The best performing algorithms for a particular oversubscribed scheduling
application, Air Force Satellite Control Network (AFSCN) scheduling, appear to
have little in common. Yet, through careful experimentation and modeling of
performance in real problem instances, we can relate characteristics of the
best algorithms to characteristics of the application. In particular, we find
that plateaus dominate the search spaces (thus favoring algorithms that make
larger changes to solutions) and that some randomization in exploration is
critical to good performance (due to the lack of gradient information on the
plateaus). Based on our explanations of algorithm performance, we develop a new
algorithm that combines characteristics of the best performers; the new
algorithms performance is better than the previous best. We show how hypothesis
driven experimentation and search modeling can both explain algorithm
performance and motivate the design of a new algorithm