015), while
MPP time- and distance-optimal decision problems are NP-
complete (Yu 2016; Banfi, Basilico, and Amigoni 2017).

Our negative theoretical result on the complexity of
MCPP does not rule out the existence of problem instances
that can be solved efficiently. Therefore, as an additional
contribution, we present three algorithms for MCPP working
under different search paradigms and we empirically show
that they may efficiently obtain a feasible plan, if any exists,
in different settings. To the best of our knowledge, these are
the first practical algorithms specifically designed for MCPP.

It is worth mentioning that MCPP shares some similari-
ties with the problem of connectivity maintainance as inves-
tigated by the Control community. In that case, the agents are
usually required to maintain global connectivity either while
pursuing basic coordinated tasks (like rendez-vous, forma-
tion control, and flocking) (Zavlanos, Egerstedt, and Pappas
2011) or in response to additional control terms, such as the
teleoperation of one of the team members (Sabattini et al.
2013).

Problem Definition
We consider an environment modeled as a multigraph G =
(V,E,C) describing both its physical and communication
features. Locations are modeled by the set of vertices V that
can be obtained by discretizing the environment either by
hand, or with the help of some automated technique (see,
e.g., (Stump et al. 2011)). The first edge set, E, encodes
the physical topology of the environment. The second set
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of edges, C, encodes the communication topology, namely,
the availability of a communication link between a pair of
locations. As commonly done (Hollinger and Singh 2012;
Stump et al. 2011), it is assumed that the set C is not af-
fected by false positives and that it does not vary as time
evolves. These properties can be always enforced by con-
structing C in a conservative way (for instance, by consider-
ing a disk communication model with small range). All the
edges of the multigraph are assumed to be unweighted and
undirected. Throughout the paper, we will use the following
notation: GE = (V,E) and GC = (V,C).

Let A = {a1, . . . , am} be a set of m agents moving in
G as follows. Time evolves in discrete steps t ∈ N0: at any
step, an agent can either remain still at its current vertex, or
move along a physical edge (edges in E have all the same
length and can all be traversed in a single step). Two or more
agents are allowed to occupy the same vertex at a time and
to move along the same edge between two subsequent steps.
In a robotic setting, this could be obtained by resorting to a
local collision-avoidance mechanism (Hollinger and Singh
2012).

At a generic step t, the positions of the agents in G are
specified by a state πt = 〈p1, p2, . . . , pm〉, where each pi ∈
V denotes the vertex where the i-th agent is located. We say
that a state is connected if and only if the subgraph of GC
induced by its occupied vertices is connected.

The agents must move from a start state πs to a goal state
πg , which are both connected. The Multiagent Connected
Path Planning problem can be stated as follows:

Problem 1. Given 〈G,A, πs, πg〉, find a time-stamped se-
quence of states πs = π1, π2, . . . , πk = πg such that (1)
each πj can be obtained from πj−1 by moving each agent
along at most one edge in E, and (2) each πj is connected.

PSPACE-Completeness
In this section, we prove that the decision version of Prob-
lem 1, called MCPP-D, is PSPACE-complete. Being a de-
cision problem, in MCPP-D we simply ask for the exis-
tence of a time-stamped sequence of connected states {πj}
leading from πs to πg . To prove the PSPACE-completeness
result, we first provide an overview of the Nondeterminis-
tic Constraint Logic (NCL) model of computation (Hearn
and Demaine 2005). Then, we prove the PSPACE-hardness
of MCPP-D by reducing it from a particular NCL decision
problem. Finally, we argue about the PSPACE-membership
of MCPP-D. Additionally, we discuss some MCPP-D vari-
ants of practical interest, whose PSPACE-completeness fol-
low straightforwardly from the content of this section.

Nondeterministic Constraint Logic
An NCL machine is specified by a constraint graph. This
is an undirected graph Ĝ = (V̂ , Ê) together with an as-
signment of non-negative integers to edges, called weights,
and integers to vertices, called minimum in-flow constraints.
A configuration of an NCL machine is an orientation of
the edges such that the sum of incoming edge weights at
each vertex is greater or equal to the minimum in-flow con-
straint of that vertex. A move from one configuration to an-

other configuration is simply the reversal of a single edge
such that the minimum in-flow constraints remain satisfied.
Having defined the NCL machinery, the configuration-to-
configuration decision problem, NCL-C2C for short, can be
stated as follows:

NCL-C2C
INSTANCE: a constraint graph Ĝ = (V̂ , Ê), and two con-
figurations A and B.
QUESTION: is there a sequence of moves leading from A

to B in Ĝ?

It has been shown that NCL-C2C remains PSPACE-
complete even when restricting the constraint graph to
a particular simple (without self loops) topology, called
AND/OR (Hearn and Demaine 2005). An AND/OR (sim-
ple) constraint graph is composed by only two types of ver-
tices, called AND and OR, whose minimum in-flow con-
straint is fixed to 2. Both AND and OR vertices have three
incident edges, whose weights are 1, 1, 2 for the former and
2, 2, 2 for the latter. An AND vertex takes its name from the
fact that it behaves somehow like a logical AND: the edge
with weight 2 can be directed outward if and only if both the
edges with weight 1 are directed inward. An OR vertex, in-
stead, behaves somehow like a logical OR: at least one edge
must always been directed inward. Note that non-legal edge
orientations depend on the specific type of vertex. For in-
stance, in an OR vertex, its three incident edges cannot be
oriented outward at the same time, but all the other possible
combinations of orientations are valid. Henceforth, we will
use AND/OR-NCL-C2C to denote the class of NCL-C2C
instances where the constraint graph Ĝ is simple and made
of only AND and OR vertices.

PSPACE-Hardness: Overview of the Reduction

Before going into the reduction details, it is convenient to
provide a brief sketch of the reduction. From a generic in-
stance of AND/OR-NCL-C2C, we show how to construct
(in polynomial time) a particular instance of MCPP-D such
that the former admits a yes answer if and only if the lat-
ter admits a yes answer. In particular, the AND/OR vertices
defining the constraint graph Ĝ of the generic AND/OR-
NCL-C2C instance will be associated with two particular
substructures of an MCPP-D multigraphG, called AND/OR
gadgets, which will be implicitly composed together accord-
ing to the topology of Ĝ. These substructures will be popu-
lated with some agents, whose legal movements in the phys-
ical graph GE (namely, movements that ensure global con-
nectivity on the connectivity graph GC between two subse-
quent steps) will reflect the possibility of performing a sin-
gle edge reversal in the AND/OR-NCL-C2C instance, and
vice versa. In order to ensure this property, we will exploit
an additional substructure contributing to forming the final
MCPP-D graph G, containing a single agent called coordi-
nator. The movements of the coordinator will allow to repli-
cate, in the generic AND/OR-NCL-C2C instance, the fact
that edge reversals have to be performed one at a time.
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Figure 1: From AND/OR NCL constraint graph vertices (left) to AND/OR MCPP-D gadgets (right). Dark green squares are
the transition vertices, while light blue circles are the guard locations vertices. Solid lines represent edges in E, while dashed
lines represent edges in C. All the white vertices in the multigraph are connected with each other in GC : these communication
links are here represented as small dashed boxes. The OR edges (a) are shown with a legal orientation, while the AND edges
(b) with a non-legal one.

PSPACE-Hardness: Reduction Details

We start by focusing on how to represent a generic NCL con-
figuration as a state of a particular MCPP problem, deferring
all the transition constraints to a later stage. Figure 1 shows
how the AND/OR vertices of the NCL constraint graph Ĝ
are mapped to AND/OR gadgets of a multigraphG. For each
edge e = (u, v) in Ê, we create three vertices ue, te, ve ∈ V ,
and connect them in GE in sequence as shown. We call the
te vertices transition vertices. To represent the orientation of
the edge e, we spawn an agent on this structure: if the edge
points to u, the agent will be forced to reside on ue, other-
wise it will lie on ve. All the ue and ve vertices obtained in
this way (from all the edges in Ê) are connected with each
other in GC , in other words, the subgraph of GC induced by
the ue and ve vertices is a clique. Finally, note that each edge
e ∈ Ê is mapped to a sequence of three vertices ue, te, ve
which appears as a substructure of two different AND/OR
gadgets.

As a result, on the multigraph G constructed so far, the
agents’ positions can be used to univocally identify the ori-
entations in the constraint graph Ĝ, and vice versa. In par-
ticular, moving an agent from one extreme to another in
each line of three vertices equals to change the correspond-
ing edge orientation in the constraint graph Ĝ. We are thus
able to represent the start and goal configuration A,B as
states πA, πB . However, there are still inconsistencies to
solve. First, in the current multigraph, any agent position can
contribute to the formation of a feasible state, with the ex-
ception of the transition vertices. Second, multiple agents
could move simultaneously – but orientations in the con-
straint graph can be changed one at a time. Third, the agents
cannot really move, since, from what said so far, each tran-
sition vertex te does not communicate with any other vertex.

Let us start by addressing the first issue. In the constraint
graph, the legality of a configuration is formally represented
by the conjunction of the logical constraints imposed by

each vertex. In fact, it is more convenient to focus on non-
legal combinations of edge orientations locally to each ver-
tex: if we are able to exclude their presence in the AND/OR
gadgets, a connected state of agents would be readily con-
verted in a legal configuration of the constraint graph. To this
aim, consider first an OR vertex v ∈ V̂ : we have to exclude
that all the three incident edges are oriented outward, that is,
in Figure 1(a), at least one agent must be on some ve ∈ V . To
ensure this constraint, in the corresponding OR gadget, we
create a new vertex w ∈ V where we spawn a guard agent.
Note that vertex w, contrarily to all the other vertices be-
longing to the same gadget, is not shared among other gad-
gets. The purpose of a guard is to enforce the other agents
of the same gadget to assume consistent positions. This can
be achieved by imposing that w communicates with some
other gadget vertices. More precisely, for each e ∈ Ê inci-
dent to the OR vertex v ∈ V̂ , we add a communication edge
(w, ve) ∈ C. Hence, in order to connect a guard with the rest
of the team, at least one agent must be on some ve ∈ V , as
we wanted. In case of an AND vertex, instead, we have three
non-legal combinations of edge orientations to exclude. For
each of them, we spawn a guard agent in a new vertex w.
Then we connect each w in C following the very same rea-
soning as above. The final result is shown in Figure 1(b).
Notice how a legal combination of edge orientations in the
OR vertex is mapped to an OR gadget state where all the
robots are connected to each other (Figure 1(a)). Looking at
the AND reduction (Figure 1(b)), instead, notice how a non-
legal combination of orientations is mapped to a state where
one of the guards (that residing in w2 in this example) is not
connected to the rest of the team.

The other two issues introduced above are related to each
other, as the purpose of the transition vertices is to synchro-
nize the agent movements. Indeed, if we can force the agents
to occupy at most one transition vertex at a time in the whole
multigraph G, we obtain the desired result. To this aim, we
create an additional structure called coordination gadget.
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Figure 2: Connections between an OR gadget (left) and (a
portion of) the coordination gadget (right).

This gadget contains a set of new vertices s1, s2, . . . , sn in
V , where n = |Ê|. These vertices are connected in GE to
form a linear subgraph, that is, (sj , sj+1) ∈ E, for each
1 ≤ j < n. Each sj is then connected in GC to a differ-
ent transition vertex te, and to all the non-transition vertices
without making any distinction. To complete this synchro-
nization tool, we spawn a coordinator agent in a vertex of the
gadget – no matters which one. Figure 2 shows a portion of
the coordination gadget and its connections with a generic
OR gadget. Each time a vertex in the coordination gadget
is occupied by the coordinator, the corresponding transition
vertex te is “enabled”, i.e., connected to all the remaining
agents. Due to the presence of a single coordinator, only one
transition vertex is enabled at a time and can thus be occu-
pied by an agent. Therefore, among all the AND/OR gad-
gets, only one agent at a time is able to change its position
from ue to ve or vice versa. The reduction is now complete.

It is now straightforward to check that, if there exists a se-
quence of moves between A and B on the constraint graph
Ĝ, we can replicate them on the constructed MCPP-D in-
stance by having the coordinator moving to a suitable ver-
tex to enable the corresponding state transition. On the other
hand, if there exists a sequence of states leading from the
start state πA to the goal state πB , there must necessarily
exists a sequence of moves leading from A to B in the origi-
nal constraint graph. In particular, our construction, making
use of guard agents, allows to replicate all the possible legal
configurations of Ĝ, while the coordinator ensures that edge
reversals can be performed one at a time. This proves that
MCPP-D is PSPACE-hard.

PSPACE Membership
By Savitch’s theorem (Savitch 1970), to prove the PSPACE
membership of MCPP-D we can focus on proving its mem-
bership in NPSPACE. To this aim, we have to show that
there exists a non-deterministic algorithm deciding MCPP-
D whose amount of stored bits is polynomially bounded.

First of all, note that the system state can be univocally de-
scribed by encoding the m agent positions on the |V | multi-
graph vertices. This can be stored in polynomial space. Also,
a non-deterministic algorithm deciding MCPP-D would not

need to store previously traversed states, as the set of next
possible states depends only on the current one. This implies
that the state space can be traversed non-deterministically
while storing, at each step, a polynomial number of bits. This
proves that MCPP-D is in NPSPACE and thus in PSPACE.
Therefore, we have proved the following theorem:

Theorem 1. MCPP-D is PSPACE-complete.

MCPP Special Cases and Variants
The reader might have noticed that, in the reduction above,
the constructed multigraph G is rather strange: GE is not
connected, and not all the vertices connected by an edge
in GE are also connected in GC . These two features are
clearly not common, and would most likely be avoided
by any reasonable communication-aware environment dis-
cretization (such as the one we used in our experiments; see
the corresponding section). However, we can easily enforce
the connectedness of GE with the help of some dummy
vertices linking the different connected components to each
other. With a little more effort, it is also possible to enforce
GE to be a grid graph (either solid or with holes), imply-
ing that the hardness of the problem persists even when
the physical graph is planar. Similarly, we could also add
dummy communication edges to ensure that E ⊆ C and
the reduction would still work. (Due to lack of space, the
complete construction is not reported. However, it would be
easy to verify that this is indeed the case.) Also, note that the
problem variant in which at least one of the agents is not al-
lowed to change position (for instance, a fixed base station)
is still PSPACE-complete, since guard agents are forced to
remain still in our reduction.

Consider now the following variant of MCPP able to
model collisions among the agents: two or more agents
are neither allowed to occupy the same vertex at the same
time, nor to move along the same edge between two sub-
sequent steps. This model generalizes the graph-based Mul-
tirobot Path Planning model of (Yu and LaValle 2013b). It
is immediate to notice that our proof holds even for this
case, since the agents of our reduction are forced to move
on non-overlapping portions of GE . For an identical rea-
son, the same MCPP variant in which the agents’ goals
are not assigned a priori (generalizing the model known
as permutation-invariant MPP (Yu and LaValle 2013a)) re-
mains PSPACE-complete as well.

Algorithms
In this section, we tackle the problem of finding MCPP
feasible solutions. Being the corresponding decision ver-
sion PSPACE-complete, the problem is intrinsically hard to
solve. Indeed, unless P=PSPACE, any complete algorithm
would incur in an exponential worst-case runtime, as the
number of possible next states equals the product of all the
agents’ local moves. By local move, we mean either remain-
ing at the current vertex or moving along a graph physi-
cal edge in E. Local moves will be henceforth referred to
as movements. However, leaving aside such worst-case sce-
narios, we present three different algorithms whose perfor-
mance in realistic problem instances (shown in the next sec-



Algorithm 1: Sample-Based
1 function sampleBasedSearch (πs, πg)
2 p(πs)← πs

3 while not timeout() do
4 closed← {}
5 π ← πs

6 while not timeout() do
7 if isOneStepReachable(π, πg) then
8 p(πg)← π
9 return p

10 end
11 Ω← sampleStates(π)

12 πbest ← selectCandidate(Ω)

13 if πbest ∈ closed ∨ πbest = NULL then
14 break
15 end
16 p(πbest)← π

17 π ← πbest

18 closed← closed∪{π}
19 end
20 end
21 return Error
22 end

tion) may be acceptable practical purposes. Due to space
constraints, for each algorithm, only the corresponding main
function is presented as pseudocode.

Sample-Based Algorithm
The first algorithm is dubbed Sample-Based (SB) and is
reminescent of the approach proposed in (Rooker and Birk
2007) for the problem of multirobot exploration under con-
tinuous connectivity requirements. Algorithm 1 shows the
pseudocode. We seek for a feasible solution in the form of
a parent function p(·) which is initialized as p(πs) = πs.
Starting from πs, at each iteration, only a subset Ω of all the
next possible states is considered. Specifically, the set Ω is
constructed by generating connected states reached by per-
forming movements randomly chosen with uniform prob-
ability. To select the next state, the selectCandidate sub-
routine evaluates each state in Ω through a given heuristic
function and returns the state with lowest value. The pro-
cess is iterated until either the agents get stuck, in the sense
that the best state πbest ∈ Ω is already in the closed set
(namely, it has already been visited), or a solution is found
(namely, πg is reached). Fixing the number of samples in
Ω at each step allows the algorithm to scale to problem in-
stances of realistic size. As a drawback, the algorithm is
not complete and may produce over-complicated paths, as
we will see in the next section. The heuristic used to eval-
uate the goodness of a given state π = 〈p1, p2, . . . , pm〉
is equal to the sum of the distances between the current
agents’ positions {pi} and their corresponding goals. This
heuristic can be easily computed in a pre-processing phase
by means of standard shortest path algorithms and can be
retrieved during the search phase in a constant amount of
time. Notice that, for non-weighted graphs, the shortest path

↓ ↓ ↓ ↑ ↓ p2 ↑ ↓ . . . p1 ↑

p1 ·↑·

↓ ↓ ↓ ↑ p1 ↑

p1 p2

↓·

. . .↓ p2

p1 p2

Figure 3: A state decomposition from flat (left) to hierarchi-
cal structure (right). In this example the agents can choose
between moving up, moving down, or staying still. A dot
means that the corresponding agent action has not been set
yet.

can be computed efficiently by means of a breath-first search
in O (m(|V |+ |E|)). Finally, to further exploit the random
sampling of the algorithm, the above procedure is repeated
until a solution is found or a temporal deadline is met.

Even though the SB algorithm may remind the reader
of the standard local beam search technique (Russell and
Norvig 1995), they are in fact different. Local beam search
(or its stochastic variant) aims at pruning the search tree,
by sacrificing the completeness in favor of a decrease in the
running time. To do that, all the candidates are first evaluated
and then a selection process is performed. In the SB case, the
problem addressed is different, as the number of candidates
is itself exponential. In order to prevent such a local expo-
nential behavior, the SB algorithm deliberately discards (at
random) some candidates. The evaluation is then performed
only on the restricted set of candidates Ω, whose size can be
easily tuned by means of a parameter.

Randomized Sample-Based Algorithm
The second algorithm, which we call Randomized Sample-
Based (RSB), follows the same scheme of the SB ap-
proach (refer again to Algorithm 1). The only difference be-
tween the two approaches lies in the implementation of the
selectCandidate subroutine. In the RSB algorithm, we do
not select the best next state: instead, we select a candidate
in Ω according to a smart randomization scheme. While this
may appear as a minor modification, it has a great impact on
the theoretical properties of the algorithm. Using a random-
ized selection, from any state we have a non-zero probabil-
ity of selecting any possible next state. Hence, any feasible
sequence of states has a non-zero probability of being gener-
ated. Thus, RSB is probabilistically complete, i.e., given an
infinite temporal horizon, it finds a feasible plan, if any ex-
ists. Notice that the SB algorithm can ensure the same con-
vergence property only if Ω always contains a single sam-
ple, otherwise the state with the highest heuristic value will
never be selected. If |Ω| = 1, the SB approach collapses
into a fully random search (in constrast, for |Ω| → ∞, SB
becomes a pure greedy algorithm).

We employ a polynomial randomization scheme, intro-
duced for the first time by (Bresina 1996). In particular, each
candidate π ∈ Ω is ranked according to a heuristic function,
and we assign it a weight ω(π) given by:

ω(π) =
1

r(π)δ
, (1)



Algorithm 2: Depth-First Search
1 function depthFirstSearch (πs, πg)
2 p(πs)← πs

3 stack . insert(πg)
4 while stack 6= {} do
5 π ← stack . back()
6 closed← closed∪{π}
7 if π = πg then
8 return p
9 end

10 πn ← findBestChild(π, πg, closed)
11 if πn 6= NULL then
12 stack . insert(πn)
13 p(πn)← π
14 else
15 stack .pop()
16 end
17 end
18 return error
19 end

where r(π) is the rank order of π w.r.t. the other samples
in Ω, and δ is a parameter allowing to tune the randomiza-
tion “greedyness”: higher values of δ correspond to higher
weights given to the most promising movements. The sam-
pling probability of each state in Ω is then obtained by nor-
malizing the weights.

Depth-First Search Algorithm
The third algorithm we present is based on a two-level prob-
lem decomposition: a main search routine and a set of ancil-
lary routines able to exploit the multiagent structure of the
state space. The main routine is summarized by Algorithm 2,
and is based on a Depth-First Search (DFS) approach. At
each step, the current state π is popped from a stack and
added to the closed set. To move further, the search of the
most promising state πn (reachable from π) is demanded to
the findBestChild subroutine that returns the best next state
not already present into the closed set.

In order to generate the possible next states from which
the best one is later selected, we exploit the hierarchical
structure reported in the example of Figure 3. In the hier-
archy, the agents are thought as moving one at a time, thus
forming a tree of partial states reachable by performing se-
quences of individual movements. The best state reachable
from the current one can then be searched without explicitly
enumerating all the possible joint movements, whose num-
ber would be exponential. More specifically, we move down
into the tree by exploiting a priority queue ordered accord-
ing to a heuristic value, given by the sum of the distances
between the current agents’ positions and their goal vertices
(that is, the same used for SB). Notice that intermediate
states encountered while traversing the tree are not neces-
sarily connected: global connectivity is checked only when
the search reaches a leaf. As a consequence, the number
of computational steps required by a call to findBestChild
becomes linear in the best case. In practice, the computa-
tional burden is greatly reduced. The priority queue is kept

(a) Office (b) Open

Figure 4: The bitmaps of the environments used in the ex-
periments: an office-like indoor environment (a) and an open
outdoor environment (b).

in memory to be reused when the algorithm backtracks again
to the same state in the main routine.

A similar approach, decomposing each planning step by
considering only single agent moves, is presented in (Stan-
dley and Korf 2011) for classical multiagent path planning.
However, while (Standley and Korf 2011) considers as next
feasible states those corresponding to single agent moves,
we exploit such a decomposition to effectively generate the
next most-promising state, where, for each of the agents a
move has been selected. This expedient could appear less
efficient, since we can prune less states, but, in practice, it
allows to overcome one of the intrinsic difficulties of the
problem; for instance, let us consider a situation where a
joint two-robots move is feasible, but the two single-robot
moves would violate the connectivity constraint.

Finally notice that, while the DFS algorithm is complete
for the feasibility problem, the SB algorithm can only be
used to found a feasible plan and, even asymptotically, it is
not able to decide whether a feasible plan exists or not. The
RSB algorithm is probabilistically complete, but it cannot
provide a result if a feasible plan does not exists.

Experiments
In this section we evaluate and compare the above presented
algorithms. For the experimental campaign, we consider the
same two realistic environments employed by (Hollinger
and Singh 2012) and here re-proposed in Figure 4. The
first environment (Office) articulates in an indoor office-like
structure of size 80 × 60 meters. The second environment
(Open) represents an outdoor area characterized by open
spaces and few obstacles, and whose total size is 200× 150
meters. Both environments are discretized as grids of iden-
tical squared cells, retrieved from the original bitmaps of
800 × 600 pixels. Cells are obtained clustering 11 × 11
pixels for Office and 13 × 13 pixels for Open. As com-
monly done in the robotics literature (Rooker and Birk 2007;
Hollinger and Singh 2012), we assume a distance-based
communication and we consider three different communi-
cation ranges: 50 px, 100 px, and 150 px. Two cells are di-
rectly connected in GC if their centers are closer than the
communication range. The number of agents varies from 2
to 10. For each of the experimental setting, we randomly
generate 50 start-goal states. In order to obtain non-trivial
instances, each pair of start-goal positions has to be at least



#Agents
2
3
4
5
6
7
8
9

10

Office environment
Range: 50 px Range: 100 px Range: 150 px

SB RSB DFS SB RSB DFS SB RSB DFS
41 43 42 42 44 43 38 41 48
37 37 41 40 39 44 30 30 38
42 42 45 40 40 40 29 32 32
32 31 33 33 34 31 25 26 26
36 37 32 29 29 25 33 32 26
35 34 27 33 36 28 25 26 18
32 32 21 28 28 18 21 19 14
30 28 24 31 27 19 27 27 18
33 19 16 22 21 14 21 21 10

Open environment
Range: 50 px Range: 100 px Range: 150 px

SB RSB DFS SB RSB DFS SB RSB DFS
50 50 50 49 48 50 50 50 50
50 50 50 43 39 50 50 49 50
49 49 50 40 42 44 50 49 49
48 47 44 43 47 41 50 50 50
49 44 35 49 46 35 50 49 46
45 44 32 46 45 29 50 50 46
48 39 26 45 44 24 50 50 47
45 24 20 49 40 27 50 50 47
41 25 22 42 35 21 50 50 41

Table 1: Solutions found by the three algorithms over 50 instances for each experimental setting. Bold indicates the best results.
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(a) Office environment
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(b) Open environment

Figure 5: The distributions of the solution lengths for the two environments, Office (left) and Open (right), represented as a
boxplot. The communication range is set to 100 px while the number of agents varies from 2 to 10.

at distance 200 px. Furthermore, in generating a start or a
goal state π = 〈p1, p2, . . . , pm〉, we enforce pj to be at least
at distance 3/4 of the communication range from pj−1. The
number of samples in Ω for SB and RSB is fixed to 100 for
each iteration, as in (Rooker and Birk 2007), while the ran-
domization exponent of Equation (1) is set to δ = 3 (from
preliminary experiments).

Table 1 reports the number of found solutions within a
deadline of 5 minutes by SB, RSB, and DFS. The SB algo-
rithm shows a good performance overall, even if DFS seems
to work better for small teams. RSB provides a mixed perfor-
mance between SB and DFS as the number of agent grows.

We can note that, increasing the communication range,
the problem instances become harder in the Office envi-
ronment, as the number of solutions found decreases. This
can be due to the structure of the start and goal states: the
greater the communication range, the higher the probability
that start and/or goal states contain positions lying in differ-
ent rooms. This makes feasible plans less straightforward to
obtain. Conversely, in the Open environment, a larger com-
munication range seems to simplify the problem, as the ob-
stacles only marginally influence the paths.

The total fraction of instances solved by only one algo-
rithm is 9.0% in Office and 6.4% in Open. In the former
percentage, SB, RSB, and DFS contribute by 32.2%, 24.0%,
and 43.8%, respectively; in the latter, the percentage contri-
bution is 74.7%, 10.3% and 14.9%. As expected, the SB al-

gorithm dominates in the Open environment. However, in a
structured environment such as Office, the performance of
DFS is remarkable.

From a practical standpoint, we are also interested in as-
sessing the quality of the solutions. To this aim, we consider
the number of states composing each solution, and we call
it solution length. Notice that this quantity captures the to-
tal time needed to complete the task, as customarily con-
sidered in the multiagent path planning literature (Hollinger
and Singh 2012; Banfi, Basilico, and Amigoni 2017).

Figure 5 summarizes the distributions of the solution
lengths. The instances considered are those solved by all the
algorithms, where the communication range has been set to
100 px – but similar results hold for the other cases. As ex-
pected, DFS produces better paths, in general. Also, notice
how the difference in solution length for the algorithms be-
comes larger and larger from 5 agents.

If the computational resources are not a concern, all the
algorithms can be launched in parallel. This would increase
the probability of finding a plan. Furthermore, a solution
found by DFS should generally be preferred given its lower
length, while an SB or RSB plan can be chosen if DFS is not
able to produce any feasible solution within the given dead-
line. If none of the algorithms finds a solution, the instance
could be simplified by either introducing intermediate goals,
or considering a coarser discretization.



Conclusions
Solving the Multiagent Connected Path Planning prob-
lem (MCPP) is of primary interest in different multiagent
information-gathering missions subject to communication
constraints. In this paper, we have shown that even decid-
ing if a given instance of MCPP admits a feasible plan is
PSPACE-complete. This means that – unless NP=PSPACE
– there might be problem instances not even admitting the
existence of “compact” feasibility certificates (i.e., of size
polynomial w.r.t. that of the input). However, motivated by
the need of solving MCPP in realistic scenarios, we pre-
sented three algorithms adopting different search paradigms,
and we empirically showed that they may perform well in
practice. Our experiments also showed that the hardness
of MCPP stems from the difficulty of finding good heuris-
tics for expanding an exponential number of neighbor states
(even if a neighbor state is connected, pursuing the search
along that direction may not reach the goal).

An interesting direction for future works is related to
a more precise identification of the complexity profile of
MCPP. Indeed, as we have shown, the problem is PSPACE-
complete in the general case, even under reasonable as-
sumptions about the structure of GE and GC . However, it
might be interesting to study if PSPACE-completeness per-
sists when restricting the problem to multigraphs where GE
is a grid graph and GC encodes a limited-range communi-
cation model (like in the instances considered in our experi-
ments). From a practical standpoint, it would be interesting
to try to improve the randomization strategy employed by
our RSB algorithm to preserve its theoretical convergence
property and improve performance.
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