4,702 research outputs found

    Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)

    Get PDF
    Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was, however, not to happen. Early in the Apollo program, estimates of the probability for a successful roundtrip human mission to the moon yielded disappointingly low (and suspect) values and NASA became discouraged from further performing quantitative risk analyses until some two decades later when the methods were more refined, rigorous, and repeatable. Instead, NASA decided to rely primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods for system safety assessment

    Design-for-delay-testability techniques for high-speed digital circuits

    Get PDF
    The importance of delay faults is enhanced by the ever increasing clock rates and decreasing geometry sizes of nowadays' circuits. This thesis focuses on the development of Design-for-Delay-Testability (DfDT) techniques for high-speed circuits and embedded cores. The rising costs of IC testing and in particular the costs of Automatic Test Equipment are major concerns for the semiconductor industry. To reverse the trend of rising testing costs, DfDT is\ud getting more and more important

    Statistical Modelling for Recurrent Events in Sports Injury Research with Applications to Football Injury Data

    Get PDF
    Sports injuries stand as undesirable side effects of athletic participation, carrying serious consequences for athletes' health, their professional careers, and overall team performance. With the growing availability of data, there has been an increasing reliance on statistical models to monitor athletes' health and mitigate the risks of injuries. In this dissertation, we present advanced statistical modelling approaches and software tools for sports injury data. Our focus is on the time-varying and recurrent nature of injury occurrences, and we pursue three primary objectives: (a) identifying biomechanical risk factors using variable selection methods and shared frailty Cox models, (b) developing a flexible recurrent time-to-event approach to model the effects of training load on subsequent injuries, and (c) creating dedicated statistical tools through the statistical open-source software \textbf{R}. These objectives are driven by interdisciplinary research, conducted in close collaboration with the Medical Services of Athletic Club, and are motivated by real-world applications. Specifically, the work is based on three distinct data sets: functional screening tests data, external training load data, and web-scraped football injury data. The statistical advancements developed contribute to ongoing efforts in sports injury prevention, providing insights, methodologies, and accessible software implementations for sports medicine practitioners

    Efficient algorithms for fundamental statistical timing analysis problems in delay test applications of VLSI circuits

    Get PDF
    Tremendous advances in semiconductor process technology are creating new challenges for the delay test of todayโ€™s digital VLSI circuits. The complexity of state-of-the-art manufacturing processes does not only lead to greater process variability, it also makes today's integrated circuits more prone to defects such as resistive shorts and opens. As a consequence, some of the manufactured circuits do not meet the timing requirements set by the design specification. These circuits must be identified by delay testing and sorted out to ensure the quality of shipped products. Due to the increasing process variability, key transistor and interconnect parameters must be modelled as random variables. These random variables capture the uncertainty caused by process variability, but also the impact of modelling errors and variations in the operating conditions of the circuits, such as the temperature or the supply voltage. The important consequence for delay testing is that a particular delay test detects a delay fault of fixed size in only a subset of all manufactured circuits, which inevitably leads to the shipment of defective products. Despite the fact that this problem is well understood, today's delay test generation methods are unable to consider the distortion of the delay test results, caused by process variability. To analyse and predict the effectiveness of delay tests in a population of circuits which are functionally identical but have varying timing properties, statistical timing analysis is necessary. Although the large runtime of statistical timing analysis is a well known problem, little progress has been made in the development of efficient statistical timing analysis algorithms for the variability-aware delay test generation and delay fault simulation. This dissertation proposes novel and efficient statistical timing analysis algorithms for the variability-aware delay test generation and delay fault simulation in presence of large delay variations. For the detection of path delay faults, a novel probabilistic sensitization analysis is presented which analyses the impact of process variations on the sensitization of the target paths. Furthermore, an efficient method for approximating the probability of detecting small delay faults is presented. Beyond that, efficient statistical SUM and MAX-operations are proposed, which provide the fundamental basis of block-based statistical timing analysis. The experiment results demonstrate the high efficiency of the proposed algorithms

    ๋ถˆํ™•์‹ค์„ฑ ํ•˜์—์„œ ์‹œ์Šคํ…œ์˜ ์œ ์ง€ ๋ณด์ˆ˜ ์ตœ์ ํ™” ๋ฐ ์ˆ˜๋ช… ์ฃผ๊ธฐ ์˜ˆ์ธก

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2019. 2. ์ด์›๋ณด.The equipment and energy systems of most chemical plants have undergone repetitive physical and chemical changes and lead to equipment failure through aging process. Replacement and maintenance management at an appropriate point in time is an important issue in terms of safety, reliability and performance. However, it is difficult to find an optimal solution because there is a trade-off between maintenance cost and system performance. In many cases, operation companies follow expert opinions based on long-term industry experience or forced government policy. For cost-effective management, a quantitative state estimation method and management methodology of the target system is needed. Various monitoring technologies have been introduced from the field, and quantifiable methodologies have been introduced. This can be used to diagnose the current state and to predict the life span. It is useful for decision making of system management. This thesis propose a methodology for lifetime prediction and management optimization in energy storage system and underground piping environment. First part is about online state of health estimation algorithm for energy storage system. Lithium-ion batteries are widely used from portable electronics to auxiliary power supplies for vehicle and renewable power generation. In order for the battery to play a key role as an energy storage device, the state estimation, represented by state of charge and state of health, must be well established. Accurate rigorous dynamic models are essential for predicting the state-of health. There are various models from the first principle partial differential model to the equivalent circuit model for electrochemical phenomena of battery charge / discharge. It is important to simulate the battery dynamic behavior to estimate system state. However, there is a limitation on the calculation load, therefore an equivalent circuit model is widely used for state estimation. Author presents a state of health estimation algorithm for energy storage system. The proposed methodology is intended for state of health estimation under various operating conditions including changes in temperature, current and voltage. Using a recursive estimator, this method estimate the current battery state variable related to battery cell life. State of health estimation algorithm uses estimated capacity as a cell life-time indicator. Adaptive parameters are calibrated by a least sum square error estimation method based on nonlinear programming. The proposed state-of health estimation methodology is validated with cell experimental lithium ion battery pack data under typical operation schedules and demonstration site operating data. The presented results show that the proposed method is appropriate for state of health estimation under various conditions. The suitability of algorithm is demonstrated with on and off line monitoring of new and aged cells using cyclic degradation experiments. The results from diverse experimental data and data of demonstration sites show the appropriateness of the accuracy, robustness. Second part is structural reliability model for quantification about underground pipeline risk. Since the long term usage and irregular inspection activities about detection of corrosion defect, catastrophic accidents have been increasing in underground pipelines. Underground pipeline network is a complex infrastructure system that has significant impact on the economic, environmental and social aspects of modern societies. Reliability based quantitative risk assessment model is useful for underground pipeline involving uncertainties. Firstly, main pipeline failure threats and failure modes are defined. External corrosion is time-dependent factor and equipment impact is time-independent factor. The limit state function for each failure cause is defined and the accident probability is calculated by Monte Carlo simulation. Simplified consequence model is used for quantification about expected failure cost. It is applied to an existing underground pipeline for several fluids in Ulsan industrial complex. This study would contribute to introduce quantitative results to prioritize pipeline management with relative risk comparisons Third part is maintenance optimization about aged underground pipeline system. In order to detect and respond to faults causing major accidents, high resolution devices such as ILI(Inline inspection), Hydrostatic Testing, and External Corrosion Direct Assessment(ECDA) can be used. The proposed method demonstrates the structural adequacy of a pipeline by making an explicit estimate of its reliability and comparing it to a specified reliability target. Structural reliability analysis is obtaining wider acceptance as a basis for evaluating pipeline integrity and these methods are ideally suited to managing metal corrosion damage as identified risk reduction strategies. The essence of this approach is to combine deterministic failure models with maintenance data and the pipeline attributes, experimental corrosion growth rate database, and the uncertainties inherent in this information. The calculated failure probability suggests the basis for informed decisions on which defects to repair, when to repair them and when to re-inspect or replace them. This work could contribute to state estimation and control of the lithium ion battery for the energy storage system. Also, maintenance optimization model helps pipeline decision-maker determine which integrity action is better option based on total cost and risk.ํ™”ํ•™๊ณต์žฅ ๋‚ด ์žฅ์น˜ ๋ฐ ์—๋„ˆ์ง€ ์‹œ์Šคํ…œ์€ ๋ฐ˜๋ณต์ ์ธ ์‚ฌ์šฉ์œผ๋กœ ๋ฌผ๋ฆฌํ™”ํ•™์  ๋ณ€ํ™”๋ฅผ ๊ฒช์œผ๋ฉฐ ๋…ธํ›„ํ™”๋˜๊ณ  ์„ค๊ณ„ ์ˆ˜๋ช…์— ๊ฐ€๊นŒ์›Œ์ง€๊ฒŒ ๋œ๋‹ค. ์ ์ ˆํ•œ ์‹œ์ ์— ์žฅ๋น„ ๊ต์ฒด์™€ ๋ณด์ˆ˜ ๊ด€๋ฆฌ๋Š” ์•ˆ์ „๊ณผ ์‹ ๋ขฐ๋„, ์ „์ฒด ์‹œ์Šคํ…œ ์„ฑ๋Šฅ์„ ์ขŒ์šฐํ•˜๋Š” ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋ณด์ˆ˜ ๋น„์šฉ๊ณผ ์‹œ์Šคํ…œ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ ์‚ฌ์ด์—๋Š” ํŠธ๋ ˆ์ด๋“œ ์˜คํ”„๊ฐ€ ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด์— ๋Œ€ํ•œ ์ตœ์ ์ ์„ ์ฐพ๋Š” ๊ฒƒ์€ ์–ด๋ ค์šด ๋ฌธ์ œ์ด๋‹ค. ๋งŽ์€ ๊ฒฝ์šฐ์— ์šด์˜ํšŒ์‚ฌ์—์„œ๋Š” ๊ฒฝํ—˜์— ๊ธฐ๋ฐ˜ํ•œ ์ „๋ฌธ๊ฐ€ ์˜๊ฒฌ์„ ๋”ฐ๋ฅด๊ฑฐ๋‚˜, ์ •๋ถ€์ฐจ์›์˜ ์•ˆ์ „๊ด€๋ฆฌ ์ •์ฑ… ์ตœ์†Œ ๊ธฐ์ค€์— ๋งž์ถ”์–ด ์ง„ํ–‰ํ•œ๋‹ค. ๋น„์šฉํšจ์œจ์  ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•˜์—ฌ ์ •๋Ÿ‰์ ์ธ ์ƒํƒœ ์ถ”์ • ๊ธฐ๋ฒ•์ด๋‚˜ ์œ ์ง€๋ณด์ˆ˜ ๊ด€๋ฆฌ ๋ฐฉ๋ฒ•๋ก ์€ ํ•„์š”ํ•˜๋‹ค. ๋งŽ์€ ๋ชจ๋‹ˆํ„ฐ๋ง ๊ธฐ์ˆ ์ด ๊ฐœ๋ฐœ๋˜์–ด์ง€๊ณ  ์žˆ๊ณ  ์ ์ฐจ ์‹ค์‹œ๊ฐ„ ์ธก์ • ๋ฐฉ๋ฒ•์ด๋‚˜ ์„ผ์„œ ๊ธฐ์ˆ ์ด ๋ฐœ๋‹ฌ ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์—ฌ์ „ํžˆ ์ง์ ‘ ์ธก์ • ๋ฐ ๊ฒ€์‚ฌ ์ด์ „ ์žฅ๋น„์˜ ์ˆ˜๋ช… ์˜ˆ์ธก๊ณผ ์‹œ์Šคํ…œ ๊ด€๋ฆฌ์— ๋Œ€ํ•œ ์˜์‚ฌ๊ฒฐ์ •์„ ๋„์šธ ๋ฐฉ๋ฒ•๋ก ์€ ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฆฌํŠฌ ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์ˆ˜๋ช…์˜ˆ์ธก ๋ฐฉ๋ฒ•๋ก ๊ณผ ์ง€ํ•˜๋งค์„ค๋ฐฐ๊ด€์˜ ๊ด€๋ฆฌ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ ์žฅ์—์„œ๋Š” ์—๋„ˆ์ง€ ์ €์žฅ์‹œ์Šคํ…œ ์šด์ „ํŒจํ„ด์— ์ ํ•ฉํ•œ ๋ฐฐํ„ฐ๋ฆฌ SOH ์ถ”์ • ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ๋ฆฌํŠฌ ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ๋Š” ์ด๋™๊ฐ€๋Šฅ ์ „์ž์žฅ์น˜์—์„œ๋ถ€ํ„ฐ ์ž๋™์ฐจ ๋ฐ ์‹ ์žฌ์ƒ๋ฐœ์ „ ๋“ฑ์˜ ๋ณด์กฐ ์ „๋ ฅ ์ €์žฅ์žฅ์น˜๋กœ์„œ ํ™œ์šฉ์ด ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๋ฐฐํ„ฐ๋ฆฌ๊ฐ€ ์ •์ƒ์ ์ธ ์—ญํ• ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ SOC์™€ SOH์˜ ์ •ํ™•ํ•œ ์ถ”์ •์ด ์ค‘์š”ํ•˜๋‹ค. ์ •ํ™•ํ•œ ๋™์  ๋ชจ๋ธ์€ SOH ์˜ˆ์ธก์„ ์œ„ํ•˜์—ฌ ํ•„์ˆ˜์ ์ด๋‹ค. BMS์—๋Š” ๊ณ„์‚ฐ ๋กœ๋“œ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ƒํƒœ ์ถ”์ •์„ ์œ„ํ•˜์—ฌ ๊ณ„์‚ฐ ๋ถ€ํ•˜๊ฐ€ ๋น„๊ต์  ์ ์€ ๋“ฑ๊ฐ€ํšŒ๋กœ ๋ชจ๋ธ์ด ์‚ฌ์šฉ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” SOH ์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•˜๊ณ , ์…€ ๋ฐ ์‹ค์ฆ ์‚ฌ์ดํŠธ ๋ฐ์ดํ„ฐ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ๋ฐ˜๋ณต ์˜ˆ์ธก๊ธฐ์™€ ๊ด€์ธก๊ธฐ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ SOH๋ฅผ ์ถ”์ •์„ ํ†ตํ•˜์—ฌ ํ˜„์žฌ์˜ ๋ฐฐํ„ฐ๋ฆฌ ์ƒํƒœ๋ฅผ ์ œ์‹œํ•œ๋‹ค. SOH ์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์šฉ๋Ÿ‰์„ ์ค‘์š” ์ƒํƒœ๋ณ€์ˆ˜๋กœ ํ•˜์—ฌ ์˜ˆ์ธก๋œ๋‹ค. ์ œ์•ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ๋Š” SOH๋ฅผ ์ •ํ™•ํžˆ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ™•์žฅ์นผ๋งŒํ•„ํ„ฐ๋ฅผ ๋„์ž…ํ•˜์—ฌ ๋ฐฐํ„ฐ๋ฆฌ ์ƒํƒœ๋ณ€์ˆ˜๋“ค์„ ์ •ํ™•ํžˆ ์˜ˆ์ธกํ•˜๊ณ  ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ SOH๋ฅผ ์ถ”์ •ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋‘๋ฒˆ์งธ ์žฅ์€ ๊ตฌ์กฐ ์‹ ๋ขฐ๋„ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ์ง€ํ•˜๋ฐฐ๊ด€์˜ ์ •๋Ÿ‰์  ์œ„ํ—˜์„ฑ ๋ชจ๋ธ์„ ์ˆ˜๋ฆฝํ•œ๋‹ค. ๋ฐฐ๊ด€์˜ ์žฅ๊ธฐ ์‚ฌ์šฉ๊ณผ ๋ถˆ๊ทœ์น™ํ•œ ๊ฒ€์‚ฌ/๋ณด์ˆ˜ ํ™œ๋™์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์€ ์ง€ํ•˜๋ฐฐ๊ด€ ์•ˆ์ „ ์‚ฌ๊ณ ์˜ ์œ„ํ—˜์„ฑ์„ ์ฆ๋Œ€์‹œํ‚ค๋Š” ์š”์ธ์ด๋‹ค. ์‚ฐ์—…๋‹จ์ง€ ๋‚ด์˜ ์ง€ํ•˜๋ฐฐ๊ด€ ๋„คํŠธ์›Œํฌ๋Š” ๋ณต์žกํ•œ ์ธํ”„๋ผ๋ฅผ ๊ฐ–์ถ”๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ๊ณ  ๋ฐœ์ƒ์‹œ ๊ฒฝ์ œ์ , ํ™˜๊ฒฝ์ , ์‚ฌํšŒ์ ์œผ๋กœ ํฐ ์œ„ํ˜‘์š”์†Œ๊ฐ€ ๋œ๋‹ค. ์‹ ๋ขฐ๋„ ๊ธฐ๋ฐ˜ ์ •๋Ÿ‰์  ์œ„ํ—˜๋„ ๋ชจ๋ธ์€ ์ง€ํ•˜๋ฐฐ๊ด€์˜ ํฐ ๋ถˆํ™•์‹ค์„ฑ ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•˜๋Š”๋ฐ ์œ ์šฉํ•œ ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ๋ฐฐ๊ด€ ์‚ฌ๊ณ  ์œ„ํ˜‘์š”์ธ๊ณผ ์‚ฌ๊ณ  ๋ชจ๋“œ๋ฅผ ์ •์˜ํ•˜๊ณ , ๋ถ€์‹๊ณผ ํƒ€๊ณต์‚ฌ์— ์ด๋ฅด๋Š” ์‹œ๊ฐ„ ์˜์กด์ , ๋น„์˜์กด์  ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ํ•œ๊ณ„์ƒํƒœํ•จ์ˆ˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ์—ฐ๊ฐ„ ์‚ฌ๊ณ ํ™•๋ฅ ์ด ์œ ์ถ”๋˜๋ฉฐ ์‚ฌ๊ณ  ์˜ํ–ฅ๊ฑฐ๋ฆฌ ๋ฐ ๋ˆ„์ถœ๋Ÿ‰ ๊ณ„์‚ฐ ๋ชจ๋ธ๊ณผ ํ•ฉํ•˜์—ฌ ์ •๋Ÿ‰์  ์œ„ํ—˜์„ฑ ๋ถ„์„์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐฐ๊ด€์— ์กด์žฌํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฌผ์งˆ๋“ค์— ๋Œ€ํ•˜์—ฌ ์ผ€์ด์Šค ์Šคํ„ฐ๋””๋ฅผ ์ง„ํ–‰ํ•˜์—ฌ ์ •๋Ÿ‰ํ™”๋œ ์œ„ํ—˜๋„์— ๊ทผ๊ฑฐํ•˜์—ฌ ๋ฐฐ๊ด€๊ด€๋ฆฌ ์šฐ์„ ์ˆœ์œ„๋ฅผ ์ •ํ•˜๋Š” ์˜์‚ฌ๊ฒฐ์ •์— ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ธ๋ฒˆ์งธ ์žฅ์€ ๋…ธํ›„ํ™”๋œ ๋ฐฐ๊ด€ ์‹œ์Šคํ…œ์˜ ๊ด€๋ฆฌ ์ตœ์ ํ™”์— ๋Œ€ํ•œ ๋‚ด์šฉ์ด๋‹ค. ์‚ฌ๊ณ ์˜ ์œ„ํ—˜์„ฑ์„ ๋ฏธ์—ฐ์— ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ฒ€์‚ฌ, ๋ณด์ˆ˜ ๋ฐฉ๋ฒ•๋ก ์ด ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด์— ๋Œ€ํ•œ ํšจ๊ณผ๊ฐ€ ์œ„ํ—˜์„ฑ๊ณผ ์–ด๋–ป๊ฒŒ ๊ด€๋ จ๋˜์–ด์„œ ๋‚˜ํƒ€๋‚˜๋Š”์ง€ ์•Œ๊ธฐ ์–ด๋ ต๋‹ค. ๋Œ€๋ถ€๋ถ„ ๊ฒฝํ—˜์ ์œผ๋กœ ํ˜น์€ ์ œ๋„์ ์ธ ๋ฐฉ์•ˆ์„ ํ†ตํ•˜์—ฌ ๋ณด์ˆ˜์ ์ธ ์•ˆ์ „๊ด€๋ฆฌ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ํ•œ๊ณ„์„ฑ์ด ์žˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ํ† ๋Œ€๋กœ ํ•˜์—ฌ ์•ˆ์ „๊ด€๋ฆฌ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์‹ค์ œ์ ์ธ ๋ถ€์‹ ๊ด€๋ฆฌ์— ์˜ํ–ฅ ์ •๋„๋ฅผ ์ •๋Ÿ‰ํ™” ํ•œ๋‹ค. ์‹ ๋ขฐ๋„ ๋ชฉํ‘œ์™€ ์ œ์•ˆ ๋˜์–ด์ง„ ์˜ˆ์‚ฐ ๋“ฑ์„ ์ œํ•œ์กฐ๊ฑด์œผ๋กœ ํ•˜๋Š” ์ตœ์ ํ™”๋ฅผ ์‹ค์‹œํ•˜์—ฌ ์ตœ์ ์˜ ๊ฒ€์‚ฌ ์ฃผ๊ธฐ, ์ตœ์ ์˜ ๊ฒ€์‚ฌ ๋ฐฉ๋ฒ•๋ก ์„ ํ™•์ธํ•œ๋‹ค. ์œ„ ์—ฐ๊ตฌ๋ฅผ ํ† ๋Œ€๋กœ ๊ฐœ์„ ๋œ ๋ฆฌํŠฌ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์˜จ๋ผ์ธ ์ƒํƒœ์ถ”์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ œ์‹œํ•˜๊ณ  ์œ„ํ—˜๋„ ํ™˜์‚ฐ ๋น„์šฉ์„ ๊ฒฐํ•ฉํ•œ ๊ตฌ์กฐ ์‹ ๋ขฐ๋„ ๋ชจ๋ธ๋กœ ์ง€ํ•˜๋ฐฐ๊ด€ ๊ด€๋ฆฌ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค.Abstract i Contents vi List of Figures ix List of Tables xii CHAPTER 1. Introduction 14 1.1. Research motivation 14 1.2. Research objectives 19 1.3. Outline of the thesis 20 CHAPTER 2. Lithium ion battery modeling and state of health Estimation 21 2.1. Background 21 2.2. Literature Review 22 2.2.1. Battery model 23 2.2.2. Qualitative comparative review of state of health estimation algorithm 29 2.3. Previous estimation algorithm 32 2.3.1. Nonlinear State estimation method 32 2.3.2. Sliding mode observer 35 2.3.3. Proposed Algorithm 37 2.3.4. Uncertainty Factors for SOH estimation in ESS 42 2.4. Data acquisition 44 2.4.1. Lithium ion battery specification 45 2.4.2. ESS Experimental setup 47 2.4.3. Sensitivity Analysis for Model Parameter 54 2.5. Result and Discussion 59 2.5.1. Estimation results of battery model 59 2.5.2. Estimation results of proposed method 63 2.6. Conclusion 68 CHAPTER 3. Reliability estimation modeling for quantitative risk assessment about underground pipeline 69 3.1. Introduction 69 3.2. Uncertainties in underground pipeline system 72 3.3. Probabilistic based Quantitative Risk Assessment Model 73 3.3.1. Structural Reliability Assessment 73 3.3.2. Failure mode 75 3.3.3. Limit state function and variables 79 3.3.4. Reliability Target 86 3.3.5. Failure frequency modeling 90 3.3.6. Consequence modeling 95 3.3.7. Simulation method 101 3.4. Case study 103 3.4.1. Statistical review of Industrial complex underground pipeline 103 3.5. Result and discussion 107 3.5.1. Estimation result of failure probability 107 3.5.1. Estimation result validation 118 CHAPTER 4. Maintenance optimization methodology for cost effective underground pipeline management 120 4.1. Introduction 120 4.2. Problem Definition 124 4.3. Maintenance scenario analysis modeling 126 4.3.1. Methodology description 128 4.3.2. Cost modeling 129 4.3.3. Maintenance mitigation model 132 4.4. Case study 136 4.5. Results 138 4.5.1. Result of optimal re-inspection period 138 4.5.2. Result of optimal maintenance actions 144 CHAPTER 5. Concluding Remarks 145 References 147Docto

    Reliability Abstracts and Technical Reviews January-December 1969

    Get PDF
    No abstract availabl
    • โ€ฆ
    corecore