7 research outputs found

    Existence and Density Theorems of Henig Global Proper Efficient Points in Non-Convex Vector Optimization Problems

    Full text link
    In this work, we provide some novel results that establish both the existence of Henig global proper efficient points and their density in the efficient set for vector optimization problems in arbitrary normed spaces. Our results do not require the assumption of convexity, and in certain cases, can be applied to unbounded sets. However, it is important to note that a weak compactness condition on the set (or on a section of it) and a separation property between the order cone and its conical neighborhoods remains necessary. The weak compactness condition ensures that certain convergence properties hold. The separation property enables the interpolation of a family of Bishop-Phelps cones between the order cone and each of its conic neighborhoods. This interpolation, combined with the proper handling of two distinct types of conic neighborhoods, plays a crucial role in the proofs of our results, which include as a particular case other results that have already been established under more restrictive conditions

    Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization

    Get PDF
    We show that under a separation property, a Q-minimal point in a normed space is the minimum of a given sublinear function. This fact provides sufficient conditions, via scalarization, for nine types of proper efficient points; establishing a characterization in the particular case of Benson proper efficient points. We also obtain necessary and sufficient conditions in terms of scalarization for approximate Benson and Henig proper efficient points. The separation property we handle is a variation of another known property and our scalarization results do not require convexity or boundedness assumptions.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Fernando García-Castaño and Miguel Ángel Melguizo-Padial acknowledge the financial support from the Spanish Ministry of Science, Innovation and Universities (MCIN/AEI) under grant PID2021-122126NB-C32, co-funded by the European Regional Development Fund (ERDF) under the slogan “A way of making Europe”

    Domination and Decomposition in Multiobjective Programming

    Get PDF
    During the last few decades, multiobjective programming has received much attention for both its numerous theoretical advances as well as its continued success in modeling and solving real-life decision problems in business and engineering. In extension of the traditionally adopted concept of Pareto optimality, this research investigates the more general notion of domination and establishes various theoretical results that lead to new optimization methods and support decision making. After a preparatory discussion of some preliminaries and a review of the relevant literature, several new findings are presented that characterize the nondominated set of a general vector optimization problem for which the underlying domination structure is defined in terms of different cones. Using concepts from linear algebra and convex analysis, a well known result relating nondominated points for polyhedral cones with Pareto solutions is generalized to nonpolyhedral cones that are induced by positively homogeneous functions, and to translated polyhedral cones that are used to describe a notion of approximate nondominance. Pareto-oriented scalarization methods are modified and several new solution approaches are proposed for these two classes of cones. In addition, necessary and sufficient conditions for nondominance with respect to a variable domination cone are developed, and some more specific results for the case of Bishop-Phelps cones are derived. Based on the above findings, a decomposition framework is proposed for the solution of multi-scenario and large-scale multiobjective programs and analyzed in terms of the efficiency relationships between the original and the decomposed subproblems. Using the concept of approximate nondominance, an interactive decision making procedure is formulated to coordinate tradeoffs between these subproblems and applied to selected problems from portfolio optimization and engineering design. Some introductory remarks and concluding comments together with ideas and research directions for possible future work complete this dissertation

    A vision-based optical character recognition system for real-time identification of tractors in a port container terminal

    Get PDF
    Automation has been seen as a promising solution to increase the productivity of modern sea port container terminals. The potential of increase in throughput, work efficiency and reduction of labor cost have lured stick holders to strive for the introduction of automation in the overall terminal operation. A specific container handling process that is readily amenable to automation is the deployment and control of gantry cranes in the container yard of a container terminal where typical operations of truck identification, loading and unloading containers, and job management are primarily performed manually in a typical terminal. To facilitate the overall automation of the gantry crane operation, we devised an approach for the real-time identification of tractors through the recognition of the corresponding number plates that are located on top of the tractor cabin. With this crucial piece of information, remote or automated yard operations can then be performed. A machine vision-based system is introduced whereby these number plates are read and identified in real-time while the tractors are operating in the terminal. In this paper, we present the design and implementation of the system and highlight the major difficulties encountered including the recognition of character information printed on the number plates due to poor image integrity. Working solutions are proposed to address these problems which are incorporated in the overall identification system.postprin

    Job shop scheduling with artificial immune systems

    Get PDF
    The job shop scheduling is complex due to the dynamic environment. When the information of the jobs and machines are pre-defined and no unexpected events occur, the job shop is static. However, the real scheduling environment is always dynamic due to the constantly changing information and different uncertainties. This study discusses this complex job shop scheduling environment, and applies the AIS theory and switching strategy that changes the sequencing approach to the dispatching approach by taking into account the system status to solve this problem. AIS is a biological inspired computational paradigm that simulates the mechanisms of the biological immune system. Therefore, AIS presents appealing features of immune system that make AIS unique from other evolutionary intelligent algorithm, such as self-learning, long-lasting memory, cross reactive response, discrimination of self from non-self, fault tolerance, and strong adaptability to the environment. These features of AIS are successfully used in this study to solve the job shop scheduling problem. When the job shop environment is static, sequencing approach based on the clonal selection theory and immune network theory of AIS is applied. This approach achieves great performance, especially for small size problems in terms of computation time. The feature of long-lasting memory is demonstrated to be able to accelerate the convergence rate of the algorithm and reduce the computation time. When some unexpected events occasionally arrive at the job shop and disrupt the static environment, an extended deterministic dendritic cell algorithm (DCA) based on the DCA theory of AIS is proposed to arrange the rescheduling process to balance the efficiency and stability of the system. When the disturbances continuously occur, such as the continuous jobs arrival, the sequencing approach is changed to the dispatching approach that involves the priority dispatching rules (PDRs). The immune network theory of AIS is applied to propose an idiotypic network model of PDRs to arrange the application of various dispatching rules. The experiments show that the proposed network model presents strong adaptability to the dynamic job shop scheduling environment.postprin

    Multiobjective Problems of Mathematical Programming; Proceedings of an International Conference, Yalta, USSR, October 26 - November 2, 1988

    Get PDF
    IIASA's approach to research in Multiple Objective Decision Support, Multiple Criteria Optimization (MCO) and related topics assumes a high level of synergy between three main components: methodological and theoretical backgrounds, computer implementation and decision support systems and real life applications. This synergy is reflected in the subjects of papers presented at the Conference as well as in the structure of the Proceedings which is divided into three main sections. In the first section, "Theory and Methodology of Multiple Criteria Optimization," 21 papers discussing new theoretical developments in MCO are presented. The second section, "Applications of Multiple Criteria Optimization, " contains nine papers dealing with real-life applications of MCO. Five papers on the application of MCO in the development of Decision Support Systems are included in the final section, "Multiple Criteria Decision Support." Among the important outcomes of this Conference were conclusions regarding further directions of research for Multiple Criteria Optimization, in particular, in the context of cooperation between scientists from Eastern and Western countries

    Fuelling the zero-emissions road freight of the future: routing of mobile fuellers

    Get PDF
    The future of zero-emissions road freight is closely tied to the sufficient availability of new and clean fuel options such as electricity and Hydrogen. In goods distribution using Electric Commercial Vehicles (ECVs) and Hydrogen Fuel Cell Vehicles (HFCVs) a major challenge in the transition period would pertain to their limited autonomy and scarce and unevenly distributed refuelling stations. One viable solution to facilitate and speed up the adoption of ECVs/HFCVs by logistics, however, is to get the fuel to the point where it is needed (instead of diverting the route of delivery vehicles to refuelling stations) using "Mobile Fuellers (MFs)". These are mobile battery swapping/recharging vans or mobile Hydrogen fuellers that can travel to a running ECV/HFCV to provide the fuel they require to complete their delivery routes at a rendezvous time and space. In this presentation, new vehicle routing models will be presented for a third party company that provides MF services. In the proposed problem variant, the MF provider company receives routing plans of multiple customer companies and has to design routes for a fleet of capacitated MFs that have to synchronise their routes with the running vehicles to deliver the required amount of fuel on-the-fly. This presentation will discuss and compare several mathematical models based on different business models and collaborative logistics scenarios
    corecore