193 research outputs found

    Recent Advances in Multi-dimensional Packing Problems

    Get PDF

    Application of 2D packing algorithms to the woodwork industry

    Get PDF
    Esta pesquisa investiga a aplicação de metodologias computacionais na indústria madeireira, com foco no Problema do Corte de Material (PCE) com duas iterações: guilhotinável e não guilhotinável. O estudo aplica um algoritmo evolucionário baseado no Non-dominated Sorting Genetic Algorithm II (NSGA-II) adaptado às complexidades do problema para otimizar o processo de corte. A metodologia tem como objetivo melhorar a eficiência da utilização de material em tarefas de trabalho em madeira, empregando este algoritmo utilizando sobras de peças ao invés de uma nova placa. O relatório fornece dados empíricos e métricas de desempenho do algoritmo, demonstrando a sua eficácia na redução do desperdício e na otimização do trabalho na indústria. Esta abordagem melhora a eficiência operacional e sublinha os benefícios ambientais da utilização mais sustentável dos recursos de madeira, exemplificando o potencial da integração de técnicas computacionais em indústrias tradicionais para atingir este objetivo.This research investigates the application of computational methodologies in the woodworking industry, focusing on the Cutting Stock Problem (CSP) with two iterations: guillotinable and non-guillotinable iterations. The study applies an Evolutionary Algorithm (EA) based on Non-dominated Sorting Genetic Algorithm II (NSGA-II) customized to fit the intricacies of the problem to optimize the cutting process. The methodology aims to enhance material usage efficiency in woodworking tasks by employing this algorithm using leftover parts instead of a new board. The report provides empirical data and performance metrics of the algorithm, demonstrating its effectiveness in reducing waste and optimizing labor in the industry. This approach improves operational efficiency and underscores the environmental benefits of using timber resources more sustainably, exemplifying the potential of integrating computational techniques in traditional industries to achieve this objective

    Two-dimensional placement compaction using an evolutionary approach: a study

    Get PDF
    The placement problem of two-dimensional objects over planar surfaces optimizing given utility functions is a combinatorial optimization problem. Our main drive is that of surveying genetic algorithms and hybrid metaheuristics in terms of final positioning area compaction of the solution. Furthermore, a new hybrid evolutionary approach, combining a genetic algorithm merged with a non-linear compaction method is introduced and compared with referenced literature heuristics using both randomly generated instances and benchmark problems. A wide variety of experiments is made, and the respective results and discussions are presented. Finally, conclusions are drawn, and future research is defined

    DISEÑO DE UNA HEURÍSTICA PARA RESOLVER EL PROBLEMA DE CORTE BIDIMENSIONAL RECTANGULAR POR EL MÉTODO DE GUILLOTINA

    Get PDF
    RESUMEN El presente trabajo se enfoca en el desarrollo de una heurística que resuelva eficientemente el problema de corte bidimensional de placas aplicando el método de la guillotina, ofreciendo un plan de corte que minimice el número de placas a utilizar, de tal forma que satisfaga la demanda por cada tipo de pieza. Dicha heurística ha sido elaborada en dos fases, la primera obtiene una solución inicial, y en la segunda se mejora la solución obtenida en la primera. Esta heurística fue probada por medio de una instancia que permite ver la solución mejorada del algoritmo con tres condiciones: largo, ancho y demanda. La heurística fue trabajada en C++ como parte de un trabajo de fin de módulo del Doctorado en Matemática Aplicada, la cual busca resolver diversas aplicaciones propias de nuestro campo de estudio

    On three soft rectangle packing problems with guillotine constraints

    Full text link
    We investigate how to partition a rectangular region of length L1L_1 and height L2L_2 into nn rectangles of given areas (a1,,an)(a_1, \dots, a_n) using two-stage guillotine cuts, so as to minimize either (i) the sum of the perimeters, (ii) the largest perimeter, or (iii) the maximum aspect ratio of the rectangles. These problems play an important role in the ongoing Vietnamese land-allocation reform, as well as in the optimization of matrix multiplication algorithms. We show that the first problem can be solved to optimality in O(nlogn)\mathcal{O}(n \log n), while the two others are NP-hard. We propose mixed integer programming (MIP) formulations and a binary search-based approach for solving the NP-hard problems. Experimental analyses are conducted to compare the solution approaches in terms of computational efficiency and solution quality, for different objectives

    Models and Solutions of Resource Allocation Problems based on Integer Linear and Nonlinear Programming

    Get PDF
    In this thesis we deal with two problems of resource allocation solved through a Mixed-Integer Linear Programming approach and a Mixed-Integer Nonlinear Chance Constraint Programming approach. In the first part we propose a framework to model general guillotine restrictions in two dimensional cutting problems formulated as Mixed-Integer Linear Programs (MILP). The modeling framework requires a pseudo-polynomial number of variables and constraints, which can be effectively enumerated for medium-size instances. Our modeling of general guillotine cuts is the first one that, once it is implemented within a state of-the-art MIP solver, can tackle instances of challenging size. Our objective is to propose a way of modeling general guillotine cuts via Mixed Integer Linear Programs (MILP), i.e., we do not limit the number of stages (restriction (ii)), nor impose the cuts to be restricted (restriction (iii)). We only ask the cuts to be guillotine ones (restriction (i)). We mainly concentrate our analysis on the Guillotine Two Dimensional Knapsack Problem (G2KP), for which a model, and an exact procedure able to significantly improve the computational performance, are given. In the second part we present a Branch-and-Cut algorithm for a class of Nonlinear Chance Constrained Mathematical Optimization Problems with a finite number of scenarios. This class corresponds to the problems that can be reformulated as Deterministic Convex Mixed-Integer Nonlinear Programming problems, but the size of the reformulation is large and quickly becomes impractical as the number of scenarios grows. We apply the Branch-and-Cut algorithm to the Mid-Term Hydro Scheduling Problem, for which we propose a chance-constrained formulation. A computational study using data from ten hydro plants in Greece shows that the proposed methodology solves instances orders of magnitude faster than applying a general-purpose solver for Convex Mixed-Integer Nonlinear Problems to the deterministic reformulation, and scales much better with the number of scenarios

    Heuristics for Multidimensional Packing Problems

    Get PDF

    TS2PACK: A Two-Level Tabu Search for the Three-dimensional Bin Packing Problem

    Get PDF
    Three-dimensional orthogonal bin packing is a problem NP-hard in the strong sense where a set of boxes must be orthogonally packed into the minimum number of three-dimensional bins. We present a two-level tabu search for this problem. The first-level aims to reduce the number of bins. The second optimizes the packing of the bins. This latter procedure is based on the Interval Graph representation of the packing, proposed by Fekete and Schepers, which reduces the size of the search space. We also introduce a general method to increase the size of the associated neighborhoods, and thus the quality of the search, without increasing the overall complexity of the algorithm. Extensive computational results on benchmark problem instances show the effectiveness of the proposed approach, obtaining better results compared to the existing one
    corecore