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Abstract
We show that under a separation property, aQ-minimal point in a normed space is the
minimum of a given sublinear function. This fact provides sufficient conditions, via
scalarization, for nine types of proper efficient points; establishing a characterization
in the particular case of Benson proper efficient points. We also obtain necessary
and sufficient conditions in terms of scalarization for approximate Benson and Henig
proper efficient points. The separation property we handle is a variation of another
known property and our scalarization results do not require convexity or boundedness
assumptions.
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1 Introduction

Proper efficient points were introduced to eliminate efficient points exhibiting some
abnormal properties. They can be described in terms of separations between the
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ordering cone and the considered set. Such points have been the object of many inves-
tigations, see for example (Benson 1979; Borwein and Zhuang 1993; Gong 2005;
Guerraggio et al. 1994; Ha 2010; Hartley 1978; Henig 1982; Khan et al. 2015; Zheng
1997). In Ha (2010), the author presented the notion ofQ-minimal point and showed
that several types of proper efficient points can be reduced in a unified form as Q-
minimal points. The following kinds of proper efficient points were studied in Ha
(2010): Henig global proper efficient points, Henig proper efficient points, super effi-
cient points, Benson proper efficient points, Hartley proper efficient points, Hurwicz
proper efficient points, and Borwein proper efficient points; the latter three types
considered for the first time. Optimality conditions for proper efficient points were
obtained, and scalarization for Q-minimal points was established. Since the scalar
optimization theory is widely developed, scalarization turns out to be of great impor-
tance for the vector optimization theory (Ehrgott 2005; Ehrgott andWiecek 2005; Jahn
2004; Khan et al. 2015; Luc 1989; Miettinen 1999; Pascoletti and Serafini 1984; Qiu
2008; Zheng 2000). In this work, we show that under a separation property called SSP,
a Q-minimal point in a normed space is the minimum of a given sublinear function.
This fact provides sufficient conditions for the proper efficient points analysed in Ha
(2010) and also for tangentially Borwein proper efficient points which were not con-
sidered there. The sufficient condition becomes a characterization in case of Benson
proper efficient points. We note that SSP is a variation of a separation property intro-
duced in Kasimbeyli (2010). On one hand, our results complement those obtained in
Ha (2010) making use of a different scalar function and also establishing conditions
for tangentially Borwein proper efficient points. In our results, for every type of proper
efficient point, we apply the separation property to a fixed Q-dilation of the ordering
cone instead of to a sequence of ε-conic neigbhourhoods of the ordering cone (as it
is done in Kasimbeyli 2010). This fact leads us to optimal conditions for nine types
of proper efficient points (instead of two types in Kasimbeyli 2010) deriving scalar-
ization results in the setting of normed spaces under weaker assumptions than those
in Kasimbeyli (2010) and making use of the same scalar function. In addition, our
characterization of Benson proper efficient points shed light to the last question stated
in the conclusions of Guo and Zhang (2017).

Recently, several authors have been interested in introducing and studying approx-
imate proper efficiency notions. The common idea in the concepts of approximate
efficiency is to consider a set that approximates the ordering cone, that does not con-
tain the origin in order to impose the approximate efficiency (or non-domination)
condition. In Gutiérrez et al. (2012, 2016), the notions of approximate proper efficient
points in the senses of Benson and Henig were introduced extending and improving
the most important concepts of approximate proper efficiency given in the literature at
the moment. In addition, the authors characterized such approximate efficient points
through scalarization assuming generalized convexity conditions. In this manuscript,
we adapt the approach followed to obtain optimal conditions for Q-minimal points
to establish new characterizations of Benson and Henig approximate proper efficient
points through scalarizations.Again, our results are based onSSPandwedonot impose
any kind of convexity assumption. So, our results complement those in Gutiérrez et al.
(2012, 2016).
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The paper is organized as follows.We introduce preliminary terminology in Sect. 2.
In Sect. 3, we introduce SSP and establish two separation theorems, Theorems 3.1
and 3.3. The first one provides an extension of (Kasimbeyli 2010, Theorem 4.3) to
normed spaces in which some assumptions for the equivalence have been relaxed,
and the latter, that is our main separation result, provides some optimal conditions
for proper and approximate proper efficient points. Theorem 3.6 shows that under
SSP, Q-minimal points can be obtained minimizing a sublinear function explicitly
defined. Corollary 3.7 particularizes the former necessary condition for each type of
proper efficient point. Corollary 3.8 characterizes Benson proper efficient points via
scalarization, and Corollaries 3.10 and 3.11 characterize, respectively, Henig global
and tangentially Borwein proper efficient points under some extra assumptions. In
Sect. 4, we recall the notions of approximate efficiency in the sense of Benson and of
Henig. Theorems 4.1 and 4.2 provide, respectively, necessary and sufficient conditions
through scalarization for approximate Benson proper efficient points; in a similar way
but under extra assumptions, we establish Corollary 4.6 that characterizes approximate
Henig proper points.

2 Notation and previous definitions

Throughout the paper X will denote a normed space, ‖ · ‖ the norm on X , X∗ the dual
space of X , ‖ · ‖∗ the norm on X∗, and 0X the origin of X . By BX (resp. B◦

X ) we
denote the closed (resp. open) unit ball of X and by SX we denote the unit sphere, i.e.,
BX := {x ∈ X : ‖x‖ ≤ 1}, B◦

X = {x ∈ X : ‖x‖ < 1}, and SX := {x ∈ X : ‖x‖ = 1}.
Given a subset S ⊂ X , we denote by S (resp. bd(S), int(S), co(S), co(S)) the closure
(resp. the boundary, the interior, the convex hull, the closure of the convex hull) of S.
Besides, for every f ∈ X∗, we will denote by supS f (resp. inf S f ) the supremum
(resp. infimum) of f on the set S. ByR+ (resp.R++) we denote the set of non negative
real numbers (resp. strictly positive real numbers). A subset C ⊂ X is said to be a
cone if λx ∈ C for every λ ≥ 0 and x ∈ C. Let C ⊂ X be a cone: C is said to be
non-trivial if {0X } � C � X , C is said to be convex if it is a convex subset of X , C
is said to be pointed if (−C) ∩ C = {0X }, and C is said to be solid if int(C) 
= ∅. All
cones in this manuscript are assumed to be non-trivial unless stated otherwise. From
now on, A0 denotes A ∪ {0X } for every subset A ⊂ X . An open cone Q ⊂ X is an
open set such that Q0 is a (non-trivial) cone. An open cone Q is said to be pointed
(resp. convex) if Q0 is a pointed (resp. convex) cone on X . Fixed a subset S ⊂ X ,
we define the cone generated by S as cone(S) := {λs : λ ≥ 0, s ∈ S} and cone(S)

stands for the closure of cone(S). A non-empty convex subset B of a convex cone
C is said to be a base for C if 0X /∈ B and for every x ∈ C\{0X } there exist unique
λx > 0, bx ∈ B such that x = λxbx . Given a cone C ⊂ X , its dual cone is defined
by C∗ := { f ∈ X∗ : f (x) ≥ 0, ∀x ∈ C} and the set of strictly positive functionals by
C# := { f ∈ X∗ : f (x) > 0, ∀x ∈ C, x 
= 0X }. In general, int(C∗) ⊂ C#. It is known
that a convex cone C ⊂ X has a base if and only if C# 
= ∅, and C# 
= ∅ implies that C
is pointed. In particular, for every f ∈ C#, the set B := {x ∈ C : f (x) = 1} is a base
for C. A convex cone C is said to have a bounded base if there exists a base B for C
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such that it is a bounded subset of X . It is known that C has a bounded base if and only
if int(C∗) 
= ∅ if and only if 0X is a denting point for C (see (Jamseson 1970, Theorem
3.8.4) for the first equivalence and García-Castaño et al. 2019; García-Castaño et al.
2015, 2021 for further information about dentability and optimization).

A convex cone C is said to have a (weak) compact base if there exists a base B of C
which is a (weak) compact subset of X . A pointed cone admits a compact base if and
only if it is locally compact if and only if the cone satisfies the strong property (π) if
and only if there exists f ∈ C# such that C ∩ { f ≤ λ} is compact, ∀λ > 0. We refer
the reader to (Köthe 1983, p. 338) for the first equivalence, to (Han 1994,Definition
2.1) for the definition of strong property (π) and to (Qiu 2001, Remark 2.1) for the
last two equivalences. The following two sets are called augmented dual cones of
a given cone C and they were introduced in Kasimbeyli (2010), Ca∗ := {( f , α) ∈
C# × R+ : f (x) − α‖x‖ ≥ 0, ∀x ∈ C} and Ca# := {( f , α) ∈ C# × R+ : f (x) −
α‖x‖ > 0, ∀x ∈ C, x 
= 0X }. Clearly Ca# ⊂ Ca∗. Now, we introduce the following
augmented dual cones Ca∗+ := {( f , α) ∈ C# × R++ : f (x) − α‖x‖ ≥ 0, ∀x ∈ C},
Ca#+ := {( f , α) ∈ C# × R++ : f (x) − α‖x‖ > 0, ∀x ∈ C, x 
= 0X }. It is clear that
Ca#+ ⊂ Ca∗+ .

Let C ⊂ X be a pointed convex cone, then C provides a partial order on X , say
≤, in the following way, x ≤ y ⇔ y − x ∈ C. In this situation, we say that X is
a partially ordered normed space and C is the ordering cone. Let X be a partially
ordered normed space, C ⊂ X the ordering cone, and A ⊂ X a subset. We say that
x0 ∈ A is an efficient (or Pareto minimal) point of A, written x0 ∈ Min(A, C), if
(x0 − C) ∩ A = {x0}. Next, we define some types of proper efficient points. Note that
(i)–(iii) and (v)–(viii) are taken from (Ha 2010, Definition 21.3) (see also (Khan et al.
2015, Definition 2.4.4)), (iv) is taken from Makarov and Rachkovski (1999) adapting
from maximal to minimal proper efficient point, and (ix) is taken from Eichfelder and
Kasimbeyli (2014). The latter was obtained adapting (Borwein 1977, Definition 2) and
was calledBorwein proper efficient point, but we have changed the name to distinguish
(v) and (ix) below. Recall that fixed a subset A ⊂ X and a point x̄ ∈ A, the contingent
cone to A at x̄ is defined by T (A, x̄) := {limn λn(xn − x̄) ∈ X : (λn) ⊂ R++, (xn) ⊂
A, and limn xn = x̄}, see (Aubin and Frankowska 1990) for details.

Definition 1 Let X be a partially ordered normed space, C the ordering cone, and
A ⊂ X a subset.

(i) x0 ∈ A is called a positive proper efficient point of A, x0 ∈ Pos(A, C), if
there exists f ∈ C# such that f (x0) = inf A f .

(ii) x0 ∈ A is called a Hurwicz proper efficient point of A, x0 ∈ Hu(A, C), if
co(K) ∩ (−C) = {0X } for K = cone((A − x0) ∪ C).

(iii) x0 ∈ A is called a Benson proper efficient point of A, x0 ∈ Be(A, C), if
0X ∈ Min(cone(A + C − x0), C).

(iv) x0 ∈ A is called a Hartley proper efficient point of A, x0 ∈ Ha(A, C), if
x0 ∈ Min(A, C) and there existsM > 0 such that if f ∈ C∗ and f (x−x0) < 0
for some x ∈ A, then there exists g ∈ C∗, g 
= 0, satisfying ‖g‖ f (x − x0) ≥
−‖ f ‖Mg(x − x0).

(v) x0 ∈ A is called a Borwein proper efficient point of A, x0 ∈ Bo(A, C), if
cone(A − x0) ∩ (−C) = {0X }.
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(vi) x0 ∈ A is called a Henig global proper efficient point of A, x0 ∈ GHe(A, C),
if x0 ∈ Min(A,K) for some convex cone K such that C \ {0X } ⊂ int(K).

(vii) x0 ∈ A is called a Henig proper efficient point of A, x0 ∈ He(A, C), if C has a
base B and there exists ε > 0 such that cone(A−x0)∩(−cone(B+εBX )) =
{0X }.

(viii) x0 ∈ A is called a super efficient point of A, x0 ∈ SE(A, C), if there exists
ρ > 0 such that cone(A − x0) ∩ (BX − C) ⊂ ρBX .

(ix) x0 ∈ A is a tangentially Borwein proper efficient point of A, written x0 ∈
TBo(A, C), if T (A + C, x0) ∩ (−C) = {0X }.

Proper efficient points were introduced for two main reasons: first, to eliminate cer-
tain anomalous minimal points; second, to establish some equivalent scalar problems
whose solutions provide at least most of the minimal points. We have the follow-
ing chain of inclusions (see Ha 2010, Proposition 21.4) and (Khan et al 2015,
Proposition 2.4.6). Pos(A, C) ⊂ Hu(A, C) ⊂ Be(A, C), Pos(A, C) ⊂ GHe(A, C),
SE(A, C) ⊂ Ha(A, C) ⊂ Be(A, C) ⊂ Bo(A, C), SE(A, C) ⊂ GHe(A, C) ⊂
Be(A, C), SE(A, C) ⊂ He(A, C). In addition, by Jahn (2004, Theorem 3.44) if we
have T (A + C, x0) ⊂ cone(A + C, x0), then Be(A, C) ⊂ TBo(A, C). Furthermore,
under extra assumptions on A or C, we can find more inclusions (again Ha 2010; Khan
et al. 2015).

3 Separation theorems and scalarization for Q-minimal points

Webegin this section introducing a separation property of cones called strict separation
property (SSP for short). Later, we establish two theorems which separate two cones
in a normed space by a sublevel set of a sublinear function. The second separation
theoremwill be key to determining optimality conditions for the proper efficient points
introduced in Sect. 2.

Throughout the paper, we denote by A0 the set A ∪ {0X }, for any A ⊂ X . On the
other hand, every cone C ⊂ X we consider is assumed non-trivial, i.e., {0X } � C � X .
For any cone C, we define the following convex sets C∧ := co(C ∩ SX ) and C∨ :=
co((bd(C) ∩ SX )0) to be used in the following separation property.

Definition 2 Let X be a normed space and C, K cones on X . We say that the pair of
cones (C, K) has the strict separation property (SSP for short) if 0X /∈ C∧ − K∨.

Remark 1 Given two cones C,K ⊂ X we have the following.

(i) (C,K) has SSP ⇔ (C,K) has SSP ⇔ (C,K) has SSP ⇔ (C,K) has SSP.
(ii) Since bd(A) = bd(X \ A) for every subset A ⊂ X and bd(K) = bd(K\{0X })

for every non-trivial cone K ⊂ X , it follows that (C, K) has SSP if and only if
(−C, −K) has SSP if and only if (C, (X \ K)0) has SSP.

In (Kasimbeyli 2010, Definition 4.1) the author introduces the separation property
SP for closed cones under the condition 0X /∈ C∧ − K∨. It is clear that, for closed
cones, SSP implies SP. The reverse is true in reflexive Banach spaces because on such
spaces the closure of the difference of two bounded convex sets equals the difference
of the closures of the sets.
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The following result provides a version of (Kasimbeyli 2010, Theorem 4.3) in the
setting of general normed spaces. It is worth pointing out that we do not need extra
assumptions to obtain an equivalence (such as the cones to be convex and closed or
the space to be of finite dimension).

Theorem 3.1 Let X be a normed space and C,K cones on X. The following assertions
are equivalent.

(i) (C, K) has SSP.
(ii) There exist δ2 > δ1 > 0 and f ∈ X∗ such that ( f , α) ∈ Ca#+ and 0 < f (y) +

α‖y‖ for every α ∈ (δ1, δ2) and y ∈ bd(−K), y 
= 0X .
(iii) There exist δ2 > δ1 > 0 and f ∈ X∗ such that ( f , α) ∈ Ca#+ and f (x)+α‖x‖ <

0 < f (y)+α‖y‖ for every α ∈ (δ1, δ2), x ∈ −co(C), x 
= 0X , and y ∈ bd(−K),
y 
= 0X .

Proof (i) ⇒ (ii) Since 0X /∈ C∧ − K∨, by Fabian (2011,Theorem 2.12) there exist
f ∈ X∗ and β1, β2 ∈ R such that f (0) = 0 < β1 < β2 < f (c − k) = f (c) − f (k)
for every c ∈ C∧, k ∈ K∨. Then f (k) < β1 + f (k) < β2 + f (k) < f (c), for every
c ∈ C∧, k ∈ K∨. Denote S := supK∨ f . Then 0 ≤ S < +∞ because 0X ∈ K∨ and
the set K∨ is bounded. Furthermore, for every c ∈ C∧, k ∈ K∨ we have f (k) ≤ S <

β1 + S < β2 + S ≤ f (c). Therefore, denoting δ1 := β1 + S and δ2 := β2 + S we
get that f (k) < α < f (c) for every c ∈ C∧, k ∈ K∨ and α ∈ (δ1, δ2). On the other
hand, since 0X ∈ K∨, it follows that f (c) > 0 for every c ∈ C∧. Thus f ∈ C#. Now,
fix arbitrary α ∈ (δ1, δ2) and y ∈ bd(K)∩ SX . As f (y) < α and ‖y‖ = 1, we get that
f (y)−α‖y‖ < 0, which leads to f (−y)+α‖y‖ > 0. Therefore f (y)+α‖y‖ > 0 for
every y ∈ −bd(K)\{0X }. Fix now α ∈ (δ1, δ2) and x ∈ (−C) ∩ SX . Again, 0X ∈ K∨
implies f (0X ) = 0 < α < f (−x). Since‖−x‖ = 1,weget that 0 < f (−x)−α‖−x‖,
which leads to f (x)+α‖x‖ < 0. Consequently, f (x)+α‖x‖ < 0 for every x ∈ −C,
x 
= 0X . Clearly ( f , α) ∈ Ca#+ .

(ii) ⇒ (iii) Consider ( f , α) ∈ Ca#+ for some α ∈ (δ1, δ2). Then f (x) + α‖x‖ < 0
for every x ∈ −C, x 
= 0X . Now, sublinearity of f (·)+α‖ ·‖ yields f (x)+α‖x‖ < 0
for every x ∈ −co(C), x 
= 0X . Next, we will prove the precedent inequality for
x ∈ −co(C), x 
= 0X . Assume, contrary to our claim, that there exist some x̄ ∈
−(co(C)\co(C)), x̄ 
= 0X , such that f (x̄) + α‖x̄‖ = 0. Then, there exists a sequence
{x ′

n} ⊂ −co(C) such that lim
n→∞x ′

n = x̄ . Now, we fix some α̂ ∈ (δ1, δ2) such that α < α̂.

Then, lim
n→∞ f (x ′

n)+α̂‖x ′
n‖ = lim

n→∞ f (x ′
n)+α‖x ′

n‖+ lim
n→∞(α̂−α)‖x ′

n‖ = (α̂−α)‖x̄‖ >

0, because x̄ 
= 0X . Hence, there exists some n0 ∈ N such that f (x ′
n0) + α‖x ′

n0‖ > 0,
which is impossible because x ′

n0 ∈ −co(C), x ′
n0 
= 0X .

(iii) ⇒ (i) For any x ∈ (−C) ∩ SX , y ∈ (−bd(K)) ∩ SX , y 
= 0X , and α ∈ (δ1, δ2)

we have f (x) < −α < f (y). The former inequalities also hold for x ∈ co((−C)∩SX )

and y ∈ co(−(bd(K)∩SX )0). Indeed, fix α ∈ (δ1, δ2) and x ∈ −C∧ = co((−C)∩SX ).
Then x = ∑n

i=1 λi xi for λi ≥ 0,
∑n

i=1 λi = 1, xi ∈ (−C) ∩ SX , and f (xi ) < −α.
Therefore, f (x) = ∑n

i=1 λi f (xi ) < −α. For the same reason, −α < f (y) for every
y ∈ −K∨ = co(−(bd(K) ∩ SX )0). This implies that f (y) − f (x) > δ2−δ1

2 for every
x ∈ −C∧ and y ∈ −K∨. To obtain a contradiction, suppose that (C,K) does not have
SSP. Then (−C,−K) does not have SSP either, i.e., 0X ∈ −C∧ − (−K∨). Then, there
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exist two sequences (xn)n ⊂ −C∧ and (yn)n ⊂ −K∨ such that 0 = limn ‖xn − yn‖.
Then, by continuity of f , we have limn f (yn − xn) = 0. As a consequence, there
exists n0 ∈ N such that | f (yn) − f (xn) |< δ2−δ1

2 for every n > n0, a contradiction.
��

Next, a direct consequence of the precedent result.

Corollary 3.2 Let X be a normed space and C, K cones on X. Then (C,K) has SSP if
and only if (co(C),K) has SSP.

Theorem 3.1 establishes that the results in Kasimbeyli (2010) obtained for reflexive
Banach spaces can be extended to general normed spaces under SSP. On the other
hand, the following result is our main separation theorem and it will provide optimal
conditions for the proper minimal points introduced in Sect. 2 and for the approximate
proper efficient points in Sect. 4.

Theorem 3.3 Let X be a normed space and C, K cones on X such that co(C) ∩ K 
=
{0X }. If (C,K) has SSP, then int(K) 
= ∅ and there exist δ2 > δ1 > 0 and f ∈ X∗
such that ( f , α) ∈ Ca#+ and f (x)+α‖x‖ < 0 < f (y)+α‖y‖, for every α ∈ (δ1, δ2),
x ∈ −co(C), x 
= 0X , and y ∈ X\int(−K), y 
= 0X .

Proof Assume that (C, K) has SSP. By Theorem 3.1, there exist δ2 > δ1 > 0 and
f ∈ X∗ such that ( f , α) ∈ Ca#+ and f (x) + α‖x‖ < 0 < f (y) + α‖y‖, for every
α ∈ (δ1, δ2), x ∈ −co(C), x 
= 0X , and y ∈ bd(−K), y 
= 0X . First, we check
that int(K) 
= ∅. Fix an arbitrary x̄ ∈ (−co(C)) ∩ (−K) such that x̄ 
= 0X . Then
f (x̄) + α‖x̄‖ < 0. On the other hand, since x̄ ∈ bd(−K) implies f (x̄) + α‖x̄‖ > 0,
we have x̄ /∈ bd(−K), so x̄ ∈ int(−K). Thus int(K) 
= ∅. Next, we will prove that
0 < f (y) + α‖y‖ for every y ∈ X\int(−K), y 
= 0X . Assume, contrary to our claim,
that there exists ȳ ∈ X \ int(−K) such that ȳ 
= 0X and satisfying f (ȳ) + α‖ȳ‖ ≤ 0.
It is clear that ȳ /∈ bd(−K). Hence ȳ ∈ X\(−K). We consider again the former
x̄ ∈ int(−K) and there exists λ0 ∈ (0, 1) such that x0 = λ0 x̄ + (1− λ0)ȳ ∈ bd(−K).
As a consequence, f (x0) + α‖x0‖ = f (λ0 x̄ + (1 − λ0)ȳ) + α‖λ0 x̄ + (1 − λ0)ȳ‖ ≤
λ0( f (x̄) + α‖x̄‖) + (1− λ0)( f (ȳ) + α‖ȳ‖) < 0, which contradicts x0 ∈ bd(−K). ��

The following result shows the relative position of a pair of cones having SSP.

Corollary 3.4 Let X be a normed space and C, K cones on X. If C and K have SSP,
then either co(C)\{0X } ⊂ int(K) or co(C)\{0X } ⊂ int(X\K).

Proof If (C,K) has SSP, by Corollary 3.2 we get that (co(C),K) has SSP, and then
(−co(C),−K) has SSP, too. By Theorem 3.1, we have (−co(C)\{0X })∩bd(−K) = ∅,
hence (co(C)\{0X }) ∩ bd(K) = ∅. Now, suppose that the assertion of the corollary is
false. Then, there exist c1, c2 ∈ co(C)\{0X } such that c1 ∈ int(K) and c2 ∈ int(X\K).
As c1 ∈ co(C) ∩ K, Theorem 3.3 applies. Hence there exists ( f , α) ∈ Ca#+ such
that f (x) + α‖x‖ < 0 < f (y) + α‖y‖, for every x ∈ −co(C), x 
= 0X , and
y ∈ X\int(−K), y 
= 0X . Now, on one hand, f (−c2) + α‖ − c2‖ < 0 because
c2 ∈ co(C). But on the other hand, since c2 ∈ int(X\K) ⊂ X\K ⊂ X\int(K), it
follows that 0 < f (−c2) + α‖ − c2‖, a contradiction. ��
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We next introduce the notion ofQ-minimal point (from Ha 2010; Khan et al. 2015)
to derive scalarizations for proper efficient points in a unified way.

Definition 3 Let X be a normed space,Q ⊂ X an open cone, and A ⊂ X a subset. We
say that x0 ∈ A is aQ-minimal point of A, x0 ∈ QMin(A), if (A − x0) ∩ (−Q) = ∅.
The following notion is directly related to Q-minimal points.

Definition 4 Let X be a partially ordered normed space, C ⊂ X the ordering cone, and
Q ⊂ X an open cone. We say thatQ dilates C (orQ is a dilation of C) if C \{0X } ⊂ Q.

The following result shows that the proper efficient points introduced in Definition 1
are Q-minimal points with Q being appropiately chosen cones. Assertions (i)–(viii)
below areAssertions (iii)–(x) from (Ha 2010, Theorem21.7) respectively, underminor
adaptations (see also (Khan et al. 2015, Theorem 2.4.11)). On the other hand, assertion
(ix) below can be proved in a similar way as (ii) and (iii) in (Ha 2010, Theorem 21.7)
so we omit the proof. We need more terminology. Let X be a partially ordered normed
space, C ⊂ X the ordering cone, and B a base of C. Let δB := inf{‖b‖: b ∈ B} >

0, for every 0 < η < δB we define a convex, pointed and open cone Vη(B) :=
cone(B + ηB◦

X ). On the other hand, given 0 < ε < 1 we define another open cone
C(ε) := {x ∈ X : d(x, C) < εd(x,−C)}.
Theorem 3.5 Let X be a partially ordered normed space, C the ordering cone, A ⊂ X
a subset, and x0 ∈ A. The following statements hold.

(i) x0 ∈ Pos(A, C) if and only if x0 ∈ QMin(A) forQ = {x ∈ X : f (x) > 0} and
some f ∈ C#.

(ii) x0 ∈ Hu(A, C) if and only if x0 ∈ QMin(A) for Q = −X\co(K) and K :=
cone((A − x0) ∪ C).

(iii) x0 ∈ Be(A, C) if and only if x0 ∈ QMin(A) for Q = −X\cone(A − x0 + C).
(iv) x0 ∈ Ha(A, C) if and only if x0 ∈ QMin(A) for Q = C(ε) and ε > 0.
(v) x0 ∈ Bo(A, C) if and only if x0 ∈ QMin(A) for Q an open cone dilating C.
(vi) x0 ∈ GHe(A, C) if and only if x0 ∈ QMin(A) for Q a pointed convex open

cone dilating C.
(vii) x0 ∈ He(A, C) if and only if x0 ∈ QMin(A) for Q = Vη(B), 0 < η < δB, and

a base B of C.
(viii) x0 ∈ SE(A, C) if and only if x0 ∈ QMin(A) for Q = Vη(B), 0 < η < δB, and

B a bounded base of C.
(ix) x0 ∈ TBo(A, C) if and only if x0 ∈ QMin(A) for Q = −X\T (A + C, x0).

In Ha (2010), the author provides some necessary and sufficient conditions for a Q-
minimal point to be a solution for a scalar optimization problem. In the following
result, we provide a necessary condition in terms of SSP for Q-minimal points to be
a solution of another scalar problem.

Theorem 3.6 Let X be a partially ordered normed space, C the ordering cone,Q ⊂ X
an open cone, and x0 ∈ A ⊂ X. Assume that x0 ∈ QMin(A) and C ∩ Q 
= ∅. If
(C, Q0) has SSP, then there exists ( f , α) ∈ Ca#+ such that

min
x∈A

f (x − x0) + α‖x − x0‖

123



Sublinear scalarizations for proper and approximate proper... 375

is attained only at x0.

Proof It is not restrictive to assume that x0 = 0X (by translation we obtain the general
case). Since (C, Q0) has SSP, Theorem 3.3 applies and there exists ( f , α) ∈ Ca#+ such
that f (c) + α‖c‖ < 0 < f (x) + α‖x‖ for every c ∈ −C\{0X } and x ∈ X\(−Q).
Since A ⊂ X\(−Q), it follows that 0 < f (x) + α‖x‖ for every x ∈ A, x 
= 0X . ��
In the following result, we establish a particular version of the former one for each
type of proper efficient point introduced in Definition 1.

Corollary 3.7 Let X be a partially ordered normed space, C the ordering cone, and
x0 ∈ A ⊂ X. Assume that either of the following statements holds.

(i) x0 ∈ Pos(A, C) and take g ∈ C# such that x0 ∈ QMin(A, C) for Q = {x ∈
X : g(x) > 0}.

(ii) x0 ∈ Hu(A, C) and take Q = −X\co(K) for K := cone((A − x0) ∪ C).
(iii) x0 ∈ Be(A, C) and take Q = −X\cone(A − x0 + C).
(iv) x0 ∈ Ha(A, C) and take Q = C(ε) for some ε > 0.
(v) x0 ∈ Bo(A, C) and take Q an open cone dilating C.
(vi) x0 ∈ GHe(A, C) and take Q a pointed convex open cone dilating C.
(vii) x0 ∈ He(A, C) and take Q = Vη(B), 0 < η < δB, for some base B of C.
(viii) x0 ∈ SE(A, C) and take Q = Vη(B), 0 < η < δB, for some bounded base B

of C.
(ix) x0 ∈ TBo(A, C) and take Q = −X\T (A + C, x0).

If (C, Q0) has SSP, then there exists ( f , α) ∈ Ca#+ such that

min
x∈A

f (x − x0) + α‖x − x0‖ (1)

is attained only at x0.

Proof We begin noting the inclusions C \ {0X } ⊂ Q for (i)–(ix). The inclusion for
the cases (i) and (iv)–(ix) is trivial. For case (ii), we apply the following chain of
equivalences: co(K) ∩ (−C) = {0X } ⇔ co(K) ∩ (−C\{0X }) = ∅ ⇔ −C\{0X } ⊂
X\co(K) = −Q. For case (iii) we apply K ∩ (−C) = {0X } ⇔ K ∩ (−C\{0X }) =
∅ ⇔ −C\{0X } ⊂ X\K = Q.

Now assume that either of (i)–(ix) holds. By Theorem 3.5, x0 ∈ QMin(A, C) and
by the former paragraph, C ∩ Q 
= ∅. Then Theorem 3.6 applies. ��

The following result characterizes Benson proper minimal points via (1).

Corollary 3.8 Let X be a partially ordered normed space, C the ordering cone, and
x0 ∈ A ⊂ X. Assume that (−C, cone(A − x0 + C)) has SSP. Then x0 ∈ Be(A, C) if
and only if there exists ( f , α) ∈ Ca#+ such that min

x∈A
f (x − x0)+α‖x − x0‖ is attained

only at x0.

Proof It is not restrictive to assume that x0 = 0X . ⇒ As (−C, cone(A + C)) has
SSP, then (C, −(X\cone(A + C))0) has SSP too. Therefore, Remark 1 yields that
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(−C, (X\cone(A + C))0) has SSP as well. Now, apply Theorem 3.5 (iii) and Corol-
lary 3.7 (iii). ⇐ Fix ( f , α) ∈ Ca#+ such that min

x∈A
f (x) + α‖x‖ is attained only at 0X .

By (Gasimov 2001, Theorem 1) 0X ∈ Be(A, C). ��
(Kasimbeyli 2010, Theorem 5.8) also characterizes Benson proper efficient points

via (1), but under more restrictive assumptions than Corollary 3.8 and, in addition,
applying the separation property to a sequence of ε-conic neighbourhoods instead of
to an only cone −cone(A − x0 + C).

In the following, we study sufficient conditions to have GHe(A, C) = Be(A, C).
Such equality will lead to a characterization for Henig global proper efficient points
via (1). The set GHe(A, C) is contained in the set Be(A, C) whenever C is a closed,
convex, and pointed cone (see Guerraggio et al. 1994). The next result establishes the
equality of such sets under some extra assumptions.

Theorem 3.9 Let X be a partially ordered normed space, C the ordering cone, and
A ⊂ X a subset such that A + C is convex. If C has a weakly compact base, then
GHe(A, C) = Be(A, C).

Proof ⊂ is provided by Khan et al. (2015, Proposition 2.4.6 (i)) for separated topo-
logical vector spaces and non closed cones. ⊃ Fix an arbitrary x0 ∈ Be(A, C).
It is not restrictive to assume that x0 = 0X . Then 0X ∈ Min(A, C) and 0X ∈
Min(cone(A+ C), C). Hence (−C) ∩ cone(A+ C) = {0X }. On the other hand, A+ C
is convex. Then cone(A + C) is convex, implying that cone(A + C) is weak closed.
Now, Kasimbeyli (2010, Theorem 5.2) applies and there exists a convex cone K such
that −C\{0X } ⊂ int(K) and K ∩ cone(A + C) = {0X }. Then 0X ∈ GHe(A, C). ��
The following result is a direct consequence of Corollary 3.8 and Theorem 3.9.

Corollary 3.10 Let X be a partially ordered normed space, C the ordering cone, and
x0 ∈ A ⊂ X such that A + C is convex. Assume that C has a weakly compact base.
If (−C, cone(A − x0 + C)) has SSP, then x0 ∈ GHe(A, C) if and only if there exists
( f , α) ∈ Ca#+ such that minx∈A{ f (x − x0) + α‖x − x0‖} is attained only at x0.

Corollary 3.8 provides a sufficient condition to find elements in TBo(A, C). In
the following, we will establish that it becomes a characterization if we assume the
following geometric condition on x0 ∈ A. It is said that a set A ⊂ X is starshaped at
some x0 ∈ A, if λx+ (1−λ)x0 ∈ A for every x ∈ A and λ ∈ [0, 1]. Since (Jahn 2004,
Corollary 3.46) establishes that T (A, x0) = cone(A − x0) whenever A is starshaped
at x0 ∈ A, it follows the equivalence x0 ∈ Be(A, C) ⇔ x0 ∈ TBo(A, C) whenever
A+C is starshaped at x0 ∈ A. Consequently, we obtain the following characterization
for tangentially Borwein proper efficient points.

Corollary 3.11 Let X be a partially ordered normed space, C the ordering cone, and
x0 ∈ A ⊂ X. Assume that A+ C is starshaped at x0 and that C has a weakly compact
base. If (−C, cone(A − x0 + C)) has SSP, then x0 ∈ TBo(A, C) if and only if there
exists ( f , α) ∈ Ca#+ such that minx∈A{ f (x − x0) + α‖x − x0‖} is attained only at x0.

We finish this section with the following problem for future research.
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Problem 3.12 Is it possible to characterize Q-minimal points via SSP assuming any
extra conditions?

In Theorem 3.6 we provide necessary conditions for Q-minimal points. On the other
hand, in Corollaries 3.8, 3.10, and 3.11, we establish characterizations of Benson,
globalHenig, and tangentiallyBorwein proper efficient points, respectively, answering
the former problem for such particular kinds ofQ-minimal points. So, it is of interest
to solve Problem 3.12 for any of the other types of Q-minimal points.

4 Scalarization for approximate proper efficient points

In this section, we obtain optimal conditions through scalarization for approximate
proper efficient points in the senses of Benson and Henig. We obtain our results after
extending the approach for Benson and Henig proper efficient points in the precedent
section.

Let us introduce the terminology of approximate proper efficiency. From now on,
the ordering cone C ⊂ X is assumed to be closed, convex, and pointed. The notions
of approximate efficiency are defined replacing the ordering cone C by a non-empty
set D that approximates it. For a non-empty set D ⊂ X\{0X }, we define the set
D(ε) := εD, for ε > 0, and D(0) := cone(D) \ {0X }. We also introduce the family
of sets H := {∅ 
= D ⊂ X\{0X } : cone(D) ∩ (−C) = {0X }}. Notice that D(ε) ∈ H,
for every D ∈ H and ε ≥ 0. Now, fixed any D ∈ H, we introduce the family
G(D) := {C′ ⊂ X : C′ is an open convex cone, C\{0X } ⊂ C′, D ∩ (−C′) = ∅}. Note
that G(D(ε)) = G(D) for every ε ≥ 0. The following notion was introduced by
Gutiérrez et al. (2012) for locally convex spaces.

Definition 5 Let X be a partially ordered normed space, C the ordering cone, A ⊂ X
a subset, ε ≥ 0, and D ∈ H. We say that x0 ∈ A is a Benson (D, ε)-efficient point of
A, written x0 ∈ Be(A, C, D, ε), if 0X ∈ Min(cone(A + D(ε) − x0), C).

For the notion of approximateHenig efficiencywe take the characterization (Gutiér-
rez et al. 2016, Theorem 3.3 (c)) (adapted to normed spaces) as a definition instead of
the original (Gutiérrez et al. 2016, Definition 3.1).

Definition 6 Let X be a partially ordered normed space, C the ordering cone, A ⊂ X
a subset, ε ≥ 0, and D ∈ H. We say that x0 ∈ A is a Henig (D, ε)-efficient point
of A, written x0 ∈ He(A, C, D, ε), if there exists CD,ε ∈ G(D) such that cone(A +
D(ε) − x0) ∩ (−CD,ε) = ∅.

It is clear that He(A, C, D, ε) ⊂ Be(A, C, D, ε).We begin our analysis determining
two necessary conditions for approximate proper efficiency in the sense of Benson.
FollowingGutiérrez et al. (2006),wedenote byAMin(g, A, ε) the set of ε-approximate
solutions of the scalar optimization problem Min

x∈A
g(x), i.e., AMin(g, A, ε) = {x ∈

A : g(x) − ε ≤ g(z), ∀z ∈ A}, where g : X → R, A ⊂ X , A 
= ∅, and ε > 0. By
means of approximate solutionswere derived necessary and sufficient conditions for ε-
efficient solutions in Gutiérrez et al. (2006). On the other hand, for every ( f , α) ∈ Ca#+
and x0 ∈ A, we denote by g( f ,α,x0) the mapping defined by g( f ,α,x0)(x) = f (x −
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x0) + α‖x − x0‖ for every x ∈ X . For simplicity of notation, we write g( f ,α) instead
of the sublinear map g( f ,α,0X ).

Theorem 4.1 Let X be a partially ordered normed space, C the ordering cone, x0 ∈
A ⊂ X, ε ≥ 0, and D ∈ H. Assume that (−C, cone(A − x0 + D(ε))) has SSP. If
x0 ∈ Be(A, C, D, ε), then there exists ( f , α) ∈ Ca#+ such that:

(i) min
x∈(A+D(ε))∪{x0}

f (x − x0) + α‖x − x0‖ is attained only at x0.

(ii) x0 ∈ AMin(g( f ,α,x0), A, λ) for λ = inf
d∈D(ε)

f (d) + α‖d‖.

Proof It is not restrictive to assume that x0 = 0X . Since (−C, cone(A + D(ε))) has
SSP, then (C, −cone(A + D(ε))) has SSP too. Therefore, by Remark 1, (C, −(X \
cone(A + D(ε))0)) has SSP as well. As 0X ∈ Be(A, C, D, ε) implies C\{0X } ⊂
−X\cone(A + D(ε)), Theorem 3.3 applies and there exists ( f , α) ∈ Ca#+ such that
f (c)+α‖c‖ < 0 < f (x)+α‖x‖ for every c ∈ −C, c 
= 0X , and x ∈ cone(A+D(ε)),
x 
= 0X . Since A+D(ε) ⊂ cone(A+D(ε)), it follows that 0 < f (x)+α‖x‖ for every
x ∈ A+D(ε), x 
= 0X . Then, we have (i). Let us prove (ii). Since g( f ,α) is a sublinear
map, we have 0 < f (x) + α‖x‖ + f (d) + α‖d‖ for every x ∈ A, x 
= 0X , and
d ∈ D(ε). Fixing x = 0X , we get that λ := inf

d∈D(ε)
f (d) + α‖d‖ ≥ 0. Consequently,

0 ≤ f (x) + α‖x‖ + λ for every x ∈ A, i.e., g( f ,α,0X )(0X ) − λ ≤ g( f ,α,0X )(x) for
every x ∈ A. Then 0X ∈ AMin(g( f ,α,x0), A, λ). ��

Let us recall that a function g : X → R is strongly monotonically increasing if for
each x , y ∈ X , y − x ∈ C\{0X } ⇒ g(x) < g(y). It is clear that g( f ,α) is strongly
monotonically increasing for every ( f , α) ∈ Ca#+ . Monotonicity will be used in the
proof of the following result showing that the necessary condition (i) in Theorem 4.1
is also sufficient.

Theorem 4.2 Let X be a partially ordered normed space, C the ordering cone, x0 ∈
A ⊂ X, ε ≥ 0, and D ∈ H. If there exists ( f , α) ∈ Ca#+ such that f (x − x0) + α‖x −
x0‖ ≥ 0 for every x ∈ A + D(ε), then x0 ∈ Be(A, C, D, ε).

Proof This proof is an adaptation of (Gasimov et al. 2001,Theorem 1). It is not restric-
tive to assume that x0 = 0X . Fix ( f , α) ∈ Ca#+ such that f (x) + α‖x‖ ≥ 0 for every
x ∈ A + D(ε). Then f (y) + α‖y‖ ≥ 0 for every y ∈ A + D(ε). We will show
that 0X ∈ Be(A, C, D, ε). Clearly, f (y) + α‖y‖ ≥ 0 for every y ∈ cone(A + D(ε))

and, by continuity, f (y) + α‖y‖ ≥ 0 for every y ∈ cone(A + D(ε)). Now, assume
that 0X /∈ Be(A, C, D, ε). Then there exists ȳ ∈ cone(A + D(ε)) ∩ (−C\{0X }).
But strongly monotonicity of g( f ,α) (Kasimbeyli 2010, Theorem 3.5) implies that
f (ȳ) + α‖ȳ‖ < 0, a contradiction. ��
As a consequence of the former result and Theorem 4.1 (i) we obtain the following

characterization for approximate proper efficiency in the sense of Benson.

Corollary 4.3 Let X be a partially ordered normed space, C the ordering cone,
x0 ∈ A ⊂ X, ε ≥ 0, and D ∈ H. Assume that (−C, cone(A − x0 + D(ε))) has
SSP. Then x0 ∈ Be(A, C, D, ε) if and only if there exists ( f , α) ∈ Ca#+ such that

min
x∈(A+D(ε))∪{x0}

f (x − x0) + α‖x − x0‖ is attained only at x0.
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Unfortunately, the necessary condition (ii) in Theorem 4.1 is not sufficient, as the
following example shows.

Example 1 Take X = R
2, the norm ‖(x, y)‖ = √

x2 + y2, C = cone({(1, 1)}), A =
{(x, 0) ∈ R

2 : −1 ≤ x ≤ 0}, and D = {(x, y) ∈ R
2 : ‖(x, y)‖ = 1, x ≥ 0, y ≤ 0}.

Fix ε = 1, x0 = (0, 0) ∈ A, f = (1, 1) ∈ X∗, and α = 4
3 > 0. Then (0, 0) ∈

AMin(g( f ,α,x0), A, λ) but (0, 0) /∈ Be(A, C, D, ε).

Proof If λ = inf
d∈D(ε)

f (d) + α‖d‖ = 1
3 and g( f ,α,x0)(x, 0) = x + 4

3
| x |= − 1

3 x ≥
0 > − 1

3 = −λ, for every−1 ≤ x ≤ 0, then (0, 0) ∈ AMin(g( f ,α,x0), A, λ). However,
(−1,−1) ∈ cone(A + D(ε)) because (−1,−1) = (−1, 0) + (0,−1), (−1, 0) ∈ A,
and (0,−1) ∈ D(ε). Therefore, (−1,−1) ∈ (−C) ∩ cone(A + D(ε)), which implies
that (0, 0) /∈ Be(A, C, D, ε). ��
The preceding example leads us to the following natural question.

Problem 4.4 Is it possible to characterize approximate Benson proper efficient points
via ε-approximate solutions assuming any extra conditions?

We devote the rest of this section to study approximate Henig proper efficiency. An
easy adaptation of the proof of Theorem 4.1 gives the following necessary conditions
for approximate proper solution in the sense of Henig.

Theorem 4.5 Let X be a partially ordered normed space, C the ordering cone, A ⊂
X a subset, ε ≥ 0, and D ∈ H. Let x0 ∈ He(A, C, D, ε) and the corresponding
CD,ε ∈ G(D). If (−CD,ε, cone(A + D(ε) − x0)) has SSP, then there exists ( f , α) ∈
(CD,ε)

a#+ ⊂ Ca#+ such that:

(i) min
x∈(A+D(ε))∪{x0}

f (x − x0) + α‖x − x0‖ is attained only at x0.

(ii) x0 ∈ AMin(g( f ,α,x0), A, λ) for λ = inf
d∈D(ε)

f (d) + α‖d‖.

Since He(A, C, D, ε) ⊂ Be(A, C, D, ε), Theorem 4.1 also provides necessary condi-
tions for Henig approximate proper solutions. Furthermore, when the former inclusion
becomes a set equality, Corollary 4.3 provides a characterization Henig approximate
proper solutions. This leads to the last results in the work. Before stating them, we
introduce the notion of approximating family of cones.

Definition 7 Let X be a partially ordered normed space and C the ordering cone.

(i) Let F = {Cn ⊂ X : n ∈ N} be a family of decreasing (with respect to the
inclusion) solid, closed, and pointed convex cones. We say that F approximates
C if C \ {0X } ⊂ int(Cn) eventually (i.e., there exists n0 ∈ N such that C\{0X } ⊂
int(Cn) for every n ≥ n0) and C = ∩nCn .

(ii) Let F be an approximating family of cones for C. We say that F separates C
from a closed cone K ⊂ X if C ∩ K = {0X } ⇒ Cn ∩ K = {0X } eventually.

Given D ⊂ X\{0X }, ε > 0, and x ∈ X , we denote byS(D(ε), x) the set of all families
of cones that approximate C and separate C from the cone −cone(A − x + D(ε)).
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Corollary 4.6 Let X be a partially ordered normed space, C the ordering cone, x0 ∈
A ⊂ X, ε ≥ 0, and D ∈ H. Assume that (−C, cone(A − x0 + D(ε))) has SSP and
S(D(ε), x0) 
= ∅. Then x0 ∈ He(A, C, D, ε) if and only if there exists ( f , α) ∈ Ca#+
such that min

x∈(A+D(ε))∪{x0}
f (x − x0) + α‖x − x0‖ is attained only at x0.

Proof By Gutiérrez et al. (2019, Theorem 3.1) x0 ∈ He(A, C, D, ε) ⇔ x0 ∈
Be(A, C, D, ε). Now, Corollary 4.3 applies. ��

Note that S(D(ε), x0) 
= ∅ whenever X is finite-dimensional (Henig 1982, Theo-
rem 2.1) or if C has a weakly compact base and cone(A− x0 +D(ε)) is weakly closed
(Gutiérrez et al. 2019, Theorem 2.3). Therefore, we have the following.

Corollary 4.7 Let X be a partially ordered normed space, C the ordering cone, x0 ∈
A ⊂ X, ε ≥ 0, and D ∈ H. Assume that (−C, cone(A− x0 + D(ε))) has SSP and at
least one of the following assertions hold:

(i) X has finite dimension.
(ii) C has a weakly compact base and cone(A − x0 + D(ε)) is weakly closed.

Then x0 ∈ He(A, C, D, ε) if and only if there exists ( f , α) ∈ Ca#+ such that

min
x∈(A+D(ε))∪{x0}

f (x − x0) + α‖x − x0‖,

is attained only at x0.

5 Conclusions

In this work, we provide optimal sufficient conditions with a sublinear function for
Henig global proper efficient points, Henig proper efficient points, super efficient
points, Benson proper efficient points, Hartley proper efficient points, Hurwicz proper
efficient points, Borwein proper efficient points, and tangentially Borwein proper
efficient points; in the case of Benson proper efficiency the optimal condition becomes
a characterization. The approach is done in a unified way considering such proper
efficient points asQ-minimal points. For every type of proper efficient point we apply
a separation property to a fixedQ-dilation of the ordering cone. For future research we
ask if it is possible to characterizeQ-minimal points in general via SSP assuming any
extra conditions. In the last part of the work, we adapt our arguments to obtain new
characterizations of Benson and Henig approximate proper efficient points through
scalarizations. We also provide necessary conditions for approximate Benson proper
efficient points via ε-approximate solutions and we ask if it is possible to extend such
a result to a characterization assuming any extra condition. Our results are established
in the setting of normed spaces and they do not impose any kind of convexity and
boundedness assumption.
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