14 research outputs found

    A Molecular Biology Database Digest

    Get PDF
    Computational Biology or Bioinformatics has been defined as the application of mathematical and Computer Science methods to solving problems in Molecular Biology that require large scale data, computation, and analysis [18]. As expected, Molecular Biology databases play an essential role in Computational Biology research and development. This paper introduces into current Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the integration of Molecular Biology data from different sources. This paper is primarily intended for an audience of computer scientists with a limited background in Biology

    Ontology based data warehouse modeling and managing ecology of human body for disease and drug prescription management

    Get PDF
    Health care sector is currently experiencing a major crisis with information overload. With the increasing prevalence of chronic diseases and the ageing population the amount of paper-work is more than ever before. In the US, a hospital admission of one patient generates an estimate of 60 pieces of paper. The federal governments of various countries have passed policies and initiatives that focus on introducing information systems into the health care sector. Technology will immensely reduce the cost of managing patients and even reduce the risks of mis-diagnosing and prescribing incorrectmedications to patients. This paper primarily focuses on introducing the concept of ontology based warehouse modelling and managing ecology of human body for disease and drug prescription management. Disorders of the human body and factors such as the patient?s age, living and working conditions, familial and genetic influences can be simulated into Metadata in a warehousing environment. In this environment, various relationships are identified and described between these factors and the diseases. Secondly, we also introduce ontological representation of the various human body systems such as the digestive, musculoskeletal and nervous system in disease processes. Although this is an extensive and complex knowledge domain, the work in this paper is one of the first to attempt to introduce the use of ontology based data warehousing and data mining conceptually. We also aim at implementing and applying this research in practice

    Biomedical data integration in computational drug design and bioinformatics

    Get PDF
    [Abstract In recent years, in the post genomic era, more and more data is being generated by biological high throughput technologies, such as proteomics and transcriptomics. This omics data can be very useful, but the real challenge is to analyze all this data, as a whole, after integrating it. Biomedical data integration enables making queries to different, heterogeneous and distributed biomedical data sources. Data integration solutions can be very useful not only in the context of drug design, but also in biomedical information retrieval, clinical diagnosis, system biology, etc. In this review, we analyze the most common approaches to biomedical data integration, such as federated databases, data warehousing, multi-agent systems and semantic technology, as well as the solutions developed using these approaches in the past few years.Red Gallega de Investigación sobre Cáncer Colorrectal; Ref. 2009/58Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; 209RT- 0366Instituto de Salud Carlos III; PIO52048Instituto de Salud Carlos III; RD07/0067/0005Ministerio de Industria, Turismo y Comercio; TSI-020110-2009-

    Collecte de données biologiques à partir de sources multiples et hétérogènes. Vers une structure de médiation conviviale et orientée source

    Get PDF
    Actes électroniques : http://www.lalic.paris4.sorbonne.fr/stic/octobre/programme0209.html. Colloque avec actes et comité de lecture. nationale.National audienceAprès un rappel des principales spécificités des sources de données biologiques, nous décrivons brièvement deux études que nous avons effectuées en lien avec deux problèmes biologiques et portant sur la collecte de données selon des scénarios pré-établis d'interrogation d'une succession de sources. Nous évoquons ensuite les grandes lignes du projet de recherche qui fait suite et qui se veut être une généralisation des travaux précédents afin d'aider le biologiste, face à un problème assez complexe de collecte de données, à identifier des sources pertinentes, le guider dans la définition du scénario de collecte et mettre en oeuvre ce scénario sur des données réelles. Nous explicitons les points d'ancrage de ce projet dans la problématique du web sémantique ainsi que le premier domaine d'application envisagé

    BioWarehouse: a bioinformatics database warehouse toolkit

    Get PDF
    BACKGROUND: This article addresses the problem of interoperation of heterogeneous bioinformatics databases. RESULTS: We introduce BioWarehouse, an open source toolkit for constructing bioinformatics database warehouses using the MySQL and Oracle relational database managers. BioWarehouse integrates its component databases into a common representational framework within a single database management system, thus enabling multi-database queries using the Structured Query Language (SQL) but also facilitating a variety of database integration tasks such as comparative analysis and data mining. BioWarehouse currently supports the integration of a pathway-centric set of databases including ENZYME, KEGG, and BioCyc, and in addition the UniProt, GenBank, NCBI Taxonomy, and CMR databases, and the Gene Ontology. Loader tools, written in the C and JAVA languages, parse and load these databases into a relational database schema. The loaders also apply a degree of semantic normalization to their respective source data, decreasing semantic heterogeneity. The schema supports the following bioinformatics datatypes: chemical compounds, biochemical reactions, metabolic pathways, proteins, genes, nucleic acid sequences, features on protein and nucleic-acid sequences, organisms, organism taxonomies, and controlled vocabularies. As an application example, we applied BioWarehouse to determine the fraction of biochemically characterized enzyme activities for which no sequences exist in the public sequence databases. The answer is that no sequence exists for 36% of enzyme activities for which EC numbers have been assigned. These gaps in sequence data significantly limit the accuracy of genome annotation and metabolic pathway prediction, and are a barrier for metabolic engineering. Complex queries of this type provide examples of the value of the data warehousing approach to bioinformatics research. CONCLUSION: BioWarehouse embodies significant progress on the database integration problem for bioinformatics

    Protein Bioinformatics Infrastructure for the Integration and Analysis of Multiple High-Throughput “omics” Data

    Get PDF
    High-throughput “omics” technologies bring new opportunities for biological and biomedical researchers to ask complex questions and gain new scientific insights. However, the voluminous, complex, and context-dependent data being maintained in heterogeneous and distributed environments plus the lack of well-defined data standard and standardized nomenclature imposes a major challenge which requires advanced computational methods and bioinformatics infrastructures for integration, mining, visualization, and comparative analysis to facilitate data-driven hypothesis generation and biological knowledge discovery. In this paper, we present the challenges in high-throughput “omics” data integration and analysis, introduce a protein-centric approach for systems integration of large and heterogeneous high-throughput “omics” data including microarray, mass spectrometry, protein sequence, protein structure, and protein interaction data, and use scientific case study to illustrate how one can use varied “omics” data from different laboratories to make useful connections that could lead to new biological knowledge

    A cooperative framework for molecular biology database integration using image object selection.

    Get PDF
    The theme and the concept of 'Molecular Biology Database Integration’ and the problems associated with this concept initiated the idea for this Ph.D research. The available technologies facilitate to analyse the data independently and discretely but it fails to integrate the data resources for more meaningful information. This along with the integration issues created the scope for this Ph.D research. The research has reviewed the 'database interoperability' problems and it has suggested a framework for integrating the molecular biology databases. The framework has proposed to develop a cooperative environment to share information on the basis of common purpose for the molecular biology databases. The research has also reviewed other implementation and interoperability issues for laboratory based, dedicated and target specific database. The research has addressed the following issues: - diversity of molecular biology databases schemas, schema constructs and schema implementation -multi-database query using image object keying -database integration technologies using context graph - automated navigation among these databases This thesis has introduced a new approach for database implementation. It has introduced an interoperable component database concept to initiate multidatabase query on gene mutation data. A number of data models have been proposed for gene mutation data which is the basis for integrating the target specific component database to be integrated with the federated information system. The proposed data models are: data models for genetic trait analysis, classification of gene mutation data, pathological lesion data and laboratory data. The main feature of this component database is non-overlapping attributes and it will follow non-redundant integration approach as explained in the thesis. This will be achieved by storing attributes which will not have the union or intersection of any attributes that exist in public domain molecular biology databases. Unlike data warehousing technique, this feature is quite unique and novel. The component database will be integrated with other biological data sources for sharing information in a cooperative environment. This/involves developing new tools. The thesis explains the role of these new tools which are: meta data extractor, mapping linker, query generator and result interpreter. These tools are used for a transparent integration without creating any global schema of the participating databases. The thesis has also established the concept of image object keying for multidatabase query and it has proposed a relevant algorithm for matching protein spot in gel electrophoresis image. An object spot in gel electrophoresis image will initiate the query when it is selected by the user. It matches the selected spot with other similar spots in other resource databases. This image object keying method is an alternative to conventional multidatabase query which requires writing complex SQL scripts. This method also resolve the semantic conflicts that exist among molecular biology databases. The research has proposed a new framework based on the context of the web data for interactions with different biological data resources. A formal description of the resource context is described in the thesis. The implementation of the context into Resource Document Framework (RDF) will be able to increase the interoperability by providing the description of the resources and the navigation plan for accessing the web based databases. A higher level construct is developed (has, provide and access) to implement the context into RDF for web interactions. The interactions within the resources are achieved by utilising an integration domain to extract the required information with a single instance and without writing any query scripts. The integration domain allows to navigate and to execute the query plan within the resource databases. An extractor module collects elements from different target webs and unify them as a whole object in a single page. The proposed framework is tested to find specific information e.g., information on Alzheimer's disease, from public domain biology resources, such as, Protein Data Bank, Genome Data Bank, Online Mendalian Inheritance in Man and local database. Finally, the thesis proposes further propositions and plans for future work

    A cooperative framework for molecular biology database integration using image object selection

    Get PDF
    The theme and the concept of 'Molecular Biology Database Integration' and the problems associated with this concept initiated the idea for this Ph.D research. The available technologies facilitate to analyse the data independently and discretely but it fails to integrate the data resources for more meaningful information. This along with the integration issues created the scope for this Ph.D research. The research has reviewed the 'database interoperability' problems and it has suggested a framework for integrating the molecular biology databases. The framework has proposed to develop a cooperative environment to share information on the basis of common purpose for the molecular biology databases. The research has also reviewed other implementation and interoperability issues for laboratory based, dedicated and target specific database. The research has addressed the following issues: diversity of molecular biology databases schemas, schema constructs and schema implementation multi-database query using image object keying, database integration technologies using context graph, automated navigation among these databases. This thesis has introduced a new approach for database implementation. It has introduced an interoperable component database concept to initiate multidatabase query on gene mutation data. A number of data models have been proposed for gene mutation data which is the basis for integrating the target specific component database to be integrated with the federated information system. The proposed data models are: data models for genetic trait analysis, classification of gene mutation data, pathological lesion data and laboratory data. The main feature of this component database is non-overlapping attributes and it will follow non-redundant integration approach as explained in the thesis. This will be achieved by storing attributes which will not have the union or intersection of any attributes that exist in public domain molecular biology databases. Unlike data warehousing technique, this feature is quite unique and novel. The component database will be integrated with other biological data sources for sharing information in a cooperative environment. This involves developing new tools. The thesis explains the role of these new tools which are: meta data extractor, mapping linker, query generator and result interpreter. These tools are used for a transparent integration without creating any global schema of the participating databases. The thesis has also established the concept of image object keying for multidatabase query and it has proposed a relevant algorithm for matching protein spot in gel electrophoresis image. An object spot in gel electrophoresis image will initiate the query when it is selected by the user. It matches the selected spot with other similar spots in other resource databases. This image object keying method is an alternative to conventional multidatabase query which requires writing complex SQL scripts. This method also resolve the semantic conflicts that exist among molecular biology databases. The research has proposed a new framework based on the context of the web data for interactions with different biological data resources. A formal description of the resource context is described in the thesis. The implementation of the context into Resource Document Framework (RDF) will be able to increase the interoperability by providing the description of the resources and the navigation plan for accessing the web based databases. A higher level construct is developed (has, provide and access) to implement the context into RDF for web interactions. The interactions within the resources are achieved by utilising an integration domain to extract the required information with a single instance and without writing any query scripts. The integration domain allows to navigate and to execute the query plan within the resource databases. An extractor module collects elements from different target webs and unify them as a whole object in a single page. The proposed framework is tested to find specific information e.g., information on Alzheimer's disease, from public domain biology resources, such as, Protein Data Bank, Genome Data Bank, Online Mendalian Inheritance in Man and local database. Finally, the thesis proposes further propositions and plans for future work
    corecore