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ABSTRACT OF THESIS 
 

 
 

 
A NEW PIEZOELECTRIC MICROACTUATOR WITH TRANSVERSE AND 

LATERAL CONTROL OF HEAD POSITIONING SYSTEMS FOR HIGH 
DENSITY HARD DISK DRIVES 

 
In high density magnetic hard disk drives, both fast track seeking and extremely accurate 
positioning of the read/write head are required. A new piezoelectric microactuator with 
transverse and lateral control of the head positioning system for high density hard disk 
drives is proposed. First, the structure of the new piezoelectric microactuator is illustrated. 
Design of the new microactuator is based on the axial deformation of piezoelectric 
elements for lateral motion and the bimorph actuation of piezoelectric elements for 
transverse motion. Next, a mathematical model of the microactuator system is defined. 
Static properties associated with the displacement of the system are evaluated and then 
dynamic system equations of the system are evaluated. Frequency response of the system 
is studied based on the dynamic system equations of the actuator system. Dynamic 
properties of the system with a variety of system parameters are evaluated. Finally, the 
controller design for the actuator is presented. Simulation results show that the new 
actuator achieves a maximum stroke of displacement of more than m0.2µ  with servo 
bandwidth of more than 5 kHz in the lateral direction and the flying height is decreased to 
less than 6 nm with resonance frequency of more than 100 kHz under the 0.5 % damping 
assumption. The new piezoelectric microactuator improves performance of high density 
hard disk drives by increasing servo bandwidth and decreasing flying height.  
 
KEYWORDS: Hard Disk Drives, Piezoelectric Uniaxial Control, Piezoelectric Bimorph 
Control, Dual Actuator Servomechanism, Flying Height Control 
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Chapter One 

Introduction 
 

1.1  Background 
 

The current trend in hard disk design is towards smaller hard disks with much larger 

capacities. The areal density is a common factor used to show the storage capacity of 

hard disk drives. The areal density is represented as multiplication of linear density and 

track density as shown Figure 1.1.1. 

 

 

 

 

 
 

 

 

Figure 1.1.1: Areal, track, and linear density. 
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Figure 1.1.2: Areal, track, and linear density perspective (Hitachi, 2003). 

 

 

 

 

As shown in Figure 1.1.2, areal density has been dramatically increasing at a rate of 

100% a year. Hard disk drives of more than 30 2Gb/in  areal densities are now available 

and research in the hard disk drives industry is now targeting an areal density of more 

than 100 2Gb/in  or 1 2Tb/in . In order to achieve such high track density, it is necessary to 

improve position accuracy which in performance is typically measured by the servo 

bandwidth, and the efficiency of the read/write mechanism of hard disk drives, which can 

be achieved by lowering flying height of the head. Figure 1.1.3 shows a positioning 

system. A fast track seeking ensures better performance of hard disk drives. 
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Figure 1.1.3: Head positioning system. 

 

 

 

 

The performance of a positioning system is typically measured by the servo bandwidth 

since a positioning system with high servo-control bandwidth has low sensitivity to 

disturbances. The servo bandwidth is the frequency where the amplitude of the open-loop 

frequency response remains stable. Thus, increasing the servo bandwidth has been a 

critical step in increasing storage densities. Another critical step to increase the recording 

density of hard disk drives is achieving better performance of the read/write mechanism 

which is related to the flying height of the slider. The spacing between the slider and the 

disk as shown Figure 1.1.4 is called the flying height.  
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Disk
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Figure 1.1.4: Flying height of the slider. 

 

 

 

 

The rapid spinning of the disk creates a thin air cushion between the slider and the disk 

surface. This aerodynamic property allows the slider to fly above the surface. The 

strength of the magnetic field is proportional to the cube of the distance between the head 

and the disk. Thus, lowering the flying height has been a critical step in increasing 

storage densities. Accordingly, current research to improve performance of high density 

hard disk drives using smart material actuators focus on these two requirements: high 

servo bandwidth and low flying height. A dual actuator servo system is proposed to 

achieve a high servo bandwidth in the positioning system and a flying height control 

actuator is proposed to improve read/write mechanism of hard disk drives. 

 

1.1.1 Dual actuator servo system 
 

As the recording density of hard drives is increasing, more accurate and much faster head 

positioning servomechanisms are required. The conventional voice coil motor is 

considered difficult to achieve such requirements because of its large mass, low resonant 

frequency and nonlinear response. To provide fast and accurate positioning, a dual stage 

actuator system is proposed. A dual stage actuator system uses the conventional voice 

Suspension

Disk 

Slider

Head

Flying Height
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coil motor as a primary actuator for track seeking and a secondary micro-actuator located 

between the voice coil motor and the head for track following. Because tracking accuracy 

and speed to response is proportional to the servo bandwidth, to achieve more accurate 

positioning of the head for higher track density, we need to increase the servo bandwidth. 

Current research on microactuator design is divided into three types according to the 

position where the microactuator is placed. The first type is the suspension driven 

actuator. The microactuator is located on a suspension, driving the suspension for head 

positioning. Suspension driven actuators can provide a large stroke of displacement by 

using the suspension length. The structure of the actuator is simple because it is relatively 

large and the actuator does not require a large modification to the shape of the head 

suspension assembly. However, the servo bandwidth is limited by the resonant frequency 

of the suspension. Since Lead Zirconate Titanate (PZT) has high stiffness and generates 

large forces when used as an actuator, PZT is commonly used in suspension driven 

actuators [1, 2, 3 and 4]. The second type is the slider driven actuator. The actuator is 

mounted in between the suspension and slider, driving a slider for head positioning. 

Compared to the suspension driven actuators, servo bandwidth is increased in the slider 

driven actuators. Slider driven actuators can also be used with existing head suspension 

assemblies since an actuator is placed between slider and suspension without a large 

modification [5, 6, 7, and 8]. The third type is the head driven actuator. The actuator is 

inserted between the head element and the slider, driving a head element. Since head 

driven actuators have extremely small size and low mass, this actuator system can 

achieve the highest servo bandwidth. However, since the structure of the actuator is based 

on micro electro mechanical system (MEMS) structure, it needs a fabrication process. 

Thus, this kind of actuator has low productivity. The position in which the actuator is 

placed may cause problems in read and write mechanism of the head [9 and 10]. 

 

1.1.2. Read/write mechanism  
 

The rapid growth of recording density of hard-disk drives has required better read/write 

interface mechanisms. When the areal density of a drive is increased to improve capacity 

and performance, the magnetic fields are made smaller and weaker. This requires the 
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flying height of the slider to be made as small as possible in order to increase areal 

densities. Currently, the flying height for sliders is 20-25nm in 3.5” drives. However, 

high recording densities of hard-disk drives require the flying height of sliders to be 

decreased to less than 10 nm as shown Figure 1.1.5.  

 

 

 

 

 
 

 

 

Figure 1.1.5: Flying height-areal density perspective (Hitachi, 2003). 

 

 

 

 

The air-bearing method alone will not be sufficient to maintain the sub-10 nm flying 

height specification. Achieving such low flying height is possible by adjusting the height 
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of the head individually by using a microactuator. There have been many approaches to 

the design of flying height control actuators. A self adjusting flying height slider adjusts 

flying height by built in microactuator only when necessary read/write operations [11, 12, 

13 and 14]. This type of slider will allow us not only to reduce the head-disk spacing 

during read/write operations but also to keep a safe flying height when the head is not in 

use, which will lead to a significant improvement of the recording density and the 

reliability.  

 

1.2 Objectives and Methodology  
 

As mentioned above, there have been many approaches to increasing recording density of 

hard disk drives. Research involving the use of a microactuator for the track following or 

the flying height adjustment has been conducted independently. The main objective of 

this research is to propose a new piezoelectric microactuator which improves positioning 

accuracy and the efficiency of the read/write mechanism by increasing the servo 

bandwidth and by adjusting the flying height for high density hard disk drives and 

evaluate their performance. Piezoelectric materials were chosen for the new actuator 

because of their ability to generate large forces, their fast response speed and their 

stiffness. However, they need high voltage input to generate the required displacement. 

Modifying the structure of a microactuator, which need less voltage input, is challenging. 

The approach to solving this design problem is to design an actuator consisting two parts, 

which are independently controlled for each purpose: the track following and the flying 

height adjustment, based on the state of the art of current hard disk drives. The uniaxial 

deformation of piezoelectric materials is used to generate target displacement in lateral 

direction and the bimorph deformation of piezoelectric materials is used to generate 

target displacement in the transverse direction. The analysis of the frequency response of 

the new actuator shows improvement of the servo bandwidth and the resonance 

frequency. The analysis of the time response shows the controller in closed-loop system 

compensates for disturbances. 
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1.3 Thesis Organization  
 

This thesis has been organized into six chapters. The current chapter presented 

background information on research for high density hard disk drives. Chapter 2 

discusses the theoretical developments for piezoelectric materials, target performances of 

the microactuator, structure of the microactuator and its characteristics. Chapter 3 covers 

the mathematical modeling of the actuator system and results of system equations. 

Chapter 4 goes through the frequency response of the system based on system equation 

and analysis of effects of the system parameters. Chapter 5 presents the time response of 

the system with the controller design and results. Chapter 6 concludes the thesis with a 

brief summary of the work and results and with a discussion about future plans for further 

research in this area of study.  
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Chapter Two 

Material Selection and Structure of the New Actuator 
 

In this chapter, general properties of piezoelectric materials are given, followed by an 

explanation of the specific material selection and the design concept for the new 

piezoelectric microactuator, after which the geometrical and electrical properties of the 

new piezoelectric actuator are given. 

 

2.1 Piezoelectric Materials  
 

Characteristics of the piezoelectric materials are presented, followed by design concepts 

used in the actuator design. Then, the piezoelectric material selection, which is based on 

the requirements for use as a microactuator in hard disk drives, is given. 

 

2.1.1 Characteristics of piezoelectric materials 
  

Piezoelectricity is an electromechanical phenomenon, which relates electric polarization 

to mechanical stress/strain in piezoelectric materials. An electric charge can be observed 

when the material is deformed, which is referred to as the direct effect. Application of an 

electric field to the piezoelectric materials can introduce mechanical stress or strain, 

which is named as the converse effect. Figure 2.1.1 shows the characteristics of 

piezoelectric materials. 

 

 

 

 



 10

 
 

 

 

Figure 2.1.1: Piezoelectric characteristics (PI, 2005). 
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The piezoelectric direct effect can be expressed as 

 

EεTdD T +=    (2.1.1) 

 

The piezoelectric converse effect can be expressed as 

 

EdTsS tE  +=    (2.1.2) 

 

where S  is the strain tensor; T  is the stress tensor; E  is the electric field vector; D  is 

the electric displacement vector;  Tε  is the dielectric tensor measured at constant stress 

T; d is the piezoelectric strain constant matrix. These coefficients describe the 

relationship between the applied electrical field and the mechanical strain produced. td  

of  transpose theis d ; and Es  is the compliance matrix evaluated at a constant electric 

field.  

 

2.1.2 Design concepts 
 

The new piezoelectric hard disk drive actuator uses uniaxial deformation of piezoelectric 

materials for lateral displacement generation and bimorph deformation of piezoelectric 

materials for transverse displacement generation. Figure 2.1.2 shows the deformation of 

piezoelectric materials. An applied electric field can cause a piezoelectric material to 

change dimensions.  
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Figure 2.1.2: Axial deformation of piezoelectric materials 

 (PIEZO SYSTEM, INC., 2005). 

 

 

 

 

A piezoelectric bimorph beam is made of two piezoelectric layers with opposite polarity 

as shown in Figure 2.1.3.  
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Figure 2.1.3: Bimorph deformation of piezoelectric materials  

(PIEZO SYSTEM, INC., 2005). 

 

 

 

 

 Due to the reversed polarity in these two layers, the resultant stresses in these two layers 

are the opposite sign when an external voltage is applied across the beam thickness. 

These two stresses cause a coupling effect leading to a bending of the bimorph beam. 

Detailed discussion will be presented in Chapter Three. 

 

2.1.3 Material selection 
 

Requirements for use as a microactuator in hard disk drives include lightness, stiffness, 

large force generation, large displacement generation and temperature stability. By 

considering those conditions, Lead Zirconate Titanate 5 (PZT5) is chosen for the new 

microactuator. Material properties of PZT5 are shown in Table 2.1.1.  
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Table 2.1.1: Material properties of PZT5 (Morgan Electro Ceramics, 2005). 

 

 

 

Property Symbol Units Value 

Density pρ  3-6 kg/mm10×  7.8 

Young’s 

modulus 
pY  27 mN/mm10×  6.7 

Piezoelectric 

displacement 

coefficient 
31d  mm/V10 9−×  -215 

Curie 

temperature 
CT  Co  350 

 

 

 

 

2.2 Target Performance of the Actuator 
 

The new piezoelectric actuator consists of two actuation parts which generate a lateral 

displacement and a transverse displacement respectively. In this section, the target areal 

density and required performances of the new actuator for each direction are defined. 

Based on the current technology in the hard disk drives industry and current research for 

high density hard disk drives, the target areal density of a hard disk drive is set to 
2100Gb/in .  
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2.2.1 Target performance of the actuator in the lateral direction 
 

It is expected that track density is track/in102.5 5×  and track pitch is m 0.1 µ  in 
2100Gb/in  hard disk drives. Stroke of displacement should be satisfied by a target value 

which is set for good tracking accuracy. The microactuator is typically required to cover 

more than one track’s displacement range to avoid actuator saturation. Therefore, the 

stroke of displacement should be more than m)1.0(  m0.2 µµ ± , corresponding to 2 tracks 

at a track/in102.5 5×  track density and 5-6 kHz of loop bandwidth will be required to 

enable accurate tracking up to track/in102.5 5× track density [20]. Table 2.2.1 shows the 

target performances of the microactuator in the lateral direction.  

 

 

 

 

Table 2.2.1:  Target performances of the actuator in the lateral direction. 

 

 

 

Areal density 2Gb/in 100  

Track density track/in102.5 5×  

Track pitch m 0.1 µ  

Stroke of displacement m) 1.0m( 0.2 µµ ±  

Bandwidth frequency 5-6 kHz 

Resonance frequency 60 kHz 
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2.2.2 Target performance of the actuator in the transverse direction 
 

Currently, the flying height for sliders is 20-25nm in 3.5” drives and is required to be less 

than 6nm flying height in 2100Gb/in  hard disk drives as shown Figure 1.1.5. Therefore, 

the deflection of the piezoelectric bimorph beam should be more than 19nm, 

corresponding to 6nm flying height. The resonance frequency of the actuator is set to be 

more than 100 kHz. Table 2.2.2 shows the target performances of the actuator in the 

transverse direction.  

 

 

 

 

Table 2.2.2:  Target performances of the actuator in the transverse direction. 

 

 

 

Areal density 2100Gb/in  

Flying height 6nm 

Deflection of end of beam 19nm 

Mechanical resonant frequency 100kHz 
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2.3 Structure of the New Piezoelectric Microactuator  
 

As mentioned in Chapter One, current research on dual actuator system design is divided 

into three types according to the location where the micro actuator is placed. In this 

thesis, the slider driven actuator in which the microactuator is placed between suspension 

and slider is chosen. The geometrical properties of the actuator are given, followed by 

electrical properties of the new actuator. 

 

2.3.1 Geometrical properties of the actuator  
 

The new actuator is a slider driven type, placed between suspension, which is moved by 

the voice coil motor (VCM), and slider. The designed piezoelectric microactuator has a 

simple structure as shown in Figure 2.3.1. The new microactuator can be used with an 

existing assembly with small modification. 

 

 

 

 

 
 

 

 

Figure 2.3.1: Location of the piezoelectric actuator.

Suspension

Slider Head 

Piezoelectric 
Microactuator 



 18

The new actuator is designed for 3.5” hard disk drives with Pico size slider. Geometrical 

properties of Pico size sliders are given in the Table 2.3.1. 

 

 

 

 

Table 2.3.1: Geometrical properties of sliders (Hitachi, 2004). 

 

 

 

 
 

 

 

 

The structure of the new actuator is shown Figure 2.3.2. The actuator is composed of two 

layers of PZT and one adhesive layer. The property and the effect of an adhesive layer 

are not considered in this study. Two piezoelectric layers add mechanical strength and 

stiffness to the actuator and reduce driving voltage. The new actuator has three active 

polarized portions, which are related to the swing motion and the bending motion, and 

two bonding parts in a single body. The swing assembly, which is consists of two active 

polarized parts, generates swing motion by using uniaxial actuation of piezoelectric 
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materials. The bending part generates bending motion by using bimorph actuation of 

piezoelectric materials. The bonding parts are used for attaching the actuator to the 

existing assembly. The microactuator has two bonding areas. One is mounted to the 

suspension and the other is glued to the slider respectively.  

  

 

 

 

 
 

 

 

Figure 2.3.2: Structure of the piezoelectric actuator. 

 

 

 

 

2.3.2 Polarization and electrodes 
 

In this section, electrical properties of the system are given. Figure 2.3.3 shows that how 

electrodes are applied. 
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 Figure 2.3.3: Electrodes and wiring.   

 

 

 

 

Each actuation part has two electrode layers. Because swing motion and bending motion 

are independent, two signal inputs are required. In each part, a control voltage is applied 

across all piezoelectric layers at once. The microactuator’s leads are electrically isolated 

so that the control voltage of the microactuator does not affect the head signal.  

 

 

 

 

Bending Part

Swing  Part 

Electrodes
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Figure 2.3.4: Polarization direction of the piezoelectric actuator. 

 

 

 

 

The swing part, which relates to the lateral motion of the head, consists of two separated 

parts with opposite polarity. These two parts are made of two PZT layers, each of which 

has the same polarity. Therefore, the 2-PZT layers element in the swing part behaves like 

a single body. By expanding or contracting together, they generate large driving forces 

than one layer, reduce drive voltage by half and give high stiffness. The swing part of the 

actuator will be called the lateral actuator for the remainder of this thesis. The bending 

part of the actuator, which is made of two piezoelectric layers with opposite polarity, is 

related to transversal motion of the head. Since these two layers are polarized in opposite 

direction, input voltage results in contraction on one surface and expansion on the other 

surface which generate bending motion. The bending part of the actuator will hereafter be 

called the transverse actuator.  

 

Swing  Part 

Bending Part
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Chapter Three 

Mathematical Modeling  
 

In this chapter, mathematical models of the piezoelectric microactuator system are 

developed and results of system equations are given. Assuming there is no coupling 

between the transverse actuator and the lateral actuator, dynamic equations of the lateral 

actuator and the transverse actuator are derived independently. 

 

3.1. System Equation of the Lateral Actuator 
 

In this section, the maximum input drive voltage that ensures the target displacement in 

the lateral direction is calculated first and the dynamic system equation of the lateral 

actuator is defined, followed by evaluation of system parameters. 

 

3.1.1 Maximum input voltage for the lateral actuator 
 

Based on the target displacement which is defined in Chapter Two, the required 

maximum input drive voltage is calculated. Figure 3.1.1 shows the change of dimension 

of piezoelectric materials. 
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Figure 3.1.1: Change of dimension of a piezoelectric element when a voltage is applied 

(PIEZO SYSTEM, INC., 2005). 

 

 

 

 

From Figure 3.1.1 and equation (2.1.2), the length change can be expressed by 

 

h
Vd

h
∆h

L
∆L 31==    (3.1.1) 

 

where L is the length; h is the thickness; 31d  is the piezoelectric strain constant; and V is 

the applied voltage. Therefore, the length change of piezoelectric materials is defined by 

 

h
L d V∆L 31=      (3.1.2) 

 

The two layers reduce drive voltage by half. Therefore, the length change of an actuator 

with two piezoelectric layers is defined by 
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h
Ld V2∆L  31=     (3.1.3) 

 

Figure 3.1.2 shows the lateral motion of the system where d represents the displacement 

in the lateral direction.  
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Figure 3.1.2: Lateral motion of the actuator system (top view). 
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In Figure 3.1.2, θ  is very small, so d is defined by 

 

θLd 2=      (3.1.4) 

 

where 2L  is the length between the center of rotation and the head; θ  is the rotational 

angle. The length change of an actuator is defined by 

 

rθ∆L1 =      (3.1.5) 

 

where r is the length of moment arm in the lateral direction; 1L  is the length of the lateral 

actuator. From equation (3.1.3), the change of length of piezoelectric actuator is also 

defined by 

 

V 
h
L d 2∆L 1

311 =     (3.1.6) 

 

where V is the applied voltage; h is the thickness of the single piezoelectric layer; and 

31d  is the piezoelectric strain constant. Substituting equation (3.1.6) into (3.1.5) yields 

θ  defined by 

 

V
h
Ld

r
2θ 1

31=     (3.1.7)  

 

Substituting equation (3.1.7) into (3.1.4) gives the lateral displacement d defined by  

 

V 
h
L d 

r
2 Ld 1

312=     (3.1.8) 

 

Figure 3.1.3 shows an increase in displacement as applied voltage is increased.  
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Figure 3.1.3: Lateral displacement of piezoelectric actuator.  

 

 

 

 

To satisfy the target performance given in Chapter Two, the actuator should generate the 

displacement more than  m0.1µ , which corresponds to the half of the maximum stroke of 

the displacement. Therefore, the maximum voltage is set to 30V.  

 

3.1.2 Dynamic system equation of the lateral actuator 
 

The dynamic equation of motion of the lateral actuator is derived in this section. Figure 

3.1.4 shows the schematic drawing of the actuator system. The piezoelectric element is 

considered as the mass and spring system. 
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Figure 3.1.4: Equivalent mass and spring system of the lateral actuator. 

 

 

 

 

where pk  is the equivalent spring constant of the single piezoelectric layer defined by  
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1

pc
p L

YA
k = .     (3.1.9) 

 

where pY  is Young’s modulus of piezoelectric materials; cA  is the cross section area of 

the single piezoelectric layer; and 1L  is the length of the lateral actuator. The free body 

diagram of the lateral actuator system is shown in Figure 3.1.5.  

  

 

 

 

 
 

 

 

Figure 3.1.5: Free body diagram of the lateral actuator system. 

 

 

 

where k is the spring constant of the system; c is the damping constant of the system; J is 

θkr

θ&cr

P 

P 

θkr

θ&cr

r 

θ

θ
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the mass moment of inertia of the system; P is the input force generated by an applied 

voltage. From Figure 3.1.5, the system equation can be defined by 

 

 Pr2kr2cr2J 22 +−−= θθθ &&&    (3.1.10-a) 

 

Pr2kr2r2J 22 =++ θθcθ &&&    (3.1.10-b) 

 

Substituting equation  (3.1.4) into equation (3.1.10-b) yields 

 

PrL2dkr2dcr2dJ 2
22 =++ &&&     (3.1.11) 

 

Since the actuator has two layers, k is defined by  

 

pk2k =      (3.1.12) 

 

where pk  is the equivalent spring constant of the single piezoelectric layer and the input 

force P is defined by  

 

p2PP =      (3.1.13) 

 

 where pP  is the force generated by the single piezoelectric layer. Figure 3.1.6 shows the 

lateral piezoelectric microactuator. 
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Figure 3.1.6: Lateral piezoelectric microactuator (side view). 

 

 

 

 

A strain multiplied by a cross-section area (bh) gives an equivalent force, so force pdP  

can be calculated by 

 

dz E e bdP 331p =     (3.1.14) 

 

where b is the actuator width; 31e  is the piezoelectric stress coefficient; 3E  is the electric 

field. In the beam case, the piezoelectric stress coefficient is defined by

h 

3u

dz

z

3E

b

PdP
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31p31 d Ye =      (3.1.15) 

 

where 31d  is the piezoelectric strain coefficient;  Yp  is Young’s modulus of piezoelectric 

materials. Substituting equation (3.1.15) into equation (3.1.14) yields 

  

dzEd bYdP 331pp =               (3.1.16) 

 

Integrating both sides of equation (3.1.16) with respect to z gives pP  defined as 

 

∫=
h

0
331pp dzEd bYP        (3.1.17-a) 

bhEd Y 331p=                          (3.1.17-b) 

     

For a uniformly distributed electric field, 3E  is defined by 

 

2h
VE3 =      (3.1.18) 

 

Substituting equation (3.1.18) into equation (3.1.17-b) gives pP  defined as 

 

2
V b d Y

P 31p
p =     (3.1.19) 

 

Let the input voltage V be defined by  

 

            tsinVV 0 ω=           (3.1.20) 

 

where 0V  is the input amplitude and ω  is the input frequency. Substituting equation 

(3.1.13), (3.1.19) and (3.1.20) into equation (3.1.11) yields the dynamic equation of 
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motion defined as    

 

tsin V bd YLr  2dkr2dcr2dJ 031p2
22 ω=++ &&&    (3.1.21-a) 

 

tsin
J

V b d YLr  2
d

J
2krd

J
2crd 031p2

22

ω=++ &&&    (3.1.21-b) 

 

If we define the natural frequency is 

 

J
2kr2

n=ω      (3.1.22) 

 

,the damping ratio is 

 

 
n

2

J
cr
ω

ζ =      (3.1.23) 

 

and the amplitude is 

 

031p20 V b d YLr  2F =    (3.1.24) 

 

, then equation (3.1.21-b) becomes 

 

tsin 
J
F

dd2d 02
nn ω=++ ωζω &&&     (3.1.25) 
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3.1.3 System parameters of the lateral actuator system 
 

System parameters of the system are evaluated in this section.  

 

Natural frequency  
 

From equation (3.1.9), (3.1.12), and (3.1.22), the natural frequency is defined by 

 

 
6

1

2
pc

n

102.0941  

L J
r YA4

×=

=ω      (3.1.26) 

 

Where pY  is Young’s modulus of piezoelectric materials; cA  is the cross section area of 

the single piezoelectric layer; 1L  is the length of the lateral actuator; J is the mass 

moment of inertia of the system; and r is the length of arm in lateral direction. 

 

Mass moment of inertia  
 

Figure 3.1.7 (a) shows how the slider and the actuator move when a voltage is applied. 

Let cP  be the center of rotation of the body, and the actuator and the slider rotate about 

the line through point cP  when a voltage is applied. 
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Figure 3.1.7: Rotation of the slider and the actuator when a voltage is applied. 
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Because the mass of the piezoelectric materials is very small as compared with the slider, 

the effect of the mass of the piezoelectric materials is ignored. The mass moment of 

inertia of the slider about the line through point cP  is defined by 

 

27-
s

2
sc

mmkg103.67

mdJJ

⋅×=

+=
    (3.1.27) 

 

where cJ  is moment of inertia about the center of mass; sd  is distance between the center 

of mass of the slider and the axis through the point cP  (0.125mm); and sm  is the slider 

mass (1.6mg ).  

 

Damping ratio 
 

The damping of the system is related to the heat generation of piezoelectric materials, 

system frictions and so on. Based on the study of piezoelectric actuators for high storage 

density hard disk drives, a 0.5 % damping is assumed in this study. Further experimental 

work for evaluating the damping of the proposed actuator system is desirable. A variety 

of system responses with different damping ratios will be evaluated in Chapter Four. 

 

3.2 System Equation of the Transverse Actuator 
 

In this section, the maximum input voltage that ensures the target performance in the 

transverse direction is calculated first. The generic dynamic system equation of the 

transverse actuator system is defined, followed by the dynamic system equation in 

specific conditions (in the first mode and at the free end of the bimorph actuator beam). 

Finally, the system parameters are evaluated. Since the slider is free at the boundary, it is 

assumed that the deflection of the slider is identical to the deflection of the piezoelectric 

actuator. 
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3.2.1 Maximum input voltage for the traverse actuator 
 

Based on the target displacement which is given in Chapter Two, the required maximum 

input voltage for target flying height is calculated. Figure 3.2.1 shows the transverse 

motion of the system where d represents the deflection in the transverse direction.  

 

 

 

 

 
 

 

 

Figure 3.2.1: Transversal motion of the actuator system (side view). 
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Figure 3.2.2 shows the schematic diagram of the transverse actuator. 

 

 

 

 

 
 

 

 

Figure 3.2.2: Transverse piezoelectric actuator (side view). 

 

 

 

 

From equation (3.1.16), force dF can be calculated from strains and cross section area. 

 

 dzEdbYdF 331p=      (3.2.1) 

 

Force multiplied by a moment arm z yields a bending moment. 

 

zdzEdbYdM 331p=      (3.2.2) 

 

Thus, the bending moment M with respect to the neutral axis is defined by 

 

L

h 

Electric Field 

dF 

3u

dz

z
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∫−= 2
h

2
h 331p zdzEdbYM     (3.2.3-a) 

4
bhEdY

2

331p=          (3.2.3-b) 

 

For a uniformly distributed electric field, 3E  is defined by 

 

h
VE3 =      (3.2.4) 

 

Substituting equation (3.2.4) into equation (3.2.3-b) gives the bending moment M defined 

by 

 

4
bhVdYM 31p=     (3.2.5) 

 

The moment also can be defined by  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= 2
3

2

p x
u

 IYM     (3.2.6) 

 

where I is the area moment of inertia ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

12
bhI

3

; pY  is Young’s modulus of piezoelectric 

materials. From equation (3.2.5) and (3.2.6),  

 

4
bhVdY

x
u

 IY 31p2
3

2

p =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

    (3.2.7) 

 

Integrating both sides of equation (3.2.7) with respect to x gives the displacement (x)u3  

as
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21
2

2
31

3 cxcx
2h

V3d(x)u ++=     (3.2.8) 

 

From the boundary conditions of the beam (at the fixed end): 0(0)u 3 = ; and 0
x
(0)u 3 =

∂
∂

, 

0c1 = ; and 0c2 = . Therefore, equation (3.2.8) becomes 

 

2
2

31
3 x

2h
V3d(x)u =     (3.2.9) 

 

Since the maximum deflection of the beam occurs at the end of the beam, the deflection 

of the bimorph actuator at the end of the beam is defined by 

 

Vd
h
L

2
3d 31

2

⎟
⎠
⎞

⎜
⎝
⎛=     (3.2.10) 

 

where L is the length of the beam; h is the thickness of the beam; V is the applied 

voltage; and 31d  is the piezoelectric strain constant. As mentioned in Chapter One, 

currently the flying height of sliders is 20-25nm without any height adjusting actuator in 

3.5” drives. By considering the currently achieved flying height and the deflection of the 

bimorph actuator, we can calculate the flying height of the system with the microactuator. 

Figure 3.2.3 shows achieved flying height at different applied voltage.   

 

 

 

 



 41

0 2 4 6 8 10 12 14 16 18 20
-5

0

5
6

10

15

20

25

Voltage (V)

Fl
yi

ng
 h

ei
gh

t (
nm

)

 
 

 

 

Figure 3.2.3: Flying height of piezoelectric actuator. 

 

 

 

 

To satisfy the target requirement which is given in Chapter Two, the flying height should 

be less than 6nm. Therefore, the maximum voltage is set to 16V.  

 

3.2.2 Dynamic system equation of the transverse actuator 
 

The dynamic equation of the transverse actuator is derived in this section. Figure 3.2.4 

shows the schematic diagram of the piezoelectric bimorph actuator which regulated the 
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transverse motion of the system. The generic dynamic system equation of the actuator 

system is defined next.  

 

 

 

 

 
 

 

 

Figure 3.2.4: Transverse piezoelectric bimorph actuator. 
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The system equation of the beam in the transverse direction is derived as 

 

334
3

4

quh
x
u

=+
∂
∂

&&ρD      (3.2.11) 

 

where ρ is the mass density; h is the beam thickness; D  is the bending stiffness 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
)12(1

Yh
2

3

µ
D ; 3q  is the control force induced by external applied voltages; Y is 

Young’s modulus; and µ  is Poisson’s ratio. Since the beam has a rectangular cross 

section and Poisson’s ratio is neglected in a beam case, so the system equation of the 

beam becomes 

 

334
3

4

bquh b
x
u

YI =+
∂
∂

&&ρ     (3.2.12) 

 

where I is the area moment of inertia ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

12
bhI

3

. Let t b ρρ =′ , 33 bqq =′ , then equation 

(3.2.12) becomes 

 

334
3

4

qu
x
u

YI ′=′+
∂
∂

&&ρ      (3.2.13) 

 

The modal expansion concept implies that the total response of a generic shell continuum 

is composed of all participating modes. Thus, the solution of equation (3.2.13) is defined 

by 

 

∑
∞

=

⋅=
1m

3mm3 (x)U(t)u η     (3.2.14) 

 

where mη  is the modal participation factor;  (x)U3m  is the mode shape function; and the 
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subscripts m denote the m-th mode. The modal participation factor mη  is satisfied by the 

following equation. 

 

mm
2

mm
m

m F
h

c
=++ ηωη

ρ
η &&&     (3.2.15) 

 

where mω  is the natural frequency; mc  is the modal damping; mF  is the modal force, 

which is defined by 

 

dxUq
hN
1F

L

o 3m3
m

m ∫=
ρ

     (3.2.16) 

 

and mN  is defined by 

 

( ) dxUN
2L

o 3mm ∫=     (3.2.17) 

 

If we define the modal damping ratio mζ  as 

 

    
m

m
m h 2

c
ωρ

ζ =                (3.2.18) 

 

,then equation (3.2.15) becomes 

 

mm
2

mmmmm F2 =++ ηωηωζη &&&    (3.2.19) 

 

The mode shape function (x)U3m  of a cantilever beam is defined by 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= x)D(

L)B(
L)A(

x)C((x)U m
m

m
m3m λ

λ
λ

λ   (3.2.20)
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where the coefficients are 

 

[ ]x)cos(x)cosh(0.5x)A( mmm λλλ +=    (3.2.21) 

 

[ ]x)sin(x)sinh(0.5x)B( mmm λλλ +=    (3.2.22) 

 

[ ]x)cos(x)λcosh0.5x)C( mmm λ(λ −=    (3.2.23) 

 

[ ]x)sin(x)sinh(0.5x)D( mmm λλλ −=    (3.2.24) 

 

where x defines the distance measured from the fixed end. The eigenvalue mλ  is 

determined form its characteristic equation defined by 

 

01L)L)cos(λcosh mm =+λ(     (3.2.25) 

 

Equation (3.2.25) gives 

 

1.875L1 =λ       (3.2.26) 

 

4.694L2 =λ       (3.2.27) 

 

7.855L3 =λ                      (3.2.28) 

 

10.996L4 =λ       (3.2.29) 

 

14.137L5 =λ       (3.2.30) 

  

The natural frequency is defined by 

 



 46

2
mm )( 

ρ'
YI λω =     (3.2.31) 

 

Since the first mode resonance frequency limits the expansion of operation bandwidth, 

the dynamic system equation of the system for only the first mode is considered in this 

study. The bending motion is generated by strains in the piezoelectric actuator when a 

voltage is applied. An input voltage is a uniformly distributed sinusoidal surface loading 

(in V). This voltage input (in V) can be transformed into an equivalent distributed loading 

3p (in N). The equivalent distributed loading 3p  should generate the same deflection at 

the free end of the bimorph beam as the resulting from an applied voltage shown as 

Figure 3.2.5. 
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 Figure 3.2.5: Voltage input and equivalent distributed loading.  

 

 

 

 

The load-deflection beam equation is defined by 

 

3
''''

3 p(x)YIu =      (3.2.32) 

 

The boundary conditions of the cantilever beam are defined by 

 

L

h 

3u

dz

z
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3u
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0  u       0;  u          0           x:end Fixed

0u    0;u          L         x:   end Free
'
33

'''
3

''
3

===

===
  (3.2.33) 

 

Integrating four times both sides of equation (3.2.32) with respect to x yields 

 

43
223143

3 cxcx
2
cx

6
cx

24
p(x)YIu ++++=    (3.2.34) 

 

From the B.C in equation (3.2.33), L pc 31 −= , 2
32 L p

2
1c = , 0c3 = , and 0c4 = . 

Therefore, the equation (3.2.34) becomes 

 

2233343
3 xL

4
pLx

6
px

24
p(x)YIu +−=     (3.2.35) 

 

Therefore, the deflection of the end of beam ( Lx = ) is defined by 

 

43
3 L

8YI
p(L)u =      (3.2.36) 

 

The deflection from equation (3.2.36) is same as the deflection from equation (3.2.10). 

Therefore,  

 

43
31

2

L
8YI
pVd

h
L

2
3

=⎟
⎠
⎞

⎜
⎝
⎛      (3.2.37) 

 

Therefore, the distributed force 3p  is defined by 

 

V
Lh

d I 12Yp 22
31

3 =      (3.2.38-a) 

V
L

bhd Y
2
31=                                                (3.2.38-b)
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If we consider only the first mode, equation (3.2.14) becomes 

 

(x)U(t)t)(x,u 3113 ⋅= η      (3.2.39) 

 

From equation (3.2.19) and (3.2.39), the dynamic system equation in the first mode is 

defined by 

 

tsinF (x)Uuu2u *
1313

2
13113 ω=++ ωωζ &&&    (3.2.40) 

 

At the free end of the beam (x = L), the dynamic system equation (3.2.40) becomes

     

tsinF (L)Uuu2u *
1313

2
13113 ω=++ ωωζ &&&    (3.2.41) 

 

where  

 

dxUp
hN
1F

L

o 313
1

*
1 ∫=

ρ
     (3.2.42-a) 

 

dx U
NL

Vh  b d  Y L

o 31
1

2
031 ∫=

ρ
                                       (3.2.42-b) 

 

3.2.3 System parameters of the transverse actuator system 
 

System parameters of the system in the first mode are calculated in this section.  

 

Natural frequency 
 

From equation (3.2.31), the natural frequency of the system in the first mode is defined 

by 
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52
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p

p
1 101.2018

bh
IY

×== λ
ρ

ω    (3.2.43) 

 

 

Damping ratio     
 

The damping of the system is related to the heat generation of piezoelectric materials, 

system frictions and so on. Based on the study of piezoelectric actuators for high storage 

density hard disk drives, a 0.5 % damping is assumed in this study. Further experimental 

work for evaluating the damping of the proposed actuator system is desirable. A variety 

of system responses with different damping ratios will be evaluated in Chapter Four. The 

dynamic system equations and system parameters of the piezoelectric microactuator 

system, which are defined in this chapter, will be used in the next chapters for frequency 

and time response analysis of the system. 
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Chapter Four 

Frequency Response of the Actuator System 
 

In this chapter, the frequency responses of the actuator system are presented. A Bode plot 

is used for displaying of the frequency response; MATLAB is used to calculate the 

frequency response of the actuator. Because the state-space method is well suited to the 

use of computer techniques, a state-space model is used in this chapter. 

 

4.1 Frequency Response of the Actuator System in the Lateral Direction 
 

In the lateral direction, the conventional voice coil motor (VCM) actuator is used at low 

frequency part and the piezoelectric microactuator is used at high frequency part to 

control the lateral movement. The frequency responses for VCM and the piezoelectric 

microactuator are presented in this section. In this thesis, the VCM model designed by 

Venkataramanan et al. (2002) [16] is used for the system frequency response analysis at 

low frequency part. 

  

4.1.1 Characteristics of the conventional voice coil motor  
 

In this section, the system frequency response of VCM is given. Since there are a lot of 

available VCM models, the model designed by Venkataramanan et al. (2002) [16] is used 

in this study. The Maxtor hard disk drive (HDD) (Model 51536U3) is used for the 

simulation in his paper. The frequency response of VCM can be obtained using a laser 

Doppler vibrometer (LDV) and a dynamic signal analyzer. The control input u is a 

voltage to a current amplifier for VCM and the measurement output y is the head position 

in tracks. The frequency response of a commercially available HDD servo system from u 

to y is shown in Figure 4.1.1. 
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Figure 4.1.1: Frequency response of  VCM (Venkataramanan et al., 2002) [16]. 

 

 

 

 

It is quite conventional to approximate the dynamics of the VCM actuator by a second-

order state space model as 
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where x is the state, which consists of the displacement y and the velocity v of the 

read/write head; u is the control input constrained by MAXuu(t) ≤  and a 
a

t

J
Ka =  is the 

acceleration constant, with tK  being the torque constant and aJ  being the moment of 

inertia of the actuator mass. Thus, the transfer function from u to y of the VCM model 

can be written as 

 

 2s
aG(s) =      (4.1.3) 

 

The bandwidth of such a system is typically limited to less than 1 kHz by the mechanical 

dynamics of VCM. The frequency response shows that the servo system has many 

mechanical resonance frequencies over 1 kHz. In general, the first mode limits the 

bandwidth. If only the first dominating resonance frequency is considered, a more 

realistic model for the VCM actuator should be given as (Venkataramanan et al., 2002) 

[16] 

 

 
)10467.2s102.513(s

10467.2
s

104013.6G(VCM) 832

8

2

7

×+×+
×

×
×

=  (4.1.4) 

 

4.1.2 Characteristics of the lateral actuator 
 

In this section, the system frequency response of the lateral piezoelectric microactuator is 

given, followed by discussion of target performance evaluation. Frequency responses of 

the actuator system with various system parameters are presented. This study can be used 

for future design improvement. From Chapter Three, equation (3.1.25), the system 

dynamic equation of lateral actuator is defined by 

 

tsin 
J
F

dd2d 02
nn ω=++ ωζω &&&     (4.1.5) 
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The dynamic equation can be represented in the state-variable form with a control voltage 

input and a displacement output. Let dx1 = , dxx 12
&& == , and a control input be u. The 

system equation (4.1.5) is expressed as matrix form which is defined by 
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   (4.1.6) 

 

The output 1xy =  is the head position in the lateral direction. The system can be 

expressed by 

u
u

Jy +=
+=

Hx
GFxx&

     (4.1.7) 

 

where F  is the nn×  system matrix defined by 
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2
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10
ζωω

F     (4.1.8) 

 

, G  is the 1n ×  input matrix defined by 

 

⎥
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J
F
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0G      (4.1.9) 

 

, H  is the n1×  output matrix defined by 

 

[ ]01=H      (4.1.10) 

 

and J  is the direct transmission term defined by 

 

 0=J       (4.1.11)
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The transfer function of the lateral actuator with a control voltage input and a 

displacement output is obtained by using MATLAB. 

 

1262

8-10

pzt 10385.4s10094.2s
101.273s106.985-
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×+×

=G    (4.1.12) 

 

Figure 4.1.2 and Figure 4.1.3 show the frequency response of the lateral actuator. Bode 

plot is used for displaying of frequency response of the system. The idea in Bode’s 

method is to plot magnitude curves using a logarithmic scale and phase curves using a 

linear scale. 
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Figure 4.1.2: Frequency response of the lateral actuator (100 Hz-10 kHz).  
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Figure 4.1.3: Frequency response of the lateral actuator (10 kHz-10MHz). 

 

 

 

 

Comparing Figure 4.1.2 and Figure 4.1.3 to Figure 4.1.1 shows that the microactuator is 

increasing the servo bandwidth. In Chapter Two, Table 2.2.1, the target bandwidth and 

resonance frequency were set to 5-6 kHz and 60 kHz respectively. The frequency 

response shows that the proposed piezoelectric actuator achieved servo bandwidth of 

more than 6 kHz under the 0.5 % damping assumption which is satisfies the target 

requirements.  
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4.1.3 Frequency response of the lateral actuator with a variety of system 

parameters 
 

The current trend in hard disk design is towards smaller hard disks with increasingly 

larger capacities. Understanding how system parameters affect the performance of the 

actuator system is helpful to improve the design of actuators. For this purpose, the 

frequency responses of the system with a variety of system parameters are presented in 

this section. 

 

Damping ratio 
 

The effect of the damping ratio to the lateral actuator system is obtained. Figure 4.1.4 

and Figure 4.1.5 show the system frequency response of the lateral actuator with 

different values of the damping ratio.  
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Figure 4.1.4: Frequency response of the lateral actuator at a variety of  ζ  values  

(100 Hz-10 kHz). 
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Figure 4.1.5: Frequency response of the lateral actuator at a variety of ζ  values  

(10 kHz-10 MHz). 

 

 

 

 

In the proposed actuator system, the damping ratio was assumed as 5.0=ζ . The value of 

the damping ratio is changed from 0.1 to 1. Figure 4.1.4 and Figure 4.1.5 shows that the 

damping ratio ζ  does not affect the mechanical resonant frequency of the system. 

However, damping has a large influence on the amplitude and phase angle in the 

frequency region near resonance. If the damping ratio is decreasing, the servo bandwidth 

is increasing. Decreasing the damping ratio is required to achieve high servo bandwidth. 
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Natural frequency 

 

The effect of the natural frequency to the actuator system is obtained. Figure 4.1.6 and 

Figure 4.1.7 show the system frequency response of the lateral actuator with different 

values of natural frequency. 
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Figure 4.1.6:  Frequency response of the lateral actuator at a variety of nω  values 

 (100 Hz-10 kHz).  
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Figure 4.1.7:  Frequency response of the lateral actuator at a variety of nω  values  

(10 kHz-10 MHz). 

 

 

 

 

In the proposed actuator system, the natural frequency 6
n 102.0941 ×=ω . The value of 

the natural frequency is changed from 5105 ×  to 6104 × . Figure 4.1.6 and Figure 4.1.7 

show that if the natural frequency is increasing, the servo bandwidth and resonance 

frequency are also increasing. Increasing the natural frequency is required to achieve 

better performance of the actuator system. In the Chapter Three, equation (3.1.26), the 

natural frequency is defined by 
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1

2
pc

n L J
r YA4

=ω      (4.1.13) 

 

To increase the natural frequency, increasing the cross section area or the length of arm 

of the lateral actuator, choosing a piezoelectric material with larger Young’s modulus, or 

reducing the length or mass moment of inertia of the lateral actuator are needed. Since 

these variables are also related with the lateral displacement, size and shape of the 

actuator, changing these values should be considered carefully. 

 

Mass moment of inertia  
 

The effect of the rotational mass moment of inertia to the actuator system is obtained. 

Figure 4.1.8 and Figure 4.1.9 show the system frequency response of the lateral actuator 

with different values of the rotational moment of inertia.  
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Figure 4.1.8: Frequency response of lateral actuator at a variety of J values 

 (100 Hz-10 kHz). 

 

 

 

 



 65

 

-100

-95

-90

-85

-80

M
ag

ni
tu

de
 (d

B
)

10
4

10
5

10
6

10
7

-180

-135

-90

-45

0

P
ha

se
 (d

eg
)

Frequency  (Hz)  
  

 

 

Figure 4.1.9: Frequency response of lateral actuator at a variety of J values 

 (10 kHz-10 MHz). 

 

 

 

 

In the proposed actuator system, the rotational mass moment of inertia 
2-7 mmkg103.6667 J ⋅×= . The value of the rotational moment of inertia is changed from 

2-6 mmkg105 ⋅×  to 2-7 mmkg101 ⋅× . Figure 4.1.8 and Figure 4.1.9 show that if J is 

decreasing, the servo bandwidth and resonance frequency are increasing. Because the 

rotational moment of inertia is proportional to the size and mass of the slider, reducing 

the size and mass of the slider is required to achieve better performance. Since a 
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conventional Pico size slider is used in this study, the value of J does not change. 

However, with this knowledge, using smaller and lighter sliders, or using head driven 

actuator designs can be considered. 

 

4.2 Frequency Response of the Transverse Actuator 
 

In this section, the system frequency response of the transverse piezoelectric 

microactuator is given, followed by discussion of target performance evaluation. The 

frequency responses of the actuator system with various system parameters are presented. 

This study can be used for future design improvement. 

 

4.2.1 Characteristics of the transverse actuator  
 

As mentioned in Chapter Three, the dynamics of the actuator system in the first mode and 

at the end of the beam (x = L) is considered in this study. From Chapter Three, equation 

(3.2.41), (3.2.42-b) and (3.2.17), the dynamic equation of the piezoelectric transverse 

actuator in the first mode and at the end of the beam is defined by 

 

tsinF (L)Uuu2u *
1313

2
13113 ω=++ ωωζ &&&    (4.2.1) 

 

where            

 

dxU
NL

hV b d  YF
L

o 31
1

2
031*
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ρ

     (4.2.2) 

 

dx)(UN
2L

o 311 ∫=      (4.2.3) 

 

The system equation (4.2.1) can be expressed in state-variable form with a control 

voltage input and a displacement output. Let 31 ux = , 312 uxx && == , and the control 

input be u. The system equation (4.2.1) is expressed as a matrix form defined by 
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Let the output 1xy =  be the head position in the transverse direction. The system can be 

expressed by 

 

   
u
u

Jy +=
+=

Hx
GFxx&

     (4.2.5) 

 

where,  
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[ ]01=H      (4.2.8) 

 

 J  = 0      (4.2.9) 

 

The transfer function of the transverse actuator with a control voltage input and a 

displacement output is obtained by using MATLAB. 
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Figure 4.2.1 and Figure 4.2.2 show the frequency response of the transverse 

actuator. Bode plot is used for displaying of the frequency response of the system. 
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Figure 4.2.1: Frequency response of transverse actuator (100 Hz-10 kHz). 
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Figure 4.2.2: Frequency response of transverse actuator (10 kHz-10 MHz). 

 

In Chapter Two, Table 2.2.2, the target resonance frequency was set to 100 kHz. The 

frequency response shows that the proposed piezoelectric actuator achieved resonance 

frequency of more than 100 kHz under the 0.5 % damping assumption which is satisfies 

the target requirements.  

 

4.2.2 Frequency response of the transverse actuator with a variety of system 

parameters 
 

Fast and precise flying-height adjustment allows improving read/write operations for high 

density hard disk drives. Understanding how system parameters affect the performance of 
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the actuator system is helpful to improve the design of actuators. For this purpose, the 

frequency responses of the system with a variety of system parameters are presented in 

this section. 

 

Damping ratio 
 

The effect of the damping ratio to the transverse actuator system is obtained. Figure 4.2.3 

and Figure 4.2.4 show the system frequency response with different values of damping 

ratio.  
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Figure 4.2.3: Frequency response of transverse actuator at a variety of  1ζ  values 

 (100 Hz-10 kHz). 
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Figure 4.2.4: Frequency response of transverse actuator at a variety of  1ζ  values 

 (10 kHz-10 MHz). 

 

 

 

 

In the proposed system, the damping ratio in the first mode 5.01 =ζ . The value of the 

damping ratio is changed from 0.1 to 1. Figure 4.2.3 and Figure 4.2.4 show that the 

damping ratio 1ζ  does not change the mechanical resonant frequency. However, 

damping has a large influence on the amplitude and phase angle in the frequency region 

near resonance. If the damping ratio is decreasing, the servo bandwidth is increasing. 

Decreasing the damping ratio is required to achieve high servo bandwidth. 
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Natural frequency 
 

The effect of the natural frequency to the transverse actuator is obtained. Figure 4.2.5 

and Figure 4.2.6 show the system frequency response with different values of the natural 

frequency. 
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Figure 4.2.5: Frequency response of transverse actuator at a variety of 1ω  values 

(100 Hz-10 kHz). 
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Figure 4.2.6: Frequency response of piezoelectric actuator at a variety of 1ω  values  

(10 kHz-10 MHz). 

 

 

 

 

In the proposed actuator system, the natural frequency in the first mode 6
1 10718.3 ×=ω . 

The value of the natural frequency of the system is changed from 6102×  to 6108× . 

Figure 4.2.5 and Figure 4.2.6 show that if 1ω  is increasing, the resonance frequency is 

also increasing. From Chapter Three, equation (3.2.43) and (3.2.26), 1ω  is defined by 
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To increase 1ω , reducing the length of the actuator, increasing the thickness, or choosing 

the material with higher Young’s modulus and lower density are needed. Since these 

variables are also related with the lateral and transverse displacement, size and shape of 

the actuator, changing these values should be considered carefully. The frequency 

response analysis shows that the proposed piezoelectric actuator satisfies the target 

requirements which were defined in Chapter Two under the 0.5 % damping assumption. 

For future design improvement, the frequency responses of the system with a variety of 

system parameters are evaluated. Higher natural frequency, lower damping ratio, and 

smaller mass are required for better performance.  
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Chapter Five 

Controller Design for the Actuator System 

  

In this chapter, controller designs for the voice coil motor (VCM) and the piezoelectric 

micro actuator are given. Control is the process of causing a system variable to conform 

to some desired values. In this hard disk positioning system, lateral and transverse 

displacement are the system variables being controlled. Feedback control is used for 

precise control. The overall control scheme is given first, followed by the controller 

design for each actuator, i.e., the VCM actuator, the lateral Lead Zirconate Titanate 

(PZT) microactuator and the transverse PZT microactuator. 

 

5.1 Overall Flow  
 

Figure 5.1.1 shows the overall flow chart of the system. First, the lateral piezoelectric 

microactuator is working to place the head at the desired position. After the head position 

in the lateral direction is confirmed, the transverse piezoelectric microactuator works to 

place the head at the desired height. If all conditions are satisfied, read/write processing is 

started. To compensate for noise, actuators in both directions are still working during the 

read/write process. Three controllers are used for the head control: a track seeking 

controller for the VCM actuator, a track following controller for the lateral actuator and a 

height adjusting controller for the transverse actuator.  
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Figure 5.1.1: Overall flow chart of the actuator system. 

 

 

 

 

5.2 Controller Design for Actuators in the Lateral Direction 
 

In the VCM and microactuator dual stage servo system, the conventional VCM actuator 

is used as a primary actuator that controls the lower frequency part of the system and the 

microactuator is used as secondary actuator that controls the high frequency part. Figure 
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(Lateral Direction) 

Slider Placement

Desired Position?

PZT Actuator On 
(Transverse Direction) 

Slider Placement

Desired Height?

Position Control 
(Read/Write) 

Frequency?  
Low 

 
High 



 78

5.2.1 is shown the block diagram of dual actuator system.  

  

 

 

 

 
 

 

 

Figure 5.2.1: Block diagram of dual actuator system.  

 

 

 

 

where C(VCM) is the transfer function of the controller for VCM; G(VCM) is the 

transfer function of  VCM; C(PZT) is the transfer function of  the controller for PZT 

actuator; G(PZT)  is the transfer function of  the PZT microactuator; PG  is the transfer 

function of the PZT actuator with controller and VG  is the transfer function of the VCM 

actuator with controller.  From the Figure 5.2.1, displacement output is defined by 

 

VVPP GuGuy +=                                  (5.2.1) 

 

Controller design for the lateral control can be divided into two parts, i.e., the track 

seeking and track following parts. A track seeking controller is used to regulate the VCM 

and a track following controller is used to regulate the PZT actuator. Therefore, equation 

G 

G(VCM)C(VCM)

C(PZT) G(PZT)
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(5.2.1) can be expressed by 

 

PPGuy ≈      (5.2.2) 

 

at high frequencies and  expressed by 

 

VVGuy ≈      (5.2.3) 

 

 

at low frequencies where the cut-off frequency is target at  1kHz based on results of 

frequency response of the actuator system from Chapter Four. 

 

5.2.1 Track seeking control for VCM 
 

Track seeking control for a hard disk drive (HDD) ensures that an actuator moves to a 

target track address within a specified time. Since there are a lot of VCM actuator 

controller designs available, one of the controllers designed by Venkataramanan et al. 

(2002) [16] for the VCM control is selected. Maxtor HDD (Model 51536U3) is used for 

simulation in his study. The transfer function of the system is as follows: [16] 

 

)10467.2s102.513(s
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104013.6G(VCM) 832

8

2

7
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×
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=   (5.2.4)  

 

A proximate time-optimal servomechanism (PTOS) controller for track seeking is used in 

his study. Figure 5.2.2 shows the block diagram of track seeking control. 
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Figure 5.2.2: Block diagram of track seeking control system (Venkataramanan et al., 

2002) [16]. 

 

 

 

 

Figure 5.2.3 and Figure 5.2.4 show simulation results of the system response. In his 

study, MATLAB is used for simulation. 
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Figure 5.2.3: Response for m 1µ  displacement (Venkataramanan et al., 2002) [16]. 
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Figure 5.2.4: Response for m 50 µ  displacement (Venkataramanan et al., 2002) [16]. 

.  

 

 

 

5.2.2 Track following control for the lateral actuator 
 

The purpose is to find compensation D (PZT) to achieve better track following control, 

such as that shown in Figure 5.2.5.  
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Figure 5.2.5: Block diagram of the lateral actuator system. 

 

 

 

 

In this section, the state-space design method is used to design a controller. The state-

space design method has several steps. First, we need to select pole locations which 

satisfy the requirements and develop the control law and estimator for the closed-loop 

system that corresponds to satisfactory dynamic response and then combine the control 

law and the estimator. 

 

Selection of pole locations for control law 
 

The dominant second-order poles method is used for pole placement. From the Chapter 

Four, equation (4.1.11), the transfer function of the lateral actuator system is defined as 

 

1262

8-10

pzt 10385.4s10094.2s
101.273s106.985-G
×+×+
×+×

=     (5.2.5) 

 

The pole locations of the system are obtained by using MATLAB. 

 

[ ]i10814.110047.1i10814.110047.1Pole 6666 ×−×−×+×−=   (5.2.6) 

 

The pole locations of the system in s-plane are shown in Figure 5.2.6. 

Lateral ActuatorCompensation

u yD(PZT) G(PZT)
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Figure 5.2.6: Pole locations of the lateral microactuator. 

 

 

 

 

The poles of this transfer function are located at a radius nω  in the s-plane and at an 

angle ζ1sin − . The shapes of the time response of the system are determined by the poles 

of the system. Figure 5.2.7 shows the relationship between pole locations and time 

response. 

 

 

 

 

Im(s)

Re(s) (0.0) 

nω ζ1sin−

610814.1 ×

6101.814- ×

6101.047- ×



 85

 
 

 

 

Figure 5.2.7: Time functions associated with pole position (Franklin et al., 1995) [19]. 

 

 

 

 

In general, poles father to the left in the s-plane decay faster than poles closer to the 

imaginary axis. Figure 5.2.8 shows the time response of the lateral actuator for m 1.0 µ  

displacement. 
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Figure 5.2.8: Time response of the lateral microactuator  

(response for m 1.0 µ  displacement). 

 

 

 

 

The rise time, the settling time and the overshoot of the system are important factors to 

show characteristics of the time response. The rise time is a measure of how long the 

system takes to be translated from one position to another (10-90%). The overshoot is the 

percentage of the highest overshoot of the system. The settling time is the time required 

to reach and stay within a tolerance band of the final value (1%). By using a controller, 

the rise time, the settling time and the overshoot of the system can be decreased for better 
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time response. The rise time of the system is typically related to pole location parameter 

nω , the overshoot of the system is typically related to pole location parameter ζ  and the 

settling time is typically related to pole location parameters nω  and ζ . For a second-

order system with no finite zeros, the transient response parameters can be approximated 

in the following way. The rise time of the system is defined by 

 

7
6r 10596.8

10094.2
8.18.1t −×=
×

=≅
nω

              (5.2.7) 

 

The overshoot of the system is defined by 

 

163.0eeM 22 0.51

0.5 
1

p === −
−

−
− π

ζ

πζ

        (5.2.8) 

 

The settling time of the system is defined by 

 

6
6

n
s 10394.4

10094.2 5.0
6.4

 
6.4t −×=

×⋅
==

ωζ
           (5.2.9) 

 

The time takes for track seeking is called "seek time". A typical seek time for a hard disk 

is about 9 ms. Comparing to a typical seek time, the settling time of the microactuator 

system is insignificant. However, the actuator system has relatively high overshoot. To 

compensate for this overshoot, the pole locations which limit overshoot to no more than 

5 % are chosen. From the plots of the second-order transients in Figure 5.2.9, a damping 

ratio 7.0=ζ  will meet the overshoot requirement. 
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Figure 5.2.9: Overshoot versus damping ratio for the second-order system  

(Franklin et al., 1995) [19].  

 

 

 

 

Pole locations corresponding to 707.0=ζ are shown in Figure 5.2.10. 
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Figure 5.2.10: Pole locations corresponding to 707.0=ζ . 

 

 

 

 

From all considerations above, the desired poles are selected as 

 

[ ]i10481.110481.1i10481.110481.1Pole 5555 ×−×−×+×−=           (5.2.10) 

 

The desired pole locations in s-plane are shown in Figure 5.2.11. 
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Figure 5.2.11: Desired pole locations for the lateral microactuator. 

 

 

 

 

Although selected pole locations have disadvantages to the rise time of s6.8 µ  and 

settling time of  s27µ , these disadvantages are insignificant comparing with a typical 

seek time of  9ms. 

 

Control law design 
 

The purpose of the control law is to allow us to assign a set of pole locations for the 

closed-loop system that will correspond to satisfactory dynamic response in terms of the 

rise time, the settling time and the overshoot of transient response. We need to find the 

control law K as feedback of a linear combination of the state variables as shown in 

equation (5.2.11). 
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The system has a constant matrix in the state-vector feedback path as shown in Figure 

5.2.12. 

 

 

 

 

 
 

 

 

Figure 5.2.12: Assumed system for control-law design (Franklin et al., 1995) [19]. 

 

 

 

 

Substituting the feedback law Kx−=u  in to the system equation uGFxx +=&  yields  

 

GKxFxx −=&           (5.2.12) 

 

The characteristic equation for this close-loop system is  

 

0])det[ =−− GK(FIs          (5.2.13) 

 

 uGFxx +=&

 Kx−=u

Hu x
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The control law consists of picking the gain K so that the roots of equation (5.2.13) are in 

desirable locations. If desired pole locations are known, MATLAB function “acker” can 

be used to determine the control law. MATLAB function “acker” gives the control law 

for the previously chosen pole locations. 

 

[ ]0.014-10.4113-K 4×=                (5.2.14) 

 

Estimator design 
 

In the control law design, all the state variables are available for feedback was assumed. 

In most case, not all the state variables are measured. We need the estimate of the state 

and to reconstruct the state variables. Let 
∧

x  be the estimate of the system. We need to 

consider feeding back the difference between the measured and estimated outputs and 

correcting the model continuously with this error as shown in Figure 5.2.13. 

 

 

 

 

 
 

 

 

Figure 5.2.13: Closed-loop estimator (Franklin et all, 1995) [19]. 
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The estimator should be chosen to achieve satisfactory error characteristic. If desired pole 

locations are known, MATLAB function “acker” can be used to determine the estimator. 

The estimator poles can be chosen to be faster then the controller poles. This ensures a 

faster decay of the estimator errors compared with the desired dynamics, thus causing the 

controller poles to dominate the total response. Equation (5.2.15) shows the chosen pole 

locations. 

 

[ ]i10814.110047.1i10814.110047.1Pole 6666 ×−×−×+×−=             (5.2.15) 

 

MATLAB function “acker” gives the estimator for chosen pole locations. 

 

⎥
⎦

⎤
⎢
⎣

⎡
×

= 5104.385
209.0

L                (5.2.16) 

 

Combine the control law and the estimator 
 

If the control law and the estimator described above are combined, the design is complete 

for a compensator that is able to reject disturbances. The compensator transfer function is 

given by   

 

LLHGKFIK 1)(s
Y(s)
U(s)D(s) −++−−==               (5.2.17) 

 

Therefore, the transfer function of the compensator is defined by 

 

1052

104

10386.4s10962.2s
10694.1s10334.1D(s)
×+×+

×+×
=           (5.2.18) 

 

Now, the transfer functions of both the compensation and piezoelectric microactuator are 

obtained.  
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Figure 5.2.14: Block diagram of track following control system. 

 

 

 

 

The time response of the closed-loop system for m 1.0 µ  displacement is shown Figure 

5.2.15. 

 

 

 

 

1262

8-10

10385.4s10094.2s
101.273s106.985-
×+×+
×+×

Compensation

1052

104

10386.4s10962.2s
10694.1s10334.1
×+×+

×+×

Lateral Actuator 

OutputInput 



 95

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-5

0

0.2

0.4

0.6

0.8

1

1.2
x 10

-4

Time (sec)

A
m

pl
itu

de

 
 

 

 

Figure 5.2.15: Time response of the lateral microactuator with the compensator 

(response for m 1.0 µ  displacement). 

 

 

 

 

The time response of the lateral microactuator with the compensator shows that the 

overshoot of the lateral actuator system are reduced. 
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5.3 Controller Design for the Transverse Actuator 
 

For the transverse actuator, the flying height is the system variable being controlled. The 

purpose is to find a compensation D(PZT) to achieve better flying height control, such as 

that shown in Figure 5.3.1. First, we need to select pole locations which satisfy the 

requirements and develop the control law and estimator for the closed-loop system that 

corresponds to satisfactory dynamic response and then combine the control law and the 

estimator. 

 

 

 

 

 
 

 

 

Figure 5.3.1: Block diagram of the transverse actuator system. 

 

 

 

 

Control law design 
 

The dominant second-order poles method is used for pole placement. From the Chapter 

Four, equation (4.2.10), the transfer function of the transverse actuator system is defined 

as  

 

           

Transverse ActuatorCompensation

u y
D(PZT) G(PZT)
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    1362

7-10

PZT 101.382s10718.3s
10735.1s10657.4G
×+×+

×+×
=     (5.3.1) 

 

The pole locations of the system are obtained by using MATLAB. 

 

[ ]i103.22010859.1i103.22010859.1Pole 6666 ×−×−×+×−=   (5.3.2) 

 

The pole location of the system in s-plane is shown in Figure 5.3.2. 

 

 

 

 

 
 

 

 

Figure 5.3.2: Pole locations of the transverse microactuator. 
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Figure 5.3.3 shows the time response of the transverse actuator for 19nm displacement. 
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Figure 5.3.3: Time response of the transverse microactuator  

(response for 19nm displacement). 

 

 

 

 

By using a controller, we can decrease the rise time, the settling time and the overshoot of 

the actuator system for better time response. The rise time of the system is defined by 
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              (5.3.3) 

 

The overshoot of the system is defined by 

 

163.0eeM 22 0.51
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1
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−
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− π

ζ

πζ

            (5.3.4) 

 

The settling time of the system is defined by 

 

6
6

n
s 10474.2

10718.3 5.0
6.4

 
6.4t −×=

×⋅
==

ωζ
          (5.3.5) 

 

A typical seek time for a hard disk is about 9 ms. Comparing with a typical seek time, the 

settling time of the microactuator system is insignificant. However, the actuator system 

has relatively high overshoot. To compensate for this overshoot, the pole locations which 

limit overshoot to no more than 5 % are chosen. From the plots of the second-order 

transients in Figure 5.2.9, a damping ratio 7.0=ζ  will meet the overshoot requirement. 

From all considerations above, the desired poles are given by 

      

[ ]i102.629102.629i102.629102.629Pole 5555 ×−×−×+×−=      (5.3.6) 

 

The desired pole locations in s-plane are shown in Figure 5.3.4. 
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Figure 5.3.4: Desired poles locations for the transverse microactuator. 

 

 

 

 

Although selected pole locations have disadvantages to the rise time of s36.4 µ  and 

settling time of  s15µ , these disadvantages are insignificant comparing with a typical 

seek time of 9ms. MATLAB function “acker” gives the control law for the previously 

chosen pole locations. 

 

[ ].1840- 107.887- K 5×=           (5.3.7) 

 

Estimator design 
 

The estimator should be chosen to achieve satisfactory error characteristic. The estimator 

poles can be chosen to be faster then the controller poles. This ensures a faster decay of 
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the estimator errors compared with the desired dynamics, thus causing the controller 

poles to dominate the total response. Equation (5.3.8) shows the chosen pole locations. 

 

[ ]i10220.310859.1i10220.310859.1Pole 6666 ×−×−×+×−=             (5.3.8) 

 

MATLAB function “acker” gives the estimator for chosen pole locations. 

 

⎥
⎦

⎤
⎢
⎣

⎡
×

= 6101.382
0.372

L                 (5.3.9) 

 

Combine the control law and the estimator 
 

If the control law and the estimator described above are combined, the design is complete 

for a compensator that is able to reject disturbances. The compensator transfer function is 

given by   

 

1152

125

101.382s10258.5s
10235.1s10475.5D(s)
×+×+

×+×
=           (5.3.10) 

 

Now, the transfer functions of both the compensation and piezoelectric transverse 

microactuator are obtained.  
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Figure 5.3.5: Block diagram of flying height adjusting control system. 

 

 

 

 

The time response of the closed-loop system for 19nm displacement is shown Figure 

5.3.6. 
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Figure 5.3.6: Time response of the transverse microactuator with the compensator 

(response for 19nm displacement). 

 

 

 

 

The time response of the transverse microactuator with the compensator shows that the 

overshoot  of the transverse actuator system are reduces. In this hard disk positioning 

system, the lateral and the transverse displacements were the system variables being 

controlled.  The lateral actuator is working to place the head at the desired position and 

the transverse actuator works to place the head at the desired height. The state-space 

design method was used to design a controller. The proposed actuator systems have good 

rise time and settling time but relatively high overshoot. To compensate for these 



 104

overshoot, the pole locations which limit overshoot to no more than 5 % were chosen. 

Simulation results show that the overshoot and the fluctuation of the actuator system are 

reduced and response of the actuator system becomes more stable. 
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Chapter Six 

Summary and Conclusions 
 

The current trend in hard disk design is towards smaller hard disks with larger capacities. 

Areal density has been dramatically increasing at a rate of 100% a year. Hard disk drives 

of more than 30 2Gb/in areal densities are now available and research in the hard disk 

drives industry is now targeting an areal density of more than 100 2Gb/in  or 1 2Tb/in . 

Achieving such high storage density is possible by adjusting the movement of the head 

individually by using a microactuator integrated in the head positioning system. The use 

of piezoelectric microactuators for active control of the head positioning system in high 

density hard disk drives has recently become more common. The advantages of 

piezoelectric materials are their lightness, stiffness, large force generation, large 

displacement generation and temperature stability. For these reasons, Lead Zirconate 

Titanate 5 (PZT5) was chosen for use as the microactuator. The actuator uses the uniaxial 

actuation of PZT elements for the lateral control and the bimorph actuation of PZT 

elements for the transverse control. The purpose of this study was to 1) design a new 

piezoelectric microactuator with transverse and lateral control of head positioning 

systems for high density hard disk drives and 2) evaluate their performance.  

 

6.1 Summary 
 

The main objective of this research was to develop a new piezoelectric microactuator 

with transverse and lateral control of head positioning systems for high density hard disk 

drives and to evaluate their performance. Current research on microactuator design for 

high density hard disk drives was reviewed. The dual actuator system was proposed for 

fast and accurate head positioning in the lateral direction. The dual actuator design was 

divided into three types: a suspension driven actuator, a slider driven actuator and a head 

driven actuator. A self-adjusting flying height control slider was proposed for efficient 

head positioning in the transverse direction. In this study, a slider driven actuator with a 

self-adjusting flying height control was developed. Based on the current technology of 
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hard disk drive industries, 2Gb/in 100  areal density was set as a target density. For the 
2Gb/in 100  areal density, the stroke of lateral displacement was set to be more than 

m) 1.0(  m 0.2 µµ ±  with 5-6 kHz of servo bandwidth and the transverse deflection was set 

to be more than 19nm, corresponding to the flying height of less than 6 nm. The proposed 

microactuator had two actuation parts: the lateral actuator and the transverse actuator 

which were independently controlled. The lateral actuator worked to place the head at the 

desired position. After the head position in the lateral direction was confirmed, the 

transverse actuator worked to place the head at the desired height. If all conditions were 

satisfied, the read/write processing was started. The uniaxial deformation of piezoelectric 

materials was used to generate the lateral displacement and the bimorph deformation of 

piezoelectric materials was used to generate the transverse deflection. The dynamic 

equations of the piezoelectric microactuator were derived. Frequency response analyses 

of the actuator systems were conducted. A 0.5 % damping was assumed for evaluating 

the system performance in this study. Frequency response analysis using the state space 

method and Bode diagram showed that the proposed microactuator satisfied target 

requirements. The new actuator achieved maximum stroke of displacement of more than 

m2.0 µ  with servo bandwidth of more than 6 kHz for the lateral motion and the flying 

height was decreased to less than 6 nm with resonance frequency of more than 100 kHz 

for the transverse motion under the 0.5 % damping assumption. Frequency responses 

with a variety of system parameters were evaluated for future improvement. For lateral 

control, higher natural frequency, lower damping ratio, or lower mass moment inertia 

were required for better performance. For transverse control, higher natural frequency or 

lower damping ratio were expected for better performance.  Time response analyses of 

the actuator systems were conducted. The controllers in the closed-loop systems were 

designed to compensate for disturbances.  In this hard disk positioning system, 

displacements in the lateral and the transverse directions were the system variables being 

controlled. Three controllers were used: a track seeking controller for the VCM actuator, 

a track following controller for the lateral PZT actuator, and a height adjusting controller 

for the transverse PZT actuator. Simulation results demonstrated the effectiveness of the 

proposed controller.  
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6.2 Conclusions 
 

The purpose of the study is to develop a new piezoelectric microactuator with lateral and 

transverse control of head positioning systems in order to improve performance of high 

density hard disk drives by increasing servo bandwidth and decreasing flying height. In 

order to achieve two-dimensional controls, the microactuator, which has two actuation 

parts for the lateral and the transverse directions in a single body, is proposed. The axial 

deformation of piezoelectric elements is used for lateral motion control and the bimorph 

actuation of piezoelectric elements is used for transversal motion control. Since the 

actuator has simple structure, it has good productivity and can be used with existing 

conventional assembly. Two piezoelectric layers are used for the microactuator. The use 

of two layers not only increases stiffness and generates large forces but also reduces 

driving voltage. Dynamic properties of the system are related to system parameters such 

as the natural frequency, the mass moment of inertia, and the damping ratio of the 

system. The frequency response analysis shows that the higher natural frequency, lower 

damping ratio and lower mass moment of inertia are required to achieve better 

performance of the actuator system. Those system parameters are related to the shape, 

size and material properties of the actuator and the slider. By modifying the shape of the 

actuator and choosing proper materials, we can achieve better performance of the system. 

To increase the natural frequency of the lateral actuator, increasing the cross section area 

of the lateral actuator or reducing the length of the lateral actuator is required. To reduce 

the mass moment of inertia of the positioning system, reducing the mass and the size of 

the slider is required. Since a conventional Pico size slider is used in this study, the value 

of the mass moment of inertia of the positioning system does not change. However, with 

this knowledge, using smaller and lighter sliders, or using head driven actuator designs 

can be considered. To increase the natural frequency of the transverse actuator, increasing 

the thickness of the actuator or reducing the length or density of the transverse actuator is 

required.  Feedback control is used for precise control. Since the proposed actuator has 

good rise time and settling time but relatively high overshoots, the compensator is 

designed to limit overshoot to no more than 5 % . The proposed controllers in the closed-

loop system compensate for disturbances. The microactuator improved performance of 
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high density hard disk drives by increasing servo bandwidth and decreasing flying height. 

 

It should be noted that the piezoelectric actuator needs high voltage input to generate the 

required displacement. Modifying the structure of the piezoelectric microactuator, which 

needs less voltage input, is needed. A stack design can be used to reduce the driving 

voltage. However, increasing adhesive layers can affect the dynamics of the actuator 

system and the total actuator thickness is limited by the structure of the existing 

assembly. Further study of the effect of an adhesive layer and the total actuator thickness 

to the dynamics of the positioning system for hard disk drives is desirable. Experimental 

work for evaluating the damping of the actuator system is also needed including work 

related to the material science of piezoelectric materials in order to evaluate the damping 

effect caused by the heat generation of the piezoelectric materials. There is another 

problem associated with the controller design for the actuator system. In the controller 

design for the lateral control, the track seeking controller is used at low frequency part 

and the track following controller is used at high frequency part. However, the switching 

of the control mode is not considered in this study. More work could be done in the future 

for control system improvement.  
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APPENDIX A: NOMENCLATURE  

 
Characters 

A   coefficient of mode shape function 

cA    cross section area of the actuator 

A    state space model system matrix  

B    state space model system matrix 

b    width of the actuator 

C(s)   transfer function of a controller 

c    damping constant of the lateral actuator 

mc    modal damping of the transverse actuator 

D(s)    transfer function of the compensator 

D    electric displacement vector 

D    bending stiffness 

d    piezoelectric strain constant matrix 

31d      piezoelectric strain constant 

sd  distance between the center of mass of the slider and the center of 

rotation in the lateral direction 

E    electric field vector 

31e     piezoelectric stress coefficient  

F    nn×  state space model system matrix 

mF   modal force of the transverse actuator 

1F   modal force of the transverse actuator in the first mode 

G  1n ×  state space model input matrix 

G transfer function of a system 

PG  transfer function of the controller and piezoelectric actuator 

VG   transfer function of the controller and voice coil motor 

H   n1×  state space model output matrix 

h   thickness of the actuator 



 110

I  area moment of inertia 

J   direct transmission term in state space model system 

J  mass moment of inertia of the slider about the center of rotation 

cJ    mass moment of inertia of the slider about the center of mass 

aJ   mass moment of inertia of voice coil actuator  

K  control law  

tK   torque constant for voice coil motor 

k  equivalent spring constant of the lateral actuator 

pk   equivalent spring constant of the single piezoelectric layer of the 

lateral actuator 

L  length of the transverse actuator 

1L   length of the lateral actuator 

2L    length between the center of lateral rotation and the head 

M  bending moment of the bimorph actuator  

pM   overshoot of the system 

sm   mass of slider 

P  force generated by the lateral actuator 

pP   force generated by the a single piezoelectric layer in the lateral 

direction 

cP  center of lateral rotation 

3p   equivalent input distributed loading  

3q   control force induced by external applied voltages 

r  moment arm in the lateral direction 

S  strain tensor 
Es   compliance matrix evaluated at a constant electric field.  

T  stress tensor 

t  time 

rt  rise time of the system 
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3mU   mode shape function 

3u  displacement 

u   control input in the state space model system 

Vu  control input to the controller for the voice coil motor 

Pu  control input to the controller for the piezoelectric actuator 

V  voltage 

Y Young’s modulus 

pY  Young’s modulus of piezoelectric materials 

Y displacement output 

z  a moment arm in transverse direction 

Greek 

 Tε   dielectric tensor measured at constant stress T 

mη     modal participation factor   

mλ    eigenvalue of characteristic equation    

µ     Poisson’s ratio 

ρ  mass density  

pρ     mass density of piezoelectric materials 

θ     rotational angle 

ω     input frequency 

nω   natural frequency   

mω     modal natural frequency 

1ω     natural frequency in the first mode 

ζ     damping ratio  

mζ   modal damping ratio 

1ζ   damping ratio in the first mode 
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APPENDIX B: MATERIAL PROPERTIES OF PZT5 
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