8,561 research outputs found

    Design, fabrication, and testing of silicon microgimbals for super-compact rigid disk drives

    Get PDF
    This paper documents results related to design optimization, fabrication process refinement, and micron-level static/dynamic testing of silicon micromachined microgimbals that have applications in super-compact computer disk drives as well as many other engineering applications of microstructures and microactuators requiring significant out-of-plane motions. The objective of the optimization effort is to increase the in-plane to out-of-plane stiffness ratio in order to maximize compliance and servo bandwidth and to increase the displacement to strain ratio to maximize the shock resistance of the microgimbals, while that of the process modification effort is to simplify in order to reduce manufacturing cost. The testing effort is to characterize both the static and dynamic performance using precision instrumentation in order to compare various prototype designs

    THE DEVELOPMENT OF A NOVEL SUSPENSION ARM WITH 2-DIMENSIONAL ACTUATION, FOR USE IN ADVANCED HARD DISK DRIVES

    Get PDF
    As magnetic computer disks are developed to ever-greater data storage densities, the accuracy required for head positioning is moving beyond the accuracy provided by present technology using single-stage voice-coil motors in hard disk drives. This thesis details work to develop a novel active suspension arm with 2-dimensional actuation for use in advanced hard disk drives. The arm developed is capable of high-bandwidth data tracking as well as precision head flying height control motion. High-bandwidth data tracking is facilitated by the use of piezoelectric stack actuator, positioned closer to the head. The suspension arm is also capable of motion in the orthogonal axis. This motion represents active flying height control to maintain the correct altitude during drive operation. To characterise the suspension arm's structural dynamics, a high-resolution measurement system based on the optical beam deflection technique has been developed. This has enabled the accurate measurement of minute end-deflections of the suspension arm in 2-dimensions, to sub-nanometre resolution above noise. The design process of the suspension arm has led into the development of novel piezoelectric-actuated arms. In the work involving lead zirconate titanate (PZT) thick films as actuators, work in this thesis shows that reinforcing the films with fibre improves the overall actuation characteristics of the thick films. This discovery benefits applications such as structural health monitoring. The final suspension arm design has been adopted because it is simple in design, easier to integrate within current hard disk drive environment and easier to fabricate in mass. Closed-loop control algorithms based on proportional, integral and derivative (PID) controller techniques have been developed and implemented to demonstrate high bandwidths that have been achieved. The suspension arm developed presents an important solution in head-positioning technology in that it offers much higher bandwidths for data tracking and flying height control; both very essential in achieving even higher data storage densities on magnetic disks at much reduced head flying heights, compared to those in existing hard disk drives

    Dynamic Characterisation of the Head-Media Interface in Hard Disk Drives using Novel Sensor Systems

    Get PDF
    Hard disk drives function perfectly satisfactorily when used in a stable environment, but in certain applications they are subjected to shock and vibration. During the work reported in this thesis it has been found that when typical hard disk drives are subjected lo vibration, data transfer failure is found to be significant at frequencies between 440Hz and 700Hz, at an extreme, failing at only Ig of sinusoidal vibration. These failures can largely be attributed to two key components: the suspension arm and the hard disk. At non-critical frequencies of vibration the typical hard disk drive can reliably transfer data whilst subjected to as much as 45g. When transferring data to the drive controller, the drive's operations are controlled and monitored using BIOS commands. Examining the embedded error signals proved that the drive predominantly failed due lo tracking errors. Novel piezo-electric sensors have been developed to measure unobtrusively suspension arm and disk motion, the results from which show the disk to be the most significant failure mechanism, with its First mode of resonance at around 440Hz. The suspension arm movement has been found to be greatest at IkHz. Extensive modelling of the flexure of the disk, clamped and unclamped, has been undertaken using finite element analysis. The theoretical modelling strongly reinforces the empirical results presented in this thesis. If suspension arm movement is not directly coupled with disk movement then a flying height variation is created. This, together with tracking variations, leads to data transfer corruption. This has been found to occur at IkHz and 2kHz. An optical system has been developed and characterised for a novel and inexpensive flying height measurement system using compact disc player technology

    A NEW PIEZOELECTRIC MICROACTUATOR WITH TRANSVERSE AND LATERAL CONTROL OF HEAD POSITIONING SYSTEMS FOR HIGH DENSITY HARD DISK DRIVES

    Get PDF
    In high density magnetic hard disk drives, both fast track seeking and extremely accurate positioning of the read/write head are required. A new piezoelectric microactuator with transverse and lateral control of the head positioning system for high density hard disk drives is proposed. First, the structure of the new piezoelectric microactuator is illustrated. Design of the new microactuator is based on the axial deformation of piezoelectric elements for lateral motion and the bimorph actuation of piezoelectric elements for transverse motion. Next, a mathematical model of the microactuator system is defined. Static properties associated with the displacement of the system are evaluated and then dynamic system equations of the system are evaluated. Frequency response of the system is studied based on the dynamic system equations of the actuator system. Dynamic properties of the system with a variety of system parameters are evaluated. Finally, the controller design for the actuator is presented. Simulation results show that the new actuator achieves a maximum stroke of displacement of more than 0.2m with servo bandwidth of more than 5 kHz in the lateral direction and the flying height is decreased to less than 6 nm with resonance frequency of more than 100 kHz under the 0.5 % damping assumption. The new piezoelectric microactuator improves performance of high density hard disk drives by increasing servo bandwidth and decreasing flying height

    INVESTIGATION INTO SUBMICRON TRACK POSITIONING AND FOLLOWING TECHNOLOGY FOR COMPUTER MAGNETIC DISKS

    Get PDF
    In the recent past some magnetic heads with submicron trackwidth have been developed in order to increase track density of computer magnetic disks, however a servo control system for a submicron trackwidth head has not been investigated. The main objectives of this work are to investigate and develop a new servo pattern recording model, a new position sensor, actuator, servo controller used for submicron track positioning and following on a computer hard disk with ultrahigh track density, to increase its capacity. In this position sensor study, new modes of reading and writing servo information for longitudinal and perpendicular magnetic recording have been developed. The read/write processes in the model have been studied including the recording trackwidth, the bit length, the length and shape of the transition, the relationship between the length of the MR head and the recording wavelength, and the SIN of readout. lt has also been investigated that the servo patterns are magnetized along the radial direction by a transverse writing head that is aligned at right angles with the normal data head and the servo signals are reproduced by a transverse MR head with its stripe and pole gap tangential to the circumferential direction. lt has been studied how the servo signal amplitude and linearity are affected by the length of the MR sensor and the distance between the shields of the head. Such things as the spacing and length of the servo-pattern elements have been optimised so as to achieve minimum jitter and maximum utilisation of the surface of the disk. The factors (i.e. the skew angle of the head) affecting the SIN of the position sensor have been analysed and demonstrated. As a further development, a buried servo method has been studied which uses a servo layer underneath the data layer, so that a continuous servo signal is obtained. A new piezo-electric bimorph actuator has been demonstrated. This can be used as a fine actuator in hard disk recording. The linearity and delay of its response are improved by designing a circuit and selecting a dimension of the bimorph element. A dual-stage actuator has been developed. A novel integrated fine actuator using a piezo-electric bimorph has also been designed. A new type of construction for a magnetic head and actuator has been studied. A servo controller for a dual-stage actuator has been developed. The wholly digital controller for positioning and following has been designed and its performances have been simulated by the MAL TAB computer program. A submicron servo track writer and a laser system measuring dynamic micro-movement of a magnetic head have been specially developed for this project. Finally, track positioning and following on 0.7 µm tracks with a 7% trackwidth rms runout has been demonstrated using the new servo method when the disk-was rotating at low speed. This is one of the best results in this field in the world

    Micro systems technology

    Get PDF
    The emerging field of Micro Systems Technology is described. Micro Systems Technology can be seen as the meeting of disciplines, a product of convergence along different lines. Apart from the traditional and ever developing line of 'classical' precision engineering, there is a line along micro electronics, micro sensors and actuators. This is the line we focus on in this contribution. The third line worth mentioning is the one along the upcoming field of molecular engineering. The main purpose of this paper is to show the wealth of possibilities and consequently the need for 'integral design' management

    Design and Implementation of Position Estimator Algorithm on Voice Coil Motor

    Get PDF
    Voice Coil Motors (VCMs) have been an inevitable element in the mechanisms that have been used for precise positioning in the applications like 3D printing., micro-stereolithography., etc. These voice coil motors translate in a linear direction and require a high accuracy position sensor that amounts for a major part in the budget. In this research work., an effort has been made to design and implement an algorithm that would predict the displacement of VCM and eliminate the need of high cost sensors. VCM was integrated with dSPACE DS1104 R&D controller via linear current amplifier (LCAM) which acts as a driver circuit for VCM. Sine input was given to VCM with various amplitude and frequency and the corresponding displacement is measured by using linear variable differential transformer (LVDT). The position estimator algorithm is also implemented at the same time on VCM and its output is compared with that of LVDT. It is observed that there is 97.8 % accuracy in between algorithm output and LVDT output. Further., PID controller is used in integration with the novel algorithm to minimize the error. The estimator algorithm is tested for various amplitudes and frequencies and it is found that it has a very good agreement of 99.2% with the actual displacement measured with the help of LVDT

    Design of adaptive analog filters for magnetic front-end read channels

    Get PDF
    Esta tese estuda o projecto e o comportamento de filtros em tempo contínuo de muito-alta-frequência. A motivação deste trabalho foi a investigação de soluções de filtragem para canais de leitura em sistemas de gravação e reprodução de dados em suporte magnético, com custos e consumo (tamanho total inferior a 1 mm2 e consumo inferior a 1mW/polo), inferiores aos circuitos existentes. Nesse sentido, tal como foi feito neste trabalho, o rápido desenvolvimento das tecnologias de microelectrónica suscitou esforços muito significativos a nível mundial com o objectivo de se investigarem novas técnicas de realização de filtros em circuito integrado monolítico, especialmente em tecnologia CMOS (Complementary Metal Oxide Semiconductor). Apresenta-se um estudo comparativo a diversos níveis hierárquicos do projecto, que conduziu à realização e caracterização de soluções com as características desejadas. Num primeiro nível, este estudo aborda a questão conceptual da gravação e transmissão de sinal bem como a escolha de bons modelos matemáticos para o tratamento da informação e a minimização de erro inerente às aproximações na conformidade aos princípios físicos dos dispositivos caracterizados. O trabalho principal da tese é focado nos níveis hierárquicos da arquitectura do canal de leitura e da realização em circuito integrado do seu bloco principal – o bloco de filtragem. Ao nível da arquitectura do canal de leitura, apresenta-se um estudo alargado sobre as metodologias existentes de adaptação de sinal e recuperação de dados em suporte magnético. Este desígnio aparece no âmbito da proposta de uma solução de baixo custo, baixo consumo, baixa tensão de alimentação e baixa complexidade, alicerçada em tecnologia digital CMOS, para a realização de um sistema DFE (Decision Feedback Equalization) com base na igualização de sinal utilizando filtros integrados analógicos em tempo contínuo. Ao nível do projecto de realização do bloco de filtragem e das técnicas de implementação de filtros e dos seus blocos constituintes em circuito integrado, concluiu-se que a técnica baseada em circuitos de transcondutância e condensadores, também conhecida como filtros gm-C (ou transcondutância-C), é a mais adequada para a realização de filtros adaptativos em muito-alta-frequência. Definiram-se neste nível hierárquico mais baixo, dois subníveis de aprofundamento do estudo no âmbito desta tese, nomeadamente: a pesquisa e análise de estruturas ideais no projecto de filtros recorrendo a representações no espaço de estados; e, o estudo de técnicas de realização em tecnologia digital CMOS de circuitos de transcondutância para a implementação de filtros integrados analógicos em tempo contínuo. Na sequência deste estudo, apresentam-se e comparam-se duas estruturas de filtros no espaço de estados, correspondentes a duas soluções alternativas para a realização de um igualador adaptativo realizado por um filtro contínuo passa-tudo de terceira ordem, para utilização num canal de leitura de dados em suporte magnético. Como parte constituinte destes filtros, apresenta-se uma técnica de realização de circuitos de transcondutância, e de realização de condensadores lineares usando matrizes de transístores MOSFET para processamento de sinal em muito-alta-frequência realizada em circuito integrado usando tecnologia digital CMOS submicrométrica. Apresentam-se métodos de adaptação automática capazes de compensar os erros face aos valores nominais dos componentes, devidos às tolerâncias inerentes ao processo de fabrico, para os quais apresentamos os resultados de simulação e de medição experimental obtidos. Na sequência deste estudo, resultou igualmente a apresentação de um circuito passível de constituir uma solução para o controlo de posicionamento da cabeça de leitura em sistemas de gravação/reprodução de dados em suporte magnético. O bloco proposto é um filtro adaptativo de primeira ordem, com base nos mesmos circuitos de transcondutância e técnicas de igualação propostos e utilizados na implementação do filtro adaptativo de igualação do canal de leitura. Este bloco de filtragem foi projectado e incluído num circuito integrado (Jaguar) de controlo de posicionamento da cabeça de leitura realizado para a empresa ATMEL em Colorado Springs, e incluído num produto comercial em parceria com uma empresa escocesa utilizado em discos rígidos amovíveis.This thesis studies the design and behavior of continuous-time very-high-frequency filters. The motivation of this work was the search for filtering solutions for the readchannel in recording and reproduction of data on magnetic media systems, with costs and consumption (total size less than 1 mm2 and consumption under 1mW/pole), lower than the available circuits. Accordingly, as was done in this work, the rapid development of microelectronics technology raised very significant efforts worldwide in order to investigate new techniques for implementing such filters in monolithic integrated circuit, especially in CMOS technology (Complementary Metal Oxide Semiconductor). We present a comparative study on different hierarchical levels of the project, which led to the realization and characterization of solutions with the desired characteristics. In the first level, this study addresses the conceptual question of recording and transmission of signal and the choice of good mathematical models for the processing of information and minimization of error inherent in the approaches and in accordance with the principles of the characterized physical devices. The main work of this thesis is focused on the hierarchical levels of the architecture of the read channel and the integrated circuit implementation of its main block - the filtering block. At the architecture level of the read channel this work presents a comprehensive study on existing methodologies of adaptation and signal recovery of data on magnetic media. This project appears in the sequence of the proposed solution for a lowcost, low consumption, low voltage, low complexity, using CMOS digital technology for the performance of a DFE (Decision Feedback Equalization) based on the equalization of the signal using integrated analog filters in continuous time. At the project level of implementation of the filtering block and techniques for implementing filters and its building components, it was concluded that the technique based on transconductance circuits and capacitors, also known as gm-C filters is the most appropriate for the implementation of very-high-frequency adaptive filters. We defined in this lower level, two sub-levels of depth study for this thesis, namely: research and analysis of optimal structures for the design of state-space filters, and the study of techniques for the design of transconductance cells in digital CMOS circuits for the implementation of continuous time integrated analog filters. Following this study, we present and compare two filtering structures operating in the space of states, corresponding to two alternatives for achieving a realization of an adaptive equalizer by the use of a continuous-time third order allpass filter, as part of a read-channel for magnetic media devices. As a constituent part of these filters, we present a technique for the realization of transconductance circuits and for the implementation of linear capacitors using arrays of MOSFET transistors for signal processing in very-high-frequency integrated circuits using sub-micrometric CMOS technology. We present methods capable of automatic adjustment and compensation for deviation errors in respect to the nominal values of the components inherent to the tolerances of the fabrication process, for which we present the simulation and experimental measurement results obtained. Also as a result of this study, is the presentation of a circuit that provides a solution for the control of the head positioning on recording/playback systems of data on magnetic media. The proposed block is an adaptive first-order filter, based on the same transconductance circuits and equalization techniques proposed and used in the implementation of the adaptive filter for the equalization of the read channel. This filter was designed and included in an integrated circuit (Jaguar) used to control the positioning of the read-head done for ATMEL company in Colorado Springs, and part of a commercial product used in removable hard drives fabricated in partnership with a Scottish company

    Modeling and control of hard disk drive in mobile applications

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore