40,848 research outputs found

    Healthcare Robotics

    Full text link
    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key stakeholders, care settings, and tasks; reviewing recent advances in healthcare robotics; and outlining major challenges and opportunities to their adoption.Comment: 8 pages, Communications of the ACM, 201

    A review on humanoid robotics in healthcare

    Get PDF
    Humanoid robots have evolved over the years and today it is in many different areas of applications, from homecare to social care and healthcare robotics. This paper deals with a brief overview of the current and potential applications of humanoid robotics in healthcare settings. We present a comprehensive contextualization of humanoid robots in healthcare by identifying and characterizing active research activities on humanoid robot that can work interactively and effectively with humans so as to fill some identified gaps in current healthcare deficiency

    Introduction to robotics for medical professionals

    Get PDF
    The course “Introduction to robotics for medical professionals” aims to present a common ground for students of medical and engineering disciplines alike. This will pave the way for further disciplinary integration of medical professionals in theresearch, development, and effective use of medical robotics. Medical professionals and students will better understand the basic robotics principles and can more efficiently contribute to interdisciplinary teams working on the development andimplementation of healthcare robotics. The underlying objective of this chapter is to facilitate further adoption of robotics in healthcare environments. As medical professionals will be able to better understand the potential and limitations of robotics, they may provide complementary insights to engineers and roboticists, and actively collaborate in robotic projects

    How Have Robotics Impacted Healthcare?

    Get PDF
    In lieu of an abstract, below is the first paragraph of the paper. Robots are virtual or mechanical objects that are used in facilitating the occurrence of multiple everyday activities. They have been heavily depended upon in U.S. industry, since 1961, and in health care after the mid 1980s. The virtual and mechanical robots have assisted people in a variety of tasks within and outside the laboratory and operating rooms. Some examples of robot intervention include medication administration, assisting children with autism, telemedicine, and transferring / lifting patients. Although robots have made many activities easier to handle, there have been various consequences associated with utilizing such technology which has impacted ethical policy and pharmacist staffing

    Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications

    Get PDF
    Soft robotics is an emerging discipline that employs soft flexible materials such as fluids, gels and elastomers in order to enhance the use of robotics in healthcare applications. Compared to their rigid counterparts, soft robotic systems have flexible and rheological properties that are closely related to biological systems, thus allowing the development of adaptive and flexible interactions with complex dynamic environments. With new technologies arising in bioengineering, the integration of living cells into soft robotic systems offers the possibility of accomplishing multiple complex functions such as sensing and actuating upon external stimuli. These emerging bio-hybrid systems are showing promising outcomes and opening up new avenues in the field of soft robotics for applications in healthcare and other field

    Digi-HTA: Health technology assessment framework for digital healthcare services

    Get PDF
    Health technology assessment (HTA) refers to the systematic evaluation of the properties, effects, and/or impacts of health technology. The main purpose of the assessment is to inform decisionmakers in order to better support the introduction of new health technologies. New digital healthcare solutions like mHealth, artificial intelligence (AI), and robotics have brought with them a great potential to further develop healthcare services, but their introduction should follow the same criteria as that of other healthcare methods. They must provide evidence-based benefits and be safe to use, and their impacts on patients and organizations need to be clarified. The first objective of this study was to describe the state-of-the-art HTA methods for mHealth, AI, and robotics. The second objective of this study was to evaluate the domains needed in the assessment. The final aim was to develop an HTA framework for digital healthcare services to support the introduction of novel technologies into Finnish healthcare. In this study, the state-of-the-art HTA methods were evaluated using a literature review and interviews. It was noted that some good practices already existed, but the overall picture showed that further development is still needed, especially in the AI and robotics fields. With the cooperation of professionals, key aspects and domains that should be taken into account to make fast but comprehensive assessments were identified. Based on this information, we created a new framework which supports the HTA process for digital healthcare services. The framework was named Digi-HTA.Health technology assessment (HTA) refers to the systematic evaluation of the properties, effects, and/or impacts of health technology. The main purpose of the assessment is to inform decisionmakers in order to better support the introduction of new health technologies. New digital healthcare solutions like mHealth, artificial intelligence (AI), and robotics have brought with them a great potential to further develop healthcare services, but their introduction should follow the same criteria as that of other healthcare methods. They must provide evidence-based benefits and be safe to use, and their impacts on patients and organizations need to be clarified. The first objective of this study was to describe the state-of-the-art HTA methods for mHealth, AI, and robotics. The second objective of this study was to evaluate the domains needed in the assessment. The final aim was to develop an HTA framework for digital healthcare services to support the introduction of novel technologies into Finnish healthcare. In this study, the state-of-the-art HTA methods were evaluated using a literature review and interviews. It was noted that some good practices already existed, but the overall picture showed that further development is still needed, especially in the AI and robotics fields. With the cooperation of professionals, key aspects and domains that should be taken into account to make fast but comprehensive assessments were identified. Based on this information, we created a new framework which supports the HTA process for digital healthcare services. The framework was named Digi-HTA

    Needle and Biopsy Robots: a Review

    Get PDF
    Purpose of the review Robotics is a rapidly advancing field, and its introduction in healthcare can have a multitude of benefits for clinical practice. Especially, applications depending on the radiologist\u2019s accuracy and precision, such as percutaneous interventions, may profit. This paper provides an overview of recent robot-assisted percutaneous solutions. Recent findings Percutaneous interventions are relatively simple and the quality of the procedure increases a lot by introducing robotics due to the improved accuracy and precision. The success of the procedure is heavily dependent on the ability to merge pre- and intraoperative images, as an accurate estimation of the current target location allows to exploit the robot\u2019s capabilities. Summary Despite much research, the application of robotics in some branches of healthcare is not commonplace yet. Recent advances in percutaneous robotic solutions and imaging are highlighted, as they will pave the way to more widespread implementation of robotics in clinical practic

    Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments during the COVID-19 Pandemic

    Get PDF
    Several challenges to guarantee medical care have been exposed during the current COVID-19 pandemic. Although the literature has shown some robotics applications to overcome the potential hazards and risks in hospital environments, the implementation of those developments is limited, and few studies measure the perception and the acceptance of clinicians. This work presents the design and implementation of several perception questionnaires to assess healthcare provider's level of acceptance and education toward robotics for COVID-19 control in clinic scenarios. Specifically, 41 healthcare professionals satisfactorily accomplished the surveys, exhibiting a low level of knowledge about robotics applications in this scenario. Likewise, the surveys revealed that the fear of being replaced by robots remains in the medical community. In the Colombian context, 82.9% of participants indicated a positive perception concerning the development and implementation of robotics in clinic environments. Finally, in general terms, the participants exhibited a positive attitude toward using robots and recommended them to be used in the current panorama

    Social Robotics in Healthcare: Implications for Policy

    Get PDF
    Social robots are complex machines which can interact with people and with each other. Within healthcare, social robots are seen as a possible way to address the growing human resource and economic pressures on healthcare systems. The purpose of this project was to get an overview of the social robotics field and its focus in terms of health and wellness applications, current issues/challenges in the field, and implications for health policy. We conducted a literature review of research papers focused on social robotics. Literature was collected from the following databases: ScienceDirect, Compendex, IEEE, Communication Abstracts, Scopus, OVID(All), EBSCO(All), Academic One File, Web of Science, and JSTOR.  Out of 489 articles, we included 171 (based on social-science related content; excluded: pure technical papers). Articles were coded using Atlas.ti qualitative data analysis software. Main healthcare applications of social robots included eldercare, autism, and rehabilitation therapy. Major challenges for social robotics included acceptance, safety, ethics (of using robots in healthcare), and employment implications (i.e. robots taking over human jobs). These issues must be considered by care providers and health policy makers if social robots are to be implemented in healthcare in a socially acceptable and appropriate manner. In addition, we conducted a survey of a disability service organization in Saskatchewan which revealed important themes and issues related to the acceptance of social robots as aids for disabled persons

    Robots and Robotics in Nursing

    Get PDF
    Technological advancements have led to the use of robots as prospective partners to complement understaffing and deliver effective care to patients. This article discusses relevant concepts on robots from the perspective of nursing theories and robotics in nursing and examines the distinctions between human beings and healthcare robots as partners and robot development examples and challenges. Robotics in nursing is an interdisciplinary discipline that studies methodologies, technologies, and ethics for developing robots that support and collaborate with physicians, nurses, and other healthcare workers in practice. Robotics in nursing is geared toward learning the knowledge of robots for better nursing care, and for this purpose, it is also to propose the necessary robots and develop them in collaboration with engineers. Two points were highlighted regarding the use of robots in health care practice: issues of replacing humans because of human resource understaffing and concerns about robot capabilities to engage in nursing practice grounded in caring science. This article stresses that technology and artificial intelligence are useful and practical for patients. However, further research is required that considers what robotics in nursing means and the use of robotics in nursing
    corecore