
Application of 2D Packing
Algorithms to the Woodwork

Industry

Tiago Ribeiro - a40309

Thesis presented to Escola Superior de Tecnologia e de Gestão de Bragança to obtain

the master’s degree in Industrial Engineering - Mechanical.

Orientation by:

Prof. Ana Isabel Pereira

This thesis does not include any critics or suggestions done by the juri.

Bragança

2022-2023

ii

Application of 2D Packing
Algorithms to the Woodwork

Industry

Tiago Ribeiro - a40309

Thesis presented to Escola Superior de Tecnologia e de Gestão de Bragança to obtain

the master’s degree in Industrial Engineering - Mechanical.

Orientation by:

Prof. Ana Isabel Pereira

This thesis does not include any critics or suggestions done by the juri.

Bragança

2022-2023

iv

Resumo

Esta pesquisa investiga a aplicação de metodologias computacionais na indústria madeireira,

com foco no Problema do Corte de Material (PCE) com duas iterações: guilhotinável e

não guilhotinável. O estudo aplica um algoritmo evolucionário baseado no Non-dominated

Sorting Genetic Algorithm II (NSGA-II) adaptado às complexidades do problema para

otimizar o processo de corte. A metodologia tem como objetivo melhorar a eficiência da

utilização de material em tarefas de trabalho em madeira, empregando este algoritmo

utilizando sobras de peças ao invés de uma nova placa. O relatório fornece dados em-

píricos e métricas de desempenho do algoritmo, demonstrando a sua eficácia na redução

do desperdício e na otimização do trabalho na indústria. Esta abordagem melhora a efi-

ciência operacional e sublinha os benefícios ambientais da utilização mais sustentável dos

recursos de madeira, exemplificando o potencial da integração de técnicas computacionais

em indústrias tradicionais para atingir este objetivo.

Keywords: Otimização, Otimização multi-objetivo, Problemas de empacotamento 2D,

Problemas de corte de material 2D

v

vi

Abstract

This research investigates the application of computational methodologies in the wood-

working industry, focusing on the Cutting Stock Problem (CSP) with two iterations:

guillotinable and non-guillotinable iterations. The study applies an Evolutionary Algo-

rithm (EA) based on Non-dominated Sorting Genetic Algorithm II (NSGA-II) customized

to fit the intricacies of the problem to optimize the cutting process. The methodology

aims to enhance material usage efficiency in woodworking tasks by employing this algo-

rithm using leftover parts instead of a new board. The report provides empirical data and

performance metrics of the algorithm, demonstrating its effectiveness in reducing waste

and optimizing labor in the industry. This approach improves operational efficiency and

underscores the environmental benefits of using timber resources more sustainably, exem-

plifying the potential of integrating computational techniques in traditional industries to

achieve this objective.

Keywords: Optimization, Multi-objective optimization, 2D Packing problems, 2D Cut-

ting Stock Problems

vii

viii

Contents

1 Introduction 1

2 Literature Review 3

3 Problem Definition 7

3.1 2D Cutting Stock Problem . 7

3.1.1 Guillotinable Cutting Stock Problem 8

3.1.2 Non-Guillotinable Cutting Stock Problem 8

3.2 Mathematical Formulation . 8

3.2.1 Parameters . 9

3.2.2 Decision Variables . 10

3.2.3 Objective function . 10

3.2.4 Constraints . 12

3.3 Problem Formalization . 12

4 Methods and Techniques 15

4.1 Python and Software . 15

4.1.1 Software Libraries . 16

4.2 Evolutionary Algorithm Overview . 18

4.3 Evolutionary Algorithm Procedures . 20

4.3.1 Representation . 20

4.3.2 Initialization . 21

ix

4.3.3 Selection . 21

4.3.4 Crossover . 22

4.3.5 Mutation . 23

4.3.6 Algorithm . 24

4.3.7 Termination criteria . 25

4.4 Implementation Details . 25

5 Solution Developed: OptiWood 29

5.1 OptiWood Overview . 29

5.2 Pre-Versions . 30

5.2.1 Version 1: Bottom-Left Fill Heuristic and Overlap Verification . . . 30

5.2.2 Version 2: Rotation . 31

5.2.3 Version 3: Multi-Objective . 32

5.2.4 Version 4: Multi-Objective Optimization 33

5.3 OptiWood . 34

5.3.1 Non-guillotine problem . 34

5.3.2 Guillotine problem . 35

6 Results 37

6.1 Experimental Setup . 37

6.1.1 Evolutionary Algorithm Parameters 37

6.1.2 PC Specifications . 38

6.2 Data Presentation . 39

6.3 6-Piece Dataset Results . 40

6.4 12-Piece Dataset Results . 42

6.5 18-Piece Dataset Results . 44

6.6 Results Discussion . 46

6.6.1 6-Piece Dataset . 47

6.6.2 12-Piece Dataset . 47

6.6.3 18-Piece Dataset . 47

x

7 Conclusions and Future Work 49

7.1 Implications . 49

7.2 Summary . 50

7.3 Future Work . 51

7.4 Conclusion . 52

Bibliography 53

A A1

B B1

C C1

xi

List of Tables

6.1 Dimensions of the 6-piece dataset . 39

6.2 Dimensions of the 12-piece dataset . 39

6.3 Dimensions of the 18-piece dataset . 39

6.4 Performance Metrics: Guillotine Approach 46

6.5 Performance Metrics: No-Guillotine Approach 46

xii

List of Figures

3.1 Vertices Representation . 8

3.2 Wood board H × L . 9

3.3 Wood board point representation . 9

3.4 Piece representation . 10

3.5 Vertical misalignment visualization (in blue) 11

3.6 Envelope visualization . 11

4.1 Evolutionary Algorithm process . 20

4.2 Uniform Partially Matched Crossover . 22

4.3 Two-Point Crossover . 23

4.4 Shuffled Index Mutation . 23

4.5 FlipBit Mutation . 24

5.1 Version 1 Output . 30

5.2 Version 2 Output . 31

5.3 Version 3 Output . 32

5.4 Version 4 Output . 33

5.5 Version 5 - No-Guillotine Output . 35

5.6 Version 5 - Guillotine Output . 36

6.1 6pcs Optimal Solution . 40

6.2 6pcs Near-Optimal Solution . 40

6.3 6pcs Optimal Solution . 41

xiii

6.4 12pcs Optimal Solution . 42

6.5 12pcs Near-Optimal Solution . 42

6.6 12pcs Non-Optimal Solution . 42

6.7 12pcs Optimal Solution . 43

6.8 12pcs Near-Optimal Solution . 43

6.9 18pcs Optimal Solution . 44

6.10 18pcs Near-Optimal Solution . 44

6.11 18pcs Non-Optimal Solution . 44

6.12 18pcs Optimal Solution . 45

6.13 18pcs Near-Optimal Solution . 45

6.14 18pcs Non-Optimal Solution . 45

xiv

Acronyms

2DPP 2D Packing Problem. 1, 3, 7

CSP Cutting Stock Problem. vii, 1–3, 7–10, 29, 37

DEAP Distributed Evolutionary Algorithms in Python. 16, 17, 21–23

EA Evolutionary Algorithm. vii, 2, 16–21, 25, 27, 29, 33, 34, 37, 39, 46, 47, 49, 50, 52

GEOS Geometry Engine - Open Source. 17

GIS geographic information systems. 17

JTS Java Topology Suite. 17

NSGA-II Non-dominated Sorting Genetic Algorithm II. vii, 2, 21, 29

SCOOP Scalable Concurrent Operations in Python. 16

xv

xvi

Chapter 1

Introduction

The Wood Work 4.0 (WW4.0) project aims to develop new approaches to how furniture

production is carried out, mainly in Small and Medium Enterprises (SMEs). As a sector

that has been modernized through the introduction of new machines and new processes,

how some of the internal processes are still managed is still at a very archaic stage and

impacts the overall operation of the system. Thus, the WW4.0 project aims to develop

new approaches that allow the total digitization of the internal processes of the furniture

production chain in such a way that they are integrated into a global approach.

This work aligns with the objectives of the WW4.0 project by addressing a crucial yet

underexplored aspect in the woodworking industry: the efficient reuse of leftover boards

in cutting stock algorithms. This study addresses this by developing a cutting stock algo-

rithm that solves the CSP using leftover boards and new boards. This approach improves

the efficiency of wood utilization in cutting operations and promotes sustainability by

prioritizing leftover materials before resorting to new ones.

2D Packing Problem (2DPP) and CSP are fundamental in computational geometry

and operations research. These problems involve the strategic arrangement of various

objects within one or more containers to maximize space utilization while adhering to the

objects’ physical constraints. In the woodworking industry, this translates to the optimal

placement of different cutting patterns on wood boards to minimize waste and maximize

material usage. This aspect of computational optimization is crucial in industries where

1

raw materials are costly and their conservation is environmentally significant.

EA play an important role in this study. These algorithms, inspired by biological

evolution, apply selection, mutation, and crossover mechanisms to evolve solutions to

optimization problems iteratively. The research uses a custom-tailored EA based on

NSGA-II, particularly suited for the complexities of the CSP. This approach is chosen

for its robustness in handling multi-objective optimization tasks and its effectiveness in

navigating the vast solution spaces in CSP.

The structure of this thesis is as follows: Chapter 1 presents the introduction; Chapter

2 provides a comprehensive review of pertinent literature; Chapter 3 defines the problem,

distinguishing between the guillotinable and non-guillotinable cutting stock challenges;

Chapter 4 elaborates on the methods and techniques utilized; Chapter 5 delineates the

developed solution; Chapter 6 discusses the results; and Chapter 7 offers conclusions and

outlines directions for future research.

2

Chapter 2

Literature Review

A comprehensive literature review is essential to understand the current state and future

possibilities in an evolved woodworking industry, where traditional craftsmanship blends

with modern technology. This review examines the intersection of advanced computer

science techniques, mainly 2DPP and CSP, with the woodworking sector. Despite its

evolution, the industry still faces material efficiency and sustainability challenges, areas

ripe for further computational innovation. This review seeks to see how computational

methods have been and can be further integrated into woodworking to optimize material

usage and increase productivity.

Muhammed Beyaz et al. [2] delve into the intricacies of the offline 2D bin-packing

problem (2DBPP), a well-recognized NP-hard combinatorial optimization challenge. In

this problem, objects of varying width and length dimensions must be efficiently packed

into a minimal number of 2D bins. Although several heuristic methods were proposed

in the past, exact solutions for larger problem instances have yet to be discovered. Tra-

ditional methods such as next-fit, first-fit, best-fit, unified tabu search, and genetic and

memetic algorithms were successfully applied. In this study, the authors introduce a novel

set of hyper-heuristic algorithms that ingeniously select and combine the best features of

state-of-the-art heuristics and local search techniques. The primary objective is to min-

imize the number of 2D bins used. A standout feature of these proposed algorithms is

3

the introduction of new crossover and mutation operators designed explicitly for heuristic

selection. The robustness and efficiency of the algorithms are demonstrated through ex-

tensive experiments on benchmark problem instances for offline 2DBPP. The results are

promising and showcase the algorithm’s ability to consistently achieve solutions close to

optimal.

Brian Brubach et al. [3] focus is directed toward exploring column-sparse packing

problems, a subset of combinatorial optimization problems that have garnered significant

attention due to their intricate nature and wide-ranging applications. These problems

involve the challenge of efficiently packing items into containers, considering the spar-

sity of the packing matrix columns. The primary objective is to achieve an optimal or

near-optimal packing solution while adhering to the constraints imposed by the sparsity.

Brubach and his team introduce two groundbreaking ideas in this domain: attenuation

and multiple-chance algorithms. These concepts are innovative strategies to derive im-

proved approximation algorithms for column-sparse packing problems. The attenuation

approach involves adjusting the packing constraints to achieve a more balanced and ef-

ficient solution. On the other hand, multiple-chance algorithms provide a probabilistic

framework, offering multiple opportunities to achieve an optimal packing configuration.

Through rigorous experimentation and analysis, the authors demonstrate the efficacy of

these methods in obtaining solutions that closely approximate the optimal.

Balcar et al. [1] delve into a unique class of 2D stock cutting problems, precisely

the semi-guillotinable problems. This classification is paramount when devising optimal

cutting plans for circular saws, a standard tool in various manufacturing processes. The

authors introduce a new algorithm specifically tailored for both guillotinable and non-

guillotinable 2D cutting stock problems. Through their research, Balcar and his team

aim to bridge the gap between traditional cutting methods and the evolving demands of

modern manufacturing. Their approach offers a fresh perspective on optimizing material

usage, ensuring minimal waste, and maximizing efficiency in the cutting process.

4

Evtimov and Fidanova [6] [5], address the challenges posed by the 2D cutting stock

problem, especially when the items are irregular polygons. Recognizing the inherent

complexity and computational challenges of the problem, the authors propose a novel

stochastic algorithm as a solution. This algorithm handles the intricacies of cutting irreg-

ularly shaped items from larger stock material, ensuring optimal utilization and minimal

wastage. The paper underscores the importance of developing advanced heuristic man-

ufacturing and material optimization methods. The approach of Evtimov and Fidanova

stands out for its ability to provide efficient solutions to real-world cutting problems,

emphasizing the potential of heuristic algorithms in addressing complex industrial chal-

lenges.

Cintra et al. [4] delve into the intricacies of cutting stock problems and their approx-

imability. The authors shed light on the similarities and differences between cutting stock

problems and bin-packing problems, emphasizing the variability of input items as a dis-

tinguishing factor. Their research demonstrates that the one-dimensional cutting stock

problem is as challenging to approximate as the bin-packing problem. Furthermore, they

establish that the two-dimensional cutting stock problem shares the same level of ap-

proximability difficulty as its two-dimensional bin packing counterpart. Cintra and his

team contribute significantly to the theoretical understanding of cutting stock problems,

providing valuable insights into this domain’s challenges and potential solutions.

Considering the state-of-the-art, it is possible to observe that computational method-

ologies, particularly heuristic and hyper heuristic algorithms, have progressively been

employed to address the intricate challenges of 2D packing and cutting in traditional in-

dustries. From the introduction of novel operators in bin-packing by Muhammed Beyaz

et al. to the specialized algorithms for guillotinable problems by Balcar et al., and the

unique stochastic approach by Evtimov and Fidanova for irregular polygons, there is a

clear trajectory toward optimizing material utilization and minimizing wastage. Further-

more, the deep theoretical insights provided by Cintra et al. elucidate the complexities

5

and parallels between cutting stock and bin-packing problems. These advances underscore

the potential of computational techniques to revolutionize the woodworking industry and

establish a solid foundation for the methodologies and approaches explored in this thesis.

6

Chapter 3

Problem Definition

This chapter provides a detailed exploration of the CSP, also known as the 2DPP. Em-

phasis is placed on the efficient utilization of previously used materials, highlighting the

distinction between guillotinable and non-guillotinable problem types. The mathematical

framework, including parameters, decision variables, objective functions, and constraints,

are systematically presented to offer a comprehensive understanding of the problem’s

intricacies.

3.1 2D Cutting Stock Problem

This project addresses the CSP, the primary objective is to optimize the use of previously

used stock material sourced from a database. By doing so, we aim to reuse leftovers, thus

recycling materials that might otherwise be discarded, promoting sustainable practices,

and maximizing the value derived from each material piece.

In the CSP there are two different sub-problems, guillotinable and non-guillotinable.

For the successful completion of this project, it is imperative to devise solutions for both

the guillotinable and non-guillotinable problems, ensuring maximum material utilization

in each scenario.

7

3.1.1 Guillotinable Cutting Stock Problem

In the guillotinable CSP, the cuts are made sequentially, where each cut extends from one

edge of the material to the opposite edge without interruptions. This problem ensures that

the material is divided into distinct rectangular pieces needed for some of the machinery

used in woodworking. The advantage of guillotinable cuts is their simplicity and efficiency;

however, they may only sometimes yield the most optimal use of material, especially when

the desired pieces have irregular shapes.

3.1.2 Non-Guillotinable Cutting Stock Problem

The non-guillotinable CSP allows for cuts that do not necessarily extend from one edge

to another, providing greater flexibility in the cutting patterns and can accommodate

more complex or irregular shapes. While this problem can potentially result in a more

optimized use of material, it might be more challenging to implement, especially when

using automated machinery.

3.2 Mathematical Formulation

Considering the problem of packing P1, P2, ..., Pn rectangular pieces, where Pi is defined

by its vertices (vi
1, vi

2, vi
3, vi

4), as represented in Figure 3.1:

Figure 3.1: Vertices Representation

8

Let x = [y1, y2, ..., yn, Y1, Y2, ..., Yn], where yi ∈ {P1, P2, ..., Pn} and Yi ∈ {0, 1} rep-

resent a possible solution to the proposed problem. For each element x, it is necessary

to calculate the length used in the cut, l, the height used in the cut, h, and the vertical

misalignment of all pieces, s.

3.2.1 Parameters

The CSP involves specific parameters that are set at the beginning and do not change

during the solution-finding process, namely:

• The wood board is represented as a collection of points, each point corresponding

to a vertex of its polygonal shape, as illustrated in Figure 3.3. Rectangular boards

can alternatively be defined by specifying their length (L) and height(H), as defined

in Figure 3.2.

Figure 3.2: Wood board H × L Figure 3.3: Wood board point representation

• The pieces are represented as rectangles; for more intricate shapes, they should be

represented by their bounding rectangle. The cuts are enumerated in a list, each

entry detailing the length (li) and height (hi) of the respective cut, as illustrated in

Figure 3.4. If multiple cuts of the same type are required, they must be repeated in

the list.

9

Figure 3.4: Piece representation

3.2.2 Decision Variables

In the CSP, two sets of variables are defined at the beginning, namely:

• The placement sequence determines how the cuts are placed on the board. Mod-

ifying this sequence results in various solutions associated with different fitness val-

ues. The efficacy of this procedure stems from the heuristic prioritizing placing a

cut closer to the origin. When multiple placement points are equidistant from the

origin, the location with the lowest height is selected. The placement sequence is

represented by yi ∈ {P1, P2, ..., Pn}.

• The rotation state is a list that mirrors the length of the placement sequence.

It comprises binary values: 0 or 1. A value of 0 denotes a rotated state, while 1

signifies a non-rotated state. Notably, the rotation is consistently set at 90º. The

rotation state is represented by Yi ∈ {0, 1}.

3.2.3 Objective function

Although the parameters and decision variables are consistent in both guillotinable and

non-guillotinable problems, their objective functions display substantial distinctions.

10

Guillotinable

For the guillotinable problem, the objectives are defined as follows:

• f1(x) = h, representing the total height used in the solution.

• f2(x) = s, where s =
n∑

i=1
g(xi), where g(xi) =

hi−1 − hi if hi ≤ hi−1

2(hi − hi−1) if hi > hi−1

, this

represents the sum of the vertical misalignment of piece i in relation to the previous

piece.

Figure 3.5: Vertical misalignment visualization (in blue)

• f3(x) = Aenv −
n∑

i=1
Ai, where Aenv represents the envelope area, which is the length

multiplied by the height occupied by the pieces (l ×h), as represented in Figure 3.6,

and Ai represents the area of the piece xi.

Figure 3.6: Envelope visualization

11

Non-guillotinable

• k1(x) = Aenv −
n∑

i=1
Ai, where Aenv represents the envelope area and Ai represents

the area of the piece xi.

• k2(x) = l + h

2 , indicative of the average utilization of the board height and length

by the pieces.

3.2.4 Constraints

The constraints set for this problem are broad-based, ensuring that any derived solution

is feasible in practical applications:

• Completion of Cuts: All cuts must be executed for a solution to be deemed

successful.

• Non-overlapping Cuts: There must be no overlap between any cuts. Although

cuts can share boundaries, overlapping is strictly prohibited.

• Boundary Constraint: All cut placements must be entirely contained within the

confines of the wood board.

3.3 Problem Formalization

As discussed earlier, the initial step in addressing the problem involves defining the param-

eters. Given these parameters, the solution aims to identify decision variables that most

effectively minimize the values of the objective function. Consequently, the anticipated

output is structured as follows:

• Best Individual: This represents the optimal placement sequence derived from

the process.

• Rotated Indices: Details of the rotation state are captured as rotation indices.

12

• Fitness Measure: The values of the objective functions quantify the efficacy of

the solution.

• Execution Time: The time taken for the computation is provided, measured in

seconds.

13

14

Chapter 4

Methods and Techniques

The choice of software tools and libraries for a research project significantly influences

its outcomes, ensuring accuracy, repeatability, and efficiency by opting for robust and

appropriate software. This chapter provides a review of the software and libraries used

in this research, outlining the rationale behind each choice, and elucidating how they

contribute to the project objectives.

4.1 Python and Software

Python, the language chosen for this research, has gained immense popularity in the

scientific community due to its simplicity, readability, and vast ecosystem of specialized

libraries. Python’s dynamic and interpreted nature facilitates rapid prototyping and

iterative development, making it an ideal choice for research endeavors where flexibility

and adaptability are paramount [13].

In the context of this research, Python was chosen for the following reasons:

• Strong Community Support: The expansive Python community regularly contributes

to its rich ecosystem, ensuring up-to-date tools and solutions for many challenges.

• Interdisciplinary Integration: Python’s wide-ranging libraries cater to diverse do-

mains, from data analytics with pandas to machine learning with TensorFlow and

15

SciKit-learn. This breadth enables holistic research that spans several scientific

disciplines.

• Ease of Use: Python’s syntax is designed for clarity, making it accessible for pro-

gramming veterans and newcomers. This quality ensures that the research focuses

on the core objectives rather than getting bogged down by programming complexi-

ties [13].

4.1.1 Software Libraries

Each research challenge requires specialized tools. This research harnesses state-of-the-art

solutions tailored for specific tasks by leveraging Python’s extensive library ecosystem.

In the following sections, each library’s functionalities, relevance to the research, and

justifications for its inclusion will be meticulously detailed.

DEAP

Distributed Evolutionary Algorithms in Python (DEAP) is a novel evolutionary compu-

tation framework for rapid prototyping and testing of ideas. It seeks to make algorithms

explicit and data structures transparent. It works in perfect harmony with paralleliza-

tion mechanism such as multiprocessing and Scalable Concurrent Operations in Python

(SCOOP) [7].

A major advantage of using the DEAP library is its comprehensive suite of methods

for implementing an EA, which offers both flexibility and robustness. This research uses

the following methods:

• Creator: Facilitates the creation of individuals, the population, and the establish-

ment of the fitness function.

• Toolbox: Serves to initialize the functions defined in the "creator" method and also

sets up the mechanisms for crossover and mutation.

• Algorithms: Execute the specified algorithm to guide the evolutionary process.

16

Through the capabilities listed above, the DEAP library streamlines the process of

crafting and refining EA. The subsequent chapters delve deeper, providing intricate details

on the diverse components integral to the functioning of the EA.

Shapely

Shapely is a Python package for set-theoretic analysis and manipulation of planar features

using functions from the well-known and widely deployed Geometry Engine - Open Source

(GEOS) library. GEOS, a port of Java Topology Suite (JTS), is the geometry engine of the

PostGIS spatial extension for the PostgreSQL RDBMS. The designs of JTS and GEOS are

largely guided by the Open Geospatial Consortium Simple Features Access Specification

[10] and Shapely adheres primarily to the same set of standard classes and operations.

Shapely is thereby deeply rooted in the conventions of the geographic information systems

(GIS) world, but aspires to be equally useful to programmers working on non-conventional

problems [8].

Shapely played a pivotal role in the research, facilitating geometric operations on

geometric bodies. Specifically, with Shapely, we were able to:

• Construct polygons using the set of points from each geometry.

• Determine overlaps and ensure that no geometries extend out of bounds.

• Compute areas and measure distances.

Subsequent chapters will delve deeper into these functionalities, providing a detailed

step-by-step account of how each capability was effectively utilized.

Matplotlib

Matplotlib is a 2D graphics package used for application development, interactive script-

ing, and publication quality image generation across user interfaces and operating systems

[11].

17

In this research, matplotlib served primarily as a visualization tool, allowing a clearer

understanding of the solutions obtained. Leveraging the library’s 2D plotting capabilities,

we combined it with Shapely’s polygon geometries to depict the optimal solution.

NumPy

NumPy is the fundamental package for scientific computing in Python. It is a Python

library that provides a multidimensional array object, various derived objects (such as

masked arrays and matrices), and an assortment of routines for fast operations on ar-

rays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete

Fourier transforms, basic linear algebra, basic statistical operations, random simulation,

and much more [9].

NumPy was the primary tool for managing arrays and data structures in this project.

These structures, crafted by the researcher, were integral to various libraries used through-

out the research.

4.2 Evolutionary Algorithm Overview

EA form a family of optimization and search algorithms inspired by the principles of

natural selection and genetics. They operate on a population of potential solutions to a

given problem, evolving this population over time through the application of bio-inspired

operators: selection, mutation, crossover, and occasionally migration [12].

The fundamental idea behind EA is the iterative process of generating new candidate

solutions based on the quality (or fitness) of existing solutions. This mirrors the natural

evolutionary principle, where individuals that are better adapted to their environment

have a higher chance of reproducing and passing on their genetic material to the next

generation.

Key components and processes in EA include:

• Representation of solutions: Solutions in EA are typically encoded as chromo-

somes. These can take various forms, such as binary strings, real-valued vectors, or

18

more complex data structures, depending on the domain of the problem.

• Initialization: An initial population of potential solutions is generated, usually

randomly.

• Evaluation: A fitness function assesses the quality or suitability of each solution

in the current population.

• Selection: Solutions are chosen to form a mating pool. The likelihood of a solution

being selected is often (but not always) proportional to its fitness, reflecting the

principle of survival of the fittest.

• Crossover (Recombination): Pairs of solutions from the mating pool are com-

bined, creating offspring that inherit features from both parents.

• Mutation: This introduces small, random changes in solutions, ensuring genetic

diversity within the population and aiding exploration of the solution space.

• Replacement: New solutions replace old ones in the population, and the algorithm

returns to the evaluation phase.

• Termination: The algorithm stops when a stopping criterion is met, which could

be a maximum number of generations, a satisfactory fitness level being achieved, or

other criteria.

EA are highly adaptable and have been extended and modified to form various spe-

cialized algorithms, such as Genetic Algorithms, Evolutionary Strategies, and Differential

Evolution, among others. Their inherent flexibility allows them to be applied to a wide

range of optimization problems, from simple function optimization to more complex real-

world scenarios. Figure 4.1 presents the flowchart of an EA.

19

Figure 4.1: Evolutionary Algorithm process

4.3 Evolutionary Algorithm Procedures

An EA can have a variety of procedures, including representation, initialization, selection,

crossover, mutation, and algorithm. The following subsections will explain each of these

in more detail.

4.3.1 Representation

In the context of our EA design, representation refers to the way solutions or chromosomes

are represented within the problem framework. For this specific problem, we use two

different types of variables, x = [yi, Yi]. The first variable, yi is a sequence of single integers

from 1 to the number of desired polygonal cuts, yi ∈ {P1, P2, ..., Pn}. This sequence

ensures that each polygon is identified and avoids repetition. The second variable, Yi is

a binary sequence composed of 0’s and 1’s, showing the rotation status of each polygon

or cut, Yi ∈ {0, 1}. Here, a ’0’ means a non-rotated state, while a ’1’ means a rotational

state.

20

4.3.2 Initialization

The initial population is constructed using a dedicated function that generates the "gen

0" chromosomes. This function is invoked repeatedly based on the specified number of

individuals within the population, ensuring that each individual is uniquely initialized.

By invoking the generate_individual() function, a chromosome is obtained consist-

ing of two parts: a unique sequence of indices representing the cuts and a binary sequence

indicating the rotation state of each cut.

4.3.3 Selection

The selection process in an EA determines which solutions of the current population will

produce the next generation, favoring better solutions and allowing them to pass their

genes on to the next generation.

The DEAP library has an extensive list of selection operators already programmed,

as follows:

• selTournament()

• selRoulette()

• selNSGA2()

• selNSGA3()

• selSPEA2()

• selRandom()

• selBest()

• selWorst()

Of all the options tested, the selection operator chosen was selNSGA2() because it best

fits the problem. The selNSGA2() applies the NSGA-II selection operator on individuals,

which handles the selection of solutions based on their dominance relationship in the

objective space, maintaining diversity while ensuring that non-dominated solutions are

prioritized [7].

21

4.3.4 Crossover

Given the multi-variable nature of the problem, which involves two distinct types of

variables, the crossover operator is tailored for each variable type. The DEAP library

provides a plethora of options for the crossover operator, as listed below.

• cxOnePoint()

• cxTwoPoint()

• cxUniform()

• cxPartialyMatched()

• cxUniformPartialyMatched()

• cxOrdered()

• cxBlend()

After thorough research and empirical testing of the available operators, the chosen

for the sequence of integers is the cxUniformPartialyMatched() (Figure 4.2), because

it expects sequence individuals of indices [7] ensuring that the offspring maintains the

permutation property, meaning that there are no repeated elements and all elements are

taken into account.

Figure 4.2: Uniform Partially Matched Crossover

For the binary sequence of 0’s and 1’s, the crossover operator chosen was cxTwoPoint()

(Figure 4.3), which executes a two-point crossover on the input sequence individuals,

modifying them in place and both keeping their original length [7].

22

Figure 4.3: Two-Point Crossover

4.3.5 Mutation

As the crossover operator, the mutation is tailored for each type of variable, where the

DEAP library offers a multitude of options, as listed below.

• mutGaussian()

• mutShuffleIndexes()

• mutFlipBit()

• mutPolynomialBounded()

• mutUniformInt()

• mutESLogNormal()

After testing various operators, the chosen for the sequence of integers was the mutShuffleIndexes()

(Figure 4.4) which shuffles the attributes of the input individual and returns the mutant.

The individual is expected to be a sequence. The indpb argument is the probability of

each attribute to be moved. Usually, this mutation is applied to a vector of indices [7].

Figure 4.4: Shuffled Index Mutation

The mutation operator for the binary sequence was mutFlipBit() (Figure 4.5) which

changes the value of the attributes of the input individual and returns the mutant. This

mutation is usually applied to Boolean individuals.

23

Figure 4.5: FlipBit Mutation

4.3.6 Algorithm

The algorithm used in the project was the µ + λ evolutionary algorithm. The name refers

to the way parents and offspring are selected for the next generation, where µ represents

the number of parents and λ represents the number of offspring. The algorithm works as

follows:

1. Initialization: Start with an initial population of µ individuals.

2. Offspring Production: From this population, λ offspring are produced, typically

through procedures such as crossover, mutation, and reproduction.

3. Selection: The offspring are then evaluated, and the next generation population is

selected from both the offspring and the population based on their fitness.

The essential characteristic of the strategy µ+λ is that parents can survive to the next

generation if they are better than their offspring, which contrasts with the µ, λ strategy,

where the next generation is selected entirely from the offspring, and no parent is allowed

to survive unless it is reproduced as an offspring [7].

The µ + λ strategy has various advantages, such as:

• it allows good solutions to persist over generations, which can be beneficial if the

offspring does not outperform their parents;

• combining parents and offspring in the selection pool can increase genetic diversity,

potentially leading to better solution space exploration.

24

The algorithm takes a population and evolves it using the varOr() function, returning

the optimized population and a logbook with the evolution statistics [7].

The varOr() function is part of an EA applying only the variation part (crossover,

mutation, or reproduction). Individuals are cloned, so the returned population is inde-

pendent of the input population [7].

In the case of a crossover, two individuals are selected at random from the parental

population; those individuals are cloned and then mated using the toolbox.mate() pro-

cedure. Only the first child is appended to the offspring population; the second child is

discarded.

In the case of a mutation, one individual is selected at random, cloned, and then

mutated using the toolbox.mutate() procedure. The resulting mutant is added to the

offspring population.

In the case of a reproduction, one individual is selected at random, cloned, and ap-

pended to the offspring population.

This variation is named Or because an offspring will never result from both operations,

crossover and mutation. The sum of both probabilities shall be in the interval [0, 1].

4.3.7 Termination criteria

The termination criteria for this problem are based on the number of consecutive genera-

tions without any improvement. Specifically, the algorithm monitors the best solution of

each generation and compares it with the best solution of the previous generation. The

algorithm terminates if the fitness values remain unchanged for a predefined number of

generations.

4.4 Implementation Details

For the geometric operations integral to this project, the Shapely library was employed.

Shapely is a Python package that provides an extensive set of methods for manipulating

25

and analyzing planar geometric objects. Several reasons underpin the decision to utilize

Shapely:

• Extensive Geometric Operations: Shapely offers a comprehensive toolkit for geo-

metric operations, ensuring that a wide range of geometric tasks can be executed

efficiently and accurately.

• Ease of Integration: Shapely’s Pythonic interface integrates easily with other Python

libraries and tools. Its compatibility with famous data structures makes it a versatile

choice for projects that require geometric computations.

• Reliability: Built on the robust GEOS library, Shapely ensures that geometric op-

erations are extensive and reliable, providing consistent and accurate results across

various use cases.

The methods employed in this project are delineated below.

• shapely.Point - A geometry type that represents a single coordinate with x, y and

possibly z values. A point is a zero-dimensional feature and has zero length and

zero area.

• shapely.Polygon - A geometry type representing an area that is enclosed by a

linear ring. A polygon is a two-dimensional feature and has a non-zero area. It may

have one or more negative-space “holes” which are also bounded by linear rings.

• shapely.bounds - Computes the bounds (extent) of a geometry. For each geometry,

these 4 numbers are returned: (minx, miny, maxx, maxy).

• shapely.contains - Returns True if geometry B is completely inside geometry A.

• shapely.touches - Returns True if the only points shared between A and B are on

the boundary of A and B.

• shapely.union - Merges geometries into one.

26

• shapely.envelope - Computes the minimum bounding box that encloses an input

geometry.

Matplotlib was employed within this project’s scope for its superior plotting capabilities.

This renowned Python library facilitated data visualization and results throughout the

project. Matplotlib was utilized to graphically represent the optimal solution derived from

the EA, providing a precise and illustrative figure of the results achieved.

This project used NumPy as the primary tool for numerical computations and array

operations. This Python library, renowned for its efficiency and versatility, facilitated han-

dling large datasets and complex mathematical functions, ensuring optimal performance

throughout the project’s various computational tasks.

27

28

Chapter 5

Solution Developed: OptiWood

The primary objective of OptiWood is to optimize the positioning of cuts on a wood

board. The algorithm takes data about the required cuts and references a database of

leftover boards, which not only facilitates the recycling of potential waste, but improves

the efficiency of the manufacturing process.

This chapter provides a detailed analysis of the proposed solution to the CSP, ex-

plaining both guillotinable and non-guillotinable scenarios to ensure a comprehensive

understanding of the methodologies used.

5.1 OptiWood Overview

The adopted algorithm is based on the NSGA-II but tailored with modifications that

are appropriate for the specific challenges of the problem. Customized crossover and

mutation operations are designed for each variable, while the selection process adheres to

the standard NSGA-II methodology.

The choice of an EA to address the CSP is well-founded in the scientific community.

This approach is particularly apt given the problem’s NP-hard nature and its intensive

computational demands. The problem’s inherent characteristics further make EA one of

the more efficacious solutions, as corroborated by extensive literature reviews.

29

5.2 Pre-Versions

Throughout the development of this project, multiple versions of OptiWood were im-

plemented. Each version represents an evolutionary step towards a more efficient and

optimized solution. Crucially, all of these versions were tested against the same dataset

to ensure a consistent reference for comparison. In the following sections, we outline

the key features and objectives of each version, supplemented by representative output

images.

5.2.1 Version 1: Bottom-Left Fill Heuristic and Overlap Verifi-

cation

Objective: To place cuts according to the Bottom-Left fill heuristic and verify overlap.

Explanation: The Bottom-Left Fill heuristic places each cut at the bottom-most, left-

most position available, while introducing a check for overlap between cuts. If overlap is

detected, the cut is repositioned according to predetermined rules. This version does not

incorporate any optimization and strictly follows the heuristic.

Figure 5.1: Version 1 Output

Figure 5.1 illustrates a solution that uses the bottom-left fill heuristic while checking

30

for overlaps between pieces. In the figure, each piece is strategically placed at the lowest

and most leftward available point, marked by red X’s. The red X’s indicate potential

positions for the next piece. Once a position is utilized, it no longer appears in the figure.

This method ensures that each piece is optimally placed in the bottom-left corner, thereby

minimizing the height for this arrangement.

5.2.2 Version 2: Rotation

Objective: To introduce rotation of random cuts.

Explanation: By allowing rotation of random cuts, the solution space is expanded. This

enhanced exploration increases the likelihood of identifying superior solutions.

Figure 5.2: Version 2 Output

Figure 5.2 displays a solution for the same dataset presented in version 1, with the

added feature of randomly rotating any cut 90º. Unlike in Figure 5.1, one of the pieces

in this solution is rotated. This results in the same occupied height as before, but with a

different configuration, opening up possibilities for exploring a larger solution space.

31

5.2.3 Version 3: Multi-Objective

Objective: To separately minimize the length and height occupied by the cuts.

Explanation: This version evolves using two objective functions to determine the best

placement of the pieces; however, it does not incorporate any algorithmic optimization

and strictly follows the heuristic.

Figure 5.3: Version 3 Output

With an effective heuristic in place that includes the rotation of random pieces to

broaden the solution space, this version introduces two objective functions: minimizing

both the length and the height occupied. The solution in the Figure 5.3 maintains the

placement of pieces in the bottom-left corner of the wood board. However, the heuristic

strategy now also aims to prevent pieces from expanding too much horizontally. This

approach utilizes the height of the board more efficiently, leading to a more compact

solution. The updated heuristic focuses on positioning the pieces as close as possible to

the bottom-left corner of the board, corresponding to the Cartesian coordinates (0, 0),

optimizing the solution for the problem at hand.

32

5.2.4 Version 4: Multi-Objective Optimization

Objective: To optimize placement using EA.

Explanation: This version introduces the optimization part of the problem, using EA,

with the help of the heuristic methods from previous versions to optimize the cutting.

Figure 5.4: Version 4 Output

This iteration marks the initial application of the EA, specifically addressing the non-

guillotinable problem. As demonstrated in Figure 5.4, the pieces are now arranged in

a manner that maximizes compactness and material conservation. In this approach,

only one piece is rotated randomly. Although this may not be the ideal configuration,

it represents significant progress toward an optimal solution. This version continues to

employ the same two objective functions as its predecessor. The evident improvement in

the quality of the solution highlights the effective implementation of the EA, resulting in

a considerably superior outcome compared to previous versions.

33

5.3 OptiWood

OptiWood represents the final version of the algorithm’s development, offering two dis-

tinct algorithms tailored for guillotine and non-guillotine problems. The non-guillotinable

problem algorithm evolves from previous versions, refining its objective functions and

fine-tuning the parameters of the EA to achieve an optimal solution. Meanwhile, the

guillotinable problem algorithm builds upon the non-guillotinable version by adding the

constraint of cut lines. This addition necessitates changes in the objective functions, al-

though it maintains the same optimized parameters as those used for the non-guillotinable

problem.

5.3.1 Non-guillotine problem

In Figure 5.5, an example output is shown using the same dataset as the previous versions,

but now it also displays the best individual, fitness value, and execution time. This

solution is noticeably optimal, as evidenced by the absence of ’holes’ in the placement

sequence. Unlike earlier versions, where only one piece could rotate randomly, all pieces

in this version are capable of rotation, contributing to an ideal solution. Figure 5.5

also demonstrates effective optimization of board dimensions. This is achieved through

two distinct objectives: k1(x) and k2(x). Here, k1 quantifies the difference between the

envelope area and the actual area occupied by the pieces, while k2 measures the median

utilization of the board height (h) and length (l), leading to a solution that is compact

and optimizes material usage.

The output of the solution includes the Best Individual, [4, 1, 3, 5, 0, 2], along with

the Rotated Indexes, [0, 1, 1, 1, 0, 0], and the Fitness values (2.0, 8.0). This configuration

resulted in k1(x) = 2.0 and k2(x) = 8.0. In other words, the difference between the

envelope area and the actual area occupied by the pieces is 2.0, and the median utilization

of the board dimensions is 8.0.

34

Figure 5.5: Version 5 - No-Guillotine Output

5.3.2 Guillotine problem

In Figure 5.6, the example output is displayed using the same dataset as in Figure 5.5,

including the best individual, fitness value, and execution time. However, this version

incorporates the constraint of cut lines characteristic of the guillotinable problem. The

solution shown is markedly optimal, using only two cut lines to shape all the pieces

while maximizing the height efficiency for the cuts. Figure 5.6 adeptly demonstrates the

optimization of both the placement and rotation of the pieces. This efficiency is achieved

through the application of three objective functions: f1(x), f2(x) and f3(x). Here, f1

quantifies the height (h) used in the placement, f2 evaluates the vertical misalignment

of the pieces, and f3 is analogous to k1, representing the difference between the envelope

area and the actual area occupied by the pieces.

The output of the solution includes the Best Individual, [5, 0, 3, 4, 2, 1], along with the

Rotated Indexes, [1, 1, 1, 0, 1, 1], and the Fitness values (5.0, 1.0, 8.0). This configuration

results in f1(x) = 5.0, indicating that the height utilized by the arrangement is 5.0,

35

f2(x) = 1.0, representing that the vertical misalignment is 1.0, and f3(x) = 8.0, measuring

the difference between the envelope’s area and the actual area occupied by the pieces is

8.0.

Figure 5.6: Version 5 - Guillotine Output

36

Chapter 6

Results

This thesis has explored the application of EA to solve the 2D CSP, focusing on both

guillotine and non-guillotine cutting problems. The purpose of this chapter is to present

and discuss the results obtained from the experimental phase, providing valuable insights

into the effectiveness, efficiency, and applicability of the proposed EA in a real-world

context.

6.1 Experimental Setup

6.1.1 Evolutionary Algorithm Parameters

During the implementation of the EA for this project, specific parameters were meticu-

lously chosen through a series of experimental trials to ensure optimal performance and

results. The parameters are as follows:

• Population Size: A population size of 100 was selected. This size balances com-

putational efficiency and a diverse solution space, allowing for a comprehensive

exploration of potential solutions.

• Lambda: A value of 200 (double the population) was chosen for lambda, deter-

mining the number of children to produce at each generation.

37

• Crossover Rate: A crossover rate of 0.1 was chosen. This relatively low rate

ensures that the algorithm prioritizes exploring new regions in the solution space

over exploiting existing solutions.

• Mutation Rate: A mutation rate of 0.85 was established. This high mutation rate

emphasizes the algorithm’s focus on exploring outside the current solution space,

leading to the discovery of potentially superior solutions.

• Maximum Generations: The algorithm was set to run for a maximum of 1000

generations, providing ample opportunity for convergence toward an optimal solu-

tion.

• Termination Criteria: The algorithm was designed to terminate if no improve-

ment is found to the best solution in 25 consecutive generations. This criteria

ensures computational efficiency by stopping the algorithm once it is evident that

further generations are unlikely to yield better solutions.

All of these parameter values were not arbitrarily chosen. However, they resulted

from rigorous experimentation, ensuring that they are well suited for the problem and

contribute to the algorithm’s overall efficacy.

6.1.2 PC Specifications

• Operating System - Microsoft Windows 11 Home

• Processor - Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz

• Graphics Card - NVIDIA GeForce GTX 1650 (4.0 GB) / Intel(R) UHD Graphics

(1.0 GB)

• Memory (RAM) - 7.8 GB Total

• Storage Drive - 475.7 GB Total

• Motherboard - CML (Stonic_CMS)

38

6.2 Data Presentation

To evaluate the performance of the EA implemented, three distinct datasets comprising

randomly created rectangles (Tables 6.1 to 6.3) were subjected to multiple runs. The al-

gorithm was executed 100 times on each dataset to thoroughly scrutinize its performance.

Table 6.1: Dimensions of the 6-piece dataset

Rectangle
Width 4 3 2 1 8 5
Height 2 3 3 5 3 2

Table 6.1 presents the dimensions of a 6-piece dataset comprising various rectangular

shapes. In this dataset, the widths of the rectangles range from 1 to 8 units, while their

heights vary from 2 to 5 units. The dataset features rectangles with unique dimensions,

each appearing only once, thus providing a diverse range of sizes for the algorithm to

process and optimize.

Table 6.2: Dimensions of the 12-piece dataset

Rectangle
Width 5 4 2 3 2 2 2 5 3 5 3 3
Height 5 2 4 2 5 3 4 2 5 3 2 5

Table 6.2 details a 12-piece dataset, featuring rectangles with widths ranging from 2 to

5 units and heights from 2 to 5 units. This dataset includes various sizes and shapes, such

as square shapes (such as (5, 5)) and various rectangular forms such as (2, 4) and (4, 2),

highlighting their distinct orientations. The repetition of certain dimensions, such as

(2,5) and (5,3), emphasizes the need for multiple instances of similar-sized pieces, adding

complexity to the packing optimization task.

Table 6.3: Dimensions of the 18-piece dataset

Rectangle

Width 5 2 5 4 2 2 4 3 2 2 5 2 2 4 5 4 2 3

Height 3 2 5 5 2 5 5 2 2 2 5 3 2 4 4 4 2 4

39

Table 6.3 introduces the 18-piece dataset, the rectangle dimensions range from widths

of 2 to 5 units and corresponding heights, creating a diverse selection of sizes. Notable

repetitions in dimensions occur, such as the rectangle size (5, 3) appearing twice and

(2, 5) occurring three times, among others. This repetition of certain sizes, along with the

possibility of rotation, increases the complexity of the packing problem.

6.3 6-Piece Dataset Results

Guillotine Version

• Overall Performance: The algorithm achieved an optimal solution in 92% of the

runs and converged to 8 unique configurations.

• Height Optimization Focus: The algorithm produced solutions with optimal

height in 100% of the runs, resulting in 15 unique configurations.

• Computational Time: The average time across all runs was 8.53 seconds (stan-

dard deviation: 1.83 seconds). For optimal solutions, the average time was 8.66

seconds (standard deviation: 1.80 seconds).

Figure 6.1: 6pcs Optimal Solution Figure 6.2: 6pcs Near-Optimal Solution

40

No-Guillotine Version

• Overall Performance: The algorithm found the optimal solution in 100% of the

runs and converged to 95 unique configurations.

• Computational Time: The average time across all runs was 25.73 seconds (stan-

dard deviation: 0.58 seconds). Given that all runs achieve 100% optimization, this

duration corresponds precisely to the average time for optimal solutions.

Figure 6.3: 6pcs Optimal Solution

41

6.4 12-Piece Dataset Results

Guillotine Version

• Overall Performance: The algorithm achieved an optimal solution in 15% of the

runs and converged to 15 unique configurations.

• Height Optimization Focus: Given the industrial relevance of guillotine wood

cutting, it is crucial to minimize the height of the wood board. The algorithm

produced solutions with optimal height in 77% of the runs, resulting in 77 unique

configurations.

• Computational Time: The average time across all runs was 26.07 seconds (stan-

dard deviation: 9.82 seconds). For optimal solutions, the average time was 33.47

seconds (standard deviation: 14.80 seconds).

Figure 6.4: 12pcs Optimal Solution Figure 6.5: 12pcs Near-Optimal Solution

Figure 6.6: 12pcs Non-Optimal Solution

42

No-Guillotine Version

• Overall Performance: The algorithm found the optimal solution in 38% of the

runs and converged to 38 unique configurations.

• Objective Analysis: The ideal outcome for the given dataset is a solution where

the difference between the envelope area and the exact area is 0, and the average

utilization of the board’s height and width is 11.5. The algorithm only yielded

fitness values of either (0.0, 11.5) or (8.0, 12.0).

• Computational Time: The average time across all runs was 99.43 seconds (stan-

dard deviation: 26.47 seconds). For optimal solutions, the average time was 114.61

seconds (standard deviation: 31.97 seconds).

Figure 6.7: 12pcs Optimal Solution Figure 6.8: 12pcs Near-Optimal Solution

43

6.5 18-Piece Dataset Results

Guillotine Version

• Overall Performance: The algorithm achieved an optimal solution in 1% of the

runs and converged to 1 unique configuration.

• Height Optimization Focus: The algorithm produced solutions with optimal

height in 20% of the runs, resulting in 20 unique configurations.

• Computational Time: The average time across all runs was 42.91 seconds (stan-

dard deviation: 18.07 seconds). The time to find the only optimal solution was 64

seconds.

Figure 6.9: 18pcs Optimal Solution Figure 6.10: 18pcs Near-Optimal Solution

Figure 6.11: 18pcs Non-Optimal Solution

44

No-Guillotine Version

• Overall Performance: The algorithm found the optimal solution in 1% of the

runs and converged to 1 unique configuration.

• Objective Analysis: The first objective measures the difference between the enve-

lope area and the exact area, with an optimal solution being 3 and a near-optimal

being 4. This represents 12% of the solutions. The second objective assesses the me-

dian utilization of the board width and height, with values ranging from an optimal

15 to a near-optimal 15.5.

• Computational Time: The average time across all runs was 146.20 seconds (stan-

dard deviation: 44.33 seconds). For optimal solutions, the average time was 170.33

seconds (standard deviation: 46.96 seconds).

Figure 6.12: 18pcs Optimal Solution Figure 6.13: 18pcs Near-Optimal Solution

Figure 6.14: 18pcs Non-Optimal Solution

45

6.6 Results Discussion

The performance of the EA across different datasets of rectangles offers a plethora of

information on its strengths and potential areas of improvement.

In Tables 6.4 and 6.5 the following information is presented.

• Dataset: Refers to the size of the dataset used in the test.

• Opt. %: Percentage of runs in which the optimal solution was achieved.

• Hei. %: Percentage of runs achieving optimal height utilization.

• N. Sol.: Total number of unique configurations or solutions obtained in all runs.

• Time(s): Average computational time taken in all runs.

• Std. Dev.(s): Standard deviation of the computational time in runs.

• Opt. Time(s): Average time taken to achieve an optimal solution.

Table 6.4: Performance Metrics: Guillotine Approach

Dataset Opt. % Hei. % N. Sol. Time Std. Dev. Opt. Time
6-piece 92 100 8 8.53 1.83 8.66
12-piece 15 77 15 26.07 9.82 33.47
18-piece 1 20 1 42.91 18.07 64.00

Table 6.5: Performance Metrics: No-Guillotine Approach

Dataset Opt. % N. Sol. Time Std. Dev. Opt. Time
6-piece 100 95 25.73 0.58 25.73
12-piece 38 38 99.43 26.47 114.61
18-piece 1 1 146.20 44.33 170.33

46

6.6.1 6-Piece Dataset

Guillotine Version: When faced with a smaller dataset, the algorithm showcased its

efficiency and adeptness, achieving an impressive 92% success rate for optimal solutions

and a perfect score for height optimization. These results attest to the algorithm’s prowess

with less complicated problems.

No-Guillotine Version: The algorithm’s performance was stellar, converging to the

optimal solution in every run. With the discovery of 95 unique optimal configurations, it

is evident that the EA can navigate the solution space expertly when handling simpler

datasets.

6.6.2 12-Piece Dataset

Guillotine Version: Building on the momentum of the 6-piece dataset, the algorithm

still displayed commendable performance with a moderate success rate of 15% in obtaining

globally optimal solutions. The diversity in the generated solutions is laudable, given the

15 unique optimal configurations discovered. The emphasis on height optimization, a

critical industrial concern, saw a robust success rate of 77%, suggesting the algorithm’s

ability to adapt to focused optimization goals.

No-Guillotine Version: While the success rate to achieve optimal solutions was 38%,

the versatility of the algorithm was evident through the 38 unique optimal configurations.

Consistent fitness values across runs underline the stability and reliability of the algorithm.

6.6.3 18-Piece Dataset

As the complexity increased due to the larger number of pieces, the algorithm’s challenges

became more pronounced. Both the Guillotine and No-Guillotine versions achieved a low

success rate of 1%, reflecting the intricacies introduced by the larger dataset. However,

there is a silver lining in the board dimension utilization results. Although area optimiza-

tion may not always be on point, 100% of the solutions were optimal or near-optimal with

respect to board dimension utilization, indicating the algorithm’s resilience.

47

48

Chapter 7

Conclusions and Future Work

The EA performance evidently scales with the complexity of the problem. It excels

with smaller datasets, achieving exemplary results. However, as the size of the problem

grows, there is a noticeable drop in efficiency. Despite this, its consistent performance in

specific optimization objectives, such as height optimization, remains a testament to its

potential. Enhancing algorithmic parameters or introducing more sophisticated genetic

operators could target better performance with larger datasets.

7.1 Implications

• Operational Efficiency in Industry

The superior performance of the EA, especially for smaller datasets, suggests its

applicability in real-world scenarios where the number of pieces to optimize is rela-

tively limited. This could be particularly beneficial for small to medium enterprises

(SMEs) in industries such as woodworking or metal sheet cutting, where resources

are limited and efficiency is crucial. The focus on height optimization resonates

with the industry’s concern for minimizing material wastage, implying potential

cost savings.

49

• Scalability Concerns

The decreased efficiency with larger datasets, as evidenced by the 18-piece dataset

results, raises concerns about the algorithm’s scalability. For larger industries or

applications where numerous pieces require optimization simultaneously, the algo-

rithm, in its current form, may not be the most effective solution. This underscores

the need for further research and refinement to enhance the algorithm’s scalability.

• Diverse Solutions for Flexible Applications

The diversity of solutions generated by the algorithm, especially for the 6 and

12-piece datasets, offers flexibility. Different configurations can cater to varying

operational needs or constraints. Multiple optimal solutions can be invaluable in

real-world scenarios.

• Potential for Hybrid Approaches

Given the challenges of larger datasets, there may be an opportunity to explore hy-

brid algorithms. Combining the EA with other optimization techniques might yield

better results for more complex problems. Consistent performance in board dimen-

sion utilization, even in the 18-piece dataset, suggests that the EA has foundational

strengths that can be built on.

7.2 Summary

This chapter delved into the performance evaluation of an EA designed for rectangle

optimization. Key findings include:

• High Efficiency with Smaller Datasets: The algorithm showed optimal perfor-

mance with the 6-piece dataset, achieving near-perfect results.

• Moderate Performance for Mid-sized Datasets: With the 12-piece dataset,

while the results were admirable, there was a discernible gap between the algorithm’s

performance and perfect optimization.

50

• Challenges with Larger Datasets: The 18-piece dataset posed significant chal-

lenges, with the algorithm’s efficiency dropping.

• Consistency in Certain Objectives: Despite the variation in overall perfor-

mance, the algorithm consistently optimized specific objectives, such as height op-

timization, across all datasets.

• Diverse Solutions: The algorithm’s ability to provide a variety of optimal config-

urations, especially for smaller datasets, is proof of its versatility.

7.3 Future Work

• Enhancing Scalability: Targeted research on improving the algorithm’s perfor-

mance with larger datasets can make it more universally applicable.

• Adaptive Heuristics: The current algorithm employs a fixed heuristic for cut

placement. Adaptive heuristics could allow the system to learn from past cutting

operations and fine-tune its decisions. This self-tuning feature would allow the

algorithm to adapt to various types of materials and cutting scenarios, providing

optimized solutions more efficiently.

• Machine Learning Techniques: While the genetic algorithm approach provides

robust optimization, machine learning models could be incorporated to predict op-

timal cutting patterns based on historical and real-time data. This predictive ca-

pability could significantly reduce the computational time for optimization, making

the algorithm faster and more efficient.

• Real-Time Optimization: The algorithm, as it stands, operates in batch mode

where all data must be available upfront. Integrating real-time data could allow the

algorithm to be more flexible, adapting to changes in material availability, machine

conditions, or even market demand. This real-time optimization could make the

algorithm invaluable for dynamic manufacturing environments.

51

• Parallel Computing: The current version of the algorithm is designed for a single-

threaded operation. Using parallel computing methods would enable the algorithm

to distribute its workload across multiple processors, drastically reducing computa-

tional time, and opening up possibilities for real-time or near-real-time applications,

especially for large-scale industrial operations.

• Adaptive Parameter Tuning: Instead of static parameters, adaptive methods

could be explored that dynamically change parameters based on the state of the

problem.

• Energy Efficiency: Sustainability is an increasingly important consideration in

manufacturing. Incorporating an energy efficiency objective into the algorithm could

contribute to more sustainable operations by optimizing not only for material use,

but also for the energy consumption of the cutting machinery.

7.4 Conclusion

This work presents a novel approach for optimizing rectangle cutting in the woodworking

industry by leveraging the power of EA. The study of EA in this context has produced

insightful findings that highlight both the strengths and limitations of the algorithm in

various scenarios. While demonstrating notable efficiency in certain aspects of the prob-

lem, it also encounters specific challenges that require further research and refinement.

52

Bibliography

[1] Balcar, Š., Pilát, M., Neruda, R.: An evolutionary algorithm for 2d semi-guillotinable

circular saw cutting. In: 2012 IEEE Congress on Evolutionary Computation. pp. 1–5

(2012). https://doi.org/10.1109/CEC.2012.6256455

[2] Beyaz, M., Dokeroglu, T., Cosar, A.: Robust hyper-heuristic algorithms for the offline

oriented/non-oriented 2d bin packing problems. Applied Soft Computing 36, 236–245

(2015). https://doi.org/10.1016/j.asoc.2015.06.063, https://www.sciencedirect.

com/science/article/pii/S1568494615004561

[3] Brubach, B., Sankararaman, K.A., Srinivasan, A., Xu, P.: Algorithms to approxi-

mate column-sparse packing problems. ACM Trans. Algorithms 16(1) (nov 2019).

https://doi.org/10.1145/3355400

[4] Cintra, G., Miyazawa, F., Wakabayashi, Y., Xavier, E.: A note on the ap-

proximability of cutting stock problems. European Journal of Operational Re-

search 183(3), 1328–1332 (2007). https://doi.org/10.1016/j.ejor.2005.09.053, https:

//www.sciencedirect.com/science/article/pii/S0377221706003079

[5] Evtimov, G., Fidanova, S.: 2D Optimal Cutting Problem, pp. 33–39. Springer Inter-

national Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-65530-7_4

[6] Evtimov, G., Fidanova, S.: Heuristic algorithm for 2d cutting stock problem.

In: Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing. pp. 350–357.

Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-

73441-5_37

53

https://www.sciencedirect.com/science/article/pii/S1568494615004561
https://www.sciencedirect.com/science/article/pii/S1568494615004561
https://www.sciencedirect.com/science/article/pii/S0377221706003079
https://www.sciencedirect.com/science/article/pii/S0377221706003079

[7] Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:

Evolutionary algorithms made easy. Journal of Machine Learning Research 13, 2171–

2175 (jul 2012)

[8] Gillies, S., van der Wel, C., van den Bossche, J., Taves, M.W., Arnott, J.,

Ward, B.C., et al.: Shapely. https://github.com/shapely/shapely (2023).

https://doi.org/10.5281/zenodo.5597138, https://pypi.org/project/Shapely

[9] Harris, C.R., Millman, K.J., van der Walt, S.J., et al.: Array programming with

NumPy. Nature 585(7825), 357–362 (Sep 2020). https://doi.org/10.1038/s41586-

020-2649-2

[10] Herring, J.R., Ed.: Opengis implementation specification for geographic information

- simple feature access - part 1: Common architecture (Oct 2006)

[11] Hunter, J.D.: Matplotlib: A 2D graphics environment. Computing in Science &

Engineering 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

[12] Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past,

present, and future. Multimedia tools and applications 80(5), 8091–8126 (2021).

https://doi.org/10.1007/s11042-020-10139-6

[13] Van Rossum, G., Drake, F.L.: Python 3 Reference Manual. CreateSpace, Scotts

Valley, CA (2009)

54

https://github.com/shapely/shapely
https://pypi.org/project/Shapely

Appendix A

A1

Application of 2D Packing Algorithms to the
Woodwork Industry

Tiago Ribeiro[0000−0002−8939−7571], João Paulo Coelho[0000−0002−0859−8364], and
Ana I. Pereira[0000−0003−3803−2043]

Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto
Politécnico de Bragança, Bragança, 5300-253, Portugal
a40309@alunos.ipb.pt {jcoelho,apereira}@ipb.pt

Abstract. The project’s objective is to solve the well-known and well-
studied problem of 2D Packing applied to the Wood Work industry, in
order to reduce waste through a more efficient reintegration of raw ma-
terials into the production cycle, for this multi-objective strategies, evo-
lutionary and learning processes were explored throughout the problem-
solving process.

Keywords: Optimization · Combinatorial Optimization · Packing Prob-
lems · 2D Packing.

1 Introduction

The Wood Work 4.0 (WW4.0) project aims to develop new approaches to how
furniture production is carried out, mainly in Small and Medium Enterprises
(SMEs). As a sector that has been modernized through the introduction of new
machines and new processes, how some of the internal processes are still managed
is still at a very archaic stage and impacts the overall operation of the system.
Thus, the WW4.0 project aims to develop new approaches that allow the total
digitization of the internal processes of the furniture production chain in such
a way that they are integrated into a global approach. The 2D packing merges
in the WW4.0 project with the development of optimization algorithms for the
scheduling of the raw material according to the reference to be produced at a
given moment, with this it is intended to reduce the waste resulting from the
cutting of wood, be these regular or irregular shaped cuts. That said, the project
offers numerous advantages such as the reuse of raw material, less labor effort
at the factory floor level in terms of the search for raw material, such as the
positioning of the cut itself, and a possible and subsequent full automation of
this area of work.

This paper is divided into three sections, this first section presents the intro-
duction, section two where the problem characterization is explored, in which
the 2D packing problem will be elaborated, and the third and final section where
the future work is described.

2 Tiago Ribeiro et al.

2 2D Packing Problem

The problem of 2D packing is searching for the ideal sequence of packing a set
of 2D objects. This problem is considered NP-complex and has a high com-
putational cost. As already mentioned above, the objective is to optimize the
positioning and use of the sheet to be cut using multi-objective strategies, evo-
lutionary and learning processes, this way, the search for papers relevant to the
work was carried out.

Zhao et al. (Zhau et al, 2022) [3] present a learning method to solve the 2D
packing problem with 2D rectangular objects. The solution is represented by the
sequence of objects and the layout is built sequentially piece by piece. Centroid
positioning rule techniques are explored with a lower value for the positioning of
the part, then the Q-learning method is applied. Three groups of conditions are
defined for the test, the computational results show that the Q-learning approach
produces better compactness compared to the stochastic sequence in the layout
of the parts.

Gomez and Terashima-Marin (2017) [2] propose three multi-objective evolu-
tionary algorithms to identify sets of hyperheuristics to approximate the Pareto
front. Namely Nondominated Sorting Genetic Algorithm-II, Strength Pareto
Evolutionary Algorithm, and Generalized Differential Evolution Algorithm. The
algorithms were extensively explored in a large set of 2D Packing problems with
convex and non-convex irregularly shaped objects under different conditions and
configurations. The study presents an analysis where the robustness and flex-
ibility of the strategies outlined are evaluated, obtaining encouraging results
compared with a set of simple heuristics usually used in this type of problem.

Fang et al (2021) [1] propose a strategy based on the Particle Swarm Opti-
mization algorithm where he obtained efficient results with a reduced execution
time. Hybrid strategies have been explored with promising results.

3 Future Work

To complete the paper, the main strategy will be the analysis and resolution of
each of the topics:

1. Create a matrix representation of the wooden board to be cut.
2. Identify the objects to be cut in that matrix and optimize their position-

ing using optimization tools such as genetic algorithm and particle swarm
optimization, among others.

3. Create a database to store all information regarding the leftovers (waste
storage represents leftover boards that have already been cut, but can be
used for some other cuts, reducing waste).

4. Explore multi-objective strategies and measures to assess the robustness and
efficiencies of the strategies developed.

5. Optimize the procedure for identifying boards located in the leftovers re-
garding information like area, dimensions, thickness, material, and direction
of the wood veins.

Application of 2D Packing Algorithms to the Woodwork Industry 3

6. Explore the behavior of optimization algorithms in solving 2D packaging
problems and incorporate learning strategies to predict parts destined for
permanent waste.

Future work includes the performance evaluation of the developed algorithms
using real data.

Acknowledgement

This work was supported by Norte 2020 Portuguese Program under the grant
Norte-01-0247-FEDER-072593 and FCT — Fundação para a Ciência e Tecnolo-
gia within the Project Scope UIDB/05757/2020.

References

1. Fang, J., Rao, Y., Liu, P., Zhao, X.: Sequence transfer-based particle swarm opti-
mization algorithm for irregular packing problems. IEEE Access 9, 131223–131235
(2021)

2. Gomez, J.C., Terashima-Maŕın, H.: Evolutionary hyper-heuristics for tackling bi-
objective 2d bin packing problems. Genet Program Evolvable Mach 19, 151–181
(2018). https://doi.org/10.1007/s10710-017-9301-4

3. Zhao, X., Rao, Y., Fang, J.: A reinforcement learning algorithm for the 2d rectan-
gular strip packing problem. J. Phys.: Conf. Ser. 2181 012002 (2022)

Appendix B

B1

Aplicação de Algoritmos de Empacotamento 2D na indústria da
madeira

Tiago Ribeiro1; Ana I. Pereira2
1Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Portugal

tiagobribeiro@ipb.pt

Resumo
O problema do empacotamento 2D é aplicado em diversas áreas, nomeadamente no corte industrial
(madeira e vidro) e embalagem (transporte e armazenagem).O objetivo deste trabalho é aplicar os
conceitos do empacotamento 2D à indústria da Madeira, de forma a reduzir o desperdício através de
uma reintegração mais eficiente das matérias-primas no ciclo produtivo, assim estabelece-se a criação
de um algoritmo capaz de resolver um problema de empacotamento 2D com formas regulares,
adaptando-o a todas as formas utilizando estratégias multi-objetivas combinadas com processos
evolutivos como particle swarm optimization ou algoritmos genéticos explorados no contexto do
problema em estudo. Os resultados são razoáveis em comparação com os resultados obtidos por M.
Chen et al. no artigo ''A two-level search algorithm for 2D rectangular packing problem'', cujos
resultados são obtidos através de um greedy algorithm.

Palavras-chave: otimização; otimização combinatória; problemas de empacotamento;
empacotamento 2D

Financiamento: Este trabalho foi suportado pelo Programa Português Norte 2020 no âmbito do
financiamento estratégico Norte-01-0247-FEDER-072593 e FCT — Fundação para a Ciência e
Tecnologia para a finalidade do projeto UIDB/05757/2020.

Application of 2D Packing Algorithms to the woodwork industry

Tiago Ribeiro1; Ana I. Pereira2

1Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Portugal

tiagobribeiro@ipb.pt

Abstract
The 2D packing problem is applied in several areas, namely in industrial cutting (wood and glass) and
packaging (transport and storage). The work's objective is to apply the concepts of 2D packing to the
wood industry to reduce waste through a more efficient reintegration of raw materials into the production
cycle. Thus, settling down an algorithm capable of solving a 2D packing problem with regular shapes
and adapting it to all shapes using multi-objective strategies combined with evolutionary processes
such as particle swarm optimization or genetic algorithms explored in the context of the problem under
study. The results are reasonable compared to the results obtained by M. Chen et al. in the article ''A
two-level search algorithm for 2D rectangular packing problem,'' which results are obtained through a
greedy algorithm.

Keywords: optimization; combinatorial optimization; packing problems; 2D packing

Funding: This work was supported by Norte 2020 Portuguese Program under the grant Norte-01-
0247-FEDER-072593 and FCT — Fundação para a Ciência e Tecnologia within the Project Scope
UIDB/05757/2020.

Appendix C

C1

2D Packing in Woodwork Industry

Tiago B. Ribeiro and Ana I. Pereira

Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto
Politécnico de Bragança, Bragança, Portugal

Abstract. Adopting computational technologies can revolutionize tra-
ditional sectors through enhanced efficiency and sustainability. This study
explores the use of 2D packaging algorithms in woodworking industries,
which often leads to material waste, and reduces dependence on manual
labor. Implementing these algorithms can optimize the use of materials,
labor, and promote scalable production. This study evaluated the effec-
tiveness of the 2D cutting algorithm in standard woodworking, highlight-
ing its potential to reduce waste and its industrial impact, emphasizing
the importance of merging technology with traditional industries and
advocating a future that harmonizes economic development with sus-
tainable resource use.

Keywords: Optimization, Multi-objective optimization, 2D Packing prob-
lems, 2D Cutting-Stock Problems.

1 Introduction

The woodworking industry, deeply entrenched in traditional practices, is on
the brink of a transformative era. Historically anchored in manual labor and
expertise, there is a burgeoning realization of the untapped potential of digi-
tal optimization within this sector. This contribution delves into applying two-
dimensional (2D) packing algorithms in woodworking to uncover opportunities
for enhanced efficiency, reduced waste, and heightened productivity.

Packing and cutting stock problems are based in computational geometry
and operations research, optimization challenges centered on minimizing space
utilization when fitting objects into containers. The woodworking environment,
where every fragment of raw material has economic and environmental ramifica-
tions, amplifies the importance of these challenges. With their reliance on skilled
labor for tasks like estimation and cutting, conventional woodworking techniques
frequently encounter issues of material waste and scalability. By weaving in al-
gorithmic strategies, there is potential to optimize material and labor resources
and reimagine the boundaries of what is feasible at an industrial level.

This contribution highlights the effectiveness of 2D packing algorithms in
standard woodworking tasks. The intent is to discern the potential of these
algorithms to refine existing practices, especially in areas like waste mitigation
and labor efficiency. Beyond the immediate operational benefits, the discussion
extends to the more significant ramifications of such technological integrations,

2 Tiago B. Ribeiro et al.

particularly emphasizing the environmental benefits that result from thoughtful
use of timber.

This paper is organized as follows. Section 1 serves as the introduction, es-
tablishing the context and objectives of the research; Section 2 provides a com-
prehensive literature review, highlighting relevant studies; Section 3 describes
the research methodology, detailing the methods and procedures employed; Sec-
tion 4 presents the empirical results and their analysis; and Section 5 concludes
the paper, encapsulating the primary findings and suggesting potential areas for
future research.

2 Literature Review

The application of computer science to traditional industries presents exciting
opportunities to improve efficiency and sustainability. One sector where this
potential remains to be explored is the woodwork industry, which traditionally
relies on manual labor and craftsmanship. Although these elements are crucial in
the production process, they are often associated with high levels of waste and
limitations in scalability. This context makes the woodworking industry ripe
for applying computational techniques, such as two-dimensional (2D) packing
algorithms, to improve material usage and productivity.

Beyaz et al. [2] delves into the intricacies of the offline 2D bin-packing prob-
lem (2DBPP), a well-recognized NP-hard combinatorial optimization challenge.
Although several heuristic methods have been proposed in the past, exact ap-
proaches for larger problem instances have not yet been discovered. Traditional
methods were successfully applied, such as next-fit, first-fit, best-fit, unified tabu
search, genetic, and memetic algorithms. This study presents a novel set of meta-
heuristic algorithms that ingeniously select and combine the best features of
state-of-the-art heuristics and local search techniques. A standout feature of
these proposed algorithms is the introduction of new crossover and mutation op-
erators explicitly designed for heuristic selection. The robustness and efficiency
of the algorithms are demonstrated through extensive experiments on bench-
mark problem instances for offline 2DBPP. The results are promising and show-
case the algorithm’s ability to consistently achieve solutions close to optimal.
Brubach et al. [3] focus on the exploration of column-sparse packing problems,
a subset of combinatorial optimization problems that have garnered significant
attention due to their intricate nature and wide-ranging applications. These
problems involve the challenge of efficiently packing items into containers, con-
sidering the sparsity of the packing matrix columns. The primary objective is
to achieve an optimal or near-optimal packing solution while adhering to the
constraints imposed by the sparsity. The work introduces two groundbreaking
ideas in this domain: attenuation and multiple-chance algorithms. These con-
cepts are innovative strategies to derive improved approximation algorithms for
column-sparse packing problems. The attenuation approach involves adjusting
the packing constraints to achieve a more balanced and efficient solution. On the

2D Packing in Woodwork Industry 3

other hand, multiple-chance algorithms provide a probabilistic framework, offer-
ing multiple opportunities to achieve an optimal packing configuration. Through
rigorous experimentation and analysis, the authors demonstrate the efficacy of
these methods in obtaining solutions that closely approximate the optimal. Bal-
car et al. [1] delve into a unique class of 2D stock cutting problems, precisely
the semi-guillotinable problems. This classification is paramount when devising
optimal cutting plans for circular saws, a standard tool in various manufacturing
processes. The authors introduce a new algorithm specifically tailored for both
guillotinable and non-guillotinable 2D cutting stock problems. Their research
aims to bridge the gap between traditional cutting methods and the evolving
demands of modern manufacturing. Their approach offers a fresh perspective on
optimizing material usage, ensuring minimal waste, and maximizing efficiency in
the cutting process. Evtimov and Fidanova [6, 7], address the challenges posed
by the 2D cutting stock problem, especially when the items are irregular poly-
gons. Recognizing the inherent complexity and computational challenges of the
problem, the authors propose a novel stochastic algorithm as a solution. This
algorithm handles the intricacies of cutting irregularly shaped items from larger
stock material, ensuring optimal utilization and minimal wastage. The paper un-
derscores the importance of developing advanced heuristic manufacturing and
material optimization methods. This approach stands out for its ability to pro-
vide efficient solutions to real-world cutting problems, emphasizing the potential
of heuristic algorithms to address complex industrial challenges. Cintra et al. [4]
delves into the intricacies of cutting stock problems and their approximability.
The authors shed light on the similarities and differences between cutting stock
problems and bin-packing problems, emphasizing the variability of input items as
a distinguishing factor. Furthermore, they established that the two-dimensional
cutting stock problem shares the same level of approximability difficulty as its
two-dimensional bin packing counterpart.

3 Methodology

This section presents the analytical techniques applied to the 2D cutting stock
problem, analyzing both the guillotinable and non-guillotinable cutting meth-
ods, focusing on their respective characteristics and challenges. Furthermore, it
introduces the problem’s definition, followed by a comprehensive formulation
that serves as the foundation for the proposed solutions.

3.1 Problem Definition

This project addresses the 2D cutting stock problem, also known as the 2D pack-
ing problem. The primary objective is to optimize the utilization of previously
used stock material sourced from a database. By doing so, this study aims to
reuse leftovers, thus recycling materials that might otherwise be discarded, pro-
moting sustainable practices, and maximizing the value derived from each piece
of material.

4 Tiago B. Ribeiro et al.

In 2D cutting stock problems, it is possible to identify two types of problem
definitions: guillotine and non-guillotine.

Guillotinable Cutting Stock Problem: In the guillotinable cutting stock
problem, the cuts are made sequentially, where each cut extends from one edge
of the material to the opposite edge without interruptions, as shown in Fig-
ure 1. This problem ensures that the material is divided into distinct rectangular
pieces needed for some of the machinery used in woodworking. The advantage
of guillotinable cuts is their simplicity and efficiency; however, they may only
sometimes yield the most optimal use of material, especially when the desired
pieces have irregular shapes.

Non-Guillotinable Cutting Stock Problem: The non-guillotinable cutting
stock problem allows for cuts that do not necessarily extend from one edge to
another, providing greater flexibility in cutting patterns and accommodating
more complex or irregular shapes, as shown in Figure 2. Although this problem
can potentially result in a more optimized use of material, it might be more
challenging to implement, especially when using automated machinery.

Fig. 1. Guillotine solution example Fig. 2. Non-guillotine solution example

3.2 Problem Formulation

The problem formulation segment delves into the quantitative representation of
the 2D Cutting Stock Problem. Through mathematical models and equations,
it is possible to define the objective function to optimize the used material.

Mathematical formulation: Considering the problem of packing P1, P2, ..., Pn

rectangular pieces, where Pi is defined by its vertices (vi1, v
i
2, v

i
3, v

i
4), as repre-

sented in Figure 3:

2D Packing in Woodwork Industry 5

Fig. 3. Vertices Representation

Let x = [[y1, y2, ..., yn], [Y1, Y2, ..., Yn]], where yi ∈ {P1, P2, ..., Pn} and Yi ∈
{0, 1} represent a possible solution to the proposed problem. For each element
x, it is necessary to calculate the length used in the cut, l, the height used in
the cut, h, and the vertical misalignment of all pieces, s.

Guillotine version: The objective functions are as follows:

– f1(x) = h, representing the total height used in the solution.

– f2(x) = s, where s =
∑n

i=1 g(xi), where g(xi) =

{
hi−1 − hi if hi ≤ hi−1

2(hi − hi−1) if hi > hi−1

,

this represents the sum of the vertical misalignment of piece i in relation to
the previous piece.

– f3(x) = Aenv −
∑n

i=1 Ai, where Aenv represents the envelope area, which is
the length multiplied by the height occupied by the pieces (l × h) and Ai

represents the area of the piece xi.

Non-guillotine version: The objective functions are as follows:

– k1(x) = Aenv − ∑n
i=1 Ai, where Aenv represents the envelope area and Ai

represents the area of the piece xi.
– k2(x) = l+h

2 , indicative of the average utilization of the board height and
length by the pieces.

3.3 Evolutionary Algorithm

Evolutionary algorithms (EAs) are metaheuristic algorithms inspired by biolog-
ical evolution and the Darwinian principle of survival of the fittest [8]. It uses
chromosome representation, fitness selection, and biologically inspired operators.
Chromosomes, typically in binary string format, represent solutions. The fitness
function assesses each chromosome’s suitability, and through operators such as
selection, mutation, and crossover, the algorithm iterates on potential solutions.
Specifically, crossover alters subsequences between chromosomes, while mutation
may flip bits according to probability.

6 Tiago B. Ribeiro et al.

The NSGA-II algorithm is an adaption for multi-objective problems, where
the selection operator handles the selection of solutions based on their dominance
relationship in the objective space, maintaining diversity while ensuring that
non-dominated solutions are prioritized [5].

4 Results

This study developed an algorithm that takes data about the required cuts and
references a database of leftover boards, which not only facilitates the recycling
of potential waste, but also improves the efficiency of the manufacturing process.

This section provides a detailed analysis of the proposed solution to the
2D cutting stock problem, explaining both guillotinable and non-guillotinable
scenarios to ensure a comprehensive understanding of the methodologies used.

To evaluate the performance of the evolutionary algorithm implemented,
three distinct datasets comprising randomly created rectangles were subjected
to multiple runs. The algorithm was executed 100 times on each dataset to
thoroughly scrutinize its performance.

Guillotine problem: Table 1 provides metrics on the performance of NSGA-II
when using the guillotine cutting approach. The following table presents infor-
mation about the results obtained:

– Dataset: Refers to the size of the dataset used in the test.
– Opt. %: Percentage of runs in which the optimal solution was achieved.
– Hei. %: Percentage of runs achieving optimal height utilization.
– N. Sol.: Total number of unique configurations or solutions obtained in all

runs.
– Time(s): Average computational time taken in all runs.
– Std. Dev.(s): Standard deviation of the computational time in runs.
– Opt. Time(s): Average time taken to achieve an optimal solution.

Table 1. NSGA-II Performance Metrics: Guillotine Approach

Dataset Opt. % Hei. % N. Sol. Time Std. Dev. Opt. Time

6-piece 92 100 8 8.53 1.83 8.66

12-piece 15 77 15 26.07 9.82 33.47

18-piece 1 20 1 42.91 18.07 64.00

For the 6-piece dataset, the algorithm shines with a 92% optimal solution
rate and 100% height optimization. It identifies eight unique configurations and
averages a computational time of 8.53 seconds. The 12-piece dataset shows a
reduced optimal solution rate of 15% but a strong 77% in optimal height opti-
mization. The algorithm converges to 15 configurations, with a computational

2D Packing in Woodwork Industry 7

average of 26.07 seconds. Despite the complexity of the 18-piece data set, the al-
gorithm still achieves a 1% optimal rate and a 20% optimal height optimization,
with an average time of 42.91 seconds.

Some solutions obtained can be visualized in Figures 4 to 6.

Fig. 4. 6-piece Fig. 5. 12-piece Fig. 6. 18-piece

No-guillotine problem: Table 2 provides metrics for the performance of NSGA-
II when using the no-guillotine cutting approach.

Table 2. NSGA-II Performance Metrics: No-Guillotine Approach

Dataset Opt. % N. Sol. Time Std. Dev. Opt. Time

6-piece 100 95 25.73 0.58 -

12-piece 38 38 99.43 26.47 114.61

18-piece 1 1 146.20 44.33 170.33

For the 6-piece dataset, the algorithm demonstrates maximum efficiency with
an optimal solution rate of 100%. It pinpoints 95 unique configurations with an
average computational duration of 25.73 seconds. In the 12-piece dataset, the
algorithm achieves an optimal solution rate of 38% and identifies 38 unique
configurations, taking an average of 99.43 seconds for computation. Examining
the 18-piece data set, given its intricacies, the algorithm manages an optimal
rate of 1% and discovers a single unique configuration, requiring an average
computational time of 146.20 seconds.

Some solutions obtained can be visualized in Figures 7 to 9.

8 Tiago B. Ribeiro et al.

Fig. 7. 6-piece Fig. 8. 12-piece Fig. 9. 18-piece

In conclusion, it is possible to verify the following situations.

6-Piece Dataset: The 6-piece dataset was an initial benchmark to measure
NSGA-II performance. The guillotine approach was particularly notable, achiev-
ing a remarkable 92% success rate for optimal solutions. The non-guillotine ap-
proach showcased equal efficiency, converging to the optimal solution in every
run. Such results underscore the algorithm’s ability to deal with less complex
scenarios.

12-Piece Dataset: The intricacies became more apparent as we delved into the
12-piece dataset. While experiencing a slight drop in performance, the guillotine
approach still managed a 77% success rate in height optimization, emphasizing
its utility in specific industrial contexts. On the other hand, the no-guillotine
approach revealed its adaptability, discovering multiple unique optimal configu-
rations despite the increased challenge.

18-Piece Dataset: The 18-piece dataset proved to be the most challenging, size
and complexity led to a decline in the optimal solution success rate. However, the
resilience of NSGA-II shone through, as it consistently generated solutions with
optimal or near-optimal board dimension utilization. This persistence highlights
the algorithm’s drive for efficiency, even when faced with more considerable
challenges.

5 Conclusions and Future Work

This research embarked on the journey to explore the capabilities of evolution-
ary algorithms in solving the 2D cutting stock problem, adopting both guillotine
and no-guillotine cutting strategies. The algorithm’s performance was meticu-
lously analyzed across three distinct datasets, each reflecting different problem
complexities.

2D Packing in Woodwork Industry 9

In sum, while the algorithm exhibits exceptional capabilities with simpler
problems, its efficiency diminishes as the complexity of the problem grows. How-
ever, its unwavering performance in targeted optimization objectives, such as
height optimization, sets it apart.

Future endeavors could be enhancing scalability to ensure the algorithm’s
performance is sustained or even improved with larger datasets, enhancing its
universal applicability. Another promising strategy is the exploration of hy-
brid optimization approaches; Integrating NSGA-II with other optimization
techniques might produce a more robust and efficient solution, particularly for
complex challenges. Further value can come from real-world testing. By de-
ploying the algorithm in tangible industrial contexts, we can derive practical in-
sights and opportunities for refinement, factoring in real operational constraints.
Delving deeper into the genetic framework, the introduction of advanced ge-
netic operations can elevate the algorithm’s diversity and efficiency in solution
generation. Lastly, shifting from static to adaptive parameter tuning offers a
dynamic approach, with parameters evolving in response to the problem’s state,
which could significantly enhance the optimization process.

Acknowledgments

This work was supported by Norte 2020 Portuguese Program under the grant
Norte-01-0247-FEDER-072593 and FCT — Fundação para a Ciência e Tecnolo-
gia within the Project Scope UIDB/05757/2020 and UIDP/05757/2020.

References

1. Balcar, Š., Pilát, M., Neruda, R.: An evolutionary algorithm for 2d semi-guillotinable
circular saw cutting. In: 2012 IEEE Congress on Evolutionary Computation. pp. 1–5
(2012)

2. Beyaz, M., Dokeroglu, T., Cosar, A.: Robust hyper-heuristic algorithms for the
offline oriented/non-oriented 2d bin packing problems. Applied Soft Computing 36,
236–245 (2015)

3. Brubach, B., Sankararaman, K.A., Srinivasan, A., Xu, P.: Algorithms to approxi-
mate column-sparse packing problems. ACM Trans. Algorithms 16(1) (2019)

4. Cintra, G., Miyazawa, F., Wakabayashi, Y., Xavier, E.: A note on the approxima-
bility of cutting stock problems. European Journal of Operational Research 183(3),
1328–1332 (2007)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

6. Evtimov, G., Fidanova, S.: 2D Optimal Cutting Problem, pp. 33–39. Springer In-
ternational Publishing (2018)

7. Evtimov, G., Fidanova, S.: Heuristic algorithm for 2d cutting stock problem. In:
Lirkov, I., Margenov, S. (eds.) Large-Scale Scientific Computing. pp. 350–357.
Springer International Publishing (2018)

8. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and
constrained parameter optimization. Evolutionary computation 7(1), 19–44 (1999)

	Introduction
	Literature Review
	Problem Definition
	2D Cutting Stock Problem
	Guillotinable Cutting Stock Problem
	Non-Guillotinable Cutting Stock Problem

	Mathematical Formulation
	Parameters
	Decision Variables
	Objective function
	Constraints

	Problem Formalization

	Methods and Techniques
	Python and Software
	Software Libraries

	Evolutionary Algorithm Overview
	Evolutionary Algorithm Procedures
	Representation
	Initialization
	Selection
	Crossover
	Mutation
	Algorithm
	Termination criteria

	Implementation Details

	Solution Developed: OptiWood
	OptiWood Overview
	Pre-Versions
	Version 1: Bottom-Left Fill Heuristic and Overlap Verification
	Version 2: Rotation
	Version 3: Multi-Objective
	Version 4: Multi-Objective Optimization

	OptiWood
	Non-guillotine problem
	Guillotine problem

	Results
	Experimental Setup
	Evolutionary Algorithm Parameters
	PC Specifications

	Data Presentation
	6-Piece Dataset Results
	12-Piece Dataset Results
	18-Piece Dataset Results
	Results Discussion
	6-Piece Dataset
	12-Piece Dataset
	18-Piece Dataset

	Conclusions and Future Work
	Implications
	Summary
	Future Work
	Conclusion

	Bibliography
	
	
	

