8,463 research outputs found

    Liver imaging reporting and data system: An expert consensus statement

    Get PDF
    The increasing incidence and high morbidity and mortality of hepatocellular carcinoma (HCC) have inspired the creation of the Liver Imaging Reporting and Data System (LI-RADS). LI-RADS aims to reduce variability in exam interpretation, improve communication, facilitate clinical therapeutic decisions, reduce omission of pertinent information, and facilitate the monitoring of outcomes. LI-RADS is a dynamic process, which is updated frequently. In this article, we describe the LI-RADS 2014 version (v2014), which marks the second update since the initial version in 2011

    Dynamic Contrast Enhanced Computed Tomography Measurement of Perfusion in Hepatic Cancer

    Get PDF
    ABSTRACT In recent years, the incidence and mortality rate for hepatocellular carcinoma (HCC) have increased due to the emergence of hepatitis B, C and other diseases that cause cirrhosis. The progression from cirrhosis to HCC is characterized by abnormal vascularization and by a shift from a venous to an arterial blood supply. A knowledge of HCC vascularity which is manifested as alterations in liver blood flow may distinguish among different stages of liver disease and can be used to monitor response to treatment. Unfortunately, conventional diagnostic imaging techniques lack the ability to accurately quantify HCC vascularity. The purpose of this thesis was to validate and assess the diagnostic capabilities of dynamic contrast enhanced computed tomography (DCE-CT) and perfusion software designed to measure hepatic perfusion. Chapter 2 described a study designed to evaluate the accuracy and precision of hepatic perfusion measurement. The results showed a strong correlation between hepatic artery blood flow measurement with DCE-CT and radioactive microspheres under steady state in a rabbit model for HCC (VX2 carcinoma). Using repeated measurements and Monte Carlo simulations, DCE-CT perfusion measurements were found to be precise; with the highest precision in the tumor rim. In Chapter 3, we used fluorine-18 fluoro-2-deoxy-D-glucose (FDG) positron emission tomography and DCE-CT perfusion to determined an inverse correlation between glucose utilization and tumor blood flow; with an R of 0.727 (P \u3c 0.05). This suggests a limited supply of oxygen (possibly hypoxia) and that the tumor cells were surviving via anaerobic glycolysis. in In Chapter 4, hepatic perfusion data showed that thalidomide caused a reduction of tumor perfusion in the responder group during the first 8 days after therapy, P \u3c 0.05; while perfusion in the partial responder and control group remained unchanged, P \u3e 0.05. These changes were attributed to vascular remodeling and maturation resulting in a more functional network of endothelial tubes lined with pericytes. The results of this thesis demonstrate the accuracy and precision of DCE-CT hepatic perfusion measurements. It also showed that DCE-CT perfusion has the potential to enhance the functional imaging ability of hybrid PET/CT scanners and evaluate the efficacy of anti-angiogenesis therapy

    Total-liver-volume perfusion CT using 3-D image fusion to improve detection and characterization of liver metastases

    Get PDF
    The purpose of this study was to evaluate the feasibility of a totalliver- volume perfusion CT (CTP) technique for the detection and characterization of livermetastases. Twenty patients underwent helical CT of the total liver volume before and 11 times after intravenous contrast-material injection. To decrease distortion artifacts, all phases were co-registered using 3-D image fusion before creating blood-flow maps. Lesion-based sensitivity and specificity for liver metastases of first the conventional four phases (unenhanced, arterial, portal venous, and equilibrium) and later all 12 phases including blood-flow maps were determined as compared to intraoperative ultrasound and surgical exploration. Arterial and portal venous perfusion was calculated for normalappearing and metastatic liver tissue. Total-liver-volume perfusion values were comparable to studies using single-level CTP. Compared to fourphase CT, total -liver-volume CTP increased sensitivity to 89.2 from 78.4% (P=0.046) and specificity to 82.6 from 78.3% (P=0.074). Total - liver-volume CTP is a noninvasive, quantitative, and feasible technique. Preliminary results suggest an improved detection of liver metastases for CTP compared to four-phase CT

    EVALUATION OF LIVER PARENCHYMA AND PERFUSION USING DYNAMIC CONTRAST-ENHANCED COMPUTED TOMOGRAPHY AND CONTRAST-ENHANCED ULTRASONOGRAPHY IN CAPTIVE GREEN IGUANAS (IGUANA IGUANA) UNDER GENERAL ANESTHESIA

    Get PDF
    Background: Contrast-enhanced diagnostic imaging techniques are considered useful in veterinary and human medicine to evaluate liver perfusion and focal hepatic lesions. Although hepatic diseases are a common occurrence in reptile medicine, there is no reference to the use of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) to evaluate the liver in lizards. Therefore, the aim of this study was to evaluate the pattern of change in echogenicity and attenuation of the liver in green iguanas (Iguana iguana) after administration of specific contrast media. Results: An increase in liver echogenicity and density was evident during CEUS and CECT, respectively. In CEUS, the mean \ub1 SD (median; range) peak enhancement was 19.9% \ub1 7.5 (18.3; 11.7-34.6). Time to peak enhancement was 134.0 \ub1 125.1 (68.4; 59.6-364.5) seconds. During CECT, first visualization of the contrast medium was at 3.6 \ub1 0.5 (4; 3-4) seconds in the aorta, 10.7 \ub1 2.2 (10.5; 7-14) seconds in the hepatic arteries, and 15 \ub1 4.5 (14.5; 10-24) seconds in the liver parenchyma. Time to peak was 14.1 \ub1 3.4 (13; 11-21) and 31 \ub1 9.6 (29; 23-45) seconds in the aorta and the liver parenchyma, respectively. Conclusion: CEUS and dynamic CECT are practical means to determine liver hemodynamics in green iguanas. Distribution of contrast medium in iguana differed from mammals. Specific reference ranges of hepatic perfusion for diagnostic evaluation of the liver in iguanas are necessary since the use of mammalian references may lead the clinician to formulate incorrect diagnostic suspicions

    A Bibliometric Analysis of the Top 100 Cited Articles on Hepatic Magnetic Resonance Imaging.

    Get PDF
    The purpose of this study is to guide the readers to the impact of the articles published on hepatic magnetic resonance imaging (MRI). We searched Scopus using 10 different search terms for hepatic MRI. The selected studies were thoroughly reviewed by two independent authors and any disagreement was sorted out by mutual consensus. The list of articles and journals was downloaded into an excel spreadsheet. Only the top 100 cited articles were selected by mutual consensus among all the authors. These articles were further read in the full-text form and were further categorized into subgroups. Three authors independently reviewed the top 100 selected articles, and subsequently data was extracted from them and analyzed. Our study showed that the highest number of top 100 cited articles on hepatic MRI were from Radiology (30 articles) followed by European Radiology (14 articles). The American Journal of Roentgenology, Radiographics, and Journal of Magnetic Resonance had seven articles each. The United States had the highest number of articles by region. Nineteen other journals contributed only one article each to the list of top 100 cited articles. The contribution of authors to the top 100 cited articles was reviewed; all the authors contributing with more than two articles to the highly cited articles are given in Table 3 in the supplementary material. The maximum number of articles were published during 2009 (14 articles), and for a five-year period, the maximum contribution was made during 2008-2013 (44 articles). Our analysis gives an insight on the frequency of citations of top articles on hepatic MRI, categorizes the subtopics, the timeline of the publications, and contributions from different geographic distributions

    Evaluation of Hepatocellular Carcinoma Transarterial Chemoembolization using Quantitative Analysis of 2D and 3D Real-time Contrast Enhanced Ultrasound.

    Get PDF
    Quantitative 2D and 3D contrast-enhanced ultrasound (CEUS) was assessed to evaluate early transarterial chemoembolization (TACE) treatment response. Seventeen patients scheduled for TACE for the treatment of hepatocellular carcinoma participated in the study. 2D and 3D CEUS were performed for each patient at three time points: Prior to TACE, 1-2 weeks post TACE, and 1 month post TACE. Peak-intensities of the tumor and surrounding liver tissue were calculated from 2D and 3D data before and after TACE and used to evaluate tumor treatment response. Residual tumor percentages were calculated from 2D and 3D CEUS acquired 1-2 weeks and 1 month post TACE and compared with results from MRI 1 month post TACE. Nine subjects had complete response while 8 had incomplete response. Peak-intensities of the tumor from 3D CEUS prior to TACE were similar between the complete and incomplete treatment groups (p = 0.70), while 1-2 weeks (p \u3c 0.01) and 1 month post treatment (p \u3c 0.01) were significantly lower in the complete treatment group than in the incomplete treatment group. For 2D CEUS, only the peak-intensity values of the tumor from 1 month post TACE were significantly different (p \u3c 0.01). The correlation coefficients between 2D and 3D residual tumor estimates 1-2 weeks post TACE and the estimates from MRI were 0.73 and 0.94, respectively, while those from 2D and 3D CEUS 1 month post TACE were 0.66 and 0.91, respectively. Quantitative analysis on 2D and 3D CEUS shows potential to differentiate patients with complete versus incomplete response to TACE as early as 1-2 weeks post treatment

    CONTRAST-ENHANCED ULTRASOUND MONITORING OF PERFUSION CHANGES IN HEPATIC NEUROENDOCRINE METASTASES AFTER SYSTEMIC VERSUS SELECTIVE ARTERIAL 177LU/90Y-DOTATOC AND 213BI-DOTATOC RADIOPEPTIDE THERAPY

    Get PDF
    Radiopeptide therapy with beta emitter labeled 177Lu/90Y- DOTA(0)-Phe(1)-Tyr(3)-octreotide (DOTATOC) and more recently also alpha emitting 213Bi-DOTATOC are promising new treatments for neuroendocrine tumors. No early predictors for treatment response have been recognized and tumor-shrinkage after radiation therapy appears slowly. In some solid tumors a decline in tumor perfusion was found predictive of final treatment response but the gold standard multiphase computed tomography (CT) has a high radiation burden. Therefore we evaluated the ability of contrast-enhanced ultrasound (CEUS) to evaluate tumor perfusion as a response criteria. Materials and Methods: 14 patients with hepatic neuroendocrine tumor (NET) metastases were enrolled in the retrospective study. Eleven patients were treated with beta-emitting 177Lu/90Y-DOTATOC, either intravenous (i.v.) (n = 5) or intra-arterial (i.a.) (n = 6) and three patients received alpha-emitting 213Bi-DOTATOC (i.a.). CEUS and contrast-enhanced CT (CE-CT) were performed before and 3 months after treatment. Results: CE-CT and CEUS presented comparable results in the baseline study and in the assessment of perfusion changes due to the different treatment regimes. A therapy related decrease in tumor perfusion is an early predictor of longterm morphologic response. Conclusion: CEUS is a cheap, ubiquitary available and radiation free technique which showed comparable results for perfusion and diameter of liver metastases compared to CE-CT. Intensity reduction in an arterial phase CEUS can be seen as a positive sign indicating long term tumor response to treatment. Therefore CEUS may be considered as an imaging modality for monitoring early treatment after focal alpha and beta targeted therapy.JRC.E.5-Nuclear chemistr

    Usefulness of contrast enhanced ultrasound in monitoring therapeutic response after hepatocellular carcinoma treatment

    Get PDF
    In the last years, the development in the oncology field has been huge and rapid. In particular, the evaluation of response to anti-tumour treatments has been being object of intense research, producing significant changes. Response assessment after therapy in solid neoplasias has always used radiological imaging techniques, with tumour size reduction representing a presumed therapeutic efficacy. However, with the introduction of anti-angiogenetic drugs the evaluation of tumour size has become unsuitable because some tumours, under treatment, show only tumour perfusion changes rather than lesion shrinkage. Between different imaging techniques with contrast-enhancement, contrast-enhanced ultrasound (CEUS) and, in particular, dynamic CEUS have arisen as a promising and non-invasive device for monitoring cancer treatments. Moreover, the introduction of perfusion software has even more refined the technique since it is able to provide quantitative parameters related to blood flow and blood volume that can be associated with tumour response and clinical outcome such as the progression free survival and the overall survival. Here, we give an overview of the current status of CEUS in monitoring hepatocellular carcinoma response to different kind of treatments
    • …
    corecore