5 research outputs found

    Hemodynamic-informed parcellation of fMRI data in a Joint Detection Estimation framework

    Get PDF
    International audienceIdentifying brain hemodynamics in event-related functional MRI (fMRI) data is a crucial issue to disentangle the vascular response from the neuronal activity in the BOLD signal. This question is usually addressed by estimating the so-called Hemodynamic Response Function (HRF). Voxelwise or region-/parcelwise inference schemes have been proposed to achieve this goal but so far all known contributions commit to pre-specified spatial supports for the hemodynamic territories by defining these supports either as individual voxels or a priori fixed brain parcels. In this paper, we introduce a Joint Parcellation-Detection-Estimation (JPDE) procedure that incorporates an adaptive parcel identification step based upon local hemodynamic properties. Efficient inference of both evoked activity, HRF shapes and supports is then achieved using variational approximations. Validation on synthetic and real fMRI data demonstrate the JPDE performance over standard detection estimation schemes and suggest it as a new brain exploration tool

    Hemodynamic-Informed Parcellation of fMRI Data in a Joint Detection Estimation Framework

    Get PDF
    Submitted to IEEE Transactions on Medical ImagingIdentifying brain hemodynamics in event-related functional MRI (fMRI) data is a crucial issue to disentangle the vascular response from the neuronal activity in the BOLD signal. This question is usually addressed by estimating the so-called Hemodynamic Response Function (HRF). Voxelwise or region-/parcelwise inference schemes have been proposed to achieve this goal but so far all known contributions commit to pre-specified spatial supports for the hemodynamic territories by defining these supports either as individual voxels or a priori fixed brain parcels. In this paper, we introduce a Joint Parcellation-Detection-Estimation (JPDE) procedure that incorporates an adaptive parcel identification step based upon local hemodynamic properties. Efficient inference of both evoked activity, HRF shapes and supports is then achieved using variational approximations. Validation on synthetic and real fMRI data demonstrates the JPDE performance over standard detection estimation schemes and suggests it as a new brain exploration tool

    Physiological Gaussian Process Priors for the Hemodynamics in fMRI Analysis

    Full text link
    Background: Inference from fMRI data faces the challenge that the hemodynamic system that relates neural activity to the observed BOLD fMRI signal is unknown. New Method: We propose a new Bayesian model for task fMRI data with the following features: (i) joint estimation of brain activity and the underlying hemodynamics, (ii) the hemodynamics is modeled nonparametrically with a Gaussian process (GP) prior guided by physiological information and (iii) the predicted BOLD is not necessarily generated by a linear time-invariant (LTI) system. We place a GP prior directly on the predicted BOLD response, rather than on the hemodynamic response function as in previous literature. This allows us to incorporate physiological information via the GP prior mean in a flexible way, and simultaneously gives us the nonparametric flexibility of the GP. Results: Results on simulated data show that the proposed model is able to discriminate between active and non-active voxels also when the GP prior deviates from the true hemodynamics. Our model finds time varying dynamics when applied to real fMRI data. Comparison with Existing Method(s): The proposed model is better at detecting activity in simulated data than standard models, without inflating the false positive rate. When applied to real fMRI data, our GP model in several cases finds brain activity where previously proposed LTI models does not. Conclusions: We have proposed a new non-linear model for the hemodynamics in task fMRI, that is able to detect active voxels, and gives the opportunity to ask new kinds of questions related to hemodynamics.Comment: 18 pages, 14 figure

    Subject-level Joint Parcellation-Detection-Estimation in fMRI

    Get PDF
    Brain parcellation is one of the most important issues in functional MRI (fMRI) data analysis. This parcellation allows establishing homogeneous territories that share the same functional properties. This paper presents a model-based approach to perform a subject-level parcellation into hemodynamic territories with similar hemodynamic features which are known to vary between brain regions. We specifically investigate the use of the Joint Parcellation-Detection-Estimation (JPDE) model initially proposed in [1] to separate brain regions that match different hemodynamic response function (HRF) profiles. A hierarchical Bayesian model is built and a variational expectation maximiza-tion (VEM) algorithm is deployed to perform inference. A more complete version of the JPDE model is detailed. Validation on synthetic data shows the robustness of this model to varying signal-to-noise ratio (SNR) as well as to different initializations. Our results also demonstrate that good parcellation performance is achieved even though the parcels do not involve the same amount of activation. On real fMRI data acquired in children during a language paradigm, we retrieved a parcellation along the superior temporal sulcus of the left hemisphere that matches the gradient of activation dynamics already reported in the literature

    Hemodynamic-Informed Parcellation of fMRI Data in a Joint Detection Estimation Framework

    Get PDF
    Identifying brain hemodynamics in event-related functional MRI (fMRI) data is a crucial issue to disentangle the vascular response from the neuronal activity in the BOLD signal. This question is usually addressed by estimating the so-called Hemodynamic Response Function (HRF). Voxelwise or region-/parcelwise inference schemes have been proposed to achieve this goal but so far all known contributions commit to pre-specified spatial supports for the hemodynamic territories by defining these supports either as individual voxels or a priori fixed brain parcels. In this paper, we introduce a Joint Parcellation-Detection-Estimation (JPDE) procedure that incorporates an adaptive parcel identification step based upon local hemodynamic properties. Efficient inference of both evoked activity, HRF shapes and supports is then achieved using variational approximations. Validation on synthetic and real fMRI data demonstrates the JPDE performance over standard detection estimation schemes and suggests it as a new brain exploration tool
    corecore