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1. Introduction  

Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis 
method aimed at identifying and assessing risks in complex technological systems for the 
purpose of cost-effectively improving their safety and performance. NASA’s objective is to better 
understand and effectively manage  risk, and thus more effectively ensure mission and 
programmatic success, and to achieve and maintain high safety standards at NASA. NASA 
intends to use risk assessment in its programs and projects to support optimal management 
decision making for the improvement of safety and program performance. 

In addition to using quantitative/probabilistic risk assessment to improve safety and enhance 
the safety decision process, NASA has incorporated quantitative risk assessment into its system 
safety assessment process, which until now has relied primarily on a qualitative representation 
of risk.  Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process 
[1-1] as a valuable addition to supplement existing deterministic and experience-based 
engineering methods and tools. 

Over the years, NASA has been a leader in most of the technologies it has employed in its 
programs. One would think that PRA should be no exception. In fact, it would be natural for 
NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment 
and management implicitly or explicitly on a daily basis. NASA has probabilistic safety 
requirements (thresholds and goals) for crew transportation system missions to the International 
Space Station (ISS) [1-2].  NASA intends to have probabilistic requirements for any new human 
spaceflight transportation system acquisition. 

Methods to perform risk and reliability assessment in the early 1960s originated in U.S. 
aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a 
reasonable extrapolation to expect that NASA would also become the world leader in the 
application of PRA. That was, however, not to happen.  

Early in the Apollo program, estimates of the probability for a successful roundtrip human 
mission to the moon yielded disappointingly low (and suspect) values and NASA became 
discouraged from further performing quantitative risk analyses until some two decades later 
when the methods were more refined, rigorous, and repeatable.  Instead, NASA decided to rely 
primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods 
for system safety assessment.  

In the meantime, the nuclear industry adopted PRA to assess safety. This analytical method 
was gradually improved and expanded by experts in the field and has gained momentum and 
credibility over the following decades, not only in the nuclear industry, but also in other 
industries like petrochemical, offshore platforms, and defense. By the time the Challenger 
accident occurred in 1986, PRA had become a useful and respected tool for safety assessment. 
Because of its logical, systematic, and comprehensive approach, PRA has repeatedly proven 
capable of uncovering design and operational weaknesses that had escaped even some of the 
best deterministic safety and engineering experts. This methodology showed that it was very 
important to examine not only single low-probability and high-consequence mishap events, but 
also high-consequence scenarios that can emerge as a result of the occurrence of multiple 
high-probability and low consequence or nearly benign events. Contrary to common perception, 
the latter in its aggregate is oftentimes more detrimental to safety than the former. 
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Then, the October 29, 1986, “Investigation of the Challenger Accident” [1-3], by the 
Committee on Science and Technology, House of Representatives, stated that, without some 
credible means of estimating the probability of failure (POF) of the Shuttle elements, it was not 
clear how NASA could focus its attention and resources as effectively as possible on the most 
critical Shuttle systems.  

In January 1988, the Slay Committee recommended, in its report called the  “Post-
Challenger Evaluation of Space Shuttle Risk Assessment and Management” [1-4], that PRA 
approaches be applied to the Shuttle risk management program at the earliest possible date. It 
also stated that databases derived from Space Transportation System failures, anomalies, flight 
and test results, and the associated analysis techniques should be systematically expanded to 
support PRA, trend analysis, and other quantitative analyses relating to reliability and safety. 

As a result of the Slay Committee criticism, NASA began to use PRA, at least in a “proof-of-
concept” mode, with the help of contractors. A number of NASA PRA studies were conducted in 
this fashion over the next 10 years.  

During the first decade of this century, PRA has gained significant momentum at NASA. It 
was applied to assess the safety of major human flight systems, including the Space Shuttle, 
the International Space Station and the Constellation Program. It was also applied for flight 
approval of all nuclear missions, i.e., missions carrying radioactive material. PRA, as a safety 
assessment method, was incorporated into System Safety to use when quantitative risk 
assessment is deemed necessary. Moreover, a RIDM approach was developed to help bring 
risk assessment to the engineering and management decision table.  Meanwhile top level NASA 
policy documents (e.g., NPD 1000.5A [1-5]) have begun to call for increasingly quantitative 
approaches to managing risk at the Agency level. 

1.1 Purpose and Scope of This Procedures Guide 

During the past several decades, much has been written on PRA methods and applications. 
Several university and practitioner textbooks and sourcebooks currently exist, but they focus on 
applications of PRA to industries other than aerospace. Although some of the techniques used 
in PRA originated in work for aerospace and military applications, no comprehensive reference 
currently exists for PRA applications to aerospace systems.  

 This PRA Procedures Guide, in the present second edition, is neither a textbook nor an 
exhaustive sourcebook of PRA methods and techniques. It provides a set of recommended 
procedures, based on the experience of the authors, that are applicable to different levels and 
types of PRA that are performed for aerospace applications. It therefore serves two purposes, 
to: 

1. Complement the training material taught in the NASA PRA course for practitioners, and 
together with the Fault Tree Handbook [1-6], the Risk-Informed Decision Making 
Handbook [1-1], the Bayesian Inference handbook [1-7], the Risk Management 
Handbook [1-8], and the System Safety Handbook [1-9] to provide quantitative risk 
methodology documentation, and to 

2. Provide aerospace PRA practitioners in selecting an analysis approach that is best 
suited for their applications. 

The material in this Procedures Guide is organized into five parts: 

1. A management introduction to PRA and the Risk Management framework in which it is 
used is presented in Chapters 1-3.  
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2. Chapters 4-12 cover the details of PRA: methods for scenario development, data 
collection and parameter estimation, uncertainty analysis, dependent failure analysis, 
human reliability analysis, software reliability analysis, modeling of physical processes 
for PRA, probabilistic structural analysis, and uncertainty propagation. The Human 
Reliability Analysis (Chapter 8) was updated in the present edition. The Software Risk 
Assessment (Chapter 9) was also re-written but this area is still not mature enough to 
include several recommended methodology approaches. 

3. Chapter 13 discusses the presentation of results.  The discussion addresses what 
results should be presented and in what format.  Presentation and communication of 
PRA results is extremely important for use in risk-informed decision making. 

4. Given the importance of crew safety, Chapter 14 presents details on launch abort 
modeling including the factors that must be considered, the analysis methodologies that 
should be employed, and how the assessment should be included in the vehicle 
development process. 

5. Finally, Appendix A through C contain basic information to supplement one’s existing 
knowledge or self-study of probability, statistics, and Bayesian inference.  Then two PRA 
examples are provided in Appendix D and, finally, the use of simulation in the 
probabilistic assessment of risk is covered in Appendix E. 

1.2 Knowledge Background 

Users of this Guide should be well grounded in the basic concepts and application of 
probability and statistics.  For those lacking such a background, some tutorial material has been 
provided in the Appendices, which should be supplemented by formal and/or self-study.  
However, this prior knowledge is not essential to an understanding of the main concepts 
presented here. 

1.3 Application Recommendation 

The authors recommend that the users of this guide adhere to the philosophy of a “graded 
approach” to PRA application.  That is, the resources and depth of assessment should be 
commensurate with the stakes and the complexity of the decision situations being addressed.  
Depending on project scale, life cycle phase, etc., different modeling detail and complexity are 
appropriate in PRA.  As a general rule of thumb, the detail and complexity of modeling should 
increase with successive program/project life cycle phases.  For a given phase, parametric, 
engineering, and logic modeling can be initiated at a low level of detail and complexity; the level 
of detail and complexity can then be increased in an iterative fashion as the project progresses.  
Further discussion of the graded approach philosophy is provided in NASA System Safety 
Handbook [1-9]. 
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2. Risk Management  

This chapter addresses the subject of risk management in a broad sense. Section 2.1 
defines the concept of risk. There are several definitions, but all have as a common theme the 
fact that risk is a combination of the undesirable consequences of accident scenarios and the 
probability of these scenarios.  

In Section 2.2 we will discuss the concepts of Risk-Informed Decision Making (RIDM) and 
Continuous Risk Management (CRM), which together provide a disciplined environment for 
proactive decision making with regard to risk. 

2.1 Definition of Risk 

The concept of risk includes both undesirable consequences and likelihoods, e.g., the 
number of people harmed, and the probability of occurrence of this harm. Sometimes, risk is 
defined as a set of single values, e.g., the expected values of these consequences. This is a 
summary measure and not a general definition. Producing probability distributions for the 
consequences affords a much more detailed description of risk. 

A very common definition of risk represents it as a set of triplets [2-1]: scenarios, likelihoods, 
and consequences. Determining risk generally amounts to answering the following questions: 

1. What can go wrong? 

2. How likely is it? 

3. What are the associated consequences? 

The answer to the first question is a set of accident scenarios. The second question requires 
the evaluation of the probabilities of these scenarios, while the third estimates their 
consequences.  Implicit within each question is that there are uncertainties.  The uncertainties 
pertain to whether all the significant accident scenarios have been identified, and whether the 
probabilities of the scenarios and associated consequence estimates have properly taken into 
account the sources of variability and the limitations of the available information.   

Scenarios and uncertainties are among the most important components of a risk 
assessment. Figure 2-1 shows the implementation of these concepts in PRA.  In this Figure, 
uncertainty analysis is shown to be an integral part of each step of the process rather than just a 
calculation that is performed at the end of the risk quantification. 
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Figure 2-1. Implementation of the Triplet Definition of Risk in PRA. 

The accident scenarios begin with a set of “initiating events” (IEs) that perturb the system 
(i.e., cause it to change its operating state or configuration), representing a deviation in the 
desired system operation. For each IE, the analysis proceeds by determining the pivotal events 
that are relevant to the evolution of the scenario which may (or may not) occur and may have 
either a mitigating or exacerbating effect on the accident progression.  The frequencies of 
scenarios with undesired consequences are determined.  Finally, the multitude of such 
scenarios is put together, with an understanding of the uncertainties, to create the risk profile of 
the system. This risk profile then supports risk management. 

2.2 Risk Management at NASA 

Risk management (RM) is an integral aspect of virtually every challenging human endeavor. 
Although the complex concepts that RM encapsulates and the many forms it can take make it 
difficult to effectively implement, effective risk management is critical to program and project 
success. 
 

In the context of risk management, performance risk refers to shortfalls with respect to 
performance requirements in any of the mission execution domains of safety, technical, cost, 
and schedule.  The term performance risk is also referred to simply as risk. This generalization 
makes the concept of risk broader than in typical PRA contexts where the term risk is used to 
characterize only safety performance, and not necessarily with respect to defined requirements. 
Individual risk is different from performance risk, in that it refers to a particular issue that is 
expressed in terms of a departure from the program/project plan assumptions.  Individual risks 
affect performance risks but are not synonymous with them.  For example, an unusually high 
attrition of design engineers could affect the date within which the design is completed and 
thereby affect the ability to launch within a required time window.  The unexpectedly high 
attrition would be classified as an individual risk that affects the the ability to meet the required 
schedule for launch, a performance risk.  The role of PRA in the context of risk management is 
to quantify each performance risk, taking into account the individual risks that surface during the 
program/project. 

 
Until recently, NASA’s RM approach had been based almost exclusively on Continuous Risk 

Management (CRM), which stresses the management of individual risk issues during 
implementation.  In December of 2008, NASA revised its RM approach, in order to more 
effectively foster proactive risk management.  This approach, which is outlined in NPR 8000.4A, 
Agency Risk Management Procedural Requirements [2-2], and further developed in NASA/SP-
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2011-3422, NASA Risk Management Handbook [2-3], evolves NASA’s risk management to 
entail two complementary processes:  Risk-Informed Decision Making (RIDM) and CRM.  RIDM 
is intended to inform systems engineering (SE) decisions (e.g., design decisions) through better 
use of risk and uncertainty information, such as that resulting from PRA, in selecting alternatives 
and establishing baseline performance requirements 

 
CRM is then used to manage risks over the course of the development and implementation 

phases of the life cycle to assure that requirements related to safety, technical, cost, and 
schedule are met.  In the past, RM was considered equivalent to the CRM process; now, RM is 
defined as comprising both the RIDM and CRM processes, which work together to assure 
proactive risk management as NASA programs and projects are conceived, developed, and 
executed.  Figure 2-2 illustrates the concept. 
 

 
Figure 2-2. Risk Management as the Interaction of Risk-Informed Decision Making and 

Continuous Risk Management. [NASA/SP-2010-576]. 

Within the NASA organizational hierarchy (see Figure 2-3), high-level objectives, in the form 
of NASA Strategic Goals, flow down in the form of progressively more detailed performance 
requirements (PR), whose satisfaction assures that the objectives are met. Each organizational 
unit within NASA negotiates with the unit(s) at the next lower level in the organizational 
hierarchy a set of objectives, deliverables, performance measures (PM), baseline performance 
requirements, resources, and schedules that defines the tasks to be performed by the unit(s). 
Once established, the lower level organizational unit manages its own risks against these 
specifications, and, as appropriate, reports risks and elevates decisions for managing risks to 
the next higher level based on predetermined risk thresholds that have been negotiated 
between the two units. Invoking the RIDM process in support of key decisions as requirements 
flow down through the organizational hierarchy assures that objectives remain tied to NASA 
Strategic Goals while also capturing why a particular path for satisfying those requirements was 
chosen. 
 

RM  RIDM + CRMRM  RIDM + CRM
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Figure 2-3. Flowdown of Performance Requirements (Illustrative). 

2.2.1 Risk-Informed Decision Making Process (RIDM) 

 
As specified in NPR 8000.4A, the RIDM process itself consists of the three parts shown in 

Figure 2-4. 
 
 

 
Figure 2-4. The RIDM Process. 
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2.2.1.1 Part 1,  Identification of Alternatives in the Context of Objectives 
 

Decision alternatives are identifiable only in the context of the objectives that they are meant 
to satisfy.  Objectives, which in general may be multifaceted and qualitative, are captured 
through interactions with the relevant stakeholders. They are then decomposed into their 
constituent derived objectives, using an objectives hierarchy.  Each derived objective reflects an 
individual issue that is significant to some or all of the stakeholders. At the lowest level of 
decomposition are quantifiable performance objectives, each of which is associated with a 
performance measure that quantifies the degree to which the performance objective is met. 
Typically, each performance measure has a “direction of goodness” that indicates the direction 
of increasing benefit. 
 
A comprehensive set of performance measures is considered in decision making, reflecting 
stakeholder interests and spanning the mission execution domains of interest. 
Safety-related performance measures are typically probabilistic, expressing the likelihood, per 
mission or per unit time, that the undesired safety consequences will be experienced.  
Examples include:  
 
• Probability of Loss of Crew (P(LOC)):  The probability (typically per a defined reference 
mission) of death or permanently debilitating injury to one or more crewmembers. This 
performance measure is commonly used to assess crew safety. It is a sufficient measure for 
overall crew safety (i.e., freedom from LOC, injury, and illness) for short-duration missions 
where LOC is the dominant concern. For longer duration missions it may be more useful to 
explicitly address injury and illness using separate performance measures for each. 
 
• Probability of Loss of Vehicle (P(LOV)):  The probability that the vehicle will be lost 
during a mission.  In the context of expendable vehicles, P(LOV) has typically been used to 
quantify the probability that a vehicle will be lost or damaged prior to meeting its mission 
objectives.  In the context of reusable vehicles, P(LOV) has typically been used to quantify the 
probability that, during a mission, a vehicle will be rendered unusable for future missions. 
 
• Probability of Loss of Mission (P(LOM)):  The probability that mission objectives will not 
be met.  For expendable vehicles such as during deep-space robotic missions, P(LOM) is 
closely related to P(LOV) since, in that context, loss of vehicle is only relevant inasmuch as it 
affects the achievement of mission objectives. 
 

Objectives whose performance measure values must remain within defined limits give rise to 
imposed constraints that reflect those limits.  A threshold for P(LOC), P(LOV), or P(LOM) is an 
example of an imposed constraint. 
 

Following identification of objectives and associated performance measures, techniques 
such as trade trees [2-4] are used to generate decision alternatives for consideration.  Initially, 
the trade tree contains high-level decision alternatives representing high-level differences in the 
strategies used to address objectives.  The tree is then developed in greater detail by 
determining general categories of options that are applicable to each strategy.  
 
2.2.1.2  Part 2, Risk Analysis of Alternatives 
 

For each feasible alternative, uncertainty distributions for the performance measures are 
quantified, taking into account whatever significant uncertainties stand between the decision to 
implement the alternative and the accomplishment of the objectives that drive the decision 
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making process to begin with. Given the presence of uncertainty, the actual outcome of a 
particular decision alternative will be only one of a spectrum of outcomes that could result from 
its selection, depending on the occurrence, nonoccurrence, or quality of occurrence of 
intervening events. Therefore, it is incumbent on risk analysts to model each significant possible 
outcome, accounting for its probability of occurrence, to produce a distribution of forecasted 
outcomes for each alternative, as characterized by probability density functions (pdf) over the 
performance measures (see Figure 2-5).  PRA provides a means to generate pdfs for safety-
related performance measures.   
 

 
Figure 2-5. Uncertainty of Forecasted Outcomes for a Given Alternative Due to 

Uncertainty of Analyzed Conditions. 

2.2.1.3.  Part 3, Risk Informed Alternative Selection 
 

In Part 3, Risk Informed Alternative Selection, deliberation takes place among the 
stakeholders and the decision maker, and the decision maker either culls the set of alternatives 
and asks for further scrutiny of the remaining alternatives OR selects an alternative for 
implementation OR asks for new alternatives.  
 

To facilitate deliberation, the RM handbook introduces the concept of performance 
commitments.  A performance commitment is a performance measure value set at a particular 
percentile of the performance measure’s pdf, so as to anchor the decision maker’s perspective 
to that value as if it would be his/her commitment, were he/she to select that alternative. For a 
given performance measure, the performance commitment is set at the same percentile for 
every decision alternative, so that the probability of failing to meet it is the same across 
alternatives, even though the performance commitments themselves differ from one alternative 
to the next. Performance commitments are not themselves performance requirements. Rather, 
performance commitments are used to risk-inform the development of credible performance 
requirements as part of the overall SE process. 
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The use of performance commitments in RIDM supports a risk-normalized comparison of 
decision alternatives, in that a uniform level of risk tolerance is established prior to deliberating 
the merits and drawbacks of the various alternatives. Put another way, risk normalized 
performance commitments show what each alternative is capable of, at an equal likelihood of 
achieving that capability, given the state of knowledge at the time. 
 

Figure 2-6 presents notional performance commitments for three alternatives (A, B, and C) 
and three performance measures (cost and schedule have been combined into one 
performance measure for illustration purposes). 
 

 

 
Figure 2-6. Performance Commitments and Risk Tolerances for Three Alternatives. 

2.2.2 Continuous Risk Management (CRM) 

 
Once an alternative has been selected using RIDM, performance objectives, imposed 

constraints, and performance commitments  are used as an aid for determining performance 
requirements through the Systems Engineering process.  The term performance risk will be 
used henceforth to denote the probability of not meeting the performance requirements, and 
PRA will be the principal tool for determining that risk. 
 

After performance requirements have been developed, the risk associated with 
implementation of the design decision is managed using the CRM process. Because CRM takes 
place in the context of explicitly-stated performance requirements, the risk that the CRM 
process manages is the potential for performance shortfalls that may be realized in the future, 
with respect to these requirements. 
 

The risk tolerance levels for each performance measure obtained from RIDM establish initial 
levels of risk considered to be tolerable by a decision maker for the achievement of performance 
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requirements.  During the initialization of CRM, the decision maker may choose to levy 
improvements on the risk tolerance levels in the form of a tightening of these levels according to 
a risk burn-down schedule at key program/project milestones.  In other words, as the 
program/project evolves over time, design and procedural changes are implemented in an 
attempt to mitigate risk.  In turn, as risk concerns are lowered or retired and the state of 
knowledge about the performance measures improves, uncertainty should decrease, with an 
attendant lowering of residual risk (see Figure 2-7). 
 

 
Figure 2-7. Decreasing Uncertainty and Risk over Time 

 
The CRM process starts from the five cyclical functions of Identify, Analyze, Plan, Track, and 

Control, supported by the comprehensive Communicate and Document function [2-5], as shown 
in Figure 2-8.   
 

 
Figure 2-8. The CRM Process. 

Step 1, Identify 
 

The purpose of the Identify step is to capture stakeholders’ concerns regarding the 
achievement of performance requirements.  These concerns are referred to as individual risks, 
and collectively represent the set of undesirable scenarios that put the achievement of the 
activity’s performance requirements at risk.  The RM handbook defines “performance risk” as 
the probability of not meeting a performance requirement.  Each performance requirement has 
an associated performance risk that is produced by those individual risks which, in the 
aggregate, threaten the achievement of the requirement.  Quantification of a performance 

Perf.
Req.

Perf.
Req.

Perf.
Req.

Program/Project 
Start

Intermediate 
Milestone

Mission Time

Risk Risk
Risk

Direction of 
Goodness

Performance 
Measure X

Performance 
Measure X

Performance 
Measure X

Milestone 1 Milestone 2 Milestone 3



  

2-9 
 

requirement’s performance risk is accomplished by means of a scenario-based risk model that 
incorporates the individual risks so that their aggregate effect on the forecasted probabilities of 
achieving or not achieving the performance requirements can be analyzed. 
 
Step 2, Analyze 
 

The objectives of the analyze step are:  
 

 To estimate the likelihoods of the departures and the magnitudes of the consequence 
components of individual risks, including timeframe, uncertainty characterization, and 
quantification; 

 
 To assign, in a timely fashion, a criticality rank to each individual risk based on: 

 
o The probability that the departure will occur; 

 
o The magnitude of the consequence given occurrence of the departure; 
 
o The point in the activity’s timeline when the individual risk first surfaced (e.g., 

PDR, CDR); 
 
o The magnitude of the uncertainties; and 
 
o The amount of time available after the condition is identified before a departure 

can possibly occur. 
 

 To update the performance risk to incorporate new individual risks or changes in existing 
individual risks; 
 

 To determine which departure events and parameters within the models are the most 
important contributors to each performance risk, i.e., the risk drivers. 
 

Step 3, Plan 

 
The objective of the Plan step is to decide what action, if any, should be taken to reduce the 

performance risks that are caused by the aggregation of identified individual risks.  The possible 
actions are:  
 

 Accept – A certain level of performance risk can be accepted if it is within the risk 
tolerance of the program/project manager; 

 
 Mitigate – Mitigation actions can be developed which address the drivers of the 

performance risk; 
 

 Watch – Risk drivers can be selected for detailed observation, and contingency plans 
developed; 

 
 Research – Research can be conducted to better understand risk drivers and reduce 

their uncertainties;  
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 Elevate – Risk management decisions should be elevated to the sponsoring 

organization at the next higher level of the NASA hierarchy when performance risk can 
no longer be effectively managed within the present organizational unit; 

 
 Close – An individual risk can be closed when all associated risk drivers are no longer 

considered potentially significant. 
 

Selection of an appropriate risk management action is supported by risk analysis of 
alternatives and subsequent deliberation, using the same general principles of risk-informed 
decision making that form the basis for the RIDM process. 
 
Step 4, Track 
 

The objective of the Track step is to acquire, compile, and report observable data to track 
the progress of the implementation of risk management decisions, and their effectiveness once 
implemented.  The tracking task of CRM serves as a clearing house for new information that 
could lead to any of the following: 
 

 A new risk item; 
 
 A change in risk analysis; 
 
 A change in a previously agreed-to plan; 
 
 The need to implement a previously agreed-to contingency. 

 
Step 5, Control 
 

When tracking data indicate that a risk management decision is not impacting risk as 
expected, it may be necessary to implement a control action.  Control actions are intended to 
assure that the planned action is effective.  If the planned action becomes unviable, due either 
to an inability to implement it or a lack of effectiveness, then the Plan step is revisited and a 
different action is chosen.  
 
Communicate and Document 
 

Communication and documentation are key elements of a sound and effective CRM 
process. Well-defined, documented communication tools, formats, and protocols assure that: 
 

 Individual risks are identified in a manner that supports the evaluation of their impacts on 
performance risk; 

 
 Individual risks that impact multiple organizational units (i.e., cross-cutting risks) are 

identified, enabling the coordination of risk management efforts; 
 

 Performance risks, and associated risk drivers, are reported by each organizational unit 
to the sponsoring organization at the next higher level of the NASA hierarchy in a 
manner that allows the higher level organization to integrate that information into its own 
assessment of performance risk relative to its own performance requirements; 
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 Risk management decisions and their rationales are captured as part of the institutional 

knowledge of the organization. 
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3. Probabilistic Risk Assessment Overview 

3.1 Historical Background 

To motivate the technical approaches discussed in the following sections—that is, to 
understand the “what” and the “why” of the PRA methods discussed in this Guide—it is 
appropriate to begin with a brief history of PRA, to show how it differs from classical reliability 
analysis, and to show how decision-making is informed by PRA.  

In many respects, techniques for classical reliability analysis had already been highly 
developed for decades before PRA was seriously undertaken. Reliability texts from the 1970s 
emphasized highly quantitative modeling of component-level and system-level reliability—the 
probability that an item (component or system) would not fail during a specified time (or 
mission). This kind of modeling was at least theoretically useful in design evaluation. Design 
alternatives could be compared with respect to their reliability performance. Some sources 
discussed “probabilistic” reliability modeling, by which they meant propagation of parameter 
uncertainty through their models to obtain estimates of uncertainty in model output.  

The changes in PRA that have taken place since those days represent not only technical 
advances in the tools available, but also changes in the way we think about safety. In order to 
understand the “why” of many PRA tools, it is useful to understand this evolution from a 
historical point of view. Much of this evolution took place in the context of the nuclear power 
industry. This is not meant to imply that NASA tools are, or should be, completely derived from 
standard commercial nuclear PRA tools. Some remarks about what is needed specifically in 
NASA PRA tools are provided in the summary to this chapter (Section 3.4). However, the 
broader conclusions regarding how PRA can be applied properly in decision-making have 
evolved largely in the context of commercial nuclear power, and key historical points will be 
summarized in that context. 

3.1.1 Design Basis Evaluation vs. Risk Evaluation 

Traditionally, many system designs were evaluated with respect to a design basis, or a 
design reference mission. In this kind of approach, a particular functional challenge is 
postulated, and the design evaluation is based on the likelihood that the system will do its job, 
given that challenge. If a system is simple enough, quantitative reliability calculations can be 
performed. Alternatively, FMEA can be used essentially to test for redundancy within a system 
or function, and in some contexts, functional redundancy is presumed to achieve adequate 
reliability. 

Because this approach is not based on a quantitative risk perspective, it does not typically 
lead to an allocation of resources that is optimal from a risk point of view, even in cases where 
the designs can be considered “adequate” from a traditional system safety point of view. 
Moreover, the adequacy of the selection of IEs against which to evaluate the system is 
extremely difficult to ensure, without the equivalent of a systematic, PRA-style assessment of 
some kind. Unless highly off-normal events are postulated, systems will not be evaluated for 
their ability to cope with such events; but appropriately selecting extremely severe events 
against which to evaluate mitigating capability is nearly impossible without risk perspective.  

Moreover, it is found that certain thought processes need to be carried out in failure space to 
ensure that risk-significant failure modes are identified. Completeness is clearly necessary if 
prevention resources are to be allocated appropriately.  
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In general, optimal resource allocation demands some kind of integrated risk evaluation: not 
just a finding regarding system adequacy, and not a series of unrelated system-level 
assessments. 

3.1.2 From Regulation Based on Design Basis Review to Risk-Informed Regulation 

The first comprehensive PRA, the Reactor Safety Study (WASH-1400), was completed in 
the mid-1970s [1]. Its stated purpose was to quantify the risks to the general public from 
commercial nuclear power plant (NPP) operation. This logically required identification, 
quantification, and phenomenological analysis of a very considerable range of low-frequency, 
relatively high-consequence scenarios that had not previously been considered in much detail. 
The introduction here of the notion of “scenario” is significant; as noted above, many design 
assessments simply look at system reliability (success probability), given a design basis 
challenge. The review of nuclear plant license applications did essentially this, culminating in 
findings that specific complements of safety systems were single-failure-proof for selected 
design basis events. Going well beyond this, WASH-1400 modeled scenarios leading to large 
radiological releases from each of two types of commercial NPPs. It considered highly complex 
scenarios involving success and failure of many and diverse systems within a given scenario, as 
well as operator actions and phenomenological events. These kinds of considerations were not 
typical of classical reliability evaluations. In fact, in order to address public risk, WASH-1400 
needed to evaluate and classify many scenarios whose phenomenology placed them well 
outside the envelope of scenarios normally analyzed in any detail. 

WASH-1400 was arguably the first large-scale analysis of a large, complex facility to claim 
to have comprehensively identified the risk-significant scenarios at the plants analyzed. Today, 
most practitioners and some others have grown accustomed to that claim, but at the time, it was 
received skeptically. Some skepticism still remains today. In fact, it is extremely challenging to 
identify comprehensively all significant scenarios, and much of the methodology presented in 
this Guide is devoted to responding to that challenge. The usefulness of doing this goes well 
beyond quantification of public risk and will be discussed further below. Both for the sake of 
technical soundness and for the sake of communication of the results, a systematic method in 
scenario development is essential and is a major theme of this Guide. 

Significant controversy arose as a result of WASH-1400. These early controversies are 
discussed in many sources and will not be recapitulated in detail here. Methods have improved 
in some areas since the time of WASH-1400, but many of the areas considered controversial 
then remain areas of concern today. Completeness, which was mentioned above, was one 
issue. Quantification, and especially quantification of uncertainties, was also controversial then 
and remains so today. This topic, too, receives a great deal of attention in this Guide. 
Scrutability was an issue then; the formulation and presentation of many of the methods 
covered in this Guide are driven implicitly by a need to produce reports that can be reviewed 
and used by a range of audiences, from peer reviewers to outside stakeholders who are non-
practitioners (i.e., communication is an essential element of the process).  

Despite the early controversies surrounding WASH-1400, subsequent developments have 
confirmed many of the essential insights of the study, established the essential value of the 
approach taken, and pointed the way to methodological improvements. Some of the ideas 
presented in this Guide have obvious roots in WASH-1400; others have been developed since 
then, some with a view to NASA applications. 

In addition to providing some quantitative perspective on severe accident risks, WASH-1400 
provided other results whose significance has helped to drive the increasing application of PRA 
in the commercial nuclear arena. It showed, for example, that some of the more frequent, less 
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severe IEs (e.g., “transients”) lead to severe accidents at higher expected frequencies than do 
some of the less frequent, more severe IEs (e.g., very large pipe breaks). It led to the beginning 
of the understanding of the level of design detail that must be considered in PRA if the scenario 
set is to support useful findings (e.g., consideration of support systems and environmental 
conditions). Following the severe core damage event at Three Mile Island in 1979, application of 
these insights gained momentum within the nuclear safety community, leading eventually to a 
PRA-informed re-examination of the allocation of licensee and regulatory (U.S. Nuclear 
Regulatory Commission) safety resources. In the 1980s, this process led to some significant 
adjustments to safety priorities at NPPs; in the 2010s and beyond, regulation itself is being 
changed to refocus attention on areas of plant safety where that attention is more worthwhile. 

3.1.3 Summary of PRA Motivation 

In order to go deeper into the “why” of PRA, it is useful to introduce a formal definition of 
“risk.” (Subsequent sections will go into more detail on this.) Partly because of the broad variety 
of contexts in which the concepts are applied, different definitions of risk continue to appear in 
the literature. In the context of making decisions about complex, high-hazard systems, “risk” is 
usefully conceived as a set of triplets: scenarios, likelihoods, and consequences [3-2]. There are 
good reasons to focus on these elements rather than focusing on simpler, higher-level 
quantities such as “expected consequences.” Risk management involves prevention of 
(reduction of the frequency of) adverse scenarios (ones with undesirable consequences), and 
promotion of favorable scenarios. This requires understanding the elements of adverse 
scenarios so that they can be prevented, and the elements of successful scenarios so that they 
can be promoted.  

PRA quantifies “risk metrics.”  The term “risk metric” refers to probabilistic performance 
measures that might appear in a decision model: such things as the frequency or probability of 
consequences of a specific magnitude, or perhaps expected consequences.  Risk metrics of 
interest for NASA include the probabilities of loss of crew or vehicle for some specific mission 
type, probability of mission failure, probability of large capital loss, etc.  Figures of merit such as 
“system failure probability” can be used as risk metrics, but the phrase “risk metric” ordinarily 
suggests a higher-level, more consequence-oriented figure of merit. 

In order to support resource allocation from a risk point of view, it is necessary to evaluate a 
comprehensive set of scenarios. This is logically required because “risk” depends on a 
comprehensive scenario set, not only on performance in a reference mission (e.g., a design 
basis). The set of scenarios may need to include events that are more severe than those 
specified in the design basis, and more success paths than were explicitly factored into the 
design basis. Additionally, system performance must be evaluated realistically. In order to 
support resource allocation decisions, the point is not usually to establish a boundary on system 
capability or reliability, but rather to quantify capability and reliability. In other words, risk-
informed resource allocation requires identification and quantification of all risk-significant 
scenarios, where “risk-significant” depends on the context of the evaluation. 

Finally, in all but the simplest cases, decision support requires that uncertainty be 
addressed. Because risk analysis frequently needs to address severe outcomes of complex 
scenarios, uncertainties may be highly significant. These need to be reflected in the decision 
model, not only because they may influence the decision, but also because it is important to 
understand which uncertainties strongly affect the decision outcome and are potentially 
reducible through testing or research. 

.  
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In summary, PRA is needed when decisions need to be made that involve high stakes in a 
complex situation, as in a high-hazard mission with critical functions being performed by 
complex systems. Intelligent resource allocation depends on a good risk model; even 
programmatic research decisions need to be informed by a state-of-knowledge risk model. 
(Allocating resources to research programs needs to be informed by insight into which 
uncertainties’ resolution offers the greatest payback.) Developing a comprehensive scenario set 
is a special challenge, and systematic methods are essential.  

3.1.4 Use of PRA in the Formulation of a Risk-Informed Safety Case (RISC) 

The above discussion has been carried out with emphasis on the role of PRA in assessing 
system adequacy, especially with regard to selection of design features. This sort of application 
began before “safety goals” were widely discussed. Increasingly, risk managers need to argue 
that system designs satisfy explicit risk thresholds; nowadays, even if there is no absolute 
regulatory or policy requirement, the promulgation of safety goals and thresholds creates an 
expectation that goals and thresholds will be addressed in the course of safety-related decision-
making. This creates an issue for PRA, because in general, it is impractical or even 
fundamentally impossible to “prove” that the level of risk associated with a complex, real-world 
system is below a given decision threshold.  

Partly because PRA results cannot be “proven,” a “Risk-Informed Safety Case” (RISC) is 
developed [3]. The RISC marshals evidence (tests, analysis, operating experience) and 
commitments to adhere to specific manufacturing and operating practices in order to assure that 
PRA assumptions, including the performance and reliability parameters credited in the PRA, are 
fulfilled. Among the commitments needed to justify confidence in the safety of the system is a 
commitment to analyze operating experience on an ongoing basis, including “near misses,” in 
order to improve operations, improve the risk models, and build additional confidence in the 
models’ completeness. This is not the same as “proving” that the PRA results are correct, but it 
is the best proxy for safety that can be obtained. 

 In many NASA contexts, decisions regarding design features (especially safety features) are 
faced with competing objectives: for example, if a candidate safety system performs well but 
has a large mass, the decision to include it must be made carefully. Once design decisions are 
made, they need to be reflected in the RISC. Not only do the features need to be modeled: in 
addition, the trade process itself needs to be presented in the RISC. There are good reasons for 
this: it shows not only the decision-makers but also the risk-takers (e.g., the astronauts) that the 
best possible job has been done in trading safety, and documentation of the process creates a 
better starting point for future design exercises.  

3.1.5 Management Considerations 

PRA requires a methodical effort from a technically diverse team. Although individual 
scenarios are understandable by project engineers, explicit manual enumeration of all of them in 
detail is completely impractical. The essential characteristic of the methods widely applied in 
scenario development is that they map complex reality into a set of logical relationships so that 
they can be efficiently analyzed through computer-based algorithms based on input that has 
been carefully formulated by engineers. Development of a comprehensive scenario set for a 
complex facility or mission is almost necessarily a team effort, not only because of the volume of 
work but because of the diversity of technical disciplines involved. The above discussion has 
emphasized the need for a methodical approach. This point extends beyond the thought 
process itself.  
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Despite the use of computers, the effort required can be substantial. Scenario modeling is 
not typically accomplished in a single pass; formulation of the scenario model needs to be 
iterated with quantification of scenario frequencies. Needed design information and performance 
data are frequently scattered through many sources, rather than being compiled in a form that 
directly supports PRA applications. Practitioners should be cognizant of the issues when 
estimating level of effort needed for a given analysis. 

3.2 Example 

This subsection discusses a simplified example to illustrate the ideas presented above. The 
subject system is briefly described first. Then an overview of the analysis results is presented: 
the significant findings that emerge from the PRA of this example, and how they might be used 
by a decision maker. Then the analysis leading to these results is discussed with a view to 
showing how the techniques discussed above need to be applied in order to reach these 
findings.   

3.2.1 Propellant Distribution Module Example 

The subject of the analysis is a spacecraft propellant distribution module. The purpose of the 
analysis is to inform decisions regarding this module, and the analysis and its results will 
eventually be input to formulation of a Risk-Informed Safety Case. There are two independent 
and redundant sets of thrusters in the spacecraft. Both sets of thrusters are completely 
redundant for all functions.  Figure 3-1 shows the propellant distribution module associated with 
one set of thrusters.  As shown, the relevant portions are a hydrazine tank, two propellant 
distribution lines leading to thrusters, a normally-open isolation valve in each line, a pressure 
sensor in each line, and control circuitry capable of actuating the isolation valves based on 
pressure sensed in the distribution lines. When the attitude-control system signals for thruster 
operation, the controller opens the solenoid valves (not shown) to allow hydrazine to flow.  Part 
of the design intent of this system is that in the event of a leak in the distribution lines, the leak 
should be detected by the pressure sensors (the leak should cause a pressure reduction) and 
thereafter should be isolated by closure of both isolation valves. The controller is designed to 
differentiate between the normal thruster operation and a leak. The scenarios analyzed in this 
example are those leading to (1) loss of vehicle or (2) loss of scientific data as a result of a 
hydrazine leak. The overall system design can tolerate a single isolated leak that does not 
cause damage to critical avionics, but a more broadly scoped model would, of course, address 
the possibility of additional failures. A complete model might also need to address the potential 
for a spurious isolation signal, taking a propellant distribution module off-line. The present 
example is narrowly scoped to the prevention and mitigation of a single leak and is formulated 
to illustrate the form and characteristic application of PRA results in a simplified way. 
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Figure 3-1. Simplified Schematic of a Propellant Distribution Module. 

3.2.2 Selected Results 

The scenarios leading to “loss of vehicle” are shown in Table 3-1, together with estimates of 
their frequencies (actually per-mission probabilities). In the second column, the scenarios are 
specified in terms of aggregated or functional-level events: success or failure of systems, 
occurrence or non-occurrence of particular phenomena. Typically, a given scenario can arise in 
different ways. For each system failure occurring in a particular scenario, there may be many 
distinct combinations of component-level failures that yield that system failure. Correspondingly, 
scenarios that involve several distinct system failures may contain a very large number of such 
combinations. These combinations are called “minimal cut sets (MCSs).” a Each MCS of each 
scenario is also displayed in Table 3-1, along with the probabilities of the elements and the 
resulting probability of the MCS. The MCSs are one of the major outputs of a PRA. They are a 
basis for quantification of top event likelihood and also provide qualitative insight. 

These results indicate that the frequency of “loss of vehicle” from this cause (hydrazine leak) 
is 1.02E-4 per mission, and that the dominant contributor to this frequency is the following 
scenario, having a mean frequency of 1.0E-4: 

 Leak of hydrazine (symbol “IE”, frequency of 0.01) AND 

 Leak location is upstream of isolation valves (implying that isolation cannot succeed) 
(symbol “L,” probability of 0.1) AND 

 Physical damage actually occurring to wiring as a result of attack by hydrazine (symbol 
“/A2,” probability of 0.1) [leading to loss of vehicle]. 

                                                 
a.  A “cut set” is a set of conditions (such as failures of specific components) whose collective satisfaction causes the 
undesired outcome, which is loss of vehicle in this case. A minimal cut set is one that no longer causes the top event 
if any of its constituent conditions is not satisfied. 
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This contribution is said to be “dominant” because its magnitude is on the order of the 
overall result. In this case, other contributing scenarios are lower in probability by orders of 
magnitude. (Some analysts use a much looser definition of “dominant”; some will refer to the 
largest contributor as “dominant” even if it is a small fraction of the total result.) 

Table 3-1. Scenarios Leading to "Loss of Vehicle" and Their Associated Frequencies. 

Scenario 
Description of 

Scenario 
(See Figure 3-7) 

Cut 
Set Symbol Meaning Probability Total 

3 Hydrazine Leak, 
Isolated Promptly but 
Avionics Fail Anyway 

1 IE Leak 1.0E-2 1.0E-7 
/A1 Avionics fail even after 

successful isolation  
1.0E-5 

9 Hydrazine Leak, 
Detection Failure 
Leading to Isolation 
Failure, Avionics Failure  

2 IE Leak 1.0E-2 1.0E-7 
PP Common cause failure of 

pressure transducers 
1.0E-4 

/A2 Avionics fail after 
unsuccessful isolation  

1.0E-1 

3 IE Leak 1.0E-2 1.0E-7 
CN Controller fails 1.0E-4 
/A2 Avionics fail after 

unsuccessful isolation 
1.0E-1 

4 IE Leak 1.0E-2 1.0E-9 
P1 Pressure transducer 1 

fails 
1.0E-3 

P2 Pressure transducer 2 
fails 

1.0E-3 

/A2 Avionics fail after 
unsuccessful isolation 

1.0E-1 

6 Hydrazine Leak, 
Detection Succeeds but 
Isolation Fails, Avionics 
Failure 

5 IE Leak 1.0E-2 1.0E-4 
L Leak occurs upstream of 

isolation valves 
1.0E-1 

/A2 Avionics fail after 
unsuccessful isolation 

1.0E-1 

6 IE Leak 1.0E-2 9.0E-7 
/L Leak occurs downstream 

of isolation valves 
9.0E-1 

V2 Isolation valve V2 fails to 
close 

1.0E-3 

/A2 Avionics fail after 
unsuccessful isolation 

1.0E-1 

7 IE Leak 1.0E-2 9.0E-7 
/L Leak occurs downstream 

of isolation valves 
9.0E-1 

V1 Isolation valve V1 fails to 
close 

1.0E-3 

/A2 Avionics fail after 
unsuccessful isolation 

1.0E-1 

     Total 1.02E-4 
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3.2.3 High-Level Application of Results 

The absolute magnitude of the overall risk has some usefulness without regard to the 
characteristics of the dominant contributor. A detailed exposition of the decision-making 
potential is beyond the scope of the present subsection, but even at this stage, consideration 
can be given to the level of unacceptability of this frequency of loss of spacecraft. The 
uncertainty in this quantity is also of interest and is discussed further in Section 3.3.6, . Here, we 
suppose that the frequency is considered high enough that prevention measures are worth 
evaluating. 

Quite generally, a scenario is prevented through prevention of all of its MCSs, and each 
MCS is prevented through prevention of any of its elements. In this example, we can prevent 
the dominant scenario by preventing any one of its elements. This suggests that we consider 
preventing one or more of the following: 

 Occurrence of hydrazine leak 

 Occurrence of leak upstream of isolation valves 

 Conditional damage due to hydrazine attack. 

In this example, an overall leak frequency is quantified and then split into a fraction 
upstream of the isolation valves (“L”) and a complementary fraction downstream  (“/L”). Some 
ways of reducing the upstream fraction would leave the downstream fraction unaltered, while 
other methods would reduce the upstream fraction while increasing the downstream fraction. 
For example, keeping the piping layout as is, but relocating the isolation valves as close to the 
source as possible, would tend to reduce the upstream fraction (by reducing the length of piping 
involved) and increase the downstream fraction (by increasing the length of piping involved). On 
the other hand, reducing the number of fittings in the upstream portion alone (if it were practical 
to do this) might reduce the upstream frequency while leaving the downstream frequency 
unchanged. Table 3-2 shows the effect on scenario frequency of reducing the upstream 
frequency by a factor of 2, while leaving the downstream fraction unchanged. Essentially, the 
frequency of this scenario is reduced by whatever reduction factor is achieved in the frequency 
of upstream leaks. 

The remaining element is failure of avionics wiring, given that it is subjected to hydrazine 
attack. In the example, this has been modeled as having a probability of 0.1. This is a function 
of the physical characteristics of the wiring, in particular its chemical susceptibility to hydrazine. 
If it is practical to use different insulation, sheathing, conduit, etc. that is impervious to 
hydrazine, so that the conditional probability of failure given hydrazine attack is reduced, then 
the scenario frequency will be reduced proportionally. If it is practical to re-route the wiring to 
reduce the exposure, this helps as well.  Table 3-2 shows the effect of an overall order of 
magnitude reduction in the probability of damage to critical avionics. 

Because these two prevention measures are independent of each other, their probabilities 
combine multiplicatively in the dominant scenario probability.  The overall potential probability 
reduction from applying them jointly is a factor of 20, as shown in Table 3-2.  If the measures 
actually adopted to achieve these reductions also influenced other scenarios, or even changed 
the logic modeling, then it would be important to examine their impact in the context of the 
overall model.  Re-routing the wiring, for example, might create other hazards.  Examining risk 
reduction measures in too narrow a context can lead to distorted conclusions. 
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Table 3-2. Examination of Risk Reduction Strategies for the Example Problem. 

 Structure of Dominant Scenario 

 

IE: 
Leak 

occurs 

Leak occurs 
upstream of 

isolation valves 
Leak damages 

critical avionics Frequency 

OPTIONS IE L /A2  

Do nothing 0.01 0.1 0.1 1.0E-4 

Option 1: Reduce the 
likelihood of leak 
between the propellant 
tank and isolation 
valves (e.g., change in 
piping design) 

0.01 0.05
(see note below) 

0.1 5.0E-5 

Option 2: Reduce 
susceptibility of avionics 
to leak (e.g., rerouting 
of wires and fortify wire 
harnesses) 

0.01 0.1 0.01
(see note below) 

1.0E-5 

Option 1 and 2 0.01 0.05 0.01 5.0E-6 

Note: The numerical values shown in this table are hypothetical. 

 

The above discussion has been carried out applying the results to address a design issue. 
The use of the analysis does not stop there, however; the analysis also plays a role in the risk-
informed safety case (RISC), which marshals evidence, including this analysis, to support a 
decision regarding the overall suitability of the system, and provides a roadmap to 
implementation aspects needed to make the safety claim “come true.” The following aspects of 
this example will be captured in the risk-informed safety case. 

1. The documentation of the analysis itself will capture the system configuration and the 
concept of operations on which the analysis is predicated. 

2. The results (together with the rest of the risk analysis) will show how safe the system is 
(providing evidence that safety threshold requirements are met). 

3. The results, together with documentation of the process that was followed to address the 
dominant risk contributor, will provide evidence that the configuration is not only adequate 
(thresholds are satisfied) but also optimal (goals are addressed). 

4. Since the risk reduction measures are configurational in nature, a functional test of the 
wiring will not confirm that the routing minimizes the risk of hydrazine damage, so confirmation 
of this aspect may require inspection at the time of system acceptance. 

3.2.4 Summary 

From the risk analysis,  

 A quantitative estimate of risk was obtained,  

 Potential risk reduction measures were identified, and  
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 The potential benefits of these prevention measures were quantified.  

If trustworthy, these results are clearly of significant use to a decision maker. What is 
required for these results to be trustworthy? 

First, the scenario set must be substantially complete. If dominant scenarios are not 
identified, then the overall frequency result is in error. Moreover, if these unidentified scenarios 
have ingredients that are not present in the scenarios that are identified, then potentially useful 
prevention measures are not identifiable from the results.  

The requirement for completeness, and the potential complexity of the scenario model, 
argue for development of the model in a hierarchical fashion.  In Table 3-1, contributors are 
identified at the “scenario” level and at the “cut set” level. Several of the elements of PRA 
discussed in the next section have evolved to support development of the scenario model in this 
hierarchical fashion. Completeness is easier to assess for a model developed in this way. 
Arguably, at the functional level of detail in the scenario specification, completeness should be 
achievable in principle: if we know what functional performance corresponds to “success,” then 
we know what functional performance corresponds to “failure.” At the basic event level, the 
argument is more difficult, because it is difficult to be sure that all causes have been identified. 
However, the tools discussed in the following section have a lot to offer in this regard.  

Even if the scenario set is substantially complete, poor decisions may result if the numbers used 
in quantification are significantly off. The relative dominance of scenarios may be misstated, in 
which case attention will be diverted from prevention of more likely scenarios to prevention of 
less likely ones. The overall risk may be overstated or understated, distorting priorities for 
different prevention measures. The absolute benefit of any given prevention measure will be in 
error. All of these issues are capable of significantly misinforming the decision maker. 

3.3 Elements of PRA 

This subsection discusses the elements of PRA. Major elements of PRA are introduced and 
briefly described; each is then illustrated with respect to the very simplified example introduced 
above.  For simplicity, the example emphasizes the logic-based (ET/FT) modeling approach, 
however the concepts described in this section are equally applicable to other modeling 
approaches such as simulation. 

The PRA ultimately presents a set of scenarios, frequencies, and associated consequences, 
developed in such a way as to inform decisions regarding the allocation of resources to accident 
prevention. This allocation could be changes in design or operational practice, or could be a 
finding that the design is optimal as is. Decision support in general requires quantification of 
uncertainty, and this is understood to be part of modeling and quantification. 

A scenario contains an IE and (usually) one or more pivotal events leading to an end state 
(see Figure 3-2). As modeled in most PRAs, an IE is a perturbation that requires some kind of 
response from operators, pilots, or one or more systems.  Note that for an IE to occur, there 
may need to be associated enabling event(s) that exist (e.g., for a fire IE to occur, there would 
need to be combustible material present).  The pivotal events in a scenario include successes 
or failures of responses to the IE, or possibly the occurrence or non-occurrence of external 
conditions or key phenomena. Then, the scenario end state(s) are formulated according to the 
decisions being supported by the analysis. Scenarios are classified into end states according to 
the kind and severity of consequences, ranging from completely successful outcomes to losses 
of various kinds, such as: 
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 Loss of life or injury/illness to personnel (including public, astronauts [i.e., loss of crew 
(LOC)], ground crew, and other workforce); 

 Damage to, or loss of, equipment or property (including space flight systems [i.e., loss of 
vehicle (LOV)], program facilities, and public properties); 

 Loss of mission (LOM); 

 Unexpected or collateral damage; 

 Loss of system availability; and 

 Damage to the environment (Earth and planetary contamination). 

 

Figure 3-2. The Concept of a Scenario. 

These consequence types are identified by NPR 8715.3C [3-4] as consequence types to be 
identified, analyzed, reduced, and/or eliminated by the program / project safety and mission 
success activity. These and other consequences of concern need to be identified early in the 
project so that the model can reflect the necessary distinctions and analysis can be planned to 
address them. 

3.3.1 Identification of Initiating Events 

Chapter 4 of this guide, discusses approaches for identification of IEs, including the use of 
master logic diagrams (MLDs). An MLD (Figure 3-3) is a hierarchical, top-down display of IEs, 
showing general types of undesired events at the top, proceeding to increasingly detailed event 
descriptions at lower tiers, and displaying initiating events at the bottom. The goal is not only to 
support identification of a comprehensive set of IEs, but also to group them according to the 
challenges that they pose (the responses that are required as a result of their occurrences). IEs 
that are completely equivalent in the challenges that they pose, including their effects on 
subsequent pivotal events, are equivalent in the risk model.  

A useful starting point for identification of IEs is a specification of “normal” operation in terms 
of (a) the nominal values of a suitably chosen set of physical variables and (b) the envelope in 
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this variable space outside of which an IE would be deemed to have occurred. A comprehensive 
set of process deviations can thereby be identified, and causes for each of these can then be 
addressed in a systematic way. 

The present example corresponds to a small piece of a potentially large MLD. An early step 
in the process is a focus on the consequence types of interest. In this case, two consequence 
types of interest have been identified: loss of spacecraft and loss of scientific data. Both imply a 
loss of at least the scientific mission, but the additional loss of spacecraft is a more severe event 
than just loss of scientific data. For these consequence types, certain functional failures are 
obvious candidates for initiating scenarios leading to these consequences, and physical 
damage to certain system elements is an obvious mechanism potentially leading to functional 
failure.  

It should be kept in mind in this example that failure of the thrusters is not the IE being 
analyzed: rather, loss of the function(s) supported by the wiring (avionics, scientific instruments) 
is the concern. Both of these consequence types can be caused by physical damage to wiring.a 

Among many possible causes of physical damage to wiring is attack by hydrazine. Accordingly,  

 

Figure 3-3. Typical Structure of a Master Logic Diagram (MLD). 

                                                 
a. A propellant leak could cause a attitude disturbance exceeding the ability of the spacecraft to recover.  For 
simplicity, this loss of attitude-control function as a result of a leak is not considered in this example. 
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an MLD development should identify this potential. Indeed, the design intent of the system 
clearly implies recognition by the designer of the undesirability of an unisolated hydrazine leak 
(though there are reasons for this besides the potential for damage to wiring).  

3.3.2 Application of Event Sequence Diagrams and Event Trees 

The scenarios that may ensue from a given IE may be developed initially in a timeline, block 
diagram, event tree (ET), or Event Sequence Diagram (ESD). The ESD is essentially a 
flowchart, with paths leading to different end states; each path through this flowchart is a 
scenario. Along each path, pivotal events are identified as either occurring or not occurring 
(refer to Figure 3-4 and Figure 3-5). It will be seen below that an ESD can be mapped into an 
ET, which relates more directly to practical quantification of accident scenarios, but the ESD 
representation has the advantage over the ET of enhancing communication between risk 
engineers, designers, and crews. In situations that are well covered by operating procedures, 
the ESD flow can reflect these procedures, especially if the procedures branch according to the 
occurrence of pivotal events (due to the flowchart nature of the ESD). Instrument readings that 
inform crew decisions can be indicated at the appropriate pivotal event. This representation 
should make more sense to crews than ETs do. At each pivotal event along any given path, the 
events preceding that event are easily identified, so that their influence on the current pivotal 
event can be modeled adequately. A good deal of information (e.g., system-level mission 
success criteria at each pivotal event) can also be displayed on the ESD, making it a very 
compact representation of a great deal of modeling information. 

 

Figure 3-4. Typical Structure of an Event Sequence Diagram (ESD). 

From the ESD, it is possible to derive an ET (see Figure 3-5). An ET distills the pivotal event 
scenario definitions from the ESD and presents this information in a tree structure that is used to 
help classify scenarios according to their consequences. The headings of the ET are the IE, the 
pivotal eventsa, and the end state. The “tree” structure below these headings shows the possible 
                                                 
a Pivotal events specify only two options, success or failure.  This is a simplification for the analysis.  Gradually 
degraded states are not considered in this approximation called a “Bernoulli trial.” 
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scenarios ensuing from the IE, in terms of the occurrence or non-occurrence of the pivotal 
events. Each distinct path through the tree is a distinct scenario. According to a widespread but 
informal convention, where pivotal events are used to specify system success or failure, the 
“down” branch is considered to be “failure.” For example, begin at the upper left of the tree in 
Figure 3-4. At this point on the tree, the IE has occurred. Moving to the right along this path, we 
come to a branch under “Pivotal Event 1.” The path downward from this point corresponds to 
scenarios in which the system queried under “pivotal event 1” fails; the path upward 
corresponds to success of that system. Continuing the example, suppose that all of the pivotal 
events in Figure 3-4 query the successful operation of specific systems. In the top-most path in 
Figure 3-4 leading to the end state “good,” the following occur: 

 The IE 

 Success of system 1 

 Success of system 2. 

In the next path down, the following occur: 

 The IE 

 Success of system 1 

 Failure of system 2 

 Success of system 3.  

 

Figure 3-5. Event Tree Representation of the ESD Shown in Figure 3-4. 

Though an ET and an ESD can be logically equivalent, it is important to recognize that the 
actual structure of an ET derived from a given ESD is not completely specified by the ESD 
structure alone but may depend on the relationships between pivotal events and the 
consequence types of interest. For example, in Figure 3-4, the failure or success of system 3 
does not change the outcome as long as both systems 1 and 2 succeed.  For this reason, 
“pivotal event 3” is not queried in the top most path (i.e., sequence 1) of the ET.   
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In most ETs, the pivotal event splits are binary: a phenomenon either does or does not 
occur, a system either does or does not fail. This binary character is not strictly necessary; 
some ETs show splits into more than two branches. What is necessary is that distinct paths be 
mutually exclusive and quantified as such (at least to the desired level of accuracy). 

ETs made their first appearance in risk assessment in the WASH-1400 reactor safety study, 
where they were used to generate, define, and classify scenarios specified at the pivotal event 
level. Because an ET is a useful picture of a very complex calculation, many PRA software 
packages base their approaches on ET representations of scenarios. 

In general, an ESD will reflect the design intent of the system(s) being analyzed. In the 
propellant distribution module example, the design of the system addresses mitigation of 
hydrazine leakage by the safety function “closure of the isolation valves in the event of a 
hydrazine leak as sensed by decreasing pressure in the distribution lines.” This design intent 
implies at least one, and potentially several, pivotal events. 

Examination of the simplified system schematic shows that successful performance of the 
isolation function is conditional on the location of the leak. Leaks upstream of the isolation valve 
cannot be isolated by closure of the valves. Therefore, leak location has to be reflected either as 
a pivotal event in the ESD or in the definition of the IE itself (i.e., develop an ESD just for the IE 
“leak upstream of isolation valves”). 

Recognition of the potential for a leak in this system that cannot be isolated provides an 
important example of the value of “completeness.” Failure to recognize the potential for this type 
of leak would lead to missing the dominant scenario in this example. This would understate the 
risk and lose an opportunity to consider potentially beneficial design changes. Given that the 
designers provided an isolation function specifically to address leaks, it is easy enough to 
imagine supposing that leaks were no longer an issue, and missing this potential. Experience 
has shown the value of systematic approaches for identification of this kind of situation.  

Attack of the wiring, given an unisolated hydrazine leak, is not necessarily a given. In many 
situations, it is not practical to model all physically possible permutations of a messy problem in 
fine detail. In this case, the actual flow from a leak might depend in detail on the size, shape, 
and precise location of the leak, as well as the orientation of the spacecraft and numerous other 
factors. In many modeling situations, analogous complicating factors will govern the actual 
likelihood of a consequence that is clearly possible but far from assured. In this situation, the 
originally assigned probability of 0.1 is associated with damage to wiring for critical avionics. 

Figure 3-6 shows an ESD for this IE and these pivotal events (for simplicity we assume the 
functionality of the redundant set of thrusters is not affected by hydrazine attack and omit 
consideration of other common cause interactions with the second thruster subsystem). 

Given the ESD, an initial ET is developed (see Figure 3-7). Later, the ET in Figure 3-8 
shows a revision for this example. Per the earlier discussion, the “down” branches under each 
pivotal event correspond to an adverse outcome for that pivotal event: either a system failure or 
an adverse phenomenon. In Figure 3-7, two pivotal events are defined (as in the ESD): leak 
detection and leak isolation. The subsequent sequence evolution is conditional on whether the 
leak was isolated, not on whether it was detected. Therefore, in Figure 3-8, it is shown that 
these two can be combined into one, leading to a more compact ET (and fewer scenarios to 
compute) without loss of information. Only redundant scenarios are eliminated. 
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Figure 3-6. ESD for the Hydrazine Leak. 

 

 

Figure 3-7. ET for the Hydrazine Leak. 
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Figure 3-8. Revised ET for the Hydrazine Leak. 

3.3.3 Modeling of Pivotal Events 

Pivotal events must be modeled in sufficient detail to support valid quantification of 
scenarios. As a practical matter, the model must reach a level of detail at which data are 
available to support quantification of the model’s parameters. Additionally, much of the time, 
pivotal events are not independent of each other, or of the IEs; the modeling of pivotal events 
must be carried out in such a way that these conditionalities are captured properly. For 
example, pivotal events corresponding to system failure may have some important underlying 
causes in common. If the purposes of the PRA are to be served—if such underlying causes are 
to be identified and addressed—it is imperative to capture such conditionalities in the scenario 
model. If pivotal events were known to be independent of each other, so that their probabilities 
could be combined multiplicatively, there would be less reason to analyze them in detail; it is 
because they can be mutually conditioned by shared influences that their modeling in some 
detail is important. 

Complex pivotal events can frequently be modeled using fault trees (FTs). An FT is a picture 
of a set of logical relationships between more complex (more aggregated) events such as 
system-level failures, and more basic (less aggregated) events such as component-level 
failures. FT modeling is applicable not only to modeling of hardware failures, but also other 
complex event types as well, including descriptions of the circumstances surrounding software 
response and crew actions. 

The mapping of scenarios into logic representations leans heavily on engineering analysis: 
physical simulation of system behavior in specified conditions, determination of time available 
for crew actions, determination of the severity of the consequences associated with scenarios. 
Behind every logic model is another body of modeling whose results are distilled into the logical 
relationships pictured in the scenario model. Assignment of system states into “success” or 
“failure” depends on such modeling, as does classification of scenarios into consequence 
categories. The specification of the physical system states that are deemed “successful” system 
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responses to a given challenge is the “mission success criterion” for that challenge. The FT 
logic for system response to a given challenge yields a logic expression for system failure in 
terms of combinations of basic events that violate the mission success criterion. 

The FT leads to a representation of the top event “Pivotal Event Fails To Occur” in terms -of 
combinations (potentially many, many combinations) of basic events such as “component x 
fails.” This enables the transformation of scenarios specified in terms of pivotal events to 
scenarios specified in terms of basic events. As mentioned above, basic events that appear in 
multiple Pivotal Events correspond to potentially significant interdependencies. The 
development of FTs must be carried out in such a way that these interdependencies are 
properly recognized. This has implications for the level of detail to which basic events are 
developed by the analysts, and the way in which they are designated and processed in scenario 
generation and quantification.  

3.3.3.1 Pivotal Events in the Simple Example 

The FTs corresponding to failure of detection and failure of isolation are shown in Figure 3-
9. Please note the FTs are developed for failure of pivotal events of Figure 3-7. 

 

Figure 3-9. Fault Trees for Failure of Leak Detection and Failure of Isolation. 

It is possible that the probability of wiring failure conditional on an unisolated leak would be 
different for upstream and downstream leaks, as a result of differing amounts of wiring being co-
located with the upstream segments and the downstream segments, but this is not a feature of 
the present example. 
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3.3.3.2 Failure of Leak Detection and Failure of Isolation Given Detection Successful 

Failure of the function is due either to failure to detect the leak or failure to isolate it, given 
detection. Because of the relative complexity of these pivotal events, failure of leak detection 
and failure of isolation given detection are appropriately addressed using FTs, which are shown 
in Figure 3-9. Each FT is a picture of the relationships that link its top event (e.g., “Leak not 
detected”) to its basic events (“Controller fails,” “common cause failure of pressure transducers,” 
“pressure transducer 1 fails,” “pressure transducer 2 fails”). The symbol under the top event 
“Leak not detected” is an OR gate, meaning that the top event occurs if any of the inputs occur. 
The symbol linking “Pressure Transducer 1 fails” and “Pressure Transducer 2 fails” to the top 
event is an AND gate, meaning that both inputs must be satisfied in order for its output condition 
to occur. This means that failure of an individual transducer (with the other transducer still 
working) will not trigger the AND gate, and therefore will not trigger the OR gate. This fault tree 
confirms that “Leak not detected” will result from “Controller fails” OR “Pressure Transducers fail 
due to Common Cause” OR “Pressure Transducer 1 fails” AND “Pressure Transducer 2 fails”. 
These are, in fact, the “minimal cut sets” for the pivotal event “Leak not detected.” 

In real examples, functional FTs are far more complex and must be processed by computer. 
In a properly structured FT, the individual logical relationships are tautological viewed in 
isolation, but surprising complexity can be manifest in the top-level results if certain basic events 
appear in more than one place on the tree. Moreover, when the MCSs for pivotal events are 
logically ANDed together to form scenario-level expressions in terms of basic events, the 
conditionality between pivotal events is to be captured through the appearance in both pivotal 
event FTs of the basic events that correspond to this conditionality. The logic expression for the 
whole scenario then properly reflects the conditionality of the pivotal events. 

One way of failing isolation is that the leak cannot be isolated by virtue of being upstream of 
the isolation valves (as shown on the isolation FT as event L). If the leak can be isolated, failure 
to isolate given detection is caused by failure of either isolation valve, or failure of the controller 
to issue the actuation signal. This FT also shows the event “/L” (NOT L) (leak is NOT upstream 
of the isolation valves, i.e., IS downstream of the isolation valves) ANDed with the logic 
associated with failure of the isolation function, given detection. This is done in order to make 
the quantification more accurate. If the probability of event “leak occurs upstream of isolation 
valvesa is small, Pr(/L) is nearly equal to 1, so little would be lost by suppressing event /L in that 
spot on the fault tree; but if Pr(/L) were a smaller number, neglect of it in the cut set 
quantification would overstate the probability contribution from scenarios in which the valves or 
the controller failed.b 

3.3.4 Quantification of (Assignment of Probabilities or Frequencies to) Basic Events 

One of the defining characteristics of a basic event is that it should be directly quantifiable 
from data, including, if necessary, conditioning of its probability on the occurrence of other basic 

                                                 
a. This probability would be based on an engineering assessment of the physical characteristics of the upstream and 
downstream distribution lines (number and type of fittings, ...) and the operating environments of each (cycling of 
mechanical stresses ...). 

 

b. Strictly speaking, when an event such as L and its complement (/L) both appear in an FT, as is the case in this 
example, the model is said to be non-coherent. For such a model, we should speak of “prime implicants” rather than 
MCSs. Subtleties of interpretation and of quantification arise for non-coherent models. These are beyond the scope 
of an overview discussion. 
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events. Usually, basic events are formulated to be statistically independent, so that the 
probability of the joint occurrence of two basic events can be quantified simply as the product of 
the two basic event probabilities. Basic events corresponding to component failure may be 
quantified using reliability models. A simple and widely used model is the exponential 
distribution that is based on the assumption of constant failure rate (see Figure 3-10). Other 
kinds of models may be appropriate for basic events corresponding to crew errors, and still 
others to basic events corresponding to simple unavailability. 

In the example, several kinds of basic events are quantified:  

 The IE, corresponding to failure of a passive component, quantified on a per-mission basis; 

 Failures of active components, such as valves and the controller; 

 A common cause event (CCE) of both pressure sensors; 

 Events corresponding to phenomenological occurrences (probability of failure of wiring, 
given hydrazine attack). 

 

1000 2000 3000 4000 
T(hr)

0.2

0.4

0.6

0.8

1
Prf 

 

Figure 3-10. Exponential Distribution Model [Prf(t) = 1 – exp(-t) for  = 0.001 per hour]. 

The probabilities of these events are quantified probabilistically, i.e., using probability 
density distributions that reflect our uncertainty—our limited state of knowledge—regarding the 
actual probabilities of these events. For basic events that are well understood and for which a 
substantial experience base exists, the uncertainty in probability may be small. The probability 
of basic events for which the experience base is limited may be highly uncertain. In many cases, 
we are sure that a given probability is small, but we are not sure just how small.  

In this example, all event probabilities [other than Pr(/L), which is determined by the value of 
Pr(L)] were assumed to be lognormally distributed. Means and error factors (a measure of 
dispersion) for these event probabilities are shown in Table 3-3. The mean is the expected 
value of the probability distribution, and the error factor is the ratio of the 95th percentile of the 
distribution to the median. 
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Table 3-3. Lognormal Distribution Parameters for Basic Event Probabilities. 
Event Mean Error Factor 

CN 1.00E-04 10 

P1 1.00E-03 3 

P2 1.00E-03 3 

PP 1.00E-04 5 

L 1.00E-01 3 

V1 1.00E-03 3 

V2 1.00E-03 3 

/L Dictated by L since /L = 1 - L 

/A1 1.00E-05 5 

/A2 1.00E-01 3 

IE 1.00E-02 4 

 

3.3.5 Uncertainties: A Probabilistic Perspective 

Randomness (variability) in the physical processes modeled in the PRA imposes the use of 
probabilistic models (referred to as “aleatory” models), which is central to risk analysis. The 
development of scenarios introduces model assumptions and model parameters that are based 
on what is currently known about the physics of the relevant processes and the behavior of 
systems under given conditions.  It is important that both natural variability of physical 
processes (i.e., aleatory or stochastic uncertainty) and the uncertainties in knowledge of these 
processes (i.e., “epistemic” or state-of-knowledge uncertainty) are properly accounted for.   

In many cases, there is substantial epistemic uncertainty regarding basic event probability. 
Failure rates are uncertain, sometimes because failure information is sparse or unavailable, and 
sometimes because the very applicability of available data to the case at hand may be in doubt. 
Uncertainty in basic event probabilities engenders uncertainty in the value of the risk metric. The 
most widely used method for determining the uncertainty in the output risk metric is to use a 
sampling process (e.g., Monte Carlo sampling), because of the complexity of the risk expression 
and the magnitudes of the uncertainties of the basic events. In the sampling process, values for 
each basic event probability are derived by sampling randomly from each event’s probability 
distribution; these are combined through the risk expression to determine the value of the risk 
metric for that sample. This sampling process is repeated many times to obtain a distribution on 
the risk metric (the number of samples is determined based on the precision needed in 
properties of the distribution of the risk metric).  

Uncertainty can have a strong effect on the output mean of the risk metric. Even when the 
output mean is not strongly affected, it may be of interest to understand the percentiles 
associated with the output distribution (e.g., the probability of accident frequency being above a 
certain value of concern), such as when assessing if a safety threshold has been met. 
Depending on the decision context, it can also be very useful to quantify the value to the 
decision maker of investing resources to reduce uncertainty in the risk metric by obtaining 
additional information that would reduce the uncertainty in selected parameters. In other words, 
the value of reducing the uncertainty in the input to the decision can be quantified, and an 
informed decision can be made regarding whether to invest analytical resources in narrowing 
the uncertainty of a specific parameter.  
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How is uncertainty characterized in the first place? If directly applicable data for a specific 
parameter are sufficiently plentiful, it may be straightforward to derive an uncertainty distribution, 
or even (if there is relatively little uncertainty in the parameter) to neglect uncertainty in that 
parameter. However, in many cases, a useful assessment of uncertainty cannot be obtained 
solely from existing performance data (e.g., Bernoulli trials of a particular probability). This is 
certainly true when there are no directly applicable data, as for certain phenomenological basic 
events. Even for component-related basic events, the applicability of certain performance data 
may be in doubt if obtained under different operating conditions or for a different manufacturer. 
In these cases, it is necessary to do the best that one can, integrating such information as is 
available into a state-of-knowledge probability distribution for the parameter in question. 

An important tool for developing these probability distributions is Bayes’ Theorem, which 
shows how to update a “prior” distribution over basic event probability to reflect new evidence or 
information, and thereby obtain a “posterior” distribution. (Refer to Figure 3-11.)  Application of 
Bayes’ Theorem is discussed at length in Chapter 5. The general idea is that as more evidence 
is applied in the updating process, the prior distribution is mapped into a posterior distribution 
that comports with the new evidence. If there is substantial uncertainty in the prior, 
corresponding to relatively few data supporting the prior, then new evidence will tend to 
dominate the characteristics of the posterior distribution.  
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Figure 3-11. Application of Bayes’ Theorem. 
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If there is relatively little uncertainty in the prior, corresponding to a significant body of 
supporting evidence, then more new evidence will be needed to shift the characteristics of the 
posterior away from the prior. The figure shows an example in which the prior distribution of a 
particular failure rate is highest at 3E-3 per hour, almost as high at 5E-3 per hour, and 
significantly lower for other values of the failure rate. The new evidence in that example is two 
failures in 1,000 hours; this corresponds to a maximum likelihood estimate of 2E-3, which is 
lower than the apparent peak in the prior distribution. Correspondingly, we see that in the 
posterior, the probability of the lower-frequency bins is enhanced, and the probability of bins 
higher than 3E-3 is reduced. The bin at 8E-3 is reduced very significantly, because the new 
evidence is inconsistent with that bin; at 8E-3, in 1000 hours of operation, the expected number 
of failures would be 8 rather than 2, and it is unlikely that a discrepancy of this magnitude is a 
statistical fluke. In essence, the weight of the bins in the prior distribution shifts toward the 
evidence.  

Many decision processes require that uncertainty be treated explicitly. In the simple example 
discussed here, significant insights are realizable without it, but this is not universal. First, some 
decisions depend on more than just the mean value of the risk metric. Second, even when 
mean values are the desired output, it is formally necessary to derive them from valid underlying 
distributions of basic event probabilities. Moreover, as noted previously, complex risk 
expressions may contain terms that are non-linear in certain parameters, and the mean values 
of such terms are greater than the products of the corresponding powers of the parameter mean 
values. For all these reasons, it is necessary at least to consider the treatment of uncertainty in 
evaluating PRA outputs and in planning the work.  

3.3.6 Formulation and Quantification of the Integrated Scenario Model 

Once scenarios have been represented in terms of sets of pivotal events that are 
appropriately conditioned on what is occurring in each scenario, and pivotal events are 
represented in terms of basic events, it is possible to develop a representation of scenarios in 
terms of basic events. It is also possible to quantify this representation to determine its 
probability (or frequency, depending on the application). Indeed, all scenarios leading to a given 
outcome can be combined, leading to a quantifiable representation in terms of basic events of 
the occurrence of the outcomes of specific interest. 

Table 3-1, presenting the scenarios and MCSs for the simple example, is an especially 
simple case of this. All MCSs are shown. It is easy to verify the “total” quoted by summing the 
MCS probabilities estimated as the product of the mean basic event probabilities. In many 
practical problems, the scenarios contributing to a given consequence category are so 
numerous and complex that the result is essentially unsurveyable in this form. It is normal 
practice to view PRA results making use of certain sensitivity coefficients called “importance 
measures.” These measures represent a level of detail somewhere between the hopelessly 
complex detail of the MCS representation and the complete absence of detail in the 
presentation of the top-level risk metric.  

For reasons discussed above, it is necessary to address uncertainty in the value of the risk 
metric. This is done as indicated in Figure 3-12. This figure shows the risk expression R as a 
function of all of the basic event probabilities. The “rare-event approximation” to the functional 
form of R is obtained by interpreting the MCS expression as an algebraic quantity; but in 
general, the probability of the top event is overestimated by this approximation, and in many 
cases, use of a more complex form is warranted. Whichever approach is used, the probability 
distribution of the risk metric is determined by sampling as discussed above.  
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The mean and the percentiles of the distribution of the risk metric in the simple example are 
indicated on Figure 3-12. (The mean value is the average, or “expected,” value. The m’th 
percentile value is the value below which m% of the cumulative probability lies. Since the 95th 
percentile is 3.74E-4, for example, we are 95% sure that the value lies at or below 3.74E-4.) 
This is predicated on the assumption that the model is valid. In many decision contexts, the 
mean value of the distribution will be used directly. In other decision contexts, other properties 
of the distribution may receive scrutiny. For example, we might be willing to accept a 1E-4 
probability of loss of vehicle, but reluctant to accept a significantly higher value; we might 
therefore wish to reduce the uncertainty. It is possible to identify the scenarios and the 
constituent basic event probabilities that most strongly influence the right-hand portion of the 
distribution (corresponding to high top event probability), and this set of events may be different 
from the set of events that most strongly influence the mean value (although usually those that 
drive the high-probability end also strongly affect the mean). 

 

Figure 3-12. Propagation of Epistemic Uncertainties for the Example Problem. 

If we simply insert these mean values into an approximate expression for top event 
probability, we obtain 1.02E-4. This is not the mean value of the top event probability, because 
while the basic events are independent, their probability values are correlated (identical 
sensors, identical valves). In the present case, the uncertainties were propagated accounting for 
these correlations. 

In this example, according to the distribution shown in Figure 3-12, there is some chance 
that the top event probability is nearly four times higher than the mean value (based upon the 
95th percentile). In some cases, the uncertainty will be even greater. The magnitude of the 
uncertainty needs to be considered in decisions regarding whether to accept a given situation. 



  

3-25 
 

3.3.7 Overview of PRA Task Flow 

The preceding discussion essentially defines certain elements to be found in a PRA. The 
actual task flow is approximated in Figure 3-13. A task plan for the actual conduct of a PRA 
could be loosely based on this figure, although of course additional detail would need to be 
furnished for individual tasks. 

As discussed in Chapter 2, PRA is performed to support risk management. The process 
therefore begins, as does RIDM generally, with a formulation of the objectives. This is logically 
necessary to inform the specification of the consequence categories to be addressed in 
scenario development, possibly to inform the scope of the assessment, and also to inform the 
specification of the frequency cutoffs that serve to bound the analysis. 

After system familiarization, identification of IEs can begin, and other scenario modeling 
tasks can be undertaken as implied in Figure 3-13. Feedback loops are implicit in this figure. 
Also implicit in this figure is a possible need to evaluate the phenomenology of certain 
scenarios. Partly because analysis of mission success criteria can be expensive, it is easy in a 
logic-model-driven effort to shortchange the evaluation of mission success criteria. This is 
logically part of “structuring scenarios,” which includes ESD and ET development. 

 

Figure 3-13. A Typical PRA Task Flow. 

It is significant in Figure 3-13 that the “data analysis” block spans much of the figure and 
appears in iterative loops. This block influences, and is influenced by, many of the other blocks. 
The blocks that identify scenarios specify events whose probabilities need to be determined. 
Once initial estimates are obtained for probabilities, preliminary quantification may determine 
that some of the parameters need additional refinement. 

Previous comments regarding the need for methodical development of the scenario model, 
and the need for a comprehensive scenario set, are reflected in this diagram. The entire top row 
of blocks is associated with formulation of the scenario model. Even “quantification” feeds back 
to “logic modeling” through “uncertainty analysis,” “interpretation of results,” “sensitivity 
analysis,” and “data collection and analysis.” In other words, scenario modeling is not generally 
accomplished in a single pass. 

Risk analysis is necessarily a self-focusing activity. Scenarios can be postulated endlessly 
(extremely unlikely events can be postulated, basic events can be subdivided, etc.), but 
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resources are finite. An important aspect of risk analysis is to sort out patently insignificant 
contributors and avoid expenditure of effort in modeling them. The guideline for discarding 
scenarios is to be based on “risk significance” as defined by the decision objectives. This is part 
of what is going on in the feedback loops appearing in Figure 3-13. In the interest of efficient 
use of resources, some risk analyses are conducted as phased analyses, with a first-pass 
analysis culminating in a rough quantification presented in order to decide which scenarios 
deserve more careful modeling. It is strongly emphasized that prioritization of analysis based on 
risk significance has been found to lead to very different priorities than design-basis-oriented 
thought processes.  

It is rare for the application of a PRA to be limited to citation of the expected accident 
frequency. Usually, more practical and robust outputs are desired. “Importance measures,” to 
be discussed at length later on (see Section 13.3), are a key part of “sensitivity analysis.” 
Importance measures not only serve as key aids in debugging the model, but also provide 
useful insight into the model results after the model is considered to be final. Some applications 
of risk models are based more closely on the relative risk significance of certain groups of 
scenarios than on the overall risk metric itself. For example, appearance of certain basic events 
in scenarios contributing a significant fraction of accident frequency may signal a vulnerability 
that needs to be addressed, possibly through a change in design or procedures. This might be a 
worthwhile (cost-effective) improvement even if the overall accident frequency appeared 
satisfactory without the fix. 

3.4 Summary 

3.4.1 Current State of Practice 

For purposes of resource allocation, safety performance relative to goals and thresholds, 
and many other kinds of decisions, a comprehensive risk model is necessary. In situations 
characterized by physical complexity and high stakes, adequate decision support is not 
obtainable from assessment of individual system reliability metrics outside the context of a risk 
model. Without a good risk model, relatively unimportant issues may receive too much attention, 
and relatively important issues may go unidentified. 

The need for completeness in a risk model implies a significant effort in development of the 
scenario set. This effort is justified by the stakes associated with the decisions driving the risk 
assessment. A corollary requirement is a need for significant project quality assurance (QA). 
Much of the methodology presented in this Guide has evolved over many years to promote 
completeness, to support peer review of the model, and to foster communication of the 
modeling results to end users and outsiders.  

Although too simple to illustrate the real value of the highly systematic methods discussed in 
this Guide, even this simple example shows the need for completeness in the scenario set. A 
traditional system-level failure evaluation might have concluded that the engineered isolation 
function reduced the risk from leaks to an acceptable level; the risk analysis indicated that the 
potential for leaks that cannot be isolated dominates the risk, and the decision maker needs to 
consider the value of this latter probability—including uncertainty in that value—in deciding 
whether further prevention measures are necessary. 

If it is decided that prevention measures are necessary, the PRA results direct the decision-
maker to areas where expenditure of resources in design improvements might be fruitful. Again, 
in order for this kind of resource allocation to be supported appropriately, the scenario set has to 
be complete, and the quantification needs to be good enough to support the decisions being 
made. 
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Because of the stakes involved in the decisions, the complexity of typical models, and the 
potentially substantial investment in the analysis itself, it is frequently appropriate to conduct 
peer reviews of the analysis, even as it proceeds. One feature of the methods mentioned in this 
section and discussed at greater length later is that they generate intermediate products that 
support this kind of review.  

3.4.2 Prospects for Future Development 

In the introduction to this section, it was remarked that the strengths and weaknesses of the 
tools that have evolved within the commercial nuclear power application are not necessarily 
optimal for NASA. One area occasioning some differences is that of identification of IEs. In 
commercial reactors, IEs at full power are by definition those events that should generate a 
shutdown signal; therefore, they are extensively studied as part of the design process, and have 
the property of leading to upsets in very well-defined process variables. Systematic methods for 
identification are correspondingly well-developed. In facilities of other types, and arguably for 
certain NASA applications, the identification of IEs needs to go farther afield than for 
commercial nuclear plants.  

Another area worthy of comment is the quantification of reliability and availability metrics. In 
commercial nuclear applications, relatively little effort is invested in time-dependent 
quantification of expressions; “point” values are used for basic event probabilities independently 
of possible correlation (due to dynamic effects) between basic event probabilities. In commercial 
nuclear power applications, this is arguably acceptable in many contexts, because the point of 
the analysis is to distinguish 1E-3 scenarios from 1E-6 scenarios, and low precision will suffice. 
In other applications, arguably including certain NASA applications, the actual reliability of 
certain systems is of some interest, and better numerical evaluations of failure probability are 
warranted. 

Recent years have seen increasing application of simulation in risk analysis. In the 
presentation of the example earlier in this section, simulation was described as a way of 
quantifying pivotal event probabilities. This is a worthwhile start, but it is desirable to push 
simulation technology farther. The event tree structure itself may impose important 
simplifications on the scenario model that a simulation-based treatment would not require. For 
example, specification of a given pivotal event in an event tree may entail restrictive (typically 
bounding) assumptions about event timing, but simulation of time histories can address event 
timing without such restrictive assumptions.  
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4. Scenario Development  

According to Section 2.1, risk is usefully conceived as a set of triplets involving: 

 Scenarios; 

 Associated frequencies; and 

 Associated consequences. 

Clearly, developing scenarios is fundamental to the concept of risk and its evaluation.  
Moreover, application of Boolean algebra to a scenario generates the mathematical expression 
needed to quantify its frequency. The mathematical expression for the frequency of a specific 
scenario, 

kj , , is: 

   jkjjkjkj IEESES ,,, Pr   (4-1)

Where: 

 j  denotes the frequency of the jth initiating event (IE) modeled in the PRA; and 

 Pr(ESj,k|IEj) symbolizes the conditional probability for the end state of event sequence, k, in 
the event tree initiated by IEj, given that IEj has occurred. 

Fundamentally then, scenario development begins with the entity whose risk is being 
assessed (e.g., a ground-based facility, launch vehicle, orbiting asset, or scientific instrument) 
and concludes with a mathematical model resembling Equation (4-1).  Quantification of this 
model (the subject of Section 3.3.6) provides the frequency needed by the risk triplet. 

4.1 System Familiarization 

System familiarization is a prerequisite for model development. The task of system 
familiarization is not trivial. Understanding every nuance of a system can be a time-consuming 
chore.  Since all models are approximations, not every nuance of the system will be 
incorporated into the risk model. Nevertheless, the PRA teama must have sufficient familiarity 
with the system to derive a rationale for any aspect of system behavior that their model ignores. 

Resources available to facilitate system familiarization may include: 

 Design manuals; 

 Design blueprints and technical requirement documentations; 

 Operations and maintenance manuals; 

 Operations and maintenance personnel; 

 Operations and maintenance logs; 
                                                 
a “PRA team” is used in this document to refer to the people and organizations who are involved in the development 
of the PRA model, including domain experts, risk analysts, systems engineers, etc. 
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 The technical staff (including system and design engineers); 

 The crew (if applicable); and 

 Visual inspection, whenever possible. 

Of course, the amount of detail available is directly related to the system maturity.  During 
conceptual design the amount of detail may be quite sparse. Here, it is necessary for the PRA 
team to elicit system familiarization information from the technical staff.  During final design, 
detailed system descriptions and some manuals may be available. For an operating system 
(e.g., an established ground-based facility), operations and maintenance personnel and logs 
afford excellent insights into how the system actually behaves. 

Section 1.1.1 warns that much of the time, pivotal events are not independent of each other. 
Although Chapter 10 explains the mathematical aspects of dependency modeling, a thorough 
understanding of dependencies must initially be obtained through system familiarization. A 
useful technique, but not the only technique for documenting system dependencies involves a 
matrix.  Other techniques, or combinations thereof, include function-to-system dependecy 
matrix, mission event timelines, functional block diagrams, interface diagrams, engineering 
drawings, etc. 

The dependency matrix is usually developed during the system analysis portion of a PRA. It 
is an explicit list that describes how each system functionally supports other systems. This is 
useful in developing scenarios because it allows the analyst to see how failures in one system 
can cause failures in other systems. Dependency matrices facilitate event sequence 
development by ensuring that failures in one pivotal event are correctly modeled in subsequent 
events. 

The dependency matrix concept can be illustrated by considering a simple, habitable space 
vehicle capable of re-entry into the Earth’s atmosphere, such as a crew return vehicle. If the 
vehicle systems are: 

 Propulsion (PROP); 

 Thermal Protection System (TPS); 

 Reaction Control System (RCS); 

 Flight Control and Actuation System (FCAS); 

 Electrical power generation and distribution (ELEC); 

 Environmental Control and Life Support System (ECLSS); 

 Vehicle Management System (VMS); 

 Landing gear and braking (GR/BR); 

 Communication (COMM); and 

 Structure (STRUCT); 

then Table 4-1 is a sample dependency matrix for a crew return vehicle. 

The matrix is read column by column, where the system listed at the top of the column is 
supported by the systems marked in the rows beneath with a “X.” For example, the FCAS 
receives support from: 

 ELEC; 
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 VMS; and 

 STRUCT. 

Table 4-1 is only an illustration, but a fully developed dependency matrix could contain more 
information than merely a “X.” For example, endnotes appended to the matrix could describe 
the types of support functions provided. Further, dependencies could be a function of the 
mission phase and may be noted in the matrix.  Developing a dependency matrix allows all the 
analysts to be consistent in their modeling and to fully understand the system dependencies. 

Table 4-1. Sample Dependency Matrix. 
This  

Supported 
by   

PROP TPS RCS FCAS ELEC ECLSS VMS GR/BR COMM STRUCT
PROP   X   X     
TPS X  X  X X  X  X 
RCS X          
FCAS           
ELEC X  X X  X X X X  
ECLSS X  X  X  X  X  
VMS X  X X X X  X X  
GR/BR           
COMM       X    
STRUCT X X  X    X X  

4.2 Success Criteria 

Success criteria are needed to define satisfactory performance. Logically, of course, if 
performance is unsatisfactory, then the result is failure. 

There are two types of success criteria, for: 

1. Missions; and  

2. Systems. 

Relative to their content, the criteria are analogous. The essential difference is that the first 
set applies to the overall mission (e.g., under what conditions does a crew return vehicle 
function satisfactorily), while the second set addresses individual system performance (e.g., 
performance of the RCS or FCAS in Table 4-1). They are the subjects of Sections 4.2.1 and 
4.2.2, respectively. 

4.2.1 Mission Success Criteria 

Mission success criteria are necessary to define risk assessment end states (i.e., ESj in 
Equation (4-1). Mission success criteria as a minimum must: 

 Define what the entity being evaluated is expected to accomplish in order to achieve 
success; and 

 Provide temporal or phase-dependent requirements. 

Defining what the entity being evaluated is expected to accomplish is essential for 
ascertaining whether a scenario results in success or failure. This facet of the criteria permits 
the analyst to develop logic expressions or rules for determining what combinations of IEs and 
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pivotal events prevent the entity being evaluated from performing satisfactorily.  Temporal or 
phase-dependent requirements: 

1. Allow the PRA to differentiate between mission phases (e.g., the GR/BR is not needed 
until a crew return vehicle is ready to land); and 

2. Define operating durations. 

This second aspect is important because probabilities are time dependent (recall Figure 3-10). 

Sometimes, multiple mission success criteria are imposed. For example, a science mission 
may contain multiple instruments to collect different types of data. If one instrument fails, the 
data furnished by the remaining instruments will still have some scientific value. Therefore, while 
successful operation of all instruments may correspond to mission success, even the acquisition 
of limited data may satisfy minimum mission requirements. Thus, possible end states in this 
situation are: 

 Complete mission success; 

 Limited mission success; and 

 Mission failure. 

A crucial requisite for mission success criteria is that they must be mutually exclusive in a 
logical context. Generally, the genesis of mission success criteria coincides with 
conceptualization of the mission. 

The reader is encouraged to consult the NASA System Safety Handbook [4-2], section 
3.1.1, for additional information on probabilistic requirements for mission success. 

4.2.2 System Success Criteria 

The principal difference between system success criteria and mission success criteria is that 
system success criteria apply only to individual systems. However, mission and system success 
criteria are not completely independent. For example, mission success criteria impose operating 
requirements on the systems needed to successfully perform a particular mission phase, and 
the duration of that phase determines the system operating time. 

System success criteria should include a temporal component and a statement of system 
redundancy (e.g., at least one of three strings should start on demand and operate for 20 
minutes). Top event FT logic is established from the Boolean complement of the success 
criteria (e.g., all three strings must fail to start on demand or fail to operate for 20 minutes). 
Basically, then, mission success criteria are used to determine event sequence end states, 
while system success criteria pertain to FT top events and logic. 

Defining system success criteria should occur during the system analysis portion of the 
study.  Some examples of system success criteria are: 

 At least one of the two electric power generation strings needs to provide between 22 and 
26 VDC for the duration of the mission; 

 The Vehicle Management System needs to have at least one of its four mission computers 
operational at all times; and 

 The Inertial Navigation System needs to maintain at least one out of three boxes operational 
during the ascent and descent phases. 
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Success criteria should be clearly defined. All assumptions and supporting information used 
to define the success criteria should be listed in the documentation (i.e., what is considered to 
constitute system success needs to be explicitly stated). 

4.3 Developing a Risk Model 

The risk model is basically the PRA model developed to represent the entity being 
assessed. Traditionally, scenarios are developed through a combination of ETs and FTs. 
Although it is theoretically possible to develop a risk model using only FTs or ETs, such a 
theoretical exercise would be inordinately difficult except for simple cases. Since the level of 
effort that can be devoted to risk assessments, like all other applied technical disciplines, is 
constrained by programmatic resources, in practice ETs are typically used to portray 
progressions of events over time (e.g., the various phases of a mission), while FTs best 
represent the logic corresponding to failure of complex systems. This is illustrated in Figure 4-1. 

 

Figure 4-1. Event Tree/Fault Tree Linking. 

The process of combining ETs with FTs is known as linking. The ET in Figure 4-1 contains 
an IE, IE2, and four pivotal events: 

1. AA; 

2. BB; 

3. CC; and 

4. DD. 

Three end states are identified: 

1. OK (i.e., mission success); 
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2. LOC (signifying a loss of the crew); and 

3. LOV (denoting loss of vehicle). 

Of course, the assignment of these end states to particular event sequences is predicated 
upon the mission success criteria addressed in Section 4.2.1. 

Figure 4-1 also has two transition states:  

1. TRAN1; and  

2. TRAN2. 

End states terminate an event sequence because the outcome of the scenario relative to 
mission success criteria is known. However, if the event sequence has not progressed far 
enough to ascertain which end state results, a transition state transfers the scenario to another 
ET where additional modeling is performed. Ultimately, every event sequence is developed 
sufficiently to determine its end state, and at that point the scenario model stops. 

The FTs illustrated in Figure 4-1 are linked to pivotal events AA and BB. This is a standard 
PRA technique where the top event in the FT corresponds to failure of a specific pivotal event. 
However, it is not necessary to develop an FT for every pivotal event. If applicable probabilistic 
data are available from similar missions or testing, these data can be assigned directly to the 
pivotal events without further modeling. In this situation the pivotal events behave as basic 
events in the PRA model. 

Once the ETs and FTs are developed and linked, the evaluation of the scenario frequency 
can commence. The process begins by assigning exclusive names to all unique basic events in 
the model. The only real constraint on the basic event naming convention adopted in a PRA is 
that it must be compatible with all software that is used in the assessment. Typically, this 
constraint will limit only the number of characters that comprise a basic event name. Besides 
software compatibility, the basic event naming should be informative (i.e., it should convey 
information about the nature of the event being modeled). Types of information that could be 
encoded in a basic event name are the: 

 Hardware item being modeled (e.g., a valve or thruster); 

 Failure mode (e.g., failure to operate); 

 Mission phase; and 

 System to which the hardware item belongs. 

Generally, the basic event names have the form, A...A-B...B-C...C-...-Z...Z, where, for example: 

 A...A might represent the hardware item being modeled; 

 B...B could signify the failure mode; 

 C...C may possibly symbolize the mission phase; while 

 The last set of characters may denote the system. 

Each character set (e.g., the failure mode) is separated from the others by a delimiter (e.g., 
a dash).  

By applying Boolean algebra to the risk model, a mathematical (Boolean) expression for 
each scenario is derived. 

Relative to Figure 4-1, the first event sequence terminates with end state, OK. The Boolean 
equation for this event sequence is: 
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BBAAIEOK  21,2  (4-2)

where it is inferred that the IE in Figure 4-1 is the second IE modeled in the PRA. 

The Boolean equations for the remaining five scenarios in Figure 4-1 are: 

DDBBAAIETRAN  21 2,2  (4-3) 

DDBBAAIELOV  23,2  (4-4) 

CCAAIETRAN  22 4,2  (4-5) 

DDCCAAIELOC  25,2  (4-6) 

and 

DDCCAAIELOV  26,2  (4-7) 

With respect to Equation (4-2), the frequency of the first event sequence is 

     2Pr2 21,2 IEBBAABBAAIEOK   (4-8)

Similar equations can readily be derived for the other Figure 4-1 scenarios. 

Equation (4-8) does not include the basic events from the linked FTs. However, these 
portions of the logic model can be incorporated into the frequency equation by directly 
substituting the Boolean expressions for the FT top events and performing any appropriate 
simplification. For any sizeable PRA, of course, this exercise in Boolean algebra becomes 
tedious if performed manually, which is one incentive for using PRA software to evaluate risk. 

Three aspects of Figure 4-1 merit further explanation: 

1. IE development; 

2. accident progression (i.e., ET construction); and 

3. FT modeling. 

These are the topics of Sections 4.3.1 through 4.3.3, respectively. 

4.3.1 IE Development 

One of the first modeling issues that must be resolved in performing a PRA is the 
identification of accident scenarios.  This modeling of "what can go wrong?" follows the 
systematic identification of accident initial causes, called initiating events, grouping of individual 
causes into like categories, and subsequent quantification of its likelihood.  In general, accident 
scenarios are the result of an upset condition (the initiating event) and the consequential 
outcome following the upset condition.  Note that initiating events may lead directly to 
undesirable outcomes or may require additional system/component failures prior to reaching a 
negative outcome. 
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Initiating Event (IE) 

 A departure from a desired operational envelope to a system 
state where a control response is required either by human or 
machine intervention.  

Since the number of different initiating events is, in theory, very large (e.g., a rocket may fail 
at t=1.1 sec, at t=1.2 sec, at t=1.3 sec, etc.), individual types of initiating events will be grouped 
into similar categories.  For example, in the case of a rocket failing, rather than have many 
different initiating events at multiple times, we may combine these and only consider the 
frequency of a rocket failing from t=0 sec to t=10 sec.    

The depiction of initiators comes from a variety of techniques.  Precursor events may directly 
or indirectly indicate the types and frequencies of applicable upsets.  Conversely, analysts may 
deduce initiating events through techniques such as failure modes and effects analysis and 
master logic diagrams (MLD).  For example, Figure 4-2 shows an example of a MLD that might 
be used to identify initiating events (not exhaustive) related to upsets caused by kinetic energy.  
A deductive method such as fault tree can be useful for determining initiating events in order to 
find situations where localized component faults can cause an upset condition.   

 

 
Figure 4-2. Notional Master Logic Diagram Related to Candidate Initiating Events Caused 

by Kinetic Energy. 

For the system or mission 
being analyzed, the IEs that are 
evaluated are those that 
potentially may result in the 
undesired outcome of interest 
(i.e., failure to meet one of the 
applicable risk-informed 
decision performance measures).  These IEs are situations that arise from an operational 
deviation or departure from the desired system operation. 

Previously, we described the concept of a “scenario” showing how adverse consequences 
leading to a spectrum of consequences might occur when IEs occur, system control responses 
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fail, and the consequence severity is not limited as well (Figure 4-3).  In this scenario 
representation, hazardsa may impinge on the system or mission in several ways: 

 They may provide enabling events (i.e., conditions that provide the opportunity to 
challenge system safety, potentially leading to an accident); 

 They may affect the occurrence of IEs; 

 They may challenge system controls (safety functions); 

 They may defeat mitigating systems; 

 They may fail to ameliorate the consequences of mitigating system failures. 

Systems are safe because IEs do not occur very often – they seldom leave the desired 
operational state.  Further, even if the system does leave the desired state, control and 
mitigation systems fail infrequently.  Thus, accidents and experiencing the associated 
consequences is unlikely.  However, it is the task of the PRA to represent these scenarios by 
decomposing the sequence of events, starting with the IE, through system failures (or success) 
to the end states of interest. 

 

 
Figure 4-3. The Elements of an Accident Scenario. 

Quantification of an IE generally takes place via a Bayesian approach wherein operational 
data are evaluated to determine the initiator frequency, including the uncertainty on the 
frequency (this approach is described in Chapters 5 and 6). In some cases, little data may exist 
– in these situations the analysis typically relies on models (perhaps physics-based models) or 
expert judgment to provide the frequency. 

Two basic approaches to IE development have been typically used in aerospace PRAs. The 
first approach develops a set of IEs using techniques such as the MLD described earlier. The 
second approach is to replace the IE with a single “mission entry point,” and then model the 

                                                 
a Here “hazard” can be defined as a condition that is, or potentiates, a deviation in system operation. Existence of a 
hazard implies that controls should be considered (if affordable). 
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entire mission using FTs linked to the ET structure. This single IE in the PRA is the point in the 
mission when risk becomes appreciable – typically denoted as “launch.” When this second 
approach is used, it is important that the analyst ensures completeness of the accident 
scenarios since the actual upset conditions may be buried among the FT and ET models. 

In theory, having an IE of "launch" is fine, as long as the PRA analyst then models 
holistically the hazards and enabling conditions that lead to IEs in the other parts of the model 
(i.e., the phased top events after launch).  However, by decomposing the model into discrete 
phases, the creation of fault trees representing the system components and interactions across 
phases becomes a modeling challenge.  With this modeling approach, the idea of a scenario 
gets discarded since failures become compartmentalized due the nature of the phased model.  
But, this is not strictly due to the use of "launch" as an initiator.  Instead, this is the result of not 
coupling directly models to hazards and failure causes that represent IEs as part of an accident 
scenario.   

In practice, ETs are typically used to portray progressions of sequential events over time 
(e.g., the various phases of a mission), while FTs best represent the logic corresponding to 
failure of complex systems. Therefore, when repair (or recovery) is precluded, some analysts 
prefer a large ET model for the risk assessment, while large FT models are preferred by some 
analysts for situations where maintenance (or recovery) is performed.   

Large FT models are most often applied to repairable complex systems such as ground-
based facilities. Because maintenance is routinely performed, each time a system or critical 
component fails, it is repaired and the facility resumes normal operation. Attempting to assess 
risk in these circumstances with a single ET results in a complex model due to the potential 
numerous changes in system states.  However, since the facility will enter a time independent 
availability state, a simpler approach is to use a static logic model to: 

 Postulate that the facility is operating normally; 

 Identify IEs capable of perturbing this normal operating state; 

 Develop relatively simple ETs for each IE; 

 Construct FTs that link to the pivotal events; and 

 Quantify the risk. 

Although this modeling process (use of large FT for repairable, complex systems) is more 
involved than the use of launch as an initiating event (as used in many robotic missions), the 
difference in effort results from the greater complexity inherent in ground-based facilities 
(relative to robotic spacecraft, where a single failure may not be repairable, and simply leads to 
termination of the mission). 

Since the large FT methodology is most conducive to modeling systems with a time 
independent availability, it lacks the capacity to directly assess when failure end states occur. 
No comparable limitations apply to the large ET modeling technique. Nevertheless, it must be 
reiterated that large ETs with a single entry point has practical limitations when applied to 
complex systems or facilities that have repair capabilities. 

4.3.2 Accident Progression 

Accident progression can be modeled using an event sequence diagram (ESD) or its 
derivative, an ET. Both are inductive logic models used in PRAs to provide organized displays 
of sequences of system failures or successes, and human errors or successes, that can lead to 
specific end states. An ESD is inductive because it starts with the premise that some IE has 
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occurred and then maps out what could occur in the future if systems (or humans) fail or 
succeed.  The ESD identifies accident sequences (or pathways) leading to different end states. 
The accident sequences form part of the Boolean logic, which allows the systematic 
quantification of risk (e.g., Equation (4-1)). 

A traditional accident progression analysis begins with an ESD, refines it, and then 
transforms it into an ET format. The advantage of this process is that the morphology of an ESD 
is less rigidly structured than an ET. Hence, ESDs permit the complex relationships among IEs 
and subsequent responses to be displayed more readily. 

Typically, one ESD is developed for each IE. The objective is to illustrate all possible paths 
from the IE to the end states. An ESD is a success-oriented graphic in that it is developed by 
considering how human actions and system responses (including software) can prevent an 
accident or mitigate its severity. 

An important attribute of an ESD is its ability to describe and document assumptions used in 
ETs. An ESD can be very detailed, depicting all sequences considered by the PRA analyst. 
When simplifying assumptions are used to facilitate ET construction or quantification, the ESD 
may furnish a basis for demonstrating why such assumptions are conservative, or 
probabilistically justified. 

ESDs are the subject of Section 4.3.2.1. 

Event Trees (Section 4.3.2.2) are quantitative graphics that display relationships among IEs 
and subsequent responses. Similar to ESDs, one ET is developed for each IE. The objective is 
to develop a tractable model for the important paths leading from the IE to the end states. This 
can be accomplished either by a single ET, or with linked ETs. ET logic may be simpler than the 
corresponding ESD. However, the ET sequences still form part of the Boolean logic, which 
allows the systematic quantification of risk. Generally, risk quantification is achieved by 
developing FT models for the pivotal events in an ET. This linking between an ET and FTs 
permits a Boolean equation to be derived for each event sequence. Event sequence 
quantification occurs when reliability data are used to numerically evaluate the corresponding 
Boolean equation [recall Equation (4-1)]. 

4.3.2.1 Event Sequence Diagrams 

Figure 4-4 depicts a typical ESD and its symbols. The Figure 4-4 ESD begins with an IE that 
perturbs the entity being modeled from a stable state. Compensation for this perturbation is 
provided by System A. Typically, such a system is a normally operating control or protection 
system, which does not have to start in response to the IE. If System A compensates for the IE, 
a successful end state results. 

System B can compensate for the IE if System A fails. System B is a standby system 
because it must start before it can compensate for the IE.  According to Figure 4-4, a successful 
end state ensues if System B starts and operates satisfactorily. 

Failure of System B to start on demand results in End State 1. If System B starts but does 
not operate properly, successful crew intervention can still prevent an accident. If the crew 
efforts are unsuccessful, End State 2 results. Examples of crew actions that could lead to a 
successful end state include: 

 Restoring System A during the period that System B operates; or 

 Manually compensating for the IE. 
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Figure 4-4. Typical Event Sequence Diagram. 
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The use of two different end state designations in Figure 4-4 indicates that the severity of 
the accident depends upon the response of System B. If System B starts but does not operate 
properly, it may nevertheless partially compensate for the IE, resulting in less severe 
consequences to crew safety or mission success. The consequences of interest should be 
understood before ESD development commences. 

Figure 4-4 includes a legend affording: 

 A description of the IE; 

 The anticipated response of System A to the IE; 

 Criteria for the successful operation of System B; and 

 Mitigation options available to the crew. 

Including legends with an ESD is beneficial because it furnishes explanations directly with 
the diagram. However, in some situations the accompanying information can become quite 
voluminous (e.g., explaining mitigation procedures the crew will use in response to certain event 
sequences or IEs). In such circumstances, the detailed explanations should be included in a 
report appended to the ESD. 

Figure 4-5 and Figure 4-6 illustrate the process of ESD development. Since an ESD is 
success oriented, the process begins by identifying the anticipated response to the IE.  For this 
example, the anticipated response is for System A (which is normally operating) to compensate. 
If System A functions satisfactorily, the IE is mitigated and an accident is averted. This 
anticipated success path is developed first in the ESD, as Figure 4-5 indicates. 

Failure of System A does not necessarily result in an accident. A standby system, System B, 
is available if System A fails. Hence, a second success path can be developed for the ESD by 
modeling the successful actuation and operation of System B. However, if System B fails to 
start on demand, End State 1 results.  These additions to the initial ESD success path are 
depicted in Figure 4-6. 

 

Figure 4-5. Event Sequence Diagram Development (step 1). 
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Figure 4-6. Typical Event Sequence Diagram Development (step 2). 

Inability of System B to operate does not result in an undesirable end state if the crew 
intervenes successfully.  If this human recovery action fails, the event sequence terminates with 
End State 2.  Appending this final mitigation block to the ESD in Figure 4-6 and adding the 
legend results in Figure 4-4. This same basic process, i.e.,  

 Beginning with the IE, model the anticipated response;  

 Adding mitigation by backup systems or human actions for each failure that can occur 
during the anticipated response; and then  

 Identifying the resulting end states for those event sequences where the backup systems 
and human actions fail  

can be used to develop an ESD for any system or facility. 

4.3.2.2 Event Trees 

Figure 4-7 is the ET corresponding to the Figure 4-4 ESD. Comparing Figure 4-4 and Figure 
4-7 discloses that the event sequences displayed in each are identical. This is because the 
accident progression is relatively simple. For more complicated accident scenarios, the detailed 
information incorporated into the ESD may be abridged during ET development. 

Both ESDs and ETs are graphical representations of Boolean equations. This is an attribute 
they share with FTs.  Let: 

 IE symbolize the set of elements capable of causing the IE in Figure 4-7 to occur; 

 A  denote the set of events that prevent System A from compensating for IE; 

 SB  represent the set corresponding to failure of System B to start on demand; 

 OB  designate the set of elements capable of preventing System B from operating 
successfully; and 

 R  signify the set of human errors that preclude successful crew intervention. 

Then the Boolean expressions for Figure 4-4 and Figure 4-7 are listed in Table 4-2. 

The Boolean expressions in Table 4-2 would be expanded by linking them to FT models for 
the pivotal events in Figure 4-7. Specifically, FT models would be developed for: 
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 A ; 

 SB ; and 

 OB ; 

(see Section 4.3.3). Recovery by successful crew intervention would be modeled using the 
human reliability analysis (HRA) techniques described in Chapter 7. Ultimately, by linking the ET 
to logic models from FTs and HRA, the expressions in Table 4-2 are expanded until they relate 
the event sequences directly to the basic events comprising the PRA model. 

 

Figure 4-7. Event Tree Structure. 

Table 4-2. Boolean Expressions for Figures 4-4 and 4-7 
Sequence # Boolean Expression 

1 AI E   

2 
OSE BBAI   

3 RBBAI OSE   

4 RBBAI OSE   

5 
SE BAI   

 

Figure 4-4 and Figure 4-7 are more representative of large FT models, where much of the 
detailed logic is embodied in the FTs. 

 ET linking is usually necessary when constructing large ET models.  Conceptually, an event 
sequence that links to another ET can be considered as an IE for the second tree. This is 
illustrated in Figure 4-8.  Table 4-3 lists the Boolean expressions for Figure 4-8. The pivotal 
events in Figure 4-8 will ultimately be linked to FTs or other models. 
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Figure 4-8. Event Tree Linking. 

Table 4-3. Boolean Expressions for Figure 4-8. 
Sequence # Boolean Expression 

1 YXW 
2 ZYXW 
3 ZYXW 
4 ZXW 
5 ZXW 

 

Notice that event sequence 5 in Figure 4-8 is linked to the Figure 4-7 ET. Let the notation, 
W5-IEn, signify the event sequence involving the concatenation of sequence 5 in Figure 4-8 
with the nth. sequence in Figure 4-7. To determine the Boolean equation for sequence W5-IE1, 
let 

ZXWI E   (4-9)

Then combining Equation (4-9) with the first entry in Table 4-2: 

AZXWIEW  15  (4-10) 

Accordingly, the linked event sequence involves IE, W, conjoined with: 

 Failure of X; 

 Failure of Z; and 

 Compensation by System A. 

Similarly: 

RBBAZXWIEW OS  35  (4-11) 
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RBBAZXWIEW OS  45  (4-12) 

and 

SBAZXWIEW  55  (4-13) 

Moreover: 

 Event sequences W5-IE1 through W5-IE3 result in success; 

 Event sequence W5-IE4 leads to End State 2; while 

 End State 1 results from event sequence W5-IE5. 

Once Boolean equations for the linked event sequences are derived, their likelihood can be 
quantified and ultimately combined into end state probabilities. 

4.3.3 Fault Tree Modeling 

An FT is a deductive logic model whereby a system failure is postulated (called the top 
event) and reverse paths are developed to gradually link this consequence with all subsystems, 
components, software errors, or human actions (in order of decreasing generality) that can 
contribute to the top event, down to those whose basic probability of failure (or success) is 
known and can be directly used for quantification. Graphically, a FT at its simplest consists of 
blocks (e.g., rectangles or circles) containing descriptions of failure modes and binary logic 
gates (e.g., union or intersection) that logically link basic failures through intermediate level 
failures to the top event.  The basic principles and procedures for fault tree construction and 
analysis are discussed in Reference [4-1]. 

Figure 4-9 depicts a typical FT structure and the symbols used. 

FTs are constructed to define all significant failure combinations that lead to the top event—
typically the failure of a particular system to function satisfactorily. Satisfactory performance is 
defined by success criteria, which are the subject of Section 4.2.2. 

Ultimately, FTs are graphical representations of Boolean expressions. For the FT in Figure 
4-9, the corresponding Boolean equation is: 

  D  C  BA  DCE  T   (4-14) 

where: 

 T is the top event; and 

 A through E are the basic and intermediate events in Figure 4-9. 
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Figure 4-9. Typical Fault Tree Structure and Symbols. 

If Pr(X) signifies the probability of event X, then the top event probability associated with 
Figure 4-9 is 

              CBADBACBPr  ABPr - APr  T  PrPr1Pr (4-15)

Some PRA software does not consider conditional probabilities unless they are expressly 
modeled, and employs the rare event approximation to quantify unions of events.  With these 
restrictions, the corresponding software approximation to Equation (4-15) is 

          DCBPr  APr  T PrPrPr   (4-16) 

Because of these limitations, caution must be exercised to ensure that logic models are 
compatible with all approximations programmed into the PRA software algorithms. 

The evaluation of a FT can be accomplished in two major steps: 

1. reduction; and 

2. quantification. 

A collection of basic events whose simultaneous occurrence engenders the top event is 
called a cut set. Minimal cut sets (MCSs) are cut sets containing the minimum subset of basic 
events whose simultaneous occurrence causes the top event to occur. Boolean reduction of a 
FT has the objective of reducing the FT to an equivalent form that contains only MCSs. This is 
accomplished by sequential application of the basic laws of Boolean algebra to the original logic 
embodied in the FT until the simplest logical expression emerges. Quantification of the FT is the 
evaluation of the probability of the top event in terms of the probabilities of the basic events 
using the reduced Boolean expression of MCSs. By combining the Boolean expression for 
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individual FTs into event sequences (by linking them through the ETs), an expression 
analogous to Equation (4-1) results. 

FT construction is guided by the definition of the top event. This is predicated upon the 
system success criteria. The top event is derived by converting the success criteria for the 
system into a statement of system failure. 

Starting with the top event, the FT is developed by deductively determining the cause of the 
previous fault, continually approaching finer resolution until the limit of resolution is reached. In 
this fashion the FT is developed from the system end point backward to the failure source. The 
limit of resolution is reached when FT development below a gate consists only of basic events 
(i.e., faults that consist of component failures, faults that are not to be further developed, 
phenomenological events, support system faults that are developed in separate FTs, software 
errors, or human actions). 

Basic events appear at the bottom of a FT and determine the level of detail the FT contains. 
FTs should be developed down to a level where appropriate failure data exist or to a level 
providing the results required by the analysis. 

House events are often used in FT analysis as switches to turn logic on and off.  Since their 
probability is quantified as unity or zero, they require no reliability data input.  House events are 
frequently used to simulate conditional dependencies. 

Failure rates for passive or dormant components tend to be substantially less than for active 
components. Hence, they are not always included in FTs. Exceptions are single component 
failures (such as a pipe break, bus failure, or structural fault) that can fail an entire system (i.e., 
single failure points), and failures that have a likelihood of occurrence comparable to other 
components included in the FT. Spurious signals that cause a component to enter an improper 
state can be excluded from the model if, after the initial operation, the component control 
system is not expected to transmit additional signals requiring the component to alter its 
operating state. Likewise, basic events relating to a component being in an improper state prior 
to an IE are not included if the component receives an automatic signal to enter its appropriate 
operating state under accident conditions. 

Testing and maintenance of components can sometimes render a component or system 
unavailable. Unavailability due to testing or maintenance depends on whether the component or 
train is rendered inoperable by the test or maintenance, and, if so, on the frequency and the 
duration of the test or maintenance act. Component failure due to a fault, and component 
unavailability due to test or maintenance, are mutually exclusive events. Consequently, caution 
must be exercised during FT reduction to ensure that cut sets containing such impossible 
combinations are not included in the reduced model. 

Two types of human errors are generally included in FTs. Pre-accident human errors occur 
prior to the IE. Post-accident human errors modeled in FTs involve failure to activate or align 
systems that do not receive an automatic signal following the initiation of an accident. Other 
human recovery actions are generally not modeled in system FTs. Chapter 7 describes the 
modeling and quantification of human errors. 

Dependent failures defeat the redundancy or diversity that is employed to improve the 
availability of systems. They are the subject of Chapter 8. 

Software errors that can cause or contribute to the top event must be incorporated into the 
FT model. A key issue in modeling the contribution of software errors is to fully comprehend the 
impact these errors can have on the system. For example, if successful system operation is 
dependent on software control, a catastrophic software error would fail the entire system, 
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regardless of the mechanical redundancy or diversity the system contains. Hence, such errors 
can directly cause the top event to occur. However, other software errors may only degrade 
system performance. In these situations a combination of software errors and component 
failures may be needed to cause the top event. To ensure that the FT analyst satisfactorily 
incorporates software errors into the system model, the FT and software risk assessments 
(subject of Chapter 9) should proceed in concert.  

4.4 References 

4-1 Fault Tree Handbook with Aerospace Applications, Version 1.1, NASA, August 2002. 

4-2 NASA System Safety Handbook, Volume 1, NASA/SP-2010-580, December  2011. 
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5. Data Collection and Parameter Estimation 

The focus of a data collection process is to inform future risk/reliability assessments, which 
themselves inform decision-making processes.  The key idea here is that data “collection” and 
“analysis” are not performed in isolation – an understanding of the intended use and application 
of the process results should be present during the design and implementation of the analysis 
methods.  In general though, PRA data analysis refers to the process of collecting and 
analyzing information in order to estimate various parameters of the PRA models, particularly 
those of the epistemic models. These include the parameters used to obtain probabilities of 
various events such as component failure rates, initiator frequencies, and human failure 
probabilities. Therefore, the two main phases of developing a PRA database are: 

1. Information Collection and Classification  

2. Parameter Estimation  

Typical quantities of interest are: 

 Internal Initiating Events (IEs) Frequencies 

 Component Failure Frequencies  

 Component Test and Maintenance Unavailability  

 Common Cause Failure (CCF) Probabilities 

 Human Error Rates  

 Software Failure Probabilities 

Developing a PRA database of parameter estimates involves the following steps:  

 Model-Data Correlation (identification of the data needed to correspond to the level of 
detail in the PRA models, determination of component boundaries, failure modes, and 
parameters to be estimated, e.g., failure rates, MTTR)  

 Data Collection (determination of what is needed, such as failure and success data to 
estimate a failure rate, and where to get it, i.e., identification of data sources, and 
collection and classification of the data)   

 Parameter Estimation (use of statistical methods to develop uncertainty distributions for 
the model parameters) 

 Documentation (how parameter uncertainty distributions were estimated, data sources 
used, and assumptions made) 

5.1 PRA Parameters 

Typical PRA parameters, and the underlying probability models, are summarized in Table 
5-1.  Note for each of these probability models, one or more parameters are to be evaluated 
since they represent epistemic uncertainty – these parameters are shown in bold in the table. 
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Table 5-1. Typical Probability Models in PRAs and Their Parameters. 
Basic Event Probability Models Data Required 

Initiating event Poisson model 

!
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k

t
ek

k
t   

t:  Mission time 
λ: frequency 

Number of events k in time t 

Component fails on 
demand 

Constant probability of failure on demand, or 
q 

Number of failure events k in 
total number of demands N 

Standby component fails in 
time, or component 
changes state between 
tests (faults revealed on 
functional test only) 

Constant standby failure rate 

ss

T

T

e
Q

ss






1
1  

Ts: Time between tests 

s : Standby failure rate 

Number of events k in total 
time in standby T 

Component in operation 
fails to run, or component 
changes state during 
mission (state of 
component continuously 
monitored) 

Constant failure rate 

mo
T TeU mo   1  

Tm:    Mission time 

O :    Operating failure rate 

Number of events k in total 
exposure time T (total time 
standby component is 
operating, or time the 
component is on line) 

Component unavailable 
due to test 

s

TD

T

T
Q   

TTD : Test duration (only in the case of no 
override signal) 
Ts: Time between tests 

Average test duration (TTD) 
and time between tests (Ts) 

Component unavailable 
due to corrective 
maintenance (fault 
revealed only at periodic 
test, or preventative 
maintenance performed at 
regular intervals) 

T

U

T

T
Q   

TU: Total time unavailable while in 
maintenance (out of service) 
TT: Total operating time 

Total time out of service due 
to maintenance acts while 
system is operational, Tu, 
and total operating time TT. 

Component unavailable 
due to unscheduled 
maintenance (continuously 
monitored components) 

R

R

T

T
Q






1

 

TR: Average time of a maintenance outage. 
 : Maintenance rate 

Number of maintenance acts  
r in time T (to estimate  ) 

Standby component that is 
never tested.  Assumed 
constant failure rate. 

PsTeQ 1  

pT : Exposure time to failure 

m : Standby failure rate. 

Number of failures r, in T 
units of (standby) time  

CCF probability 
1  through m  where m is the redundancy 

level 

n1 through nm where nk is the 
number of CCF events 
involving k components 
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Table 5-1 also shows the data needed to estimate the various parameters. The type of data 
needed varies depending on the type of event and their specific parametric representation. For 
example, probabilities typically require Event Counts (e.g., Number of Failures), and exposure 
or “Success Data” (e.g., Total Operating Time). Other parameters may require only one type of 
data, such as Maintenance/Repair Duration for mean repair time distribution, and counts of 
multiple failures in the case of CCF parameter estimates.  

5.2 Sources of Information 

Ideally, parameters of PRA models of a specific system should be estimated based on 
operational data of that system. Often, however, the analysis has to rely on a number of sources 
and types of information if the quantity or availability of system-specific data are insufficient. In 
such cases surrogate data, generic information, or expert judgment are used directly or in 
combination with (limited) system-specific data. According to the nature and degree of 
relevance, data sources may be classified by the following types:   

 Historical performance of successes and failures of an identical piece of equipment 
under identical environmental conditions and stresses that are being analyzed (e.g., 
direct operational experience).  

 Historical performance of successes and failures of an identical piece of equipment 
under conditions other than those being analyzed (e.g., test data).  

 Historical performance of successes and failures of a similar piece of equipment or 
similar category of equipment under conditions that may or may not be those under 
analysis (e.g., another program’s test data, or data from handbooks or compilations). 
General engineering or scientific knowledge about the design, manufacture and 
operation of the equipment, or an expert’s experience with the equipment. 

5.2.1 Generic Data Sources 

Generic data is surrogate or non-specific information related to a class of parts, 
components, subsystems, or systems.  Most generic data sources cover hardware failure rates.  
All other data categories, particularly human and software failure probabilities, tend to be much 
more mission-specific, system-specific, or context dependent. As such, generic data either do 
not exist or need to be significantly modified for use in a PRA. 

NASA has performed risk and reliability assessments for a variety of vehicles and missions 
for over 40 years.  Each of these quantitative evaluations tends to increase the general 
collection of risk and reliability information when this information is stored or published for later 
use.  In addition to the individual quantitative evaluations, NASA also manages incident 
reporting systems, for example the Problem Reporting and Corrective Action (PRACA) system.  
PRACA systems have served as key information repositories and have been used in analyses 
such as the Shuttle PRA and the Galileo RTG risk assessment.  A selection of other NASA data 
collection systems includes: 

 Center-specific Problem Reporting systems (to record pre- and operational anomalies) 
 The Spacecraft On-Orbit Anomaly Reporting System (SOARS) 
 The Problem Report/Problem Failure Report (PR/PFR) system 
 Incident, surprise, and anomaly reports 
 PRA and reliability analysis archives (e.g., Shuttle, ISS) 
 Apollo Mission Reports  
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 The Mars Exploration Rover Problem Tracking Database  
 Results of expert elicitation 
 

Outside of NASA and associated industries, a large set of risk and reliability data/information 
is collected.  While many of these knowledge sources fall into the category of “generic” data, 
their applicability to NASA applications may be high in certain instances.  Examples of these 
sources include: 

 Nonelectronic Parts Reliability Data, NPRD-2011, Reliability Information Analysis Center 
(RIAC) 

 Electronic Parts Reliability Data, EPRD-1997, RIAC 
 IEEE Std 500-1984 
 NUCLARR (updated version is called NARIS) 
 Nuclear industry EPIX/RADS system 
 The Military Handbook for Reliability Prediction of Electronic Equipment, MIL-HDBK-217F 
 Government-Industry Data Exchange Program (GIDEP) 
 International Common Cause Failure Data Exchange (ICDE) 

 
The format and content of the data vary depending on the source. For example, a failure 

mode/mechanism database provides fraction of failures associated with each Mode or 
Mechanism. Others provide direct or formula-based estimates of failure rates. 

The first two databases are maintained by The Reliability Information Analysis Center 
(RIAC) in Rome, New York. These RIAC databases provide empirical field failure rate data on a 
wide range of electronic components and electrical, mechanical, and electro mechanical parts 
and assemblies. The failure rate data contained in these documents represent cumulative 
compilation from the early 1970s up to the publication year for each document.  The RIAC 
handbooks provide point estimate parameter estimations for failure rates (or demand 
probabilities).  No treatment of uncertainty is provided. 

The Part Stress Analysis Prediction method of MIL-HDBK-217 provides base failure rates 
and method of specializing them for specific type or applications. The specialization considers 
factors such as part quality, environmental conditions, and part-type specific factors such as 
resistance and voltage (for resistors). 

For example, for semiconductors:  

)( 2 QCSAEbP    (5-1) 

where, p is part failure rate, b  is base failure rate, dependent on electrical and thermal 

stresses, and the   factors modify the base failure rate based on environmental conditions and 
other parameters affecting part reliability.   

 GIDEP is a cooperative activity between government and industry for the goal of sharing 
technical information essential during the life cycle of systems or components. GIDEP includes 
a database of “Reliability and Maintainability Data.”  

Other sources of data include non-U.S. experience such as launch vehicle performance 
(e.g., ESA’s Ariane and Russia’s Soyuz and Proton).  However, the availability of quality non-
U.S. data is generally limited, with a few exceptions (e.g., the OREDA Offshore REliability 
DAta). 
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In any given PRA a mix of generic and system-specific data sources may be used. The 
International Space Station PRA, for example, has relied on the following sources for hardware 
data: 

 Modeling Analysis Data Sets (MADS) 

 Contractor Reliability & Maintainability Reports 

 Russian Reliability & Maintainability Reports 

 Non-electronic Parts Reliability Database 1995 (NPRD) 

 Electronic Parts Reliability Database 1997 (EPRD) 

 Failure Mode Distribution 1997 (FMD) 

 Bellcore TR-332: Reliability Prediction Procedure for Electronic Equipment 

 Problem Reporting and Corrective Action (PRACA) System. 

Irrespective of the source of data used, generic data must be evaluated for applicability, and 
often modified before being used as surrogate data.  

5.2.2 System-Specific Data Collection and Classification  

System-specific data can be collected from sources such as:  

 Maintenance Logs 

 Test Logs 

 Operation Records. 

As shown in Table 5-1, the data needed vary depending on the type of event and their 
specific parametric representation. Most cases require counts of events (e.g., failures) and 
corresponding exposure data (e.g., operating hours).  

In the majority of cases, system-specific data are gathered from operation and test records 
in their “raw” form (i.e., in the form that cannot be directly used in a statistical analysis). Even 
when data have already been processed (e.g., reduced to counts of failure), care must be 
exercised to ensure that the data reduction and processing are consistent with PRA modeling 
requirements, such as having a consistent failure mode classification, and correct count of the 
total number of tests or actual demands on the system).   

In collecting and classifying hardware failure, a systematic method of classification and 
failure taxonomy is essential. A key element of such taxonomies is a classification of the 
functional state of components. One such classification system has been offered in Reference 
[5-1]. 

Using a taxonomy implies a knowledge structure used to describe a parent-child relationship 
(i.e., a hierarchy).  Under the guidelines for evaluation of risk and reliability-related data, the 
taxonomy provides the structure by which data and information elements provide meaning to 
analysts.  Within the risk and reliability community, a variety of taxonomies and associated 
definitions are used.   

If one were concerned about the physical causes of failures, a set of physics-based causal 
factors such as these would be required.  However, this low level of information is not necessary 
if the inference being made for a specific component or system is concerned with – in general – 
failures or successes, as shown in Table 5-1.  If, instead, we wished to infer the probability of 
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failure conditional upon a specific failure mechanism, we would need to have information related 
to the nature of failure (e.g., the physical causal mechanisms related to specific failures). 

In other words, this classification can take place via a failure modes and effects analysis, 
similar to the functional failure modes and effects analysis.  Henley and Kumamoto carried this 
idea one step further when they proposed a formal cause-consequences structure to be stored 
in an electronic database [5-2]. In their approach, specific keywords, called modifiers, would be 
assigned to equipment failures.  For example, modifiers for on-off operation included:  close, 
open, on, off, stop, restart, push, pull, and switch.  Alternative hierarchy related to 
system/component/failure modes may look like: 

 

System 
└ Component 
   └ Failure Mode 
      └ Affected Item 
         └ Failure Mechanism 
            └ Failure Cause 

 
 

Outside of NASA, a new standard, ISO 14224, focused on the collection and processing of 
equipment failure data has been produced.  Other guidance on data collection taxonomies may 
be found from the following sources: 

 ISO 6527:1982 Nuclear power plants -- Reliability data exchange -- General guidelines 

 ISO 7385:1983 Nuclear power plants -- Guidelines to ensure quality of collected data on 
reliability 

 ISO 14224:2006 Petroleum, petrochemical and natural gas industries -- Collection and 
exchange of reliability and maintenance data for equipment 

An example component state classification is shown in Figure 5-1.  With regard to the 
intended function and in reference to a given performance criterion, a component can be in two 
states: available or unavailable. The unavailable state includes two distinct sub-states: failed 
and functionally unavailable, depending on whether the cause of the unavailability is damage to 
the component or lack of necessary support such as motive power. The state classification also 
recognizes that even when a component may be capable of performing its function (i.e., it is 
available), an incipient or degraded condition could exist in that component, or in a supporting 
component. These failure situations are termed potentially failed and potentially functionally 
unavailable, respectively. These concepts have proven useful in many PRA data applications. 

Another aspect of reliability data classification is the identification of the failure cause. In the 
context of the present discussion, the cause of a failure event is a condition or combination of 
conditions to which a change in the state of a component can be attributed. It is recognized that 
the description of a failure in terms of a single cause is often too simplistic. A method of 
classifying causes of failure events is to progressively unravel the layers of contributing factors 
to identify how and why the failure occurred. The result is a chain of causal factors and 
symptoms. 
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Figure 5-1. Component Functional State Classification. 

 

A hierarchy of parts or items that make up a component is first recognized, and the 
functional failure mode of the component is attributed to the failure or functional unavailability of 
a subset of such parts or items. Next the physical sign or mechanism of failure (or functional 
unavailability) of the affected part(s) or item(s) are listed. Next the root cause of the failure 
mechanism is identified. Root cause is defined as the most basic reason or reasons for the 
failure mechanism, which if corrected, would prevent reoccurrence. The root cause could be any 
causal factor, or a combination of various types of causal factors. 

Figure 5-2 shows the system/component/failure event classification process highlighting the 
part that deals with failure cause classification. We note that the cause classification starts by 
identifying the part or item within the components that was affected by the failure event. It is 
assumed that other attributes in failure event classification such as component type and 
functional failure mode (e.g., failure to start) at the component level are recorded earlier. The 
second step is to identify the failure mechanism affecting the part or item within the component. 
Finally the root cause of the failure mechanism is listed.  

Figure 5-3 provides an example of a more detailed listing of the various classification 
categories under each of the three steps of the cause classification process. The level of details 
and sub-categories provided for each step is not necessarily complete or comprehensive for all 
applications. However, the structure, classification flow, and categories capture the essence of a 
large number of failure cause classification approaches in the literature. In real world 
applications, due to the limitations in the information base, it may be difficult or impossible to 
identify some of these attributes for a given event. 

  

Component State

Available Unavailable

Nominal
Potentially

Functionally
Unavailable

Incipient or
Degraded

State

Functionally
Unavailable

Failed
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 Failure Mode: The particular way the function of the component is affected by the failure 

event  (e.g., fail to start, fail to run)   

 Failure Mechanism: The physical change (e.g., oxidation, crack) in the component or 
affected item that has resulted in the functional failure mode  

 Failure Cause: The event or process regarded as being responsible for the observed 
physical and functional failure modes (e.g., use of incorrect material) 

Figure 5-2. Failure Event Classification Process Flow. 

System Component
Failure
Mode

Affected
Item

Failure
Mechanism

Failure
Cause
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Item Affected
(internal to component)

Failure Mechanism

 Erosion
 Corrosion
 Contamination
 Blockage/Foreign Object
 Deformation
 Fracture
 Degradation of Material

Properties
 Excessive Friction
 Binding
 Wear out
 Improperly Positioned
 Incorrect Setting
 Missing
 Wrong Part/Material

Composition
 Short/Open Circuit
 Spurious Output
 No Output
 Functionally Unavailable
 Unknown

 Part
 Mechanical
 Electrical
 Structural

 Software
 Internal Medium

 Design/Construction
 Design Error
 Manufacturing Error
 Installation/Construction

Error
 Design Modification

Error
 Operational

Human Error
 Accidental Action
 Failure To Follow

Procedures
 Inadequate/Incorrect

Procedure
 External

Environment
 Acts of Nature

 Wind
 Flood
 Lighting
 Snow/Ice

 Fire/Smoke
 Humidity/Moisture
 High/Low Temperature
 Electromagnetic Field
 Radiation
 Contaminants/Dust/Dirt
 Bio Organisms
 MMOD

 State of Other Components
 Unknown

Failure Cause

 

 

Figure 5-3. Failure Cause Classification Subcategories. 

5.3 Parameter Estimation Method 

As discussed earlier in this Guide, Bayesian methods are widely used in PRA, while 
classical estimation has found only limited and restricted use. Therefore, this section describes 
only the Bayesian approach to parameter estimation.  

Bayesian estimation incorporates degree of belief and information beyond that contained in 
the data sample, forming the practical difference from classical estimation. The subjective 
interpretation of probability forms the philosophical difference from classical methods. Bayesian 
estimation is comprised of two main steps. The first step involves using available information to 
fit a prior distribution to a parameter, such as a failure rate. The second step of Bayesian 
estimation involves using additional or new data to update the prior distribution. This step is 
often referred to as “Bayesian Updating.” 

Bayes’ Theorem, presented in Section 6.6 transforms the prior distribution via the likelihood 
function that carries the new data. Conceptually  
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LikelihoodonDistributiPrior
ConstantgNormalizin

LikelihoodonDistributiPrior
onDistributiPosterior 


  (5-2) 

Bayes’ Theorem has been proven to be a powerful coherent method for mathematically 
combining different types of information while also expressing the inherent uncertainties. It has 
been particularly useful in encapsulating our knowledge about the probability of rare events 
about which information is sparse. 

Bayes’ Theorem provides a mathematical framework for processing new data, as they 
become available over time, so that the current posterior distribution can then be used as the 
prior distribution when the next set of data becomes available.  

Bayesian inference produces a probability distribution.  A “credible interval” consists of the 
values at a set of specified percentiles (one low, one high) from the resultant distribution.  For 
example, a 90% credible interval ranges from the value of the 5th percentile to the value of the 
95th percentile.  Note that the credible interval will also be referred to as a “probability interval.” 

For PRA applications, determining the prior distribution is usually based on generic data, 
and the new or additional data usually involve system-specific test or operating data. The 
resulting posterior distribution would then be the system-specific distribution of the parameter.  
In the case where system-specific data did not exist, the applicability of other data or information 
would need to be evaluated and used – this treatment falls under the topic of uncertain data and 
is described in Section 4.5 of the NASA Bayesian Inference Guide [5-4]. 

5.4 Prior Distributions 

Prior distributions can be specified in different forms depending on the type and source of 
information as well as the nature of the random variable of interest. Possible forms include: 

 Parametric (gamma, lognormal, beta): 

- Gamma or lognormal for rates of events (time-based reliability models)  

- Beta or truncated lognormal for event probabilities per demand  

 Numerical (histogram, CDF values/percentiles)  

- Applicable to both time-based and demand-based reliability parameters. 

Among the parametric forms, a number of probability distributions are extensively used in risk 
studies as prior and posterior distributions. These are: 
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where  and  are the parameters of the distribution. The lognormal distribution can be 
truncated (truncated lognormal) so that the random variable is less than a specified upper 
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where   and   are the parameters of the distribution. 
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where   and   are the parameters of distribution. 

Information content of prior distributions can be based on: 

 Previous system-specific estimates 

 Generic, based on actual data from other (similar) systems  

 Generic estimates from reliability sources  

 Expert judgment (see discussion in Chapter 6) 

 “Non-informative.” This type is used to represent the state of knowledge for the situations 
where little a priori information exists or there is indifference about the range of values the 
parameter could assume. A prior distribution that is uniformly distributed over the interval of 
interest is a common choice for a non-informative prior. However, other ways of defining 
non-informative prior distributions also exist. 

The NASA Bayesian Inference Guide, NASA-SP-2009-569, between pages 47 and 54, 
suggests prior distributions and provides examples for use when faced with limited information 
[5-4]: 

Information Available Suggested Prior Distribution 

Mean value for lambda in the  
Poisson distribution 

Gamma distribution with alpha = 0.5 and 
beta = 1/(2 × mean) 

Mean value for p in the binomial 
distribution 

Beta distribution with alpha  0.5 and 
beta = (1 – mean)/( 2 × mean) 

Mean value for lambda in the  
exponential distribution 

Gamma distribution with alpha = 1 and beta = 
1/mean 

p in binomial distribution lies  
between a and b 

Uniform distribution between a and b 

 

5.5 Selection of the Likelihood Function 

The form of the likelihood function depends on the nature of the assumed Model of the 
World representing the way the new data/information is generated:  

For data generated from a Poisson Process (e.g., counts of failures during operation), the 
Poisson distribution is the proper likelihood function 

T
k

e
k

T
Tk  

!

)(
),Pr(  (5-6) 

which gives the probability of observing k events (e.g., number of failures of a component) in T 
units of time (e.g., cumulative operating time of the component), given that the rate of 
occurrence of the event (failure rate) is  . The MLE of   is (see Chapter 6) 
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T

k
̂  (5-7) 

It is also possible to combine data from several independent Poisson processes, each 
having the same rate  . This applies to the case where data are collected on identical 
equipment to estimate their common failure rate. The failure counting process for each 
equipment is assumed to be a Poisson process. In particular, suppose that the ith Poisson 
process is observed for time ti, yielding the observed count ki. The total number of event 

occurrences is iikk   where the sum is taken over all of the processes, and the exposure 

time is iitT  . This combined evidence can be used in the likelihood function of Equation (5-

6). 

For data generated from a Bernoulli Process (e.g., counts of failures on system 
demands), the Binomial distribution is the proper likelihood function:  

kNk qq
k

N
qNk 








 )1(),|Pr(  (5-8) 

which gives the probability of observing k events (e.g., number of failures of a component) in 
N trials (e.g., total number of tests of the component), given that the probability of failure per 
trial (failure on demand probability) is q. The MLE of q is: 

Nkq /  (5-9) 

Similar to the case of Poisson Likelihood, data generated by independent Bernoulli 
Processes having the same parameter q may be combined. Denoting the number of failures 
and demands at data source j by kj and nj, respectively, let 

j
jkk  and 

j
jnN .  

These cumulative numbers are then used in the likelihood function of Equation (5-8). 

For data in the form of expert estimates or values for data sources (e.g., a best estimate 
based on MIL-STD-217), the lognormal distribution is a common likelihood function. 

5.6 Development of the Posterior Distribution 

Using Bayes’ Theorem in its continuous form, the prior probability distribution of a 
continuous unknown quantity, )x(Pro  can be updated to incorporate new evidence E as follows: 

dxxxEL

xxEL
Ex

o

o

)(Pr)(

)(Pr)(
)Pr(


  (5-10) 

where Pr(x|E) is the posterior or updated probability distribution of the unknown quantity X given 
evidence E (occurrence of event E), and L(E|x) is the likelihood function (i.e., probability of the 
evidence E assuming the value of the unknown quantity is x).The various combinations of prior 
and likelihood functions as well as the form of the resulting posterior distributions are listed in 
Table 5-2. 
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Table 5-2. Typical Prior and Likelihood Functions Used in PRAs. 
Prior Likelihood Posterior 

Lognormal Poisson Numerical 

Gamma Poisson Gamma 

Beta Binomial Beta 

Truncated Lognormal Binomial Numerical 

 
Many practical applications of Bayes’ Theorem require numerical solutions to the integral in 

the denominator of Bayes’ Theorem. Simple analytical forms for the posterior distribution are 
obtained when a set of prior distributions, known as conjugate prior distributions, are used. A 
conjugate prior distribution is a distribution that results in a posterior distribution that is a 
member of the same family of distributions as the prior.   

Two commonly used conjugate distributions are listed in Table 5-3. The formulas used to 
calculate the mean and the variance of the resultant posterior in terms of the parameters of prior 
and likelihood functions are provided.  

Table 5-3. Common Conjugate Priors Used in Reliability Data Analysis. 

Conjugate 
Prior 

Distribution 

Likelihood 
Function 

Posterior 
Distribution 

Mean of 
Posterior 

Variance of Posterior 

Beta () Binomial (k, N) Beta 

N

k + 
  = x




 
)1N()N(

)kN)(k(
 = )x  (var 

2 


 
Gamma () Poisson (k, T) Gamma 

T + 

k + 
  = x



 2)T(

k
 = )x  (var 




 

 

Example 4:  Updating of Prior for a Poisson Example 

It is assumed that the total operational data for the component category indicate 2 failures in 
10,000 hours. Since the prior distribution is lognormal, and the likelihood function is Poisson, the 
posterior distribution must be derived numerically. Both the prior and posterior distributions are 
shown in Figure 5-4. The Prior and Posterior Distributions of Example 4.. Note that the pdfs are 
plotted as a function of log  . 

The shift toward the operational data is a characteristic of the posterior distribution, as 
compared to the prior distribution (see Chapter 5 for discussion on relation between posterior 
and data used in Bayesian updating).    
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Figure 5-4. The Prior and Posterior Distributions of Example 4. 

Example 5:  Updating Distribution of Failure on Demand Probability 

It is assumed that the prior distribution of a component failure probability on demand is 
characterized by a beta distribution with Mean = 1E-4 failures per demand, and Standard 
Deviation = 7E-5.  It is also assumed that the operational data for the component category 
indicate 1 failure in 2,000 demands. Since the prior distribution is a Beta, and the likelihood 
function is Binomial, the posterior distribution is also a Beta distribution. Both the prior and 
posterior distributions are shown in Figure 5-5.  

 

 

Figure 5-5. The Prior and Posterior Distributions of Example 5. 
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5.7 Sequential Updating 

Bayes’ Theorem provides a mechanism for updating the state-of-knowledge when the 
information is accumulated in pieces. The updating process can be performed sequentially and 
in stages corresponding to the stages in which various pieces of information become available. 
If the total amount of information is equivalent to the “sum” of the pieces, then the end result 
(posterior distribution) is the same regardless of whether it has been obtained in stages (by 
applying Bayes’ Theorem in steps) or in one step (by applying Bayes’ Theorem to the 
cumulative information). 

Example 6:  Updating Failure Rate for a Poisson Process 

A component is tested for 1000 hours in one test and 4000 hours in another. During the first 
test the component does not fail, while in the second test one failure is observed.  We are 
interested in an updated estimate of the component failure rate assuming a gamma prior 
distribution with parameters   = 1,   = 500. 

Approach 1: We first start with prior (Gamma distribution):  500,1  xG . We also 

use Poisson as the likelihood function:   ,10000Pr 11  Tk  representing the results of the 

first test (k1 = 0 in T1 = 1000 hours). The parameters of the resulting Gamma posterior 
distribution are 1011  k , and 150010005001  T  (see Table 5-3). 

Next, we use this posterior as prior distribution and update it with the information from the 

second test. Therefore, the prior is  1500',1''  G  and the likelihood is again Poisson:  

 ,40001Pr 22  Tk . The parameters of the posterior after the second update are 

2112  k , and 5500400015002   . The posterior mean is given 
by (see Table 5-3): 

hourfailures/ 4E-3.6 = 
5500

2
 = 

"

"
 = 

  

Approach 2: The total evidence on the failure history of the component in question is 
k = k1 + k2 = 0 + 1 = 1, and T = T1 + T2 = 1000 + 4000 = 5000. Starting with our prior distribution 
with parameters,  = 1,   = 500, the above cumulative evidence can be used in one application 

of Bayes’ Theorem with Poisson likelihood: ),50001Pr( 2  Tk  

The parameters of the resulting Gamma posterior distribution are  
211  k , 55005000500  T , and 

hourfailures/4E-3.6 = 
5500

2
 =  = 





  

which are identical to values obtained with the first approach. 

5.8 Developing Prior Distributions from Multiple Sources of Generic Information 

Typically, generic information can be categorized into two types:  

 Type 1  Failure data from operational experience with other similar but not identical 
components, or from identical components under different operating conditions. This 
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information is typically in the form of failure and success data collected from the 
performance of similar equipment in various systems. The data in this case are assumed to 
come from a “non-homogenous” population.  

 Type 2  Failure rate estimates or distributions contained in various industry compendia, 
such as several of the databases discussed earlier. Estimates from expert judgment 
elicitations would be included in this category.  Type 2 data are either in the form of point 
estimates (or “best estimates”), or a range of values centered about a “best estimate.” 
Ranges of the best estimate can be expressed in terms of low, high, and recommended 
values, or as continuous probability distributions. 

When multiple sources of generic data are available, then it is likely that we are dealing with 
a non-homogeneous population. In these cases the data cannot be pooled, and the reliability 
parameter of interest (e.g., failure rate) will have an inherent variability. The probability 
distribution representing this variability is known as a population variability distribution of the 
reliability parameter of interest. 

NASA-SP-2009-569 [5-4] describes both Type 1 and Type 2 approaches for Bayesian 
inference.  For example, Section 4.5 of that document discusses population variability models 
for Binomial, Poisson, and CCF models.  For the case where we need to combine different sets 
of data or information, Sections 4.8.2 and 4.8.4 describe various Bayesian approaches. 

5.9 Guidance for Bayesian Inference Calculations 

As mentioned, NASA-SP-2009-569 [5-4] provides a collection of quantitative methods to 
address the analysis of data and its use in PRA.  The coverage of the technical topics in that 
guide addresses items such as the historical genesis of Bayesian methods; comparisons of 
“classical statistics” approaches with Bayesian ones; the detailed mathematics of particular 
methods; and sources of reliability or risk data/information.  Bayesian methods and multiple 
examples are provided for a variety of PRA inference topics, including: 

• Binomial modeling (conjugate, noninformative, non-conjugate) 

• Poisson modeling (conjugate, noninformative, non-conjugate) 

• Exponential modeling (conjugate, noninformative, non-conjugate) 

• Multinomial modeling (conjugate, noninformative, non-conjugate) 

• Model validation 

• Time-trend modeling 

• Pooling and population variability modeling 

• Time-to-failure modeling 

• Repairable system modeling 

• Uncertain data 

• Regression models 

• Expert elicitation 

5.10 References 

5-1 A. Mosleh et al., “Procedures for Treating Common Cause Failures in Safety and 
Reliability Studies,” U.S. Nuclear Regulatory Commission and Electric Power 
Research Institute, NUREG/CR-4780, and EPRI NP-5613. Volumes 1 and 2, 1988. 



  
 

5-17 
 

5-2 S Henley, E. J. and H. Kumamoto, 1985, Designing for Reliability and Safety Control, 
Prentice-Hall. 

5-3 S. Kaplan, “On a ‘Two-Stage’ Bayesian Procedure for Determining Failure Rates from 
Experiential Data,” PLG-0191, IEEE Transactions on Power Apparatus and Systems, 
Vol. PAS-102, No. 1, PLG-0191, January 1983. 

5-4 NASA-SP-2009-569, Bayesian Inference for NASA Risk and Reliability Analysis, 2009. 

 





6-1 
 

6. Uncertainties in PRA 

The purpose of this chapter is to present the basic structure of uncertainty analyses in 
PRAs. This chapter discusses how PRA models are constructed and why uncertainties are an 
integral part of these models.  

6.1 The Model of the World 

The first step in doing a PRA is to structure the problem, which means to build a model for 
the physical situation at hand.  This model is referred to as the model of the world [6-1]. It may 
occasionally be referred to it as the “model” or the “mathematical model.” It is built on a number 
of model assumptions and typically includes a number of parameters whose numerical values 
are assumed to be known. 

An essential part of problem structuring in most PRAs is the identification of accident 
scenarios (event sequences) that may lead to the consequence of interest, e.g., system 
unavailability, loss of crew and vehicle, and so forth. Many methods have been developed to aid 
the analysts in such efforts. Examples are: Failure Modes and Effects Analysis (FMEA), hazard 
and operability analysis, FTA, and ETA. These analyses consider combinations of failures of the 
hardware, software, and human actions in risk scenarios.  

The development of scenarios introduces model assumptions and model parameters that 
are based on what is currently known about the physics of the relevant processes and the 
behavior of systems under given conditions. For example, the calculation of heat flux in a closed 
compartment where a fire has started, and the response of the crew, are the results of 
conceptual models that rely on assumptions about how a real accident would progress.  These 
models include parameters whose numerical values are assumed to be available (for example, 
in the case of fires, the heat of combustion of the burning fuel).   

There are two types of models of the world, deterministic and probabilistic.  A simple 
example of a deterministic model is the calculation of the horizontal distance that a projectile 
travels under the influence of the force of gravity. If the projectile is launched at an angle   with 
the horizontal axis and with an initial speed v, Newton’s law yields:  

)2sin(),(
2


g

v
Mvq   (6-1)

where g is the gravitational acceleration. This expression shows explicitly that the calculated 
distance is a function of v and  , and that it is conditional on the assumption, M, that the 
hypothesis that the projectile is under the influence of the force of gravity only, is valid.  

Many important phenomena cannot be modeled by deterministic expressions such as that of 
Equation (6-1). For example, the failure times of equipment exhibit variability that cannot be 
eliminated; given the present state of knowledge and technology, it is impossible to predict 
when the next failure will occur. So one must construct models of the world that include this 
uncertainty. A simple example that will help; it involves the failure of a pump. The “random 
variable” is T, the failure time. Then, the distribution of this time is usually taken to be 
exponential, i.e., 
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)exp(1),( tMtF    (6-2)

This is the probability that T is smaller than t, i.e., that the pump will fail before t (see Figure 3-
10).  Note that a probability is a measure of the degree of plausibility of a hypothesis and is 
evaluated on a 0 to 1 scale.   

The parameter  , the failure rate in Equation (6-2), specifies F(t). Its value depends on the 
kinds of pumps that have been included in the class of pumps and on the conditions of their 
use. Thus, the value of   depends on what is included in the model. It is important to realize 
that the pumps and conditions of operation that are included in the model are assumed to be 
completely equivalent (as far as the behavior of T is concerned). That is, if there is no distinction 
between two different systems, it is assumed that two pumps, of the type of interest, in these 
two systems are not distinguishable. Similar to Equation (6-1), Equation (6-2) shows explicitly 
that this model is conditional on the set of assumptions M. The fundamental assumption behind 
the exponential failure distribution is the constancy of the failure rate  . 

The uncertainty described by the model of the world is sometimes referred to as 
“randomness,” or “stochastic uncertainty.” Stochastic models of the world have also been called 
aleatory models. This chapter will also use this terminology because, unlike the terms 
“randomness” and “stochastic,” it is not used in other contexts, so that confusion is avoided.  For 
detailed discussions on PRA uncertainties, see References [6-2] through [6-4]. 

It is important to point out that models of the world, regardless of whether they are 
deterministic or aleatory, deal with observable quantities. Equation (6-1) calculates a distance, 
while Equation (6-2) deals with time. Both distance and time are observable quantities. 

6.2 The Epistemic Model 

As stated in the preceding section, each model of the world is conditional on the validity of 
its assumptions and on the availability of numerical values for its parameters. Since there may 
be uncertainty associated with these conditions, this section introduces the epistemic model, 
which represents the state of knowledge regarding the numerical values of the parameters and 
the validity of the model assumptions. 

The issue of alternative model assumptions (model uncertainty or epistemic uncertainty) is 
usually handled by performing sensitivity studies. In the large majority of cases, the focus is on 
the uncertainties regarding the numerical values of the parameters of a given model (parameter 
uncertainty), rather on the uncertainty regarding the validity of the model itself. 

For the example of Equation (6-2), the epistemic probability density function (pdf)    is 
introduced, which expresses the state of knowledge regarding the numerical values of the 
parameter   of a given model. Unlike aleatory models of the world, the epistemic models deal 
with non-observable quantities. Failure rates and model assumptions are not observable 
quantities. 

A consequence of this formulation is as follows. Consider a system of two nominally 
identical pumps in series. Let RS be the system reliability and R1 and R2 the reliabilities of the 
two pumps. Then, under the assumption of independence of failures, the reliability of the system 
is given by 

21RRRS   (6-3)
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Suppose now that the failure times of these pumps follow the exponential distribution, 
Equation (6-2). Suppose further that the epistemic pdf for the failure rate is   . Even though 
the two pumps are physically distinct, the assumption that they are nominally identical requires 
that the same value of   be used for both pumps. Then, Equation (6-3) becomes 

 tRS 2exp   (6-4) 

The reason is that saying that the pumps are nominally identical means that they have the 
same failure rate [6-5].  The epistemic model simply gives the distribution of the values of this 
failure rate according to our current state of knowledge. 

Further discussion on the need for separating aleatory and epistemic uncertainties can be 
found in References 6-6 and 6-7. 

6.3 A Note on the Interpretation of Probability 

To evaluate or manipulate data, we must have a "model of the world" (or simply “model”) 
that allows us to translate real-world observables into information.  [6-2]  Within this model of the 
world, there are two fundamental types of model abstractions, aleatory and deterministic.  The 
term “aleatory” when used as a modifier implies an inherent "randomness" in the outcome of a 
process.  For example, flipping a coina is modeled as an aleatory process, as is rolling a die.  
When flipping a coin, the “random” but observable data are the outcomes of the coin flip, that is, 
heads or tails.  Note that since probabilities are not observable quantities, we do not have a 
model of the world directly for probabilities.  Instead, we rely on aleatory models (e.g., a 
Bernoullib model) to predict probabilities for observable outcomes (e.g., two heads out of three 
tosses of the coin). 

Model (of the world)  A mathematical construct that converts information (including data as 
a subset of information) into knowledge.  Two types of models are used for risk analysis 
purposes, aleatory and deterministic. 

Aleatory  Pertaining to stochastic (non-deterministic) events, the outcome of which is 
described by a probability.  From the Latin alea (game of chance, die). 

Deterministic  Pertaining to exactly predictable (or precise) events, the outcome of which is 
known with certainty if the inputs are known with certainty.  As the antitheses of aleatory, this is 
the type of model most familiar to scientists and engineers and include relationships such as 
E=mc2, F=ma, F=G m1 m2 /r

2, etc. 

The models that will be described herein are parametric, and most of the model parameters are 
themselves imprecisely known, and therefore uncertain.  Consequently, to describe this second layer 
of uncertainty, we introduce the notion of epistemic uncertainty.  Epistemic uncertainty represents how 
precise our state of knowledge is about the model (including its parameters), regardless of the type of 

                                                 
a Flipping a coin is deterministic in principle, but the solution of the "coin-flipping dynamics" model, including 
knowledge of the relevant boundary conditions, is too difficult to determine or use in practice.  Hence, we abstract the 
flipping process via an aleatory model of the world. 
b A Bernoulli trial is an experiment outcome that can be assigned to one of two possible states (e.g., success/failure, 
heads/tails, yes/no).  The outcomes are assigned to two values, 0 and 1.  A Bernoulli process is obtained by 
repeating the same Bernoulli trial, where each trial is independent.  If the outcome assigned to the value 1 has 
probability p, it can be shown that the summation of n Bernoulli trials is binomial distributed ~ Binomial(p, n). 
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model. Whether we employ an aleatory model (e.g., Bernoulli model) or a deterministic model (e.g., 
applied stress equation), if any parameter in the model is imprecisely known, then there is epistemic 
uncertainty associated with the model.  Stated another way, if there is epistemic uncertainty associated 
with the parametric inputs to a model, then there is epistemic uncertainty associated with the output of 
the model, as well.  
 

Epistemic Pertaining to the degree of knowledge of models and their parameters.  From the 
Greek episteme (knowledge). 

It is claimed that models have epistemic uncertainty, but is there epistemic uncertainty associated 
with other elements of our uncertainty taxonomy?  The answer is yes, and in fact almost all parts of 
our taxonomy have a layer of epistemic uncertainty, including the data, context, model information, 
knowledge, and inference.   
 
In summary:  

 We employ mathematical models of reality, both deterministic and aleatory. 
 These models contain parameters – whose values are estimated from information – of which 

data are a subset. 
 Uncertain parameters (in the epistemic sense) are inputs to the models used to infer the 

values of future observables, leading to an increase in scientific knowledge.  Further, these 
parameters may be known to high precision and thus have little associated epistemic 
uncertainty (e.g., the speed of light, the gravitational constant), or they may be imprecisely 
known and therefore subject to large epistemic uncertainties (e.g., frequency of lethal solar 
flares on the Moon, probability of failure of a component).  

 
Visually, our taxonomy appears as shown in Figure 6-1.  Key terms, and their definitions, pertaining 
to this taxonomy are: 
 

Data  Distinct observed (e.g., measured) values of a physical process. Data may be factual 
or not, for example they may be subject to uncertainties, such as imprecision in measurement, 
truncation, and interpretation errors. 
 

Information  The result of evaluating, processing, or organizing data/information   
in a way that adds to knowledge. 
 

Knowledge  What is known from gathered information. 
 

Inference  The process of obtaining a conclusion based on what one knows. 
 
Examples of data include the number of failures during system testing, the times at which a 
component has failed and been repaired, and the time it takes until a heating element fails.  In 
these examples, the measured or observed item is bolded to emphasize that data are 
observable.  Note, however, that information is not necessarily observable; only the subset of 
information that is called data is observable.  The availability of data/information, like other types 
of resources, is crucial to analysis and decision-making.  Furthermore, the process of collecting, 
storing, evaluating, and retrieving data/information affects its organizational value. 
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The issue of which interpretation to accept has been debated in the literature and is still unsettled, 
although, in risk assessments, there has not been a single study that has been based solely on 
relative frequencies. The practical reason is that the subjective interpretation naturally assigns 
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Figure 6-1. Representing the World via Bayesian Inference. 
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(epistemic) probability distributions to the parameters of models. The large uncertainties typically 
encountered in PRAs make such distributions an indispensable part of the analysis. 

 

The probabilities in both the aleatory and the epistemic models are fundamentally the same 
and should be interpreted as degrees of belief. This section makes the distinction only for 
communication purposes. Some authors have proposed to treat probabilities in the aleatory 
model as limits of relative frequencies, and the probabilities in the epistemic model as 
subjective. From a conceptual point of view, this distinction is unnecessary and may lead to 
theoretical problems.  In summary: 

• Bayesian inference produces information, specifically probabilities related to a 
hypothesis.  Bayesian Inference = Information, where Information = Models + Data + 
Other Information. 

• Probability is a measure of the degree of plausibility of a hypothesis.  Probability is 
evaluated on a 0 to 1 scale. 

• Unlike observables such as mass or temperature though, probability – in the objective 
sense – does not exist (it is not measured, therefore it is never considered data). 

• Since probability is subjective, for any hypothesis there is no true value for its associated 
probability.  Furthermore, because model validity is described probabilistically, there is 
no such thing as a true, perfect, or correct model. 

Consider a simple example that will help explain these concepts. Consider again the 
exponential failure distribution, Equation (6-2). Assume that our epistemic model for the failure 
rate is the simple discrete model shown in Figure 6-2. There are two possible values of  , 10-2 
and 10-3, with corresponding probabilities 0.4 and 0.6. The pmf of the failure rate is: 

4.0)10Pr( 2     and   6.0)10Pr( 3    (6-5)

 

Figure 6-2. The Probability Mass Function (pmf) of the Failure Rate λ. 

The reliability of a component for a period of time (0, t) is given by the following pmf: 

pmf
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10‐3 10‐2
λ
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6.0)Pr( 001.0  te  and 4.0)Pr( 01.0  te  (6-6)

One way of interpreting Equation (6-6) is to imagine that a large number of components for 
a time t are tested. The fraction of components that do not fail will be either e-0.001t with 
probability 0.6 or e-0.01t with probability 0.4. 

Note that, in the frequentist interpretation of probability, there is no place for Equation (6-6), 
since there is no epistemic model [Equation (6-5)]. One would work with the reliability 
expression (see Equation (6-2)) 

     ttFtR  exp1  (6-7) 

and the failure rate   would have an estimated numerical value (see later section on the 

maximum likelihood method). Note that the explicit notation )M,t(F   of Equation (6-2) that 

shows the dependence on   and M is usually omitted. 

6.4 Presentation and Communication of the Uncertainties 

A major task of any PRA is to communicate clearly its results to various stakeholders.  The 
simple example of the preceding section can also serve to illustrate the basis for the so-called 
“risk curves,” which display the uncertainties in the risk results. 

Equation (6-6) shows that there are two reliability curves, each with its own probability. 
These curves are plotted in Figure 6-3. 

 

Figure 6-3. Aleatory Reliability Curves with Epistemic Uncertainty. 

Figure 6-3 shows the two reliability curves with the two values of the failure rate (one, with 
probability of 0.6, has a value of 10-3 while the second, with probability 0.4, has value 10-2). 
These curves are, of course, aleatory, since they deal with the observable quantity “time.” The 
epistemic probability is shown for each curve. Thus, for a given time t, the figure shows clearly 
that there are two possible values of the reliability, each with its own probability. 

R(t)

0.6

0.4
exp(‐10‐2 ∙t)

t

exp(‐10‐3 ∙t)

time

1.0



 

6-8 

In this simple example, it is assumed that only two values of the failure rate are possible. In 
real applications, the epistemic uncertainty about   is usually expressed using a continuous 
pdf   . Then, it is customary to display a family of curves for various percentiles of  . Figure 

6-4 shows three curves with   being equal to the 10th, 50th, and 90th percentiles of   . Also 

shown are three values of the (aleatory) reliability for a given time 't . The interpretation of these 
values is now different from those in Figure 6-3. For example, we are 0.90 confident that the 
reliability at 't  is greater (not equal to) than  'texp 90 . 

 

 
Figure 6-4. Aleatory Reliability Curves with a Continuous Epistemic Distribution. 

In addition to the various percentiles, this example calculates the epistemic mean values of 
aleatory probabilities. These epistemic means are also called predictive probabilities.  Thus, for 
the discrete case in Figure 6-3, the predictive reliability is 

tt eetR 01.0001.0 4.06.0)(    (6-8) 

In the continuous case, the epistemic mean reliability is 

 detR t )()(    (6-9) 

It is noted that, in the frequentist interpretation, the concept of families of curves does not exist. 

6.5 The Lognormal Distribution 

The lognormal distribution is used frequently in safety studies as the epistemic distribution of 
failure rates.  The lognormal pdf for   is given by 
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where ;;0   and 0 . Specifying the numerical values of   and   determines 
the lognormal distribution. 

Several characteristic values of the lognormal distribution are 











2
μmmean

2

exp


 (6-11) 

emedian  (6-12) 

95th percentile: 
  645.1exp95 

 (6-13)

5th percentile:   645.1exp05   (6-14) 







 645.1

50

95 eFactor Error
05

50   (6-15) 

The random variable   has a lognormal distribution, if its logarithm follows a normal distribution 
with mean   and standard deviation  . This allows the use of tables of the normal distribution. 

For example, the 95th percentile of the normal variable ln  is 

 645.1ln 95   (6-16)

where the factor 1.645 comes from tables of the normal distribution. Equation (6-13) follows 
from Equation (6-16). 

The shape of the lognormal pdf is shown in Figure 6-5. 
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Figure 6-5. The Lognormal probability density function (pdf). 

The distribution is skewed to the right. This (in addition to its analytical simplicity) is one of 
the reasons why it is chosen often as an epistemic distribution for failure rates. It allows high 
values of   that may represent extreme environments. 

6.6 Assessment of Epistemic Distributions 

When evidence E becomes available, it is natural to change the epistemic models shown 
here to reflect this new knowledge. The typical problem encountered in practice involves an 
aleatory model of the world. The evidence is in the form of statistical observations. The 
analytical tool for changing (“updating”) our epistemic distributions of the parameters of the 
aleatory model is Bayes’ Theorem.   

6.6.1 Bayes’ Theorem 

The rule of conditional probabilities gives the conditional probability of an event A given that 
we have received evidence E as  

)Pr(

)Pr(
)Pr()Pr(

E

AE
AEA 

 
(6-17)

Equation (6-17) shows how the “prior” probability Pr(A), the probability of A prior to receiving 

E, is modified to give the “posterior” probability )EAPr( , subsequent to receiving E. The 

likelihood function )AEPr(  demands that the probability of this evidence be evaluated, assuming 

that the event A is true. Equation (6-17) is the basis for Bayes’ Theorem, which is so 
fundamental to the subjectivistic theory that this theory is sometimes referred to as the Bayesian 
theory of probability. 
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Consider an aleatory model of the world that contains a parameter  .  An example is the 
exponential distribution of Equation (6-2) with parameter  . This example will distinguish 
between a discrete and a continuous epistemic model.   

In the discrete case,   is assumed to have the pmf n,,1i,p)Pr( ii  , where n is the 
total number of possible values of .  In this case, Equation (6-17) leads to the discrete form of 
Bayes’ Theorem: 

 (6-18) 
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where the primed quantity is the posterior probability. 

In the continuous case, this example has 
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(6-20)

Note that the evaluation of the likelihood function requires the use of the aleatory model. 

6.6.2 A Simple Example:  The Discrete Case 

Consider again the simple example of Equation (6-5). Suppose that the evidence is: 5 
components were tested for 100 hours and no failures were observed. Since the reliability of 
each component is exp(-100 λ), the likelihood function is 

  eeEL  500
5

1

100  
 

(6-21)

Note that the aleatory model, Equation (6-2), is indeed used to derive this expression. The 
question now is: how should the prior epistemic probabilities of Equation (6-5) be updated to 
reflect this evidence? Since the epistemic model is discrete in this case, this example uses 
Equation (6-19) (here, λ is the parameter  ). The calculations required by Equation (6-19) are 
shown in Table 6-1. 

Table 6-1. Bayesian Calculations for the Simple Example (No Failures). 

Failure Rate Prior probability 

ip  Likelihood 
(prior) x 

(likelihood) 

Posterior 

probability ( p'
i ) 

0.001 hr-1 0.6 0.60653 0.36391 0.99267 

0.01 hr-1 0.4 0.00673 0.00269 0.00733 

 Sum = 1.0  Sum = 0.36660 Sum = 1.00000 
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The likelihood functions are calculated using Equation (6-21) and the failure rates of the first 
column. The posterior probabilities are simply the normalized products of the fourth column, 
e.g., 0.36391/0.36660 = 0.99267. 

Note the dramatic impact of the evidence. The posterior epistemic probability of the failure 
rate value of 0.001 hr-1 is 0.99267, while the prior probability of this value was 0.60. 

To appreciate the impact of different kinds of evidence, assume that one failure was actually 
observed at 80 hours during this test.  For each of the surviving components, the contribution to 
the likelihood function is  100exp  for a total of   400exp . For the failed component, the 

probability of failure at 80 hours is given in terms of the failure density, i.e.,  dt80exp80  . 
Note that the factor dt appears in the denominator of Equation (6-19) also, so it is not carried. 
Thus, the new likelihood function is the product of these contributions, i.e., 

   48080  eEL
 (6-22)

With this new likelihood function, Table 6-1 is modified as shown in Table 6-2. 

Table 6-2. Bayesian Calculations for the Simple Example with New Evidence (One 
Failure). 

Failure Rate 

Prior 
Probability 

ip  Likelihood (prior) x (likelihood) 

Posterior 
Probability 

( p'
i ) 

0.001 hr-1 
0.6 0.04852 0.04950 0.88266 

0.01 hr-1 0.4 0.00538 0.00658 0.11734 

 Sum = 1.0  Sum = 0.05608 Sum = 1.00000 

 

Note that the fact that one failure occurred has reduced the posterior probability of the 
failure rate value of 0.001 hr-1 from 0.99267 to 0.88266. In both cases, however, the evidence is 
strongly in favor of this value of the failure rate. 

6.6.3 A Simple Example: The Continuous Case 

Very often, a continuous distribution is used for the parameter of interest. Thus, for the 
failure rate of our simple example, assume a lognormal prior distribution with a median value of 
3x10-3 hr-1 and a 95th percentile of 3x10-2 hr-1, i.e., an error factor of 10 is assumed. The 
lognormal density function is given in Equation (6-10). 

Using the given information, two equations for the parameters μ and  are used: 

  13
50 103exp  hr  (6-23)

  13
95 103645.1exp  hr  (6-24)

Solving Equations (6-23) and (6-24) yields   = -5.81 and   = 1.40.  The mean value is 
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 (6-25) 

and the 5th percentile 

  14
05 103645.1exp  hr  (6-26) 

It is evident that the calculations of Equation (6-20) with the prior distribution given by 
Equation (6-10) and the likelihood function by Equation (6-21) or (6-22) will require numerical 
methods. This will require the discretization of the prior distribution and the likelihood function. 

Consider the following distribution (pdf),   , of the continuous variable   (not necessarily 
the lognormal distribution). 

If one wishes to get a discrete approximation to   , it can be done simply by carving    

up into the intervals as shown in Figure 6-6. The idea is to assign the probability that   will fall 

in an interval ),( 1 jj    to a single point *
j  inside that interval. This probability, say jp

, is 

simply: 

  




dp
j

j

j 



1

 (6-27) 

 

Figure 6-6. Discretization Scheme. 

The points *
j  can be determined in various ways. For example, *

j  can be the mean value 

of the points in each interval. Thus, with the understanding that 00   and 1N , it is 

determined: 
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with j = 1…N. 

λ

π(λ),

λ1 λj-1 *
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λj λN
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A second method is to simply take *
j  as the arithmetic midpoint of the interval, i.e., 

2
1* 

 jj
j


  (6-29) 

A third method, which is appropriate for the lognormal distribution, is to take *

j
 as the 

geometric midpoint of the interval, i.e.,  

1
*

 jjj   (6-30) 

The reason why Equation (6-30) is appropriate for the lognormal distribution is that the 
range of   is usually very wide. Note that, in using Equations (6-29) and (6-30), this example 

cannot use the values  10 Nand  . However, it will be satisfactory to pick 0  and 

1N  so that the probability that   falls outside the interval ),( 10 N will be negligibly small. 

It is evident that the accuracy of the discretization increases as the number of intervals 
increases (i.e., for N large). The intervals do not have to be of equal length. Special care should 
be taken when the pdf has a long “high” tail. 

In this example, we used 700 points, i.e., N = 700. 

Using Equation (6-21), evidence with no failures, as the likelihood function, we find a 
posterior histogram with the following characteristic values: 

14
05 105.1  hr  (6-31) 

14
50 109  hr  (6-32) 

13
95 107.3  hr  (6-33) 

13103.1)(  hrE   (6-34) 

The impact of the evidence has, again, been the shifting of the epistemic distribution toward 
lower values of the failure rate. Thus, the mean moved from 8x10-3 hr-1 (Equation (6-25)) to 
1.3x10-3 hr-1 (Equation (6-34)), and the median from 3x10-3 hr-1 (Equation (6-23)) to 9x10-4 hr-1 
(Equation (6-32)).  The most dramatic impact is on the 95th percentile, from 3x10-2 hr-1 (Equation 
(6-24)) to 3.7x10-3 hr-1 (Equation (6-33)). The prior and posterior distributions are shown in 
Figure 6-7. Note that these are not pdfs but histograms. This example has connected the tips of 
the vertical histogram bars for convenience in displaying the results. The shift of the epistemic 
distribution toward lower values of the failure rate is now evident. 

Note that for the example described above, a numerical approximation was used to 
determine a posterior distribution. With modern software, many difficult calculations can now be 
performed that were previously intractable.  For more information on these approaches, see 
Reference [6-13]. 
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Figure 6-7. Prior (Solid Line) and Posterior (Dashed Line) Probabilities for the Case of No 
Failures. 

6.6.4 Conjugate Families of Distributions 

The previous section has already shown that Equation (6-20) requires, in general, numerical 
computation. It discretized both the lognormal prior distribution and the exponential distribution 
of the model of the world in order to produce the posterior distribution. 

It turns out that, for a given model of the world, there exists a family of distributions with the 
following property. If the prior distribution is a member of this family, then the posterior 
distribution will be a member of the same family and its parameters will be given by simple 
expressions. These families of distributions are called conjugate distributions. 

As an example, the conjugate family with respect to the exponential model of the world is 
the gamma distribution whose pdf is 
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where   and β  are the two parameters of the distribution and   is the gamma function. 

For integer values of  , we have    1   The mean and standard deviation of this 
distribution are 

 
β

 E    and    
β

 SD  (6-36) 

Suppose now that one has the following failure times of n components: t1, t2, …, tr, with r < n. 
This means that one has the failure times of r components and that (n-r) components did not 
fail.  Define the total operational time T as: 
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  (6-37) 

Then Bayes’ Theorem, Equation (6-20), shows that the posterior distribution is also a gamma 
distribution with parameters 

r     and   T   (6-38) 

These simple relations between the prior and posterior parameters are the advantage of the 
conjugate distributions.  However, with the availability of modern Bayesian analysis software, 
the need for simplifying expressions for distribution evaluation has diminished. 

Returning to the simple example, assume that the prior distribution for   is gamma with the 
same mean and standard deviation as the lognormal distribution that were used in the 
preceding section. Then, the parameters   and β  will be determined by solving Equation (6-
36), i.e., 

  3108  xE
β

    and     21098.1  xSD
β

  (6-39) 

Thus, the two parameters are:   = 0.16 and β  = 20.  For the evidence of one failure at 80 
hours and no failures for 400 hours (see Equation (6-22)), T = 480 and r = 1; therefore, from 
Equation (6-38), 16.1  and 500 . The new mean and standard deviation of the 

epistemic (posterior) distribution of   are:  

  131032.2
48020
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  (6-40) 

and 

  131015.2 



 hrDS

  (6-41) 

As expected, the evidence has reduced the mean value of the failure rate. It has also reduced 
the standard deviation. 

For the evidence of 0 failures in 500 hours, Equation (6-21), r = 0 and T = 500; thus, 

  41007.3
50020
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  (6-42) 

and 

  4107.7
50020

016.0 










DS  (6-43) 

Conjugate distributions for other models can be found in the literature [6-9, 6-13]. 
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6.7 The Prior Distribution 

This chapter has introduced the epistemic model and has shown how Bayes’ Theorem is 
used to update it when new evidence becomes available. The question that arises now is: how 
does one develop the prior epistemic distribution? Saying that it should reflect the assessor’s 
state of knowledge is not sufficient.  In practice, the analyst must develop a prior distribution 
from available engineering and scientific information, where the prior should: 

• Reflect what information is known about the inference problem at hand, and 

• Be independent of the data that is collected. 

An assessor of probabilities must be knowledgeable both of the subject to be analyzed and 
of the theory of probability. The normative “goodness” of an assessment requires that the 
assessor does not violate the calculus of probabilities, and that he or she makes assessments 
that correspond to his or her judgments. The substantive “goodness” of an assessment refers to 
how well the assessor knows the problem under consideration. It is not surprising that frequently 
one or the other kind of “goodness” is neglected, depending on who is doing the analysis and 
for what purpose. The fact that safety studies usually deal with events of low probability makes 
them vulnerable to distortions that eventually may undermine the credibility of the analysis. 

Direct assessments of model parameters, like direct assessments of failure rates, should be 
avoided, because model parameters are not directly observable. The same observation applies 
to moments of distributions, for example, the mean and standard deviation.  Intuitive estimates 
of the mode or median of a distribution have been found to be fairly accurate, whereas 
estimates of the mean tend to be biased toward the median. This has led to the suggestion that 
“best” estimates or “recommended” values, which are often offered by engineers, be used as 
medians. In assessing rare-event frequencies, however, the possibility of a systematic 
underestimation or overestimation [“displacement bias”], even of the median, is very real. 

Further, assessors tend to produce distributions that are too narrow. In assessing the 
frequency of accidents in industrial facilities, it is also conceivable that this “variability bias” 
could actually manifest itself in the opposite direction; that is, a very conservative assessor 
could produce a distribution that is broader than his or her state of knowledge would justify. 

These observations about the accuracy of judgments are important both when one 
quantifies his or her own judgment and when he or she elicits the opinions of experts. 

The practice of eliciting and using expert opinions became the center of controversy with the 
publication of a major risk study of nuclear power plants (NPPs). This study considered explicitly 
alternate models for physical phenomena that are not well understood and solicited the help of 
experts to assess the probabilities of the models. Objections were raised both to the use of 
expert opinions (with complaints that voting is replacing experimentation and hard science) and 
to the process of using expert opinions (for example, the selection of the experts). The latter 
criticism falls outside the mathematical theory that we have been discussing and is not of 
interest here; however, the view that voting replaces hard science is misguided. The (epistemic) 
probabilities of models are an essential part of the decision-making process. Unfortunately, 
many decisions cannot wait until such evidence becomes available, and assessing the model 
probabilities from expert opinions is a necessity. (Incidentally, such an assessment may lead to 
the decision to do nothing until experiments are conducted.) 

More details on the utilization of expert judgment can be found in References 6-10 through 
6-12.  In the NASA Bayesian guide (Reference [6-13]), guidance is provided for prior 
development.  In practice, the analyst must develop a prior distribution from available 
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engineering and scientific information, where the prior should reflect (a) what information is 
know about the inference problem at hand and (b) be independent of the data that is collected.  

Frequently, beta and gamma distributions are used as conjugate priors.  Therefore, two 
pieces of information are generally needed to select such a conjugate prior.  Common 
information from which the analyst must develop a prior is: 

1. A central measure (e.g., median or mean) and an upper bound (e.g., 95th percentile) 

2. Upper and lower bound (e.g., 95th and 5th percentile) 

3. A mean and variance (or standard deviation). 

In some cases, not enough information may be available to completely specify an 
informative prior distribution, as two pieces of information are typically needed.  For example, in 
estimating a failure rate, perhaps only a single estimate is available.  Because the information 
on which the prior is based may be limited, the resulting prior distribution will be diffuse, 
encoding significant epistemic uncertainty about the parameter value.  The table below 
summarizes the results for commonly encountered cases. 

Information Available Suggested Prior Distribution 
Mean value for lambda in Poisson distribution Gamma distribution with alpha = 0.5 and 

beta = 1/(2 × mean) 
Mean value for p in binomial distribution Beta distribution with alpha  0.5 and 

beta = (1 – mean)/( 2 × mean) 
Mean value for lambda in exponential distribution Gamma distribution with alpha = 1 and beta = 

1/mean 
p in binomial distribution lies between a and b Uniform distribution between a and b 
 

6.8 The Method of Maximum Likelihood 

The methods for data analysis that have been presented so far are within the framework of 
the subjective interpretation of probability. The central analytical tool for the updating of this 
chapter’s epistemic model, i.e., the state of knowledge, is Bayes’ Theorem.  These methods are 
also called Bayesian methods. 

If one adopts the frequentist interpretation of probability, then one is not allowed to use 
epistemic models. The numerical values of the parameters of the model of the world must be 
based on statistical evidence only. A number of methods have been developed for producing 
these numerical values. 

A widely used method for producing point estimates of the parameters is the method of 
maximum likelihood. The likelihood function is formed based on the data exactly as they are 
formed for a Bayesian calculation. Instead of using Bayes’ Theorem, however, this example 
considers the likelihood function as a function of the parameters and finds the values of the 
parameters that maximize this function. These parameter values are, then, called their 
maximum likelihood estimates (MLE). 

To make the discussion concrete, this section uses Equation (6-22) as an example. To find 
the maximum, differentiate, i.e., 

04808080 480480    


ee
d

dL
 (6-44) 
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Solving Equation (6-44) yields 025.0
480

1
MLE  hr–1. More generally, for a total 

operational time T and r failures, the estimate of the failure rate is 

T

r
MLE   (6-45) 

Note that for the first example (no failures in T = 500 hrs), r = 0 and Equation (6-45) gives 
the unrealistic estimate of zero. In contrast, the Bayesian posterior mean value was 3.07x10–4 
hr–1 (Equation (6-42)). 

Equations (6-40) and (6-45) lead to an interesting observation. One can get Equation (6-45) 
from Equation (6-40) by simply setting the parameters of the prior distribution   and β  equal 
to zero. Thus, in Bayesian calculations, when one wishes to “let the data speak for themselves,” 
one can use a beta distribution with these parameter values. Then, the posterior distribution will 
be determined by the data alone. Prior distributions of this type are called non-informative 
[6-12]. 

There is a more general message in this observation that can actually be proved 
theoretically. As the statistical evidence becomes stronger, i.e., as r and T become very large, 
the Bayesian posterior distribution will tend to have a mean value that is equal to the MLE. In 
other words, any prior beliefs will be overwhelmed by the statistical evidence. 
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7. Modeling and Quantification of Common Cause Failures 

7.1 Importance of Dependence in PRA 

The significant risk contributors are typically found at the interfaces between components, 
subsystems, systems, and the surrounding environment. Risk drivers emerge from aspects in 
which one portion of the design depends on, or interacts with, another portion, or the 
surrounding environment. Failures arising from dependencies are often difficult to identify and, if 
neglected in PRA modeling and quantifications, may result in an underestimation of the risk. 
This chapter provides an overview of the various types of dependencies typically encountered in 
PRA of engineered systems and discusses how such dependencies can be treated. The focus 
of the discussion will be on a special class of dependent failures known as Common Cause 
Failures (CCF). 

7.2 Definition and Classification of Dependent Events 

Two events, A and B, are said to be dependent if  

)Pr()Pr()Pr( BABA   (7-1) 

In the presence of dependencies, often, but not always, )Pr()Pr()Pr( BABA  . 
Therefore, if A and B represent failure of a function, the actual probability of failure of both will 
be higher than the expected probability calculated based on the assumption of independence.  
In cases where a system provides multiple layers of defense against total system or functional 
failure, ignoring the effects of dependency can result in overestimation of the level of reliability. 

Dependencies can be classified in many different ways. A classification, which is useful in 
relating operational data to reliability characteristics of systems, is presented in the following 
paragraphs [7-1]. In this classification, dependencies are first categorized based on whether 
they stem from intended functional and physical characteristics of the system, or are due to 
external factors and unintended characteristics. Therefore, dependence is either intrinsic or 
extrinsic to the system. The definitions and sub-classifications follow. 

Intrinsic. This refers to dependencies where the functional state of one component is 
affected by the functional state of another. These dependencies normally stem from the way the 
system is designed to perform its intended function. There are several subclasses of intrinsic 
dependencies based on the type of influence that components have on each other.  These are: 

 Functional Requirement Dependency. This refers to the case where the functional status 
of component A determines the functional requirements of component B. Possible cases 
include: 

- B is not needed when A works, 

- B is not needed when A fails, 

- B is needed when A works, 

- B is needed when A fails. 

Functional requirement dependency also includes cases where the load on B is increased 
upon failure of A. 
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 Functional Input Dependency (or Functional Unavailability). This is the case where the 
functional status of B depends on the functional status of A.  An example is the case where 
A must work for B to work. In other words B is functionally unavailable as long as A is not 
working. An example is the dependence of a motor-driven pump on electric power. Loss of 
electric power makes the pump functionally unavailable. Once electric power becomes 
available, the pump will also be operable.   

 Cascade Failure. This refers to the cases where failure of A leads to failure of B.  For 
example, an over-current failure of a power supply may cause the failure of components it 
feeds. In this case, even if the power supply is made operable, the components would still 
remain inoperable. 

Combinations of the above dependencies identify other types of intrinsic dependencies.  An 
example is the Shared Equipment Dependency, when several components are functionally 
dependent on the same component. For example if both B and C are functionally dependent on 
A, then B and C have a shared equipment dependency. 

Extrinsic.  This refers to dependencies that are not inherent and intended in the designed 
functional characteristics of the system.  Such dependencies are often physically external to the 
system.  Examples of extrinsic dependencies are 

 Physical/Environmental.  This category includes dependencies due to common 
environmental factors, including a harsh or abnormal environment created by a component.  
For example, high vibration induced by A causes failure of B.  

 Human Interactions.  This is dependency due to human-machine interaction.  An 
example is failure of multiple components due to the same maintenance error.  

7.3 Accounting for Dependencies in PRAs 

PRA analysts generally try to include the intrinsic dependencies in the basic system logic 
model (e.g., FTs). For example, functional dependencies arising from the dependence of 
systems on electric power are included in the logic model by including basic events, which 
represent component failure modes associated with failures of the electric power supply system. 
Failures resulting from the failure of another component (cascading or propagating failures) are 
also often modeled explicitly. Operator failures to respond in the manner called for by the 
operating procedures are included as branches on the ETs or as basic events on FTs. Some 
errors made during maintenance are usually modeled explicitly on FTs, or they may be included 
as contributors to overall component failure probabilities.  

Extrinsic dependencies can be treated through modeling of the phenomena and the physical 
processes involved. Examples are the effects of temperature, humidity, vibration, radiation, etc., 
in the category of Physical/Environmental dependencies. A key feature of the so-called “external 
events” is the fact that they can introduce dependencies among PRA basic events. Explicit 
treatment of the external events such as fire and micro-meteoroid and orbital debris (MMOD) 
may be a significant portion of a PRA study. (See Chapter 14.) 

The logic model constructed initially has basic events that for a first approximation are 
considered independent. This step is necessary to enable the analyst to construct manageable 
models. As such, many extrinsic and some intrinsic dependencies among component failures 
are typically not accounted for explicitly in the PRA logic models, meaning that some of the 
corresponding basic events are not actually independent. Dependent failures whose root 
causes are not explicitly modeled in PRA are known as CCFs. This category can be accounted 
for by introducing common cause basic events (CCBE) in the PRA logic models. A formal 
definition follows: 
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Common Cause Failure event is defined as the failure (or unavailable state) of more than one 
component due to a shared cause during the system mission. Viewed in this fashion, CCFs are 
inseparable from the class of dependent failures and the distinction is mainly based on the level 
of treatment and choice of modeling approach in reliability analysis. 

Components that fail due to a shared cause normally fail in the same functional mode.  The 
term “common mode failure,” which was used in the early literature and is still used by some 
practitioners, is more indicative of the most common symptom of the CCF, i.e., failure of multiple 
components in the same mode, but it is not a precise term for communicating the important 
characteristics that describe a CCF event. 

The following are examples of actual CCF events: 

 Hydrazine leaks leading to two APU explosions on Space Shuttle mission STS-9 

 Multiple engine failures on aircraft (Fokker F27 –1997, 1988; Boeing 747, 1992) 

 Three hydraulic system failures following Engine # 2 failure on a DC-10, 1989 

 Failure of all three redundant auxiliary feed-water pumps at Three Mile Island NPP 

 Failure of two Space Shuttle Main Engine (SSME) controllers on two separate engines when 
a wire short occurred 

 Failure of two O-rings, causing hot gas blow-by in a solid rocket booster of Space 
Shuttle flight 51L  

 Failure of two redundant circuit boards due to electro-static shock by a technician during 
replacement of an adjacent unit 

 A worker accidentally tripping two redundant pumps by placing a ladder near pump motors 
to paint the ceiling at a nuclear power plant 

 A maintenance contractor unfamiliar with component configuration putting lubricant in the 
motor winding of several redundant valves, making them inoperable 

 Undersized motors purchased from a new vendor causing failure of four redundant cooling 
fans 

 Check valves installed backwards, blocking flow in two redundant lines  

CCFs may also be viewed as being caused by the presence of two factors: a Root Cause, 
i.e., the reason (or reasons) for failure of each component that failed in the CCF event, and a 
Coupling Factor (or factors) that was responsible for the involvement of multiple components. 
For example, failure of two identical redundant electronic devices due to exposure to 
excessively high temperatures is not only the result of susceptibility of each of the devices to 
heat (considered to be the root cause in this example), but also a result of both units being 
identical, and being exposed to the same harsh environment (Coupling Factor). Since the use of 
identical components in redundancy formation is a common strategy to improve system 
reliability, coupling factors stemming from similarities of the redundant components are often 
present in such redundant formations, leading to vulnerability to CCF events. CCF events of 
identical redundant components therefore merit special attention in risk and reliability analysis of 
such systems. The remainder of this chapter is devoted to methods for modeling the impact of 
these CCF events.  
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7.4 Modeling Common Cause Failures 

Proper treatment of CCFs requires identifying those components that are susceptible to 
CCFs and accounting for their impact on the system reliability. The oldest, and one of the 
simplest methods for modeling the impact of CCFs, is the beta-factor model [7-2]. 

To illustrate the way beta factor treats CCFs, consider a simple redundancy of two identical 
components B1 and B2. Each component is further divided into an “independently failing” 
component and one that is affected by CCFs only (see Figure 7-1). The figure also shows 
reliability models of the redundant system in FT and reliability block diagram formats. The beta-
factor further assumes that  

Total	component	failure	frequency	=		(Independent	failure	frequency)	+	(Common	cause	failure	
frequency) 

A factor, , is then defined as:  
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Figure 7-1. Accounting for CCF Events Using the Beta Factor Model in Fault Trees and 
Reliability Block Diagrams. 

 
Failure probability of the two-unit parallel system of B1 and B2 is then calculated as 

       ttttQ TCs    22 1  (7-3) 

where t is an approximation for the exponential failure probability model. 

A point estimate for beta is given by   
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Where: 

n1  = number of independent failures 

n2  = number of CCFs.  Samples of failure events are then used to obtain values of n1 
and n2 for the specific component of interest.  The resulting beta factor value, together with the 
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total failure rate,  T, of the identical redundant components, is then used to calculate the 
reliability of the redundant formation in the presence of CCF events.  

As we can see in the following sections, a generalization of this simple approach forms the 
basis of a methodology for treating CCF events in PRA models. 

7.5 Procedures and Methods for Treating CCF Events 

The process of identifying and modeling CCFs in systems analysis involves two important 
steps: 

1. Screening Analysis 

2. Detailed Analysis 

The objectives of the Screening Analysis are to identify in a preliminary and conservative 
manner all the potential vulnerabilities of the system to CCFs, and to identify those groups of 
components within the system whose CCFs contribute significantly to the system unavailability. 
The screening step develops the scope and justification for the detailed analysis. The screening 
analysis provides conservative, bounding system unavailabilities due to CCFs. Depending on 
the objectives of the study and the availability of resources, the analysis may be stopped at the 
end of this step recognizing that the qualitative results may not accurately represent the actual 
system vulnerabilities, and that the quantitative estimates may be very conservative.    

The Detailed Analysis phase uses the results of the screening step and through several 
steps involving the detailed logic modeling, parametric representation, and data analysis, 
develops numerical values for system unavailabilities due to CCF events.   

7.6 Preliminary Identification of Common Cause Failure Vulnerabilities 
(Screening Analysis) 

The primary objective of this phase is to identify in a conservative way, and without 
significant effort, all important groups of components susceptible to CCF.  This is done in two 
steps:  

 Qualitative Screening 

 Quantitative Screening. 

7.6.1 Qualitative Screening 

At this stage, an initial qualitative analysis of the system is performed to identify the potential 
vulnerabilities of the system and its components to CCFs. This analysis is aimed at providing a 
list of components, which are believed to be susceptible to CCF. At a later stage, this initial list 
will be modified on quantitative grounds. In this early stage, conservatism is justified and 
encouraged. In fact, it is important not to discount any potential CCF vulnerability unless there 
are immediate and obvious reasons to discard it. 

The most efficient approach to identifying common cause system vulnerabilities is to focus 
on identifying coupling factors, regardless of defenses that might be in place against some or all 
categories of CCFs.  The result will be a conservative assessment of the system vulnerabilities 
to CCFs.  This, however, is consistent with the objective of this stage of the analysis, which is a 
preliminary, high-level screening. 

From the earlier discussion it is clear that a coupling factor is what distinguishes CCFs from 
multiple independent failures. Coupling factors are suspected to exist when two or more 
component failures exhibit similar characteristics, both in the cause and in the actual failure 
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mechanism. The analyst, therefore, should focus on identifying those components of the system 
that share one or more of the following: 

 Same design 

 Same hardware 

 Same function 

 Same installation, maintenance, or operations people  

 Same procedures 

 Same system/component interface 

 Same location 

 Same environment 

This process can be enhanced by developing a checklist of key attributes, such as design, 
location, operation, etc., for the components of the system. An example of such a list is the 
following: 

 Component type (e.g., motor-operated valve): including any special design or construction 
characteristics, such as component size and material  

 Component use: system isolation, parameter sensing, motive force, etc. 

 Component manufacturer 

 Component internal conditions: temperature range, normal flow rate, power requirements, 
etc. 

 Component boundaries and system interfaces: connections with other components, 
interlocks, etc. 

 Component location name and/or location code 

 Component external environmental conditions: e.g., temperature, radiation, vibration  

 Component initial conditions: normally closed, normally open, energized, etc.; and operating 
characteristics:  normally running, standby, etc. 

 Component testing procedures and characteristics: test configuration or lineup, effect of test 
on system operation, etc. 

 Component maintenance procedures and characteristics: planned, preventive maintenance 
frequency, maintenance configuration or lineup, effect of maintenance on system operation, 
etc. 

The above list, or a similar one, is a tool to help identify the presence of identical 
components in the system and most commonly observed coupling factors. It may be 
supplemented by a system “walk-down” and review of operating experience (e.g., failure event 
reports). Any group of components that share similarities in one or more of these characteristics 
is a potential point of vulnerability to CCF. However, depending on the system design, functional 
requirements, and operating characteristics, a combination of commonalities may be required to 
create a realistic condition for CCF susceptibility. Such situations should be evaluated on a 
case-by-case basis before deciding on whether or not there is a vulnerability. A group of 
components identified in this process is called a common cause component group (CCCG). 
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Finally, in addition to the above guidelines, it is important for the analyst to review the 
operating experience to ensure that past failure mechanisms are included with the components 
selected in the screening process. Later, in the detailed qualitative and quantitative analysis 
phases, this task is performed in more detail to include the operating experience of the system 
being analyzed. 

7.6.2 Quantitative Screening 

The qualitative screening step identifies potential vulnerabilities of the system to CCFs. By 
using conservative qualitative analysis, the size of the problem is significantly reduced. 
However, detailed modeling and analysis of all potential common cause vulnerabilities identified 
in the qualitative screening may still be impractical and beyond the capabilities and resources 
available to the analyst. Consequently, it is desirable to reduce the size of the problem even 
further to enable detailed analysis of the most important common cause system vulnerabilities. 
Reduction is achieved by performing a quantitative screening analysis. This step is useful for 
systems FT analysis and may be essential for ESD-level analysis in which exceedingly large 
numbers of cut sets may be generated in solving the FT logic model. 

In performing quantitative screening for CCF candidates, one is actually performing a 
complete quantitative analysis except that a conservative and simple quantitative model is used.  
The procedure is as follows: 

1. The component-level FTs are modified to explicitly include a “global” or “maximal” CCF 
event for each component in every CCCG. A global common cause event in a group of 
components is one in which all members of the group fail. A maximal common cause 
event is one that represents two or more CCBEs. As an example of this step of the 
procedure, consider a CCCG composed of three components A, B, and C.  According to 
the procedure, the basic events of the FT involving these components, i.e.,  “A Fails,” “B 
Fails,” and “C Fails,” are expanded to include the basic event CABC, which is defined as 
the concurrent failure of A, B, and C due to a common cause, as shown below: 

 

Here AI, BI, and CI denote the independent failure of components A, B, and C, 
respectively. This substitution is made at every point on the FTs where the events “A 
FAILS,” “B FAILS,” or “C FAILS” occur. 

2. The FTs are now solved to obtain the minimal cut sets (MCSs) for the system or 
accident sequence. Any resulting cut set involving the intersection AIBICI will have an 
associated cut set involving CABC. The significance of this process is that, in large system 
models or event sequences, some truncation of the cut sets on failure probability must 
usually be performed to obtain any solution at all, and the product of independent 
failures AIBICI is often lost in the truncation process due to its small value, while the 
(numerically larger) common cause term CABC will survive. 
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3. Numerical values for the CCBE can be estimated using a simple global parametric 
model: 

)Pr()Pr( AgCABC   (7-5) 

4. Pr(A) is the total failure probability of the component. Typical generic value for “g” range 
between 0.05 and 0.10, but more accurate generic values that consider different logic 
configuration (k-out-of-n) can also be used.  Table 7-1 lists values of the global common 
cause factor, g, for dependent k-out-of-n system configurations for success. The basis 
for these screening values is described in Reference [7-1].  Note that different g values 
apply depending on whether the components of the system are tested simultaneously 
(non-staggered) or one at a time at fixed time intervals (staggered). More details on the 
reasons for the difference are provided in Reference [7-1]. 

Table 7-1. Screening Values of Global CCF (g) for Different System Configurations. 

Success 
Configuration 

Values of g 

Staggered Testing Scheme
Non-staggered Testing 

Scheme 

1 of 2 0.05 0.10 
2 of 2 
1 of 3 0.03 0.08 
2 of 3 0.07 0.14 
3 of 3 
1 of 4 0.02 0.07 
2 of 4 0.04 0.11 
3 of 4 0.08 0.19 
4 of 4 

 
The simple global or maximal parameter model provides a conservative approximation to 

the CCF frequency regardless of the number of redundant components in the CCCG being 
considered. 

Those CCCGs that are found to contribute little to system unavailability or event sequence 
frequency (or which do not survive the probability-based truncation process) can be dropped 
from further consideration. Those that are found to contribute significantly to the system 
unavailability or event sequence frequency are retained and further analyzed using the 
guidelines for more detailed qualitative and quantitative analysis.  

The objective of the initial screening analysis is to identify potential common cause 
vulnerabilities and to determine those that are insignificant contributors to system unavailability 
and to the overall risk, to eliminate the need to analyze them in detail.  The analysis can stop at 
this level if a conservative assessment is acceptable and meets the objectives of the study. 
Otherwise the component groups that survive the screening process should be analyzed in 
more detail, according to the Detailed Analysis phase. 

A complete detailed analysis should be both qualitative and quantitative. A detailed 
quantitative analysis is always required to provide the most realistic estimates with minimal 
uncertainty. In general, a realistic quantitative analysis requires a thoroughly conducted 
qualitative analysis. A detailed qualitative analysis provides many valuable insights that can be 
of direct use in improving the reliability of the systems and safety of the mission.   
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7.7 Incorporation of CCFs into System Models (Detailed Analysis) 

The objective of the detailed analysis is to identify the potential vulnerabilities of the system 
being analyzed to the diverse CCFs that can occur, and to incorporate their impact into the 
system models. As a first step, the analyst should extend the scope of the qualitative screening 
analysis and conduct a more thorough qualitative assessment of the system vulnerabilities to 
CCF events. This detailed analysis focuses on obtaining considerably more system-specific 
information and can provide the basis and justification for engineering decisions regarding 
system reliability improvements. In addition, the detailed evaluation of system CCF 
vulnerabilities provides essential information for a realistic evaluation of operating experience 
and system-specific data analysis as part of the detailed quantitative analysis. It is assumed that 
the analyst has already conducted a screening analysis, is armed with the basic understanding 
of the analysis boundary conditions, and has a preliminary list of the important CCCGs.      

An effective detailed qualitative analysis involves the following activities: 

 Review of operating experience (generic and system-specific) 

 Review of system design and operating practices   

 Identification of possible causes and coupling factors and applicable system defenses. 

The key products of this phase of analysis include a final list of CCCGs supported by 
documented engineering evaluation. This evaluation may be summarized in the form of a set of 
Cause-Defense and Coupling Factor-Defense matrices (see Reference [7-1]) developed for 
each of the CCCGs identified in the screening phase. These detailed matrices explicitly account 
for system-specific defenses, including design features and operational and maintenance 
policies in place to reduce the likelihood of failure occurrences. The results of the detailed 
qualitative analysis provide insights about safety improvements that can be pursued to improve 
the effectiveness of these defenses and reduce the likelihood of CCF events. 

Given the results of the screening analyses, a detailed quantitative analysis can be 
performed even if a detailed qualitative analysis has not been conducted. However, as will be 
seen later, some of the steps in the detailed quantitative phase, particularly those related to 
analysis and classification of failure events for CCF probability estimation can benefit 
significantly from the insights and information obtained as a result of a detailed qualitative 
analysis. 

A detailed quantitative analysis can be achieved through the following steps: 

1. Identification of CCBEs 

2. Incorporation of CCBEs into the system FT 

3. Development of probabilistic models of CCBEs 

4. Estimation of CCBE probabilities  

These steps are discussed in the following sections.  

7.7.1 Identification of CCBEs  

This step provides the means for accounting for the entire spectrum of CCF impacts in an 
explicit manner in the logic model. It will also facilitate the FT quantification to obtain top event 
(system failure) probability.   

A CCBE is an event involving failure of a specific set of components due to a common 
cause.  For instance in a system of three redundant components A, B, and C, the CCBEs are 
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CAB, CAC, CBC , and CABC. The first event is the common cause event involving components A 
and B, and the fourth is a CCF event involving all three components. Note that the CCBEs are 
only identified by the impact they have on specific sets of components within the CCCGs. 
Impact in this context is limited to “failed” or “not failed.”  

The complete set of basic events, including CCBEs, involving component A in the three 
component system is: 

AI  = Single independent failure of component A.  (a basic event) 

CAB  = Failure of components A and B (and not C) from common causes 

CAC     = Failure of components A and C (and not B) from common causes 

CABC = Failure of components A, B, and C from common causes. 

Component A fails if any of the above events occur. The equivalent Boolean representation of 
total failure of component A is 

AT = AI + CAB + CAC + CABC  (7-6) 

7.7.2 Incorporation of CCBEs into the Component-Level Fault Tree 

In this step the component-level FT is expanded in terms of the CCBEs. As an example of 
this expansion, consider the following system of three identical components, A, B, and C, with a 
“two-out-of-three” success logic. Also assume that, based on the qualitative and quantitative 
screening, these three components form a single CCCG.  The component-level FT of this 
system is 

 

Note that the MCSs of this FT are {A,B}; {A,C}; {B,C}. 

The expansion of this FT down to the common cause impact level can be achieved by 
replacing each of the three component basic events by the corresponding set of CCBE events 
in OR formation, as shown in the following figure: 
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When the expanded FT is solved, the following cut sets are obtained: 

 {AI,BI}; {AI,CI}; {BI,CI} 

 {CAB}; {CAC}; {CBC} 

 {CABC}. 

If the success criterion for this example had been only one out of three instead of two out of 
three, the expanded FT would produce cut sets of the type, CABCAC. These cut sets imply 
failure of the same piece of equipment due to several causes, each of which is sufficient to fail 
the component. For example, in CABCAC, component A is failing due to a CCF that fails AB, 
and also due to a CCF that fails AC. These cut sets have questionable validity unless the events 
CAB and CAC are defined more precisely. Reference [7-1] discusses the conditions under which 
these cut sets are valid. However, experience shows that in general the contribution of cut sets 
of this type is considerably smaller than that of cut sets like CABC. These cut sets will be 
eliminated here.   

The reduced Boolean representation of the system failure in terms of these CCBE cut sets 
is 

S = (AIBI)(AICI)(BICI)CABCACCBCCABC  (7-7) 

It can be seen immediately that this expansion results in proliferation of the cut sets, which 
may create practical difficulties when dealing with complex systems. The potential difficulty 
involving the implementation of this procedure is one of the motivations for a thorough and 
systematic screening in earlier steps to minimize the size of the expanded FT. Despite the 
potential difficulty in implementation, this procedure provides the analyst with a systematic and 
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disciplined framework for inclusion and exclusion of common cause events, with adequate 
assurance that the resulting model of the system is complete with respect to all possible ways 
that common cause events could impact the system.   

Another advantage of this procedure is that once the CCBEs are included in the FT, 
standard FT techniques for cut set determination and probabilistic quantification can be applied 
without concern about dependencies due to CCFs.  

If, after careful screening, the number of cut sets is still unmanageable, a practical solution 
is to delay the common cause impact expansion until after the component-level FT is solved, at 
which time those terms in the component-level Boolean expression that had not been expanded 
would be expanded through a process similar to that in Equation (7-6) and the new Boolean 
expression would be reduced again.  Other techniques include reducing the level of detail of the 
original component-level tree by introducing “supercomponents,” and assuming that the 
common cause events always have a global effect.  Care, however, must be exercised so that 
no terms in the expansion of the reduced Boolean expressions would be missed or ignored.  

7.7.3 Development of Probabilistic Models of CCBEs 

In the previous steps CCF events were introduced into FT models through the CCBE. This 
section describes the probabilistic models that are commonly used for CCBEs. This is done first 
by utilizing the same three-component system example, and then generalized to all levels of 
redundancy.   

Referring to Equation (7-7) and using the rare event approximation, the system failure 
probability of the two-out-of-three system is given by 

 )Pr(C )Pr(C  )Pr(C  

)Pr(C )Pr(C )Pr(B  )Pr(C )Pr(A  )Pr(B )Pr(A)Pr(

ABCBCAC

ABIIIIII


S

 (7-8) 

It is common practice in risk and reliability analysis to assume that the probabilities of similar 
events involving similar components are the same. This approach takes advantage of the 
physical symmetries associated with identically redundant components in reducing the number 
of parameters that need to be quantified. For example, in the above equation it is assumed that: 
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In other words, the probability of occurrence of any basic event within a given CCCG is 
assumed to depend only on the number and not on the specific components in that basic event. 

With the symmetry assumption, and using the notation just introduced, the system failure 
probability can be written as 

32
2

1 3)(3 QQQQ s   (7-10) 

For quantification of the expanded FT,  

m
kQ   probability of a CCBE involving k specific components in a common cause 

component group of size m ( 1   k   m ) 
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The model that uses m
kQ s to calculate system failure probability is called the Basic Parameter 

(BP) model [7-1].  

For several practical reasons, it is often more convenient to rewrite Q(m)
ks in terms of other 

more easily quantifiable parameters. For this purpose a parametric model known as the Alpha 
Factor model is recommended [7-1]. Reasons for this choice are that the Alpha Factor model: 
(1) is a multi-parameter model which can handle any redundancy level; (2) is based on ratios of 
failure rates, which makes the assessment of its parameters easier when no statistical data are 
available; (3) has a simpler statistical model; and (4) produces more accurate point estimates as 
well as uncertainty distributions compared to other parametric models that have the above 
properties. 

The Alpha Factor model develops CCF frequencies from a set of failure ratios and the total 
component failure rate.  The parameters of the model are: 

tQ   total failure frequency of each component due to all independent and common 

cause events. 

k   fraction of the total frequency of failure events that occur in the system and 

involve failure of k components due to a common cause. 

Using these parameters, depending on the assumption regarding the way the redundant 
components of the systems in the database are tested (as part of the data collection effort), the 
frequency of a CCBE involving failure of k components in a system of m components is given 
by: 

 For a staggered testing scheme: 
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 For a non-staggered testing scheme: 
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where the binomial coefficient is given by: 
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and 

 k

m

1=i
t  k  =   (7-14) 

As an example, the probabilities of the basic events of the example three-component system 
are written as (assuming staggered testing): 
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Therefore, the system unavailability can now be written as 

ttts QQQQ 32
2

1 3
2

3
)(3    (7-16) 

Note that the staggered versus non-staggered assumptions are applicable for parameter 
estimation as part of the data collection activities.  During modeling activities, the typical CCF 
model to be used will be that of non-staggered testing.  

7.7.4 Estimation of CCBE Probabilities    

The objective of this step is to estimate the CCBE probabilities or parameters of the model 
used to express these probabilities. Ideally, parameter values are estimated based on actual 
field experience. The most relevant type of data would be the system-specific data. However, 
due to the rarity of system-specific common cause events a search will usually not produce 
statistically significant data.  In almost all cases parameter estimation will have to include 
experience from other systems, i.e., generic data.  In some cases even the generic data may be 
unavailable or insufficient. Data might be obtained from various sources including: 

 Industry-based generic data 

 System-specific data records 

 Generically classified CCF event data and parameter estimates (reports and computerized 
databases). 

Only a few industries have developed databases for CCF events. These include nuclear 
power and, to a lesser extent, aerospace.  

The problem of data scarcity can be addressed at least in part by applying a method for 
extracting information from partially relevant data based on using the Impact Vector Method and 
Bayesian techniques [7-1]. This is done through a two-step process:  

1. Generic Analysis: Analysis of occurrences of CCFs in various systems in terms of their 
causes, coupling factors, as well as the level of impact, i.e., the number and nature of 
component failures observed.  

2. System-Specific Analysis: Re-evaluation of the generic data for applicability and 
relevance to the specific system of interest.  

The specific techniques are described in Reference [7-1].  In the following it is assumed that 
the statistical data needed for the estimation of CCF model parameters are developed by 
following the referenced procedure or a similar one.  

Once the impact vectors for all the events in the database are assessed for the system 
being analyzed, the number of events in each impact category can be calculated by adding the 
corresponding elements of the impact vectors.  The process results in 

nk  =  total number of basic events involving failure of k similar components,  k=1,…,m 



 

 7-16

Event statistics, kn , are used to develop estimates of CCF model parameters. For example, 

the parameters of the alpha-factor model can be estimated using the following maximum 
likelihood estimator (MLE): 
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For example, consider a case where the analysis of failure data for a particular two-out-of-
three system reveals that of a total of 89 failure events, there were 85 single failures, 3 double 
failures, and 1 triple failure, due to common cause.  Therefore the statistical data base is  {n1 = 
85, n2 = 3, n3 = 1}. Based on the estimator of Equation (7-17):  
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Table 7-2 provides a set of estimators. The estimators presented in Table 7-2 are the MLEs 
and are presented here for their simplicity. The mean values obtained from probability 
distribution characterizing uncertainty in the estimated values are more appropriate for point 
value quantification of system unavailability. Bayesian procedures for developing such 
uncertainty distributions are presented in References 7-1 and 7-4. 

Table 7-2 displays two sets of estimators developed based on assuming different testing 
schemes.  Depending on how a given set of redundant components in a system is tested 
(demanded) in staggered or non-staggered fashion, the total number of challenges that various 
combinations of components are subjected to is different. This needs to be taken into account in 
the exposure (or success) part of the statistics used, affecting the form of the estimators. The 
details of why and how the estimators are affected by testing schedule are provided in 
Reference [7-1]. 

7.8 Generic Parameter Estimates 

For cases where no data are available to estimate CCF model parameters, generic 
estimates based on parameter values developed for other components, systems, and 
applications may be used as screening values.  The average value of these data points is 
 = 0.1 (corresponding to an alpha factor of 0.05 for a two-component system).  However, values 
for specific components range about this mean by a factor of approximately two. 

These values are in fact quite typical and are also observed in CCF data collection efforts in 
some other industries. A very relevant example is the result of analysis of Space Shuttle CCF 
events [7-3]. A total of 474 Space Shuttle orbiter in-flight anomaly reports were analyzed in 
search of Dependent Failures (DFs) and Partial Dependent Failures (PDFs). The data were 
used to determine frequency and types of DFs, causes, coupling factors, and defenses 
associated with the Shuttle flights. These data were also used to estimate a generic beta factor 
that resulted in a value of 0.13. 
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Table 7-2. Simple Point Estimators for Various CCF Parametric Models. 
Method 

Non-Staggered Testing* Staggered Testing* Remarks 

Basic 
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For time-based 
failure rates, 
replace system 
demands (ND) with 
total system 
exposure time T. 

Alpha Factor 
mk

n

n
m

j
j

km
j ,,1

1






  
Same as non-staggered case  

* ND is the total number of tests or demands on a system of m components. 

 

7.9 Treatment of Uncertainties 

Estimation of model parameters involves uncertainties that need to be identified and 
quantified. A broad classification of the types and sources of uncertainty and potential 
variabilities in the parameter estimates is as follows: 

1. Uncertainty in statistical inference based on limited sample size. 

2. Uncertainty due to estimation model assumptions. Some of the most important 
assumptions are: 

A. Assumption about applicable testing scheme (i.e., staggered vs. non-staggered 
testing methods). 

B. Assumption of homogeneity of the data generated through specializing generic data 
to a specific system.  

3. Uncertainty in data gathering and database development. These include: 

A. Uncertainty because of lack of sufficient information in the event reports, including 
incompleteness of data sources with respect to number of failure events, number of 
system demands, and operating hours. 

B. Uncertainty in translating event characteristics to numerical parameters for impact 
vector assessment (creation of generic database). 

C. Uncertainty in determining the applicability of an event to a specific system design 
and operational characteristics (specializing generic database for system-specific 
application).  

The role of uncertainty analysis is to produce an epistemic probability distribution of the CCF 
frequency of interest in a particular application, covering all relevant sources of uncertainty from 
the above list. Clearly, some of the sources or types of uncertainty may be inapplicable, 
depending on the intended use of the CCF parameter and the form and content of the available 
database. Also, methods for handling various types of uncertainty vary in complexity and 
accuracy. Reference [7-1] provides a comprehensive coverage of the methods for assessing 
uncertainty distribution for the parameters of various CCF models.  
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8. Human Reliability Analysis (HRA) 

The purpose of this chapter is to provide guidance on how to perform Human Reliability 
Analysis (HRA) in the context of a PRA. In this context, HRA is the assessment of the reliability 
and risk impact of the interactions of humans on a system or a function. For situations that 
involve a large number of human-system interactions (HSIs), HRA becomes an important 
element of PRA to ensure a realistic assessment of the risk. Examples of HSIs include: activities 
of the ground crew such as the Flight Control Officer (FCO) to diagnose a launch vehicle 
guidance control malfunction and initiate the Command Destruct System (CDS); flight crew 
actions to recover from potential system malfunctions; and mechanical/electrical personnel 
errors during installation, test, and maintenance of equipment prior to start of the mission. The 
HRA analysts, with support from systems analysts, model and quantify the impacts from these 
HSIs, which then will be incorporated as human basic events in the PRA logic models (e.g., 
ETs, FTs). It is noted that in addition to “human interaction,” the terms “human action,” “human 
error,” and “human failure” have been used in HRA literature and will also be used in this guide, 
particularly when it comes to the quantification of the impacts of HSIs. 

8.1 Basic Steps in the HRA Process 

In general, the HRA process has a number of distinct steps, as shown below in Figure 8-1, 
that will be briefly described in this section. 

 

Figure 8-1. Basic Steps in the HRA Process. 

Problem Definition 

The problem definition is the first step in the process and is used to determine the scope of 
the analysis, including what tasks (normal, emergency) will be evaluated, and what human 
actions will be assessed. These actions need to be identified within the scope of the PRA in 
terms of the human interactions that are considered in the PRA. For the systems modeled in the 
PRA, to determine the scope of the human actions that need to be considered, the system's 
vulnerability to human error needs to be assessed. A NASA space system’s vulnerability to 
human error is dependent upon the complexity of the system (and how the NASA team 
understands this complexity), the amount that the human interacts with the system (either 
through maintenance, operation, and/or recovery), and how the human-system is coupled. (A 
tightly coupled system does not allow the user the flexibility to use alternatives or wait for a 
repair when there is a failure).  

In general, when a system is more vulnerable to human error, then a larger scope and more 
comprehensive analysis is needed to understand fully and mitigate the human contribution to 
system risk. During the problem definition phase, determining what type of human actions will 
be evaluated is very important, because the number and type of errors included in the analysis 
can lead to an underestimation or overestimation of the impact of the human errors on the 
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system risk. The subsequent sections provide guidelines to help determine the human 
interactions that need to be modeled as part of the PRA. 

The output of step 1 is a detailed list of the types of human actions that will be evaluated, 
including nominal and off-nominal, and emergency scenarios. 

Task Analysis 

The second step in the HRA process is task analysis that identifies the specific tasks  and 
specific human actions that are involved in the human interactions with the system. These tasks 
can involve physical actions and/or cognitive processes (e.g., diagnosis, calculation, and 
decision making). Swain [8-1] defines task analysis as follows: “An analytical process for 
determining the specific behaviors required of the human performance in a system. It involves 
determining the detailed performance required of people and equipment and the effects of 
environmental conditions, malfunctions, and other unexpected events on both.  Within each task 
to be performed by people, behavioral steps are analyzed in terms of (1) the sensory signals 
and related perceptions, (2) information processing, decision-making, memory storage, and 
other mental processes, and (3) the required responses.” The task analysis can be relatively 
simple or can be complex depending on the type of interactions that are involved.  When 
considering the level of task decomposition, the analyst needs to consider the purpose of the 
task analysis and the resources available. For an HRA of an initial design, general task 
definitions may be sufficient. For an HRA of a complex human interaction, a more detailed task 
analysis may be necessary if the system performance is sensitive to the human interaction. 
Subsequent sections give examples of task analysis and more detailed descriptions are given in 
the references. 

Error Identification 

The third and the most important step in the HRA is human error identification, where 
human interactions and basic human actions are evaluated to determine what human errors and 
violations can occur, have potential contributions to hazardous events, and should be included 
in the PRA.. The analyst must determine what type of human error will occur and the 
performance factors that could contribute to the error. To accomplish this, the analyst must 
identify and understand the different types of human errors that can impact the system. Human 
actions/interactions within a system can be broken down into two main types of elements, a 
cognitive response or a physical action, and their related errors of omission or commission.  
Human actions and errors cannot be considered in isolation from the system and environment in 
which the human works. The system design (hardware, software, and crew habitable 
environment) affects the probability that the human operator will perform a task correctly or 
incorrectly for the context and specific situation.  Consequently, it is important to evaluate the 
factors, called Performance Shaping Factors (PSFs) that may increase or decrease the 
likelihood that these errors will occur. PSF values depend on the specific HRA model used and 
several examples are subsequently described. 

Error Representation (Modeling) 

The fourth step in HRA is human error representation, also described as modeling. This step 
is conducted to help visualize the data, relationships, and inferences that cannot be as easily 
described with words. Human error modeling allows the analyst to gain insight into the causes, 
vulnerabilities, recoveries, and possible risk mitigation strategies associated with various 
accident scenarios.  Human errors can be modeled and represented in a Master Logic Diagram 
(MLD), Event Sequence Diagram (ESD), Event Tree (ET), Fault Tree (FT), or a generic error 
model and influence diagram. The most appropriate representation and modeling depends on 
the classification of the human interaction and associated human error (Section 8.2). Alternative 
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modeling approaches that are amenable for NASA implementations are subsequently 
described. 

Quantification and Integration into PRA 

Quantification, the fifth and final step in HRA, is the process used to assign probabilities to 
the human errors. The human error probabilities (HEPs) are incorporated into the PRA to 
determine their risk contribution. The method by which quantification is completed is dependent 
upon the resources available, the experience level of the analyst, and the relevant available 
data. Quantification data may come from databases, simulations, or expert judgment. The 
method of quantification also depends on the particular modeling approach used for the HRA 
and alternative approaches are described. 

8.2 Classifications of Human Interactions and Associated Human Errors 

To assist in determining the scope of the HRA to be performed, it is useful to classify the 
types of HSIs and associated human errors that can occur. Many classifications of HSIs and 
associated human errors have been described in HRA literature. The classifications consider 
different aspects of HSIs such as their timing with respect to the initiating event (IE), human 
error type, and cognitive behavior of humans in responding to accidents. Similar to hardware 
reliability modeling (e.g., failure on demand, running failure, etc.), HSI classification and human 
error classification is a key step in HRA that supports model development, data collection, and 
quantification of human actions.  Several of the most widely used HSI classifications in HRA are 
briefly described in the following. 

8.2.1 Pre-Initiator, Initiator, and Post-Initiator HSIs  

Three types of HSIs, based on their timing with respect to an accident initiating event, (IE), 
that are useful for initial categorization for HRA are  [8-1, 8-2]: 

 Pre-initiator HSIs rendering equipment unavailable before it operates or is called upon (e.g., 
maintenance errors, testing errors, calibration errors); 

 Initiator-related HSIs that contribute to the initiation of a potential accident  (e.g., a human 
error causing a loss of system or inadvertent actuation of a system); and 

 Post-initiator HSIs that occur during the progression of an accident (e.g., actuating a backup 
safety system, performing a recovery action). 

Post-Initiator HSIs are furthermore broken into two main elements: 

 Cognitive response: Detection (e.g., recognizing an abnormal event), diagnosis, and 
decision making to initiate a response within the time available; and 

 Post-diagnosis action response: Performance of actions (or tasks execution) after the  
diagnosis has been made, within the time available. 

A failure of cognitive response or post-diagnosis response involves failure of any of the 
steps involved in the correct response. Sometimes, failure of cognitive response is simply 
referred to as diagnosis failure or misdiagnosis. Failure of post-diagnosis action  is simply 
referred to as a diagnosis follow-up failure, or follow-up failure. 

8.2.2 Skill, Rule, and Knowledge-Based Response 

Rasmussen [8-3] proposed three more specific categories of human cognitive response:   

 Skill-based (S): Response requiring little or no cognitive effort; 
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 Rule-based (R): Response driven by procedures or rules; and 

 Knowledge-based (K): Response requiring problem solving and decision making. 

Skill-based behavior is characterized by a quasi-instinctive response, i.e., a close coupling 
between input signals and output response.  Skill-based response occurs when the individual is 
well trained on a particular task, independent of the level of complexity of the task. Skill-based 
behavior is characterized by a fast performance and a low number of errors. 

Rule-based response is encountered when an individual’s actions are governed by a set of 
well-known rules, which he or she follows. The major difference between skill-based and rule-
based behavior is in the degree of practice of rules. Since the rules need to be checked, the 
response is slower and more prone to errors. 

Knowledge-based response is characteristic of unfamiliar or ambiguous situations.  In such 
cases, the individual will need to rely on his or her own knowledge of the system and situation. 
Knowledge-based behavior is the most error prone of the three types of behavior. 

8.2.3 Error of Omission and Error of Commission 

Two types of human error have further been defined by Swain [8-1, 8-4]: 

 Error of Omission (EOM): The failure to initiate performance of a system-required task/action 
(e.g., skipping a procedural step or an entire task); and 

 Error of Commission (ECOM): The incorrect performance of a system-required task/action, 
given that a task/action is attempted, or the performance of some extraneous task/action 
that is not required by the system and that has the potential for contributing to a system 
failure (e.g., selection of a wrong control, sequence error, timing error). 

EOMs are often the dominant pre-initiator errors. ECOMs can be important contributors to 
accident initiators.  Both EOMs and ECOMs can be important contributors for post-initiator 
errors.  

8.3 General Modeling of Pre-Initiator, Initiator, and Post-Initiator HSIs in a PRA 

General guidelines that are commonly used in modeling HSIs in a PRA are: 

 Pre-initiator HSIs are explicitly modeled and are usually included in the system FTs at the 
component level. 

 Initiator HSIs are explicitly modeled and can be included as pivotal events in the ET or in the 
system FTs at the component level.Post-Initiator HSIs are explicitly modeled and can be 
included at different levels of the PRA logic model: 

- Errors associated with recovery of component failures are modeled in the system FTs 

- Errors associated with response to an accident initiating event may be modeled in the 
system FTs or ETs. 

8.4 Quantification of Human Interactions (or Errors) 

The systems and the HRA analysts may identify a large number of HSIs in a PRA. Detailed 
task analysis, required for HSI quantification, can be a time-consuming and resource intensive 
task. It may not be possible, or necessary, to perform detailed quantification for all HSIs. 
Therefore, for practical reasons, HSI quantification in HRA is usually performed in two phases: 

 Screening analysis; and 
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 Detailed analysis. 

This section describes the basic steps in screening analysis. The detailed analysis that is 
subsequently carried out depends on the specific HRA modeling approach used and these are 
described in subsequent sections. 

The purpose of the screening analysis is to reduce the number of HSIs to be analyzed in 
detail in HRA.  The screening analysis may be qualitative, quantitative, or a combination of both. 

8.4.1 Qualitative Screening  

Qualitative screening is usually performed early in HRA to exclude some HSIs from further 
analysis and, hence, not to incorporate them in the PRA logic models.  A set of qualitative 
screening rules is developed for each HSI type. Examples of commonly used qualitative 
screening rules are as follows: 

 Screen out misaligned equipment as a result of a test/maintenance error, when by design 
automatic re-alignment of equipment occurs on demand.  

 Screen out misaligned equipment as a result of a human error, when a full functional test is 
performed after maintenance/assembly (for Type A HSIs). 

 Screen out misaligned equipment as a result of a human error, when equipment status is 
indicated in the control room or spacecraft.  

 Screen out HSIs if their success/failure has no influence on the accident progression, e.g., 
verification tasks.  

 Screen out HSIs and assume the task is not carried out if there are physical limitations to 
carry out the task, e.g., time is too short, impossible access due to hostile environment, lack 
of proper tools. 

 Screen out HSIs and assume the action is not carried out if the individual is unlikely or 
reluctant to perform the action, e.g., training focuses on other priorities/strategies. 
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8.4.2 Quantitative Screening 

Quantitative screeninga is also performed to limit the detailed task analysis and 
quantification to important (risk-significant) HSIs. Conservative HEP estimates are used in the 
PRA logic models to perform this quantitative screening. HSIs that are shown to have 
insignificant impact on risk (i.e., do not appear in dominant accident sequence cut sets) even 
with the conservative HEPs, are screened out from further detailed analysis. The key elements 
of a screening analysis are as follows: 

 Conservative HEPs typically in the range of 0.1 to 1.0 are used for various HSIs depending 
on their complexity and timing as well as operators’ familiarity with them. Lower values such 
as 0.01 or 0.005 may also be used as conservative values in certain scenarios when there is 
an associated rationale or basis.Usually, no recovery factors are considered. 

 Complete dependence is assumed among multiple related actions that appear in the same 
accident sequence cut set, i.e., if an individual fails on the first action with an estimated 
HEP, then the HEPs on the second and third (and so on) related actions are unity (1.0).  

8.5 HRA Models 

This section describes HRA modeling approaches that are suitable for use in carrying out 
human error analysis as part of a PRA, which includes modeling HSIs and the associated 
human errors. Several modeling approaches are described since they focus on different types 
of HSIs and involve different levels of task descriptions. Also, it can be useful to apply different 
models to obtain different perspectives and to check for consistency.  The modeling approaches 
that are selected and described here are based on the reviews of different HRA approaches and 
their suitability for NASA applications that are described in Reference [8-5]. For each modeling 
approach described here, overviews of the screening and quantitative analysis capabilities are 
provided. Reference [8-6] provides additional information on these approaches as well as other 
HRA approaches. 

8.5.1 Technique for Human Error Rate Prediction (THERP) 

THERP is comprehensive HRA methodology that was developed by Swain & Guttmann 
[8-4] for the purpose of analyzing human reliability in nuclear power plants. THERP can be used 
as a screening analysis or a detailed analysis. Unlike many of the quantification methodologies, 
THERP provides guidance on most steps in the HRA process including task analysis, error 
representation, and quantification. THERP begins with system familiarization and qualitative 
assessment (task analysis and error identification). THERP can be used to analyze typical 

                                                 
a The following Screening Values were used in the Space Shuttle PRA: 

Available 
Time in 
minutes 

Nominal HEP 1 Adverse 
Condition 

2 Adverse 
Conditions 

3 Adverse 
Conditions 

4 Adverse 
Conditions 

T<1 0.3 0.1 1 1 1 
1<T<10 0.1 0.3 1 1 1 

10<T<30 0.03 0.1 0.3 1 1 
T>30 0.003 0.01 0.03 0.3 1 
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errors of omission and commission. It requires the analyst to construct a HRA ET to model the 
human error. The analyst then identifies the PSFs that affect human performance. THERP 
provides a list of three specified PSFs (training level, stress, and experiences) and allows the 
user to add additional PSFs. THERP allows the analyst to explicitly treat task-error 
dependencies and human recovery actions. THERP has five levels of dependency that can 
impact the overall probability of the error. THERP has a large base of experienced analysts in 
the U.S.; it has been applied to nuclear power plants, off-shore oil drilling, and the NASA Space 
Shuttle and ISS programs.   

8.5.1.1 Task Decomposition 

Following are the four phases of operator task analysis using THERP: 

1. Familiarization. 

2. Gathering plant-specific and event-specific information. 

3. Qualitative assessment. 

A. Performing preliminary task analyses including error identification. 

4. Quantitative assessment. 

A. Estimate the HEPs. 

5. Incorporation into system risk and reliability model. 

A.  Perform sensitivity study to determine the impact on the system, and perform 
detailed analysis on risk-significant HEPs to ensure better estimate 

B. Incorporate results into system model (e.g., PRA or reliability model). 

Following are the ten steps to performing qualitative and quantitative assessment through 
analyzing the man-machine system: 

1. Describe the system goals and functions of interest. 

2. Describe the situational characteristics. 

3. Describe the characteristics required of the personnel. 

4. Describe the jobs and tasks performed by the personnel. 

5. Analyze the jobs and tasks to identify error-likely situations and other problems. 

6. Estimate the likelihood of each potential error. 

7. Estimate the likelihood that each error will be undetected (or uncorrected). 

8. Estimate the consequences of each undetected (or uncorrected) error. 

9. Suggest changes to the system. 

10. Evaluate the suggested changes (repeat steps 1 through 9). 

To calculate the HEP for a task, THERP provides a number of activities for the analyst to 
identify the HEP’s existence in the operator tasks being analyzed. Example analyst activities 
are: assigning screening values, considering PSFs, and quantifying the resultant HEP.  

8.5.1.2 Screening 

THERP provides guidance for assigning screening values for HEPs in two types of activity: 
diagnosis and (generally rule-based) action. The screening of diagnosis activity is based on 
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available time (Figure 8-2 and Table 8-1) [8-1, 8-4]. Screening values for rule-based behavior 
are shown in Table 8-2. 

 

Figure 8-2. Initial Screening Model of Estimated Human Error Probability and Uncertainty 
Bounds for Diagnosis Within Time T of One Abnormal Event by Control Room Personnel. 
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Table 8-1. Initial Screening Model of Estimated Human Error Probabilities and Error 
Factors for Diagnosis Within Time T by Control Room Personnel of Abnormal Events 

Annunciated Closely in Time.* 

Item 

T 
(Minutes** 
After T0

+) 

Median Joint HEP 
for Diagnosis of a 
Single or the First 

Event EF Item 

T 
(Minutes** 
After T0

+) 

Median Joint 
HEP for 

Diagnosis of 
the Second 

Event++ EF 
(1) 1 1.0 -- (7) 1 1.0 -- 
(2) 10 .5 5 (8) 10 1.0 -- 
(3) 20 .1 10 (9) 20 .5 5 
(4) 30 .01 10 (10) 30 .1 10 
(5) 60 .001 10 (11) 40 .01 10 
(6) 1500 (≈ 1 day) .0001 30 (12) 70 .001 10 

    (13) 1510 .0001 30 
*  “Closely in time” refers to cases in which the annunciation of the second abnormal event occurs while CR 

personnel are still actively engaged in diagnosing and/or planning responses to cope with the first event.  This is 
situation-specific, but for the initial analysis, use “within 10 minutes” as a working definition of “closely in time.” 

Note that this model pertains to the control room crew rather than to one individual. 

**  For points between the times shown, the medians and EFs may be chosen from Figure 8-2. 

+  T0 is a compelling signal of an abnormal situation and is usually taken as a pattern of annunciators.  A 
probability of 1.0 is assumed for observing that there is some abnormal situation. 

++  Assign HEP=1.0 for the diagnosis of the third and subsequent abnormal events annunciated closely in 
time. 

 

Table 8-2. Initial Screening Model of Estimated Human Error Probabilities and Error 
Factors for Rule-Based Actions by Control Room Personnel After Diagnosis of an 

Abnormal Event.* 
Item Potential Errors HEP EF 

 Failure to perform rule-based actions correctly when written 
procedures are available and used: 

  

(1) Errors per critical step without recovery factors .05 10 
(2) Errors per critical step with recovery factors .025 10 

 Failure to perform rule-based actions correctly when written 
procedures are not available or used: 

  

(3) Errors per critical step with or without recovery factors 1.0 -- 
*  Note that this model pertains to the control room crew rather than to one individual. 

 

8.5.1.3 Performance Shaping Factors (PSFs) 

THERP provides a list of PSFs but gives no specific rules to assess the states of these 
PSFs and their effects on HEPs.  

8.5.1.4 HEP Calculation Procedure 

HEPs are calculated through a number of steps: 

1. Analyze the event: 
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A. Construct the HRA Event Tree (ET). For each branching point of the HRA ET,  
identify the likely human errors and the corresponding nominal HEPs as well as the 
uncertainty bounds. 

B. Identify factors and interactions affecting human performance: Assess the effect of 
the performance shaping factors on the HEPs as well as the uncertainty bounds of 
the HEPs. 

2. Quantify effects of factors and interactions: 

A. Assess the levels of task dependencies based on the five-level dependency scale 
specified by THERP. Such dependencies would affect the task HEPs. 

B. Account for probabilities of recovery from errors: Assess the possible recovery 
branches in the HRA ET and assess the success probabilities. 

3. Calculate human error contribution to probability of system failure: 

A. Determine the success and failure consequences within the HRA ET and calculate 
the HEP of the HRA ET. The calculated HEP is used in the PRA model. 

8.5.1.5 HEP Quantification  

THERP calculates probabilities of the following types of errors: 

 Screening and detection of system abnormalities 

 Diagnosis and identification of the causes of system abnormalities 

 Omitted actions, including actions in procedure preparation, use of a specified procedure 
(e.g., administrative control), execution of a procedure step, and providing an oral instruction 

 Writing down incorrect information 

 Acting on a wrong object; includes reading from an unintended display, acting at an 
unintended control, and unintended control (e.g., turn a control in the wrong direction). 

8.5.1.6 Task Dependencies and Recovery 

THERP provides five levels of dependency between two consecutive operator activities. 
These activities are represented by branches of an HRA Event Tree. The five dependency 
levels are zero dependency (ZD), low dependency (LD), moderate dependency (MD), high 
dependency (HD), and complete dependency (CD). Although the authors state that “There are 
no hard and fast rules for deciding what level of dependency is appropriate for any situation; 
considerable judgment is required” but the “time between tasks” is suggested as a key factor 
affecting the level of dependency. Recovery, by other crew or by automation, is explicitly 
covered. The framework therefore allows for explicit accounting of the impact of dependencies 
and recovery actions on the overall probability of error. 

The following quantification model is proposed by Swain and Guttmann for the above five 
levels of dependence: 



  
 

 8-11

0.1
2

)1(
7

)61(
20

)191(

1

1

1

1

1
























CDHEPHEP

HEP
HDHEPHEP

HEP
MDHEPHEP

HEP
LDHEPHEP

HEPZDHEPHEP

NN

N
NN

N
NN

N
NN

NNN

 (8-1) 

where HEPN is the HEP for Task N given an error was committed on Task N-1.   

8.5.1.7 HEP Uncertainty Bounds 

An error factor (EF) is used to represent the HEP uncertainty bounds. In THERP each 
activity is associated with a median HEP and an EF. The uncertainty bound of this activity is 
found by multiplying or dividing the median HEP by the EF. For example, assume the median 
HEP and EF for a certain activity are 1E-3 and 10, respectively. The uncertainty bounds of this 
activity are (1E-4, 1E-2). A lognormal uncertainty distribution is the default distribution used 
based on historical precedance. The lognormal has the feature that it is normal on a log scale, 
which is the natural scale for failure probabilities. Also most HEP uncertainties are given as 
lognormal. If there is rational for another distribution it should instead be used. 

8.5.1.8 Suitability for NASA Applications 

THERP task analysis and quantification schemes are best suited for routine tasks under 
normal conditions (e.g., proceduralized pre- and post-flight checks). Ground processing 
activities most closely match the situations for which THERP was developed. THERP does not 
address human performance in flight, zero gravity, or microgravity environments. THERP is 
useful for evaluating errors of omission but is difficult to use on continuous feedback HRA types 
of errors. THERP can also be useful in helping to define the uncertainty bounds of HEPs. 

Other factors limiting the applicability of THERP include: 

 Difference in typical time windows: The available time windows for action between nuclear 
power plant operation and aerospace missions are often significantly different. Recovery 
time windows for nuclear accidents typically vary from hours to days. In comparison, some 
action time windows and system response times in aerospace scenarios are very short, 
particularly those in the dynamic phases of space vehicle flight such as ascent, docking, and 
descent.  

 Required Information: THERP quantification relies on specific characteristics of tasks and 
activities. This requirement limits the usefulness of THERP for application to new aerospace 
designs for which detailed system information is not available. 

8.5.2 Cognitive Reliability and Error Analysis Method (CREAM) 

CREAM [8-6] was developed for cognitive error analysis and is based on the Contextual 
Control Model [8-7].  CREAM can be used as a screening analysis or a detailed analysis. 
CREAM provides a list of fifteen basic cognitive tasks and their definitions to frame the cognitive 
error modeling. CREAM requires the analyst to perform task decomposition that breaks the task 
down into subtasks. Each subtask is matched to one of the pre-specified cognitive activities in 
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the list. For each subtask, the activity is further classified as an observation, interpretation, 
planning, or execution activity. Each of these activities has pre-determined error modes from 
which the analyst can select (e.g., wrong object observed). CREAM specifies 13 specific error 
modes which include both errors of omission and errors of commission. CREAM provides a 
basic HEP value and upper and lower uncertainty bounds for each generic error. CREAM 
provides a list of nine PSFs that can be used to modify the HEP. CREAM has a relatively large 
U.S. experience base and has been applied to nuclear power plants, off-shore drilling, and the 
NASA Space Shuttle and ISS programs. 

8.5.2.1 Task Decomposition 

CREAM identifies fifteen basic tasks (see Table 8-3) to decompose the human activities of 
interest. 

Table 8-3. The Fifteen Cognitive Activities According to CREAM. 
Cognitive 
Activity General Definition 

Co-ordinate Bring system states and/or control configurations into the specific relation required to 
carry out a task or task step. Allocate or select resources in preparation for a task/job, 
calibrate equipment, etc. 

Communicate Pass on or receive person-to-person information needed for system operation by 
verbal, electronic, or mechanical means. Communication is an essential part of 
management. 

Compare Examine the qualities of two or more entities (measurements) with the aim of 
discovering similarities or differences. The comparison may require calculation. 

Diagnose Recognize or determine the nature or cause of a condition by means of reasoning 
about signs or symptoms or by the performance of appropriate tests. “Diagnose” is 
more thorough than “identify.” 

Evaluate Appraise or assess an actual or hypothetical situation, based on available information 
without requiring special operations. Related terms are “inspect” and “check.” 

Execute Perform a previously specified action or plan. Execution comprises actions such as 
open/close, start/stop, fill/drain, etc.  

Identify Establish the identity of a plant state or sub-system (component) state. This may 
involve specific operations to retrieve information and investigate details. “Identify” is 
more thorough than “evaluate.” 

Maintain Sustain a specific operational state. (This is different from maintenance that is 
generally an off-line activity.) 

Monitor Keep track of system states over time, or follow the development of a set of 
parameters. 

Observe Look for or read specific measurement values of system indications. 
Plan Formulate or organize a set of actions by which a goal will be successfully achieved. 

Plan may be short-term or long-term. 
Record Write down or log system events, measurements, etc. 
Regulate Alter speed or direction of a control (system) in order to attain a goal. Adjust or 

position components or subsystems to reach a target state. 
Scan Quick or speedy review of displays or other information source(s) to obtain a general 

impression of the state of a system/sub-system. 
Verify Confirm the correctness of a system condition or measurement, either by inspection 

or test. This also includes the feedback from prior operations. 

8.5.2.2 Screening 

CREAM provides a two-level approach to calculate HEPs: the basic method and the 
extended method. The basic method is designed for task screening. It provides simple rules to 
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determine the HEP range for a task based on the combined PSFs’ states. The HEP ranges for 
the four types of response modes of strategic, tactical, opportunistic, and scrambled are: 

 5E-6 < HEP(Strategic) < 1E-2 

 1E-3 < HEP(Tactical) < 1E-1 

 1E-2 < HEP(Opportunistic) < 5E-1 

 1E-1 < HEP(Scrambled) < 1. 

8.5.2.3 Performance Shaping Factors (PSFs) 

CREAM  PSFs affect HEPs according to the type of basic human function, namely 
observation, interpretation, planning, and execution. These are shown in Table 8-4 along with 
their values. 

8.5.2.4 HEP Calculation Procedure 

The CREAM extended method is used for performing more detailed HEP assessments. The 
extended procedure includes the following steps: 

1. Describe the task or task segments to be analyzed and perform task decomposition that 
breaks the task into a number of subtasks. Each subtask can be matched to one of 
fifteen pre-specified cognitive activities (Table 8-3). 

2. Identify the type of cognitive activity for each sub-task. 

3. Identify the associated human function of each sub-task. Four types of human functions 
are identified: Observation, Interpretation, Planning, and Execution. 

4. Determine the basic HEPs for all sub-tasks. A number of failure modes are identified. 
Each failure mode is associated with a basic HEP and uncertainty bounds. 

5. Determine the PSFs’ effects on the sub-tasks’ HEPs. Adjust the basic HEPs by 
multiplying by the adjustment factors based on the identified states of the PSFs. 

Calculate the task HEP based on the HEPs of sub-tasks. When using the CREAM process 
to model cognitive errors, the most likely error to occur should generally be selected with 
the associated CREAM HEP. 
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Table 8-4. PSFs for  Adjusting Basic HEPs. 

PSF PSF State 

Type of Human Function 

OBS INT PLAN EXE 

Adequacy of Organization Very Efficient 1.0 1.0 0.8 0.8 

Efficient 1.0 1.0 1.0 1.0 

Inefficient 1.0 1.0 1.2 1.2 

Deficient 1.0 1.0 2.0 2.0 

Working Conditions Advantageous 0.8 0.8 1.0 0.8 

Compatible 1.0 1.0 1.0 1.0 

Incompatible 2.0 2.0 1.0 2.0 

Adequacy of MMI and 
operational support 

Supportive 0.5 1.0 1.0 0.5 

Adequate 1.0 1.0 1.0 1.0 

Tolerable 1.0 1.0 1.0 1.0 

Inappropriate 5.0 1.0 1.0 2.0 

Availability of procedures/plans Appropriate 0.8 1.0 0.5 0.8 

Acceptable 1.0 1.0 1.0 1.0 

Inappropriate 2.0 1.0 5.0 2.0 

Number of simultaneous goals Fewer than capacity 1.0 1.0 1.0 1.0 

Matching current capacity 1.0 1.0 1.0 1.0 

More than capacity 2.0 2.0 5.0 2.0 

Available time Adequate 0.5 0.5 0.5 0.5 

Temporarily inadequate 1.0 1.0 1.0 1.0 

Continuously inadequate 5.0 5.0 5.0 5.0 

Time of day Day-time 1.0 1.0 1.0 1.0 

Night time 1.2 1.2 1.2 1.2 

Adequacy of training and 
preparation 

Adequate, high 
experience 

0.8 0.5 0.5 0.8 

Adequate, low experience 1.0 1.0 1.0 1.0 

Inadequate 2.0 5.0 5.0 2.0 

Crew collaboration quality Very efficient 0.5 0.5 0.5 0.5 

Efficient 1.0 1.0 1.0 1.0 

Inefficient 1.0 1.0 1.0 1.0 

Deficient 2.0 2.0 2.0 5.0 

8.5.2.5 HEP Quantification and Uncertainty Bounds 

CREAM provides a list of basic human activities along with HEPs and uncertainties by 
decomposing the analysis into a limited set of sub-tasks as defined by the basic human 
activities. Table 8-5 gives these values. 

  



  
 

 8-15

 

Table 8-5. Basic HEPs and Uncertainty Bounds According to CREAM. 
Cognitive 
Function Generic Failure Type 

Lower Bound
(5 percentile) Basic Value 

Upper Bound 
(95 percentile) 

Observation O1. Wrong object observed 3.0E-4 1.0E-3 3.0E-3 
O2. Wrong identification 1.0E-3 3.0E-3 9.0E-3 
O3. Observation not made 1.0E-3 3.0E-3 9.0E-3 

Interpretation I1. Faulty diagnosis 9.0E-2 2.0E-1 6.0E-1 
I2. Decision error 1.0E-3 1.0E-2 1.0E-1 
I3. Delayed interpretation 1.0E-3 1.0E-2 1.0E-1 

Planning P1. Priority error 1.0E-3 1.0E-2 1.0E-1 
P2. Inadequate plan 1.0E-3 1.0E-2 1.0E-1 

Execution E1. Action of wrong type 1.0E-3 3.0E-3 9.0E-3 
E2. Action at wrong time 1.0E-3 3.0E-3 9.0E-3 
E3. Action on wrong object 5.0E-5 5.0E-4 5.0E-3 
E4. Action out of sequence 1.0E-3 3.0E-3 9.0E-3 
E5. Missed action 2.5E-2 3.0E-2 4.0E-2 

 

8.5.2.6 Task Dependencies 

CREAM does not provide a specific procedure for identifying and accounting for task or 
error dependencies. Similarly, error recovery is not explicitly discussed. 

8.5.2.7 Suitability for NASA Applications 

The CREAM analysis units are “basic human activities” which are generic in nature. As a 
result, at the level of task description consistent with such basic human activities, the method 
can be applied to existing aerospace designs for both normal and emergency operations. For 
new aerospace design, since detailed task information is not available, CREAM’s basic method 
could be used for screening purposes. The CREAM basic HEP calculation method provides 
HEP ranges for four control modes. The PSFs identified in CREAM may need to be expanded 
to include the PSFs experienced in the zero gravity and microgravity environments. CREAM has 
been used in two recent NASA HRAs (Space Shuttle HRA, and International Space Station 
HRA). The most recent verison of the ISS PRA uses a combined THERP-CREAM modeling 
process for the HEPs not screened out. 

8.5.3 Nuclear Action Reliability Assessment (NARA) 

NARA [8-8] is a refinement of the Human Error Assessment and Reduction Technique 
(HEART) [8-9]. Even though it was developed for nuclear plant applications, it can be used for 
specific types of NASA applications. NARA can be used as a detailed analysis method and 
does not provide an explicit method for screening. NARA provides basic HEP values that apply 
to generic tasks, where they are adjusted based on a list of 18 PSFs [called Error Producing 
Conditions (EPCs)]. NARA covers both short- and long-duration activities by providing EPCs for 
longer duration tasks. NARA does not explicitly cover task dependencies or error recovery 
(these are included in the definition of the generic tasks). NARA’s parent method HEART has 
been applied to a number of domains including chemical and weapons manufacturing.  
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8.5.3.1 Performance Shaping Factors 

NARA provides a list of Error Producing Conditions (EPCs) and Effects, that are equivalent 
to Performance Influencing Factors (PIFs), Weights, or PSFs. Table 8-6 gives a partial listing. 
No causal model in terms of PIFs, their interdependencies, and other causal factors is provided. 

Table 8-6. NARA EPCs and Their Effects (partial list). 
NARA EPC 

ID NARA EPC Description 
NARA EPC 

Effect 1 
1 A need to unlearn a technique and apply one which requires the 

application of an opposing philosophy. 
24 

2 Unfamiliarity, e.g., a potentially important situation which only occurs 
infrequently or is novel. 

20 

3 Time pressure. 11 
4 Low signal to noise ratio. 10 
5 Difficulties caused by poor shift hand-over practices and/or team co-

ordination problems or friction between team members. 
10 

6 A means of suppressing or over-riding information or features which is 
too easily accessible. 

9 

7 No obvious means of reversing an unintended action. 9 
8 Operator inexperience. 8 
9 Information overload, particularly one caused by simultaneous 

presentation of non-redundant information. 
6 

10 Poor, ambiguous, or ill-matched system feedback. 4 
11 Shortfalls in the quality of information conveyed by procedures. 3 
12 Operator under-load/boredom. 3 
13 A conflict between immediate and long-term objectives. 2.5 
14 An incentive to use other more dangerous procedures. 2 
15 Poor environment. 8 
16 No obvious way of keeping track of progress during an activity. 2 
17 High emotional stress and effects of ill health. 2 
18 Low workforce morale or adverse organizational environment. 2 

1.  The term “Weight” is used in the equations. 

8.5.3.2 HEP Quantification 

In NARA, a final HEP is calculated by the following equation: 

     
  10,

11
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The State (PIF) is assigned a value ranging between 0 (best, positive) to 1 (worst, negative). 
The basic HEP (BHEP) which is the first factor in the above equation is provided in tables. Table 
8-7 through Table 8-10 give a partial listing of these basic HEPs. 
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Table 8-7. The Generic Tasks of NARA (partial list). 

 Generic Task 
Basic
HEP 

A1 Carry out simple single manual action with feedback. Skill-based and therefore not 
necessarily with procedure. 

0.005 

A2 Start or reconfigure a system from the Main Control Room following procedures, with 
feedback. 

0.001 

A3 Start or reconfigure a system from a local control panel following procedures, with 
feedback. 

0.003 

A4 Reconfigure a system locally using special equipment, with feedback, e.g., closing 
stuck open boiler solenoid relief valve (SRV) using special “gagging equipment”. Full or 
partial assembly may be required. 

0.03 

A5 Judgment needed for appropriate procedure to be followed, based on interpretation of 
alarms/indications, situation covered by training at appropriate intervals. 

0.01 

A6 Completely familiar, well designed highly practiced, routine task performed to highest 
possible standards by highly motivated, highly trained and experienced person, totally 
aware of implications of failure, with time to correct potential error. Note that this is a 
special case. 

0.0001 

 

Table 8-8. The Generic Tasks of NARA for Checking Correct Plant Status and Availability 
of Plant Resources. 

 Generic Task BHEP 
B1 Routine check of plant status. 0.03 
B2 Restore a single train of a system to correct operational status after test following 

procedures. 
0.007 

B3 Set system status as part of routine operations using strict administratively controlled 
procedures 

0.0007 

B4 Calibrate plant equipment using procedures, e.g. adjust set-point. 0.003 
B5 Carry out analysis. 0.03 
 

Table 8-9. The Generic Tasks of NARA for Alarm/Indication Response. 
 Generic Task BHEP 

C1 Simple response to a key alarm within a range of alarms/indications providing clear 
indication of situation (simple diagnosis required). Response might be direct execution 
of simple actions or initiating other actions separately assessed. 

0.0004 

C2 Identification of situation requiring interpretation of complex pattern of 
alarms/indications. (Note that the response component should be evaluated as a 
separate Generic Task.) 

0.2 

 

Table 8-10. The Generic Tasks of NARA for Communication. 
 Generic Task BHEP 

D1 Verbal Communication of Safety-Critical Data. 0.006 
 

8.5.3.3 Suitability for NASA Applications 

NARA does not require detailed task related information for HEP estimation. This 
characteristic and the simplicity of use make NARA appealing for application to new aerospace 
designs. The NARA approach is also suitable for existing aerospace designs if the level of detail 
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offered by “generic tasks” adequately correspond to the task being analyzed. However, the 
number of NARA Generic Tasks is limited and most likely inadequate to cover all space mission 
activities. The challenge is in adapting and extending the generic tasks for NASA applications. 
Similarly EPCs and weight factors need to be calibrated for space applications. 

8.5.4 Standard Plant Analysis Risk HRA Method (SPAR-H) 

SPAR-H [8-10] is another method that has been developed for nuclear plant applications, 
but can be used for specific NASA applications. SPAR-H is a revision of the Accident Sequence 
Precursor (ASP) HRA screening method. SPAR-H can be used as both a screening method and 
a detailed analysis method. SPAR-H does not provide specific guidance on how to perform task 
analysis and error identification, but does tell the analyst to decompose each task to either a 
diagnosis or an action subtask.  The method includes worksheets that allow the analyst to 
provide complete descriptions of the tasks and capture task data in a standard format. SPAR-H 
requires the analyst to determine the system activity type (power/operation or low 
power/shutdown) and then provides HEPs for the four combinations of the error type and 
system activity type (e.g., one combination is diagnosis and power/operation). The HEP is 
adjusted based on eight basic PSFs. SPAR-H also adjusts the HEP based on dependency. A 
dependency condition table is provided that allows the analyst to evaluate the same crew, time 
(close or not close in time), information cues (additional information or no cues), and location 
(same or different location). SPAR-H treats restoration and recovery tasks as separate events 
which are specified and analyzed. SPAR-H has a large U.S. experience base, has been applied 
to over 70 U.S. nuclear power plants, and has recently been used to help support the Nuclear 
Regulatory Commission’s Office of Reactor Regulation (NRR) Reactor Oversight Process. 

8.5.4.1 Task Decomposition 

SPAR-H decomposes a task into subtasks of “diagnosis” and/or “action.” 

8.5.4.2 Screening 

SPAR-H does not provide a procedure for screening. 

8.5.4.3 PSF List 

SPAR-H is based on an information processing model of human cognition, yielding a causal 
model of human error. SPAR-H also provides discussion of the interdependencies of PSFs, 
which are often ignored in other HRA methods. This being said, the interdependencies are not 
available to the reader in terms of correlation coefficients. The eight PSFs used by the method 
are: 

 Available time 

 Stress/Stressors 

 Complexity 

 Experience/Training 

 Procedures 

 Ergonomics/Human machine interface (HMI) 

 Fitness for duty 

 Work processes. 
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8.5.4.4 HEP Calculation Procedure 

The SPAR-H HEP quantification for a specific activity includes the following stepsa: 

1. Determine the plant operation state and type of activity: 

A. Two distinctive plant states, at-power and low power/shutdown, and two types of 
activities, diagnosis and action, are modeled. Four HEP worksheets are provided for 
use in calculating the HEPs of the following four different combinations: 

1) At-power operation and diagnosis activity 

2) At-power operation and action activity 

3) Low power/shutdown operation and diagnosis activity 

4) Low power/shutdown operation and action activity. 

2. Evaluate PSFs’ states to determine the multipliers: 

A. Tables are provided within the HEP worksheet for the analysts to check the most 
likely states of PSFs. For each worksheet, the analysis needs to identify the type of 
activity. Three types of activities are specified: diagnosis, action, and diagnosis-and-
action. The base failure rates for these types of activities are identical for all 
worksheets. An HEP multiplier is assigned to each PSF’s state. The HEP multiplier 
could have different values in different worksheets. 

3. Two exclusive equations are provided to calculate the final HEP. The choice of one 
equation over another is dependent on the number of negative PSFs. 

8.5.4.5 Error-Specific HEPs 

HEPs are calculated for “diagnosis” and “action” failures. The SPAR-H authors have 
provided a comparison of the base failure rates with other HRA methods.  These comparisons 
are shown in Table 8-11 to Table 8-13. 

Table 8-11. Action Error Type Base Rate Comparison. 

Method Error Type Description 

Base Rate 
(5th – 95th  
percentile 
bounds) 

SPAR-H Action Task 0.001 
NARA D.  Fairly simple task performed rapidly or given scant 

attention 
0.09 

F.  Restore or shift a system to original or new state 
following procedures, with some checking 

0.003 

CREAM Tactical 0.001–0.1 
THERP Rule based actions of control room personnel after diagnosis, 

with recovery. EF=10 
0.025 

 

                                                 
a The steps that follow in 8.5.4.4 were developed for the nuclear power industry, therefore its use for space 
applications will require some adaptation. 
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Table 8-12. Diagnosis Error Type Base Rate Comparison. 
Method Error Type Description Base Rate 

SPAR-H Diagnosis Task  0.01 
CREAM Tactical Control Mode  0.001–0.1 

Opportunistic Control Mode  0.01–0.5 
THERP Screening diagnosis. EF=10.  0.01 
NARA Miscellaneous task category “M,” no description in other tasks (A-H) fits 

diagnosis tasking as well. 
0.03 

 

Table 8-13. Mixed-Task Base Rate Comparison. 

Method Error Type Description 
Base 
Rate 

SPAR-H Task involving both diagnosis and action 0.011 

HEART A. Totally unfamiliar, performed at speed with no real idea of likely 
consequences 

0.55 

B. Shifts or restores system to a new or original state on a single attempt, 
without supervision or procedures 

0.26 

C. Complex task requiring high level of comprehension and skill  0.16 

E. Routine, highly practiced, rapid task, involving a relatively low level of skill  0.02 

G. Completely familiar, well-designed, highly practiced, routine task 
occurring several times per hour, performed to highest possible standards by 
a highly motivated, highly trained and experienced person, totally aware of 
implications of failure, with time to correct potential error, but without the 
benefit of significant job aids 

0.0004 

H. Responds correctly to system command, even when there is an 
augmented or automated supervisory system providing accurate 
interpretation of system state 

0.00002 

M. Miscellaneous task for which no description can be found (Nominal 5th to 
95th percentile data spreads were chosen on the basis of experience 
available suggesting log normality) 

0.03 

FRANCIE 
(5th-95th 
percentile) 

1. Procedural Omission  0.0059 

2. Error of Intent  0.085 

3. Selection Error  0.015 

4. Awareness and Task Execution Related to Hazards/Damage  0.016 

5. Cognitive Complexity or Task Complexity Related 0.033 

6. Inspection/ Verification  0.097 

7. Values/Units/Scales/Indicators Related  0.022 

8. Maintenance/Repair Execution  0.041 
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8.5.4.6 Suitability for NASA Applications 

SPAR-H classifies tasks into two types: diagnosis and action. Such a simple classification 
makes SPAR-H suitable for new designs. SPAR-H can also be easily applied to existing 
aerospace designs including both nominal and emergency situations. Before such application, 
the following concerns need to be addressed: 

1. SPAR-H worksheets are designed for nuclear power operations, the worksheets need to 
be revised regarding the appropriate task description, operating conditions, and scope of 
PSFs and their corresponding weights. If the current PSFs are to be used, then the 
assignment of factors such as habitat factors, muscle wasting and bone density factors, 
cardiovascular factors, and other types of illness and their effects, need to be defined 
where appropriate. This applies to other HRA methods that use PSFs. The appropriate 
PSFs for the particular application need to be used. 

2. Since SPAR-H does not provide guidelines for task decomposition, the analyst has the 
responsibility to identify how many diagnosis and/or action activities should be 
considered for a given task. This consequently affects the HEP of the task. The issue 
becomes more significant for new aerospace designs, where the allocation of tasks may 
be in development. 

8.6 Guidelines on Uses of HRA Models 

Compared to other HRA methods considered, the four HRA methods that have been 
described are: (1) relatively easy to use; (2) provide an explicit procedure for HEP estimation; 
and (3) do not require extensive information from task analysis (when used in their respective 
screening modes). There are significant differences between the selected methods, which may 
make each better suited to a different type of analyst or question to be analyzed. CREAM and 
SPAR-H use broader definitions of tasks making them easier to apply to a wider spectrum of 
aerospace activities. CREAM’s set of generic tasks is defined based on human information 
processing. The set of generic tasks provided in CREAM covers a range of activities while 
remaining at a level of specificity that is easily adaptable to NASA mission tasks. CREAM’s 
generic tasks may assist an analyst when a well understood task is to be performed in a new 
setting and, therefore, is a useful tool for screening. The provision of activities could allow the 
analyst to focus on the incorporation of PSFs that are unique to the NASA mission. 

The task types used in SPAR-H, while also based on human information processing, 
characterize tasks in a much simpler way, by dividing tasks by emphasis on cognitive workload 
or physical workload (or potentially a combined rate). SPAR-H characterizes tasks as Diagnosis 
or Action, which can be generalized to any task, but is not as specific as tasks defined in 
CREAM or THERP. Therefore, SPAR-H is not as effective for screening analyses, but can be 
extremely powerful to assess the effects of performance-shaping factors on a task. Because 
NASA may wish to assess the potential for error in new mission tasks and activities (activities 
that may not have been performed ‘for real’), the ability to estimate probabilities without having 
to specify exact tasks may be useful. In addition, more so than other methods, SPAR-H does 
not require that the analyst be familiar with human performance, just the task. Through its 
standardized process, it assures repeatability between analysts who have the same 
understanding of the task in question. Its results are easily reproduced, because it provides 
standard worksheets that ensure the analyst uses the same process each time. 

NARA combines context characteristics and human tasks, and (like CREAM) defines a set 
of “generic tasks,” also largely based on the human information processing model. These tasks 
can be generalized to match a subset of aerospace activities. Among the four methods, NARA 
has the most extensive use of real data to support its HEP quantification. One of the appealing 
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features of NARA is its use of actual human error data (i.e., CORE-DATA) in most cases. This 
contrasts with the other methods that are either totally or partially expert judgment based.   

Finally THERP, when compared to the other three methods, is highly granular in its task 
decomposition (e.g., Opening a Valve). Treatment of human performance is much like treatment 
of the mechanical system, with significant emphasis on actions and much less emphasis 
(especially when compared to the other selected HRA methods) on cognitive aspects of 
performance. THERP relies on task granularity and a small number of PSFs. THERP is effective 
when the task is well understood, but the potential cognitive impacts on performance are not 
understood. Like CREAM, THERP can assist the analyst in the identification of potential human 
errors during screening analyses. The tasks used in THERP can be and have been generalized 
for use in non-nuclear power applications.  

Different HRA methods may need to be combined to handle different aspects of the HRA 
modeling. For example, as was done in the Space Shuttle PRA, CREAM may be used as the 
general methodolgy with THERP being used for dependencey treatments and uncertainties. 

8.7 HRA Examples 

Two HRA examples are presented in this section. Section 8.7.1 provides an example for a 
Post-Initiator HSI, and Section 8.7.2 provides one for a Pre-Initiator HSI. 

8.7.1 Example for a Post-Initiator HSI  

This example is based on information that was used in the Cassini PRA [8-11, 8-12]. The 
HSI of interest is defined as follows: the Flight Control Officer (FCO) diagnoses a launch vehicle 
guidance control malfunction and initiates the manual Command Destruct System (CDS). 

The CDS is a part of the Flight Termination System (FTS) that requires a radioed command 
from the ground to activate destruct ordnance on a launch vehicle. The other part is usually 
called the Automatic Destruct System (ADS) and is typically activated by pull-lanyards or break 
wires running along the length of the vehicle. If the vehicle fails structurally and breaks up, the 
lanyard pulling or wire breaking serves as a trigger for ordnance activation, without the need for 
a human manual action (i.e., FCO to push the CDS button). 

Definition of the HSI 

This post-initiator HSI has two main elements: 

 Cognitive response: FCO diagnoses system malfunction and initiates manual CDS, and 

 Action response: FCO completes response by pushing the CDS button/control. 

Since the action part is a simple, single, and fast task, and the CDS control button is well 
identified, the HEP associated with the FCO action is negligible compared with his or her 
cognitive failure probability. The HSI is included in the associated event tree. See the circled 
event in the Event Sequence Diagram (ESD), shown in Figure 8-3. This covers a simple task 
analysis for this HSI.  
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Figure 8-3. Example of Cassini PRA Fault Tree and Event Sequence Diagram Modelsa. 

HSI Modeling and Quantification 

The FCO’s cognitive response is time-dependent (i.e., FCO’s response has to be completed 
within a given time window, Tw), hence a time response model is appropriate for HEP 
quantification [8-4, 8-8]. (Reference [8-13] also describes the general time-reliability model)  . 
One therefore needs to know the FCO’s response time distribution.   

The general time-reliability model, which can be used with any specific HRA modeling 
approach described earlier, is given as 





0

)](1)[()Pr()Pr( dttFtfTTttimeinresponseNon TrTwWr  (8-2) 

where Tr and Tw represent “crew response time” and “available time window” for a specific HSI, 
and fTw(t) and FTr(t) represent the density function and cumulative probability distribution for 
stochastic variability of the above variables. The term )]t(F1[ Tr , which is the complementary 
cumulative probability distribution of crew response time, is usually known as a time response 
curve (TRC). 

As a general example, if one assumes a lognormal distribution for Tr with a log median of 
)ln( 2/1T  (T1/2  is the crew median response time) and log standard deviation  , and if one 

assumes a constant window Tw  for action, then 

                                                 
a. The ESD symbols used in this figure are different than the symbols used in this guide. 
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]/)/[ln(1)Pr()Pr( 2/1  TTTTTinresponseNonHEP wwrw   (8-3) 

where  (.) is the standard normal cumulative distribution function (CDF). It must be noted that 
HEPs derived from TRCs with relatively large time windows may be extremely small (i.e., 
<1E-5). In these cases, one has to ensure other non-time dependent human errors are also 
accounted for, such as errors in executing actions, using the appropriate HRA modeling 
approach. 

For the specific example being illustrated, due to lack of data on FCO’s response time, 
expert judgment and engineering insights need to be used to develop an FCO response time 
distribution.  The FCO cognitive response time can be broken down into two time elements: 

 “CDS trigger delay”: time at which an objective and observable “trigger condition” for CDS 
activation by the FCO occurs, e.g., vehicle reaches a certain angle of inclination. Note that 
this time is, in principle, not a part of the FCO’s response time and just reduces the available 
time window. It varies with the type of failure scenario.  An estimate of 0 to 6 seconds, 
depending on the initiating malfunction, is suggested in the Cassini PRA. 

 “FCO response time”: time taken by the FCO to observe/confirm system malfunction 
indications, diagnose the situation, and make a decision to initiate CDS. The FCO’s 
response time depends on clarity of indications, human-machine interface, and guidance 
provided by emergency response procedures.  An important factor in the FCO’s decision 
making can be his or her reluctance to activate CDS before ensuring this is the last resort. 

The Cassini PRA provides the following information on the FCO’s response time distribution. 

 A “best-estimate” FCO’s response time distribution (in CDF format) is suggested as follows: 

Time (sec) 
Success 

Probability Function 

0 – 2 0 --- 

2 – 8 1 Linear 

 

The FCO median response time (T1/2) is estimated to be 3.5 seconds for the best-estimate 
distribution. 

 An “upper-bound” CDF is suggested as follows to allow for time delays associated with (1) 
lack of visual clarity (0.5 sec), (2) eye movement and eye adjustment for different level of 
light (1.5 sec), and (3) flight-specific change in procedure and additional information (0.5 
sec): 

Time (sec) 
Success 

Probability Function 

0 – 2 0 --- 

2 – 10 1 Linear 

 
The FCO median response time (T1/2) is estimated to be 6.0 seconds for the upper-bound 
distribution. 

 The Cassini PRA also combines the “trigger delay” time and “FCO response time” 
distributions to come up with the following overall CDF for FCO to activate CDS: 
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Time (sec) 
Success 

Probability Function 

0 – 2 0 --- 

2 – 15 1 Linear 

 
The FCO median response time (T1/2) is estimated to be 8.5 seconds for the overall FCO’s 
response time distribution. 

This distribution is believed to provide a reasonable representation of the overall FCO’s 
CDS activation response time for a variety of failure scenarios and conditions. The graphical 
CDF for FCO’s manual CDS initiation is presented in Figure 8-4. Mathematically, the TRC for 
CDS activation by FCO is expressed as follows: 

sec15,0.0)(0.1)(

sec152,077.015.1)(0.1)(

sec20,0.1)(0.1)(





ttptHEP

tttptHEP

ttptHEP

 (8-4) 

 

Figure 8-4. FCO’s CDS Activation Time Cumulative Distribution Function. 

To estimate the HEP for CDS activation by the FCO, one needs an estimate of the available 
time window (Tw ).  If, for example, Tw = 10 seconds, then 

38.010*077.015.1 HEP . 

Finally, an uncertainty needs to be added as for all HEPs. In  past PRAs,  an error factor 
(EF) of 2 has been  generally assigned to HEPs above 0.1,  an EF of 3 for HEPs between 0.01 
and 0.1, an EF of 10 for HEPs between 0.001 and 0.01, and an EF of 30 for HEPs below 0.001. 
This reflects the greater uncerainty with lower HEPs. The analyst, however, needs to determine 
the appropriate EF for the particular case being analyzed. 

8.7.2 Example for a Pre-Initiator HSI  

This section presents an HRA example for a Type A HSI based on limited available 
information. This HSI concerns the handling of a piece of optical equipment.  The HSI of interest 
is defined as follows: “optical equipment failure due to human error.”  
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HSI Definition  

The potential human errors during the handling process and quality assurance (QA) are first 
identified. The process is briefly described as follows: 

 In a clean room, the optical piece is first cleaned and then placed in a contaminate-free bag. 
The bag is then purged and sealed. Next, the bag is packed in a protective foam container, 
with humidity indicators, an accelerometer, and a desiccant. The accelerometer will record 
potential impacts to the optical equipment. There is an independent QA person who verifies 
the process using a formal sign-off procedure. 

 Upon receiving the package, the box is opened and the package and equipment are 
examined for damage.  The indicators are then examined to see if requirements have been 
exceeded.  An independent QA person verifies the process. 

 The item is typically stored in a similar environment or installed on the vehicle, which is in a 
clean room environment. Again, an independent QA person verifies the equipment storage 
or installation using a sign-off procedure. 

Task Analysis  

The THERP model [8-5] is used here for the task analysis. The following three main tasks 
are identified for this HSI: 

1. Cleaning, bagging, purging and sealing bag, and packing optical equipment (i.e., 
packing task), 

2. Examining the package and equipment for damage after opening (i.e., 
unpacking/examining task), and  

3. Storing or installing optical equipment on the vehicle (i.e., storing/installing task). 

The second task can be mainly treated as a recovery mechanism from potential human 
errors made during the first task. The following basic human errors (BHEPs) and recovery 
factors (RFs) are now defined for the above tasks: 

Packing Task 

 BHEP1 = Human error for improperly cleaning the optical equipment  

 BHEP2 = Human error in bagging the equipment 

 BHEP3 = Human error in purging and sealing the bag 

 BHEP4 = Human error in packaging the bagged optical equipment 

 RF1 = RF for visually inspecting the bag for damage (for BHEP2) 

 RF2 = RF for independent QA checker verifying optical equipment cleaning, 
bagging, purging, sealing, and packing (for BHEP1 to BHEP4) 

Unpacking/Examining Task 

 BHEP5 = Human error in unpacking the equipment  

 RF3 = RF for visually inspecting the bag for damage (for BHEP2, BHEP5) 

 RF4 = RF for examining the accelerometer for a record of any impact (for 
BHEP4, BHEP5) 

 RF5 = RF for examining humidity indicators for equipment moisture content 
requirements (for BHEP2, BHEP3) 
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 RF6 = RF for independent QA checker verifying optical equipment cleaning, 
accelerometer record, and humidity indicators’ level (for BHEP1 to BHEP5) 

Storing/Installing Task 

 BHEP6 = Human error in performing equipment storage or installation  

 RF7 = RF for independent QA checker verifying equipment storage or 
installation (for BHEP6) 

With regard to performance shaping factors, it is assumed that all personnel are well-trained 
and have well-written procedures.  Additionally, the working conditions and stress level are 
assumed to be optimal.  

HSI Modeling and Quantification 

Since the three main tasks (i.e., packing, unpacking/examining, and storing/installing) are in 
series, one can use the model that the occurrence of an error in any task will result in an error in 
the handling and quality assurance process. Therefore, the HEP can be expressed as follows: 

 
 


I

i

J

j
jii RFBHEPHEP

1 1
, ])[(  (8-5) 

It is noted that all PSFs are unity in this case (i.e., nominal conditions are assumed). Using 
the human errors and RFs identified earlier in the task analysis, the HEP for this HSI is 
expressed as follows: 

RF7*  BHEP6  RF6*  RF4*  RF3*  BHEP5 

 RF6*  RF4*  RF2*  BHEP4  RF6*  RF5*  RF2*  BHEP3 

 RF6*  RF5*  RF3*  RF2*  RF1*  BHEP2  RF6*  RF2*  BHEP1  HEP





 (8-6) 

Estimation. For illustration purposes, BHEP and RF estimates in NUREG/CR-4772 [8-1] 
and NUREG/CR-1278 [8-4] are used to quantify the HEP associated with handling of the optical 
equipment.  The generic values used for BHEPs and RFs are summarized in Table 8-14. 
Following guidance provided in NUREG/CR-4772, zero dependence is assumed among errors, 
since the tasks are in series and it is assumed different QA personnel are used during packing, 
unpacking, and installation tasks (i.e., ZD is assumed). High dependence is assumed for 
multiple recovery possibilities during the unpacking task assuming the same person performs 
these tasks closely in time.  

To simplify calculations, the estimates for BHEPs and RFs in Table 8-14 are used as mean 
values to calculate the overall HEP for this HSI.  For more a accurate estimate the medians in 
Table 8-14 can be converted to mean values. Using estimates in Table 8-14, the HEP for this 
HSI is calculated as follows: 

HEP	=	5.0E‐4	(packing	&	unpacking/examining	tasks)	+	3.0E‐3	(storing/installing	task)	=	3.5E‐3	
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Table 8-14. Generic BHEP and RF Estimates [8-1, 8-4]. 
BHEP/RF Median EF Section Source 
BHEP1 0.03 5 8.7.2 NUREG/CR-4772 
BHEP2 0.03 5 8.7.2 NUREG/CR-4772 
BHEP3 0.03 5 8.7.2 NUREG/CR-4772 
BHEP4 0.03 5 8.7.2 NUREG/CR-4772 

RF1 0.1 5 8.7.1 NUREG/CR-1278 
RF2 0.1 5 8.7.2 NUREG/CR-4772 

BHEP5 0.03 5 8.7.2 NUREG/CR-4772 
RF3 0.1 5 8.7.1 NUREG/CR-1278 
RF4 0.5 < 2 8.7.2 (Assumed HD 

with RF3) 
NUREG/CR-4772 

RF5 0.5 < 2 8.7.2 (Assumed HD 
with RF3/RF4) 

NUREG/CR-4772 

RF6 0.1 5 8.7.2 NUREG/CR-4772 
BHEP6 0.03 5 8.7.2 NUREG/CR-4772 

RF7 0.1 5 8.7.1 NUREG/CR-4772 
 

It is noted that the calculated HEP here could be on the conservative side, because the 0.03 
estimate for BHEPs is rather conservative, as stated in NUREG/CR-4772. If more information 
becomes available to the HRA analyst, a more refined task analysis including task-specific 
PSFs can be performed. Having more information on tasks, procedures, and personnel, and 
using less conservative BHEP estimates, would result in a more realistic estimate of HEP. Also, 
human performance data on this and other similar operations (if available) can be used to 
estimate the BHEPs and RFs for various tasks. 

It is observed that the HEP associated with the task of the optical equipment storage or 
installation on the vehicle dominates. Another recovery mechanism such as a post-installation 
test (if feasible) or a second QA checker for the installation task would help reduce the HEP.  
For example, if one considers a second independent QA person (with a 0.1 RF credit), then the 
calculated HEP would be reduced to 8.0E-4 from 3.5E-3. Finally, uncertainties (error factors EF) 
need to be assigned to the final estimate. These are obtained by propagating the EFs on the 
individual BHEPs and RFs.  
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9. Software Risk Assessment 

Software is a key component of modern space systems.  Its widespread use goes hand in 
hand with the utilization of sophisticated digital and electronic devices whose functions it 
monitors and controls, and which in turn provide the interfaces through which practically all 
types of system hardware devices and components, and their associated functions, are 
monitored and controlled.  Thus, in modern space systems software provides the “brains” for the 
accomplishment of both primary and ancillary launch vehicle, space vehicle, and supporting 
ground system functions, such as the propulsion of a rocket; the Guidance, Navigation, and 
Control (GN&C) of a spacecraft; or the data gathering and downlink of a science instrument.   

Safety functions are also in large part entrusted to software. In case of incipient accident 
conditions, when the timeframe available for a needed action is too short to permit a human 
operator’s decision, the actuation of launch abort and system safety functions is determined by 
an intervention logic encoded in software.  In crewed spacecraft, software is critical to the safety 
of the humans on board not only under potential accident conditions, but also under normal 
conditions, through the routine monitoring and control of the environment that permits crew 
survival and health, e.g., proper cabin pressurization, oxygen content, temperature, etc.. 

The rate of expansion from limited to more extensive applications in the use of software in 
space and other complex systems has been quite fast in recent years, but the state of the art in 
software assurance techniques, including reliability and risk assessment, has not kept up with 
this fast growth.  In a majority of space programs and projects of the recent past, assurance of 
the proper functioning and safety of software has primarily relied on the line-by-line verification 
of code against requirements and on some amount of testing across the range of input 
conditions defined by designers as the “software operational profile.”  From an assessment 
point of view, software reliability has often been assumed to be sufficiently high as not to require 
specific analysis.  In the few cases where a quantification has been attempted, a reliability figure 
of merit has been typically estimated by means of a “black box model,” as will be discussed in 
some detail in Section 9.4.6. 

Reliability and risk experts know well that complexity produces more opportunity for system 
anomalous behavior, or possibly even for catastrophic failures.  In order to have sufficient 
confidence in the successful accomplishment of a mission where software plays a crucial role, 
designers and analysts need to have at their disposal for the assessment and assurance of 
correct software functionality, tools comparable in analytical and predictive capability to those 
that are routinely available and used for the evaluation of the typical hardware portions of the 
system.  The perception of the technical community at large, even in the very recent past, has 
been predominantly driven by skepticism towards approaches that have been proposed by 
researchers and developers for the analysis and demonstration of software assurance.  As a 
result, many programs and projects have assumed software contributions to mission risk to be 
negligible in comparison to hardware component contributions without carrying out a formal 
demonstration of safe performance, or have applied coarse methods of assessment that have 
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generally offered very limited insight into the level of assurance provided by the adopted flight 
software designs and implementations. 

The material that follows is based on recent developments in software risk assessment 
techniques that have been successfully applied and validated in actual NASA space program 
environments.  These techniques are linked together via one risk modeling framework which is 
referred to as “CSRM” (Context-based Software Risk Model).  As will be discussed and 
illustrated in the following sections, this framework can accommodate a range of techniques, to 
suit the specific needs of the user and the specific characteristics of the system of interest, 
providing the analyst with the flexibility to adapt his/her approach to the nature of the problem at 
hand, as well as to the level of information and resources available to tackle it. 

9.1 Concept of Software Risk and Related Definitions 

Before entering into a technical discussion of the methods of analysis and assessment of 
software risk, it is useful to clarify the meaning given to the term “software risk” in the context of 
this chapter and the guidance it provides in the following sections. 

In a space system mission we define as “software risk” the possibility that a negative 
mission outcome may be produced by a system malfunction that is either directly originated by a 
software fault, or to which a software fault is a determining contributor.  “Determining 
contributor” means that, although other non-software-related malfunctions may be part of the 
scenario that produces the negative mission outcome, the latter would not occur if a critical 
software fault were not also present.   

The concept of software risk is related to other concepts with which the user may be familiar.  
However, total equivalence cannot automatically be assumed for certain terms, when these are 
applied in the software risk domain.  For example, one may think that the assessment of 
“software reliability,” as generally intended within the technical community, covers in practice the 
assessment of software risk.  However this is only partially correct, if referred to the definition of 
reliability that describes it as the ability of a component to perform in full accordance and 
compliance with its design specifications (see Section 9.6).  In fact, as will be discussed in the 
following, a majority of major mission failure contributions by software have been the result of 
erroneous or incomplete design logic and/or functional specifications.  That is, in most of these 
situations the software was “reliable” according to a definition formulated in the terms just 
described, but its behavior did not represent a correct response to the circumstances that the 
system and its resident software were facing, and in fact was a determining factor of the mission 
failure that resulted from such circumstances (see Section 9.2 for more information on this 
specific subject). 

Another way of stating the above is that the study and assessment of software risk and 
associated “software failures” does not exclude design errors and omissions.  Moreover, 
because flight software is also the means of implementation of some important portion of the 
operational logic of a system, the investigation of possible software design error risk cannot 
remain confined to the implementation of software in actual computer code, but needs to be 
extended into the validation of the system design logic itself.  Indeed, as the discussion in 
Section 9.2 shows, some of the recorded software related mission failures of recent memory 
would have occurred in the same exact way if the implementation of the faulty design logic had 
been carried out via hardwired electrical relays and/or analog electrical circuitry.  The counter-
point to that, however, is that the implementation of design logic in hardware devices is self-
limited in complexity by the nature of such devices, whereas software poses almost no limits to 
the variety and complexity of system control logic and algorithms that can be incorporated into 
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the design of a given system.  As mentioned earlier, this possibility of unbounded complexity 
creates at the same time the potential for much broader ranges of system functionality and for 
more difficult-to-anticipate modes of system malfunction or failure. 

9.1.1 Basic Definitions 

A definition of software risk consistent with the concepts discussed above can be formulated 
as follows:  

“Software risk is the possibility of events by which the software used within a system 
may fail to successfully execute its mission-critical or safety-critical system functions, under 
the conditions that are to be covered according to the concept of operation of the system 
designed to carry out the mission, and under the design envelope that is derived from, and 
consistent with, that concept of operation.” 

The above definition is intentionally given in purely qualitative terms, to make a distinction 
between the definition itself and the parameters by which software risk may be quantified.  
These may vary according to the type of mission considered, but in general will include the 
probability of the events referred to in the above definition, complemented, for those situations 
where the events involved may have mission impacts of different kinds and magnitude, by a set 
of parameters that can provide an appropriate appraisal of such potential impacts and their 
severity if the events of concern do come true. 

The definition also excludes from the realm of interest those software related events that do 
not affect mission-critical or safety-critical functions, i.e., events that have a peripheral impact on 
the mission.  These may of course still be of interest from an overall system reliability viewpoint 
and accordingly addressed via appropriate analytical and assessment means. 

It is finally noted that in the above definition the concept of “covering mission conditions” 
does not refer to an exhaustive coverage, in a combinatorial sense, of all the possible values of 
software input data and interacting system parameter states, but to the identification and 
recognition of all the key dynamic interactions and interfaces between the key mission-critical 
system states and conditions, and the desired software functional responses to these. 

Beyond the software risk definition given above, a set of definitions is provided in Section 
9.6, with the practical intent of providing the reader with an unambiguous interpretation of basic 
terms related to the contents of this chapter.  Other somewhat different interpretations or uses 
of the same terms may be found in the technical literature and in different contexts.  This is a 
necessary caveat, since it is generally recognized that no standard definitions exist for some of 
the terms frequently used in the software reliability and safety technical areas, as it is also 
discussed in recent technical journal articles (see for example [9-1]).  Thus, no claims may be 
made as to the general validity and acceptance of these definitions and terminology beyond the 
context and boundaries of this Guide. 

The discussion in Section 9.1.2 (immediately below) is specifically intended to assist the 
reader in the interpretation of some of the key definitions provided in Section 9.6. 

9.1.2 Software Defects and Software Failures  

A schematic representation and classification key for how defects or faults can be 
introduced in flight software during its development and production process is shown in Figure 
9-1.  The figure identifies the following principal phases of system and software development: 

A. Requirements Development & Analysis 
B. Software (SW) Module Specification Development 



 

 9-4

C. SW Module Coding, Initial Verification & Validation (V&V) and Testing  
D. Operational Data Entry, Final V&V and Testing 

System &
Operations
Concept

SW Module
Requirements

Detailed
SW Module
Specifications

Functionally
Validated
SW Module

Operational
SW Module

Requirements
Development
& Analysis

SW Module
Specification
Development

SW Module
Coding,

Initial V&V and
Testing

Operational
Data Entry,
Final V&V
and Testing

System Design and Software Specification Defects

Translation & Coding Defects Parameter & Data Entry Defects

Legend: Software development activity

Software related product

 
Figure 9-1. Software Defects by Development Phase. 

The above phases of development proceed from the initial definition of a System and Operation 
Concept and incrementally generate software products, i.e.: 

 Software module requirements, i.e., definition of software functions, as a Phase A 
product 

 Detailed software module specifications, i.e., definition of specific software capabilities 
and interfaces, as a Phase B product 

 Functionally validated software modules, i.e., functional but not mission-ready flight 
software, as a Phase C product 

 Operational software modules, i.e., flight-ready software, as a Phase D and final product 

Actual software developments may follow more complex variations of the above described 
process.  However, the above representation serves the general purpose of clarifying that 
defects or faults can be introduced into a software module essentially in three basic forms, 
depending on the particular development phase when this may occur, i.e.: 

Type 1 – Design and specification defects, i.e., defects introduced during the definition of 
functional and/or detailed specifications of a software module (Phase A and Phase B in the 
above representation of the software development process) 

Type 2 – Requirement translation and software coding defects, i.e., defects introduced during 
the translation of software specifications into actual software code (Phase C of software 
development process) 
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Type 3 – Parameter and data entry defects, i.e., defects introduced during the “uploading” of 
mission specific parameters into a flight software module 

With respect to the above the following observations are noteworthy: 

 All three types of software defects are the product of “human errors” in corresponding 
software development activities.  

 There is a formal distinction between the definitions of software defects and software faults 
on one hand, and software anomalies and software failures (jointly also generically referred 
to as “software errors”) on the other.  The former are deviations from desired form and 
characteristics of the software specifications or code.  The latter are the manifestation and 
effects of such deviations at execution time, that is, when the software containing the defect 
is executed in test or during the actual system mission. 

 Software defects or faults that are present in a software module may or may not actually 
result in a software anomaly or failure during system test or operation.  Whether this occurs 
or not depends on whether the defective portion of software is called upon and executed.  If 
not called upon during the test process, a defect will remain dormant and undetected.  If not 
called upon during system operation, a defect will remain dormant and inconsequential to 
the associated mission.   

 The reader should be aware of the possible different meanings of the term “error,” as used 
in various contexts in the software engineering and software assurance literature.  In 
general, the action by which a defect is introduced in software is routinely called an “error.”  
However, the execution of a software defect during system test or operation is also routinely 
called an “error.”  In the first case the term refers to the human error committed in design, 
specification, coding, data entry, etc., whereas in the latter case the term refers to the 
software error occurring at execution time as a delayed effect of the former error. 

 In cause-and-effect reasoning, the chain of events leading to a software failure typically 
develops as follows: 

1. The software designer or programmer commits an error (a “human error’) 

2. A software defect is introduced as a result of the above 

3. The software portion containing the defect is called upon and executed at mission 
time, which produces an anomaly or failure (a “software error”). 

9.2 Lessons Learned from Software Failures in Space Systems 

Table 9-I shows a compilation of major mission failures suffered by NASA in the decade 
from 1998 to 2007.  From the table one can see that four out of a total of seven mission failures, 
i.e., more than half, were caused by a software fault, or had a software fault as a critically 
concurrent cause.  In the same time period, four additional major space mission failures caused 
by software faults were suffered by the U.S. Department of Defense, and by major launch 
vehicle developers in Europe and the United States, bringing the total to eight failures in major 
space missions. 
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Table 9-1. Causes of Major NASA Mission Failures*, 1998-2007. 
*Software related failures highlighted in color 

1998 Lewis Spacecraft ACS and safe hold design 

1999 Mars Climate Orbiter Spacecraft  Software / data specification error 

1999 Mars Polar Lander Spacecraft Landing control logic / software design error 

2003 STS Columbia Wing damage from detaching tank foam 

2004 Genesis Spacecraft Improperly installed gravity switches 

2005 DART Spacecraft GN&C software design errors / test oversights 

2006 Mars Global Surveyor Spacecraft Data uplink operator error / power management software design error 

The above data are relative to high visibility missions and do not include possible software 
failures or anomalies that may have occurred in the same time period in lesser missions, or 
missions by other nations in the international arena (e.g., China, Japan, etc.).  Thus the role of 
software as a failure agent is not over-emphasized by this data, and may actually even be 
under-represented.  It is also noted that the descriptions of the causes of failure reported in the 
table strictly reflect the conclusions documented in the official failure investigation reports 
relative to the listed events. 

Two noteworthy pieces of evidence emerge from the data reported in Table 9-I : 

A. Software had a critical role in a large share (~ 60% in quantitative terms) of the failures 
suffered by NASA in high-stakes missions during the 1998 – 2007 decade. 

B. All these software related failures were rooted in software design faults, i.e., the software 
did exactly what it was designed to do, but this was not the correct action to be executed 
under the specific mission conditions encountered. 

The first piece of evidence dispels that notion that software can be assumed to have a 
negligible impact on the reliability of space systems, and that therefore the assessment of 
software risk can be considered unnecessary and not worth including within the scope of a 
system reliability and mission risk assessment activity. 

The second piece of evidence suggests that traditional “software V&V,” i.e., the processes 
carried out in current software assurance practice to demonstrate software compliance with 
specifications – may be reasonably effective in identifying and correcting software coding and 
data faults and preventing associated failures, but not as effective in preventing software design 
and specification errors.  This may be explained by the fact that V&V is in large part directed at 
verifying software compliance with specifications.  In a majority of projects, the validation of the 
design and specifications themselves, especially the part of this concerning the “system design,” 
i.e., the logic of how the software is to interact with the balance-of-system, often falls in a gray 
area in between separate areas of design responsibility and because of this is not given as 
much attention as arguably it should.  To illustrate the point, it is useful to examine the details of 
the Mars Global Surveyor (MGS) spacecraft failure, which actually occurred after about seven 
years of successful operation of the spacecraft in its orbit around Mars, i.e., well beyond the two 
year design life for which it had been designed.  The following summary is taken verbatim from 
the MGS failure investigation report [9-2]: 
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From the software reliability and risk perspective the MGS failure sequence can be 
summarized in the following key points: 

– A “trigger event” constituted by an operator error caused some spacecraft control 
parameters to be corrupted and the spacecraft to eventually enter a “contingency 
orientation” that exposed one of the batteries to sun radiation heating. 

– The spacecraft power management software, having been designed to interpret battery 
overheating as due to over-charging, shut down the charging of the overheating battery 
(action highlighted in blue font in the incident summary box above), which eventually 
caused the spacecraft to completely lose power. 

While other faulty conditions contributed to the MGS failure, the power management system 
design logic was a crucial factor in the spacecraft loss, by its failure to account for external 
heating as a possible cause of increasing battery temperature.  This MGS mission example is 
actually representative of a pattern that has also been observed in other software failure events 
recorded in recent years.  The pattern presents itself as a scenario by which: 

A. A mission event occurs, creating a particular operational condition for a system or 
mission; 

B. A software controlled function, having not been properly designed and or tested for the 
mission condition that has developed, responds in an incorrect or inadequate fashion, 
which in turn causes an un-recoverable mission failure. 

The “trigger event” referred to in A is sometimes a hardware anomaly or even an operator 
error as in the MGS case, but may also be a normal, although unanticipated, element of an 
operational mission sequence.  Such was the case for the Mars Polar Lander failure, where, 

Mars Global Surveyor Failure Investigation Report Summary 

NASA’s Mars Global Surveyor operated for ten years, longer than any other spacecraft sent to Mars. It 
pioneered the use of aerobraking, provided global mapping of the Martian surface, atmosphere, magnetic field 
and interior, and provided key imaging and communications support for subsequent missions. NASA extended 
its mission four times before its unfortunate loss. Key events pertaining to the loss of the spacecraft, whose last 
contact was on November 2, 2006, include:  

•  A modification to a spacecraft parameter, intended to update the High Gain Antenna’s (HGA) pointing 
direction used for contingency operations, was mistakenly written to the incorrect spacecraft memory 
address in June 2006. The incorrect memory load resulted in the following unintended actions:    
–  Disabled the solar array positioning limits.  
– Corrupted the HGA’s pointing direction used during contingency operations.  
– A command sent to MGS on November 2, 2006 caused the solar array to attempt to exceed its 

hardware constraint, which led the onboard fault protection system to place the spacecraft in a 
somewhat unusual contingency orientation.  

– The spacecraft contingency orientation with respect to the sun caused one of the batteries to overheat.  
– The spacecraft’s power management software misinterpreted the battery over temperature as a 

battery overcharge and terminated its charge current.  
– The spacecraft could not sufficiently recharge the remaining battery to support the electrical loads on a 

continuing basis.  
– Spacecraft signals and all functions were determined to be lost within five to six orbits (ten-twelve 

hours) preventing further attempts to correct the situation.  
– Due to loss of power, the spacecraft is assumed to be lost and all recovery operations ceased on 

January 28, 2007. 
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according to the reconstruction of the failure investigation, the vibrations from the deployment of 
the landing gear were interpreted by the landing control software as a positive indication that the 
gear had touched ground, causing the software to command a premature shutdown of the 
retrorockets when the spacecraft was still at altitude over the Martian surface. 

In summary, the review of the space mission software failure history provides us with some 
key insights for setting up and carrying out software risk assessment activities, as summarized 
below: 

– Traditional methods of software V&V and testing appear to have been reasonably 
effective in preventing “random” coding errors, or data entry errors at coding time. 

– The same methods have not been as effective in uncovering design errors, as shown by 
the majority of software related mission failures, whereby critical faults had been 
introduced in design factors concerning the functional interfaces between key system 
functions and their control software. 

– A significant fraction of software design failures have occurred during the operation of a 
mission under off-nominal conditions resulting from an anomaly, or under conditions that, 
although nominal for the mission, had not been fully anticipated or understood by the 
system designers. 

9.3 Classification of Software Failures for Risk Modeling 

When referring to SW failures a variety of classification schemes are possible.  In this 
section, however, simple classification terminology is introduced that is useful from the point of 
view of risk modeling, i.e., specifically for the purpose of distinguishing types of SW failures in 
terms of: 

a) Initiation mode, 

b) Outcome in mission terms. 

9.3.1 Conditional vs. Unconditional Failures 

In terms of the manner in which they are initiated, software failures can be classified as 
“unconditional” or “conditional.”  The definitions associated with this classification are provided 
below: 

Unconditional SW Failure: 
A software failure is “unconditional” when it spontaneously occurs during the execution of a 
software function under nominal system conditions and after a successful, i.e., failure-free  
initiation of that software function. 

Conditional SW Failure: 
A software failure is “conditional” if it is logically associated with an initiating condition by 
which, before the occurrence of the software failure, the balance-of-system has entered a 
state that requires a non-routine type of control action by a software-implemented function.    

With regard to unconditional failures, it can be said that these generally correspond to a 
failure by the software to correctly carry out some routine function.  In a mature system design, 
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routine software functions are usually well understood and specified, thus unconditional failures 
are rarely caused by a design fault in systems that have been used for repeated missions; 
however, they have occurred relatively often with respect to other types of failures in the first 
mission of a new systema.  Unconditional failures caused by other types of faults (e.g., coding or 
data-entry errors not caught by V&V processes) or by external influences (e.g., a “single event 
upset” that alters the state of a memory bit) are possible but not common. 

With regard to conditional failures, it is noted that system initiating conditions usually 
correspond to critical mission phases when the software has to correctly recognize, and 
respond to, the occurrence of specific system events or external events.  These events 
generally belong to one of three broad categories, i.e.: 

a) Initiation of critical system maneuvers and actions, under potentially uncertain 
boundary conditions, e.g., the landing of a spacecraft in a previously unexplored 
planetary environment; 

b) Switch from one mode of system operation to another, based on mission time and/or 
other system events, e.g., staging of a launch vehicle, based on mission clock and/or 
measure of fuel tank depletion; 

c) Occurrence of a system hardware anomaly or failure, or of an anomalous external 
event affecting the system, by which a special software control action is to be 
undertaken, e.g., the failure of one thruster in a multi-thruster attitude control system, 
by which a different control logic and algorithm set has be activated within the 
software. 

9.3.2 Recoverable vs. Mission-critical Failures 

In terms of their effects, software failures can be classified as “recoverable” or “critical.”  The 
corresponding definitions are provided below: 

Recoverable SW Failure: 
A software failure is “recoverable” when it may not directly result in a system and mission 
failure, because of built-in fault-tolerance features of the system design by which the 
software function of concern can eventually be restored to a fault-free condition. 

Critical SW Failure: 
A software failure is “critical” when it cannot be isolated and controlled by built-in fault-
tolerance features of the system design, and, if not compensated by other means, could 
result in a system and mission failure.  

Space software and computer systems are commonly designed to be “fault-tolerant,” so 
that, if a fault is encountered in the execution of a software function, the software function can 
be momentarily suspended and/or switched to a redundant computer and software unit, and 
after some recovery routine/process is executed, the normal functionality is restored.  This type 
of fault tolerance is achieved with relative ease, and is therefore fairly common, in the execution 
of certain types of system functions.  For example, it is very common in the handling of data and 
communication relay functions by earth-orbiting satellites and planetary spacecraft.  Other 

                                                 
a Several failures of this kind have occurred in maiden flights of launch vehicles.  
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software-controlled functions that have to be executed in split-second or millisecond timeframes 
are not as easily designed to be fault-tolerant, and this is usually attempted only for very high-
stakes functionality, e.g., the propulsion and attitude control of the Space Shuttle and other 
functions where human life and/or high value space system integrity is at stake. 

9.4 Context-based Software Risk Model (CSRM) 

The CSRM model is an approach to risk modeling and assessment that has been designed 
to address and account for the full range of potential software faults and failures that have been 
identified and recognized in the recorded history of space missions.  More specifically, 
recognizing that traditional “black box” software reliability models (see Sections 9.4.6 and 
9.4.6.4) do not well reflect the nature of software “conditional failures” (as defined in Section 
9.3.1 above), the CSRM modeling framework has the flexibility to cover with appropriate logic 
models and quantification techniques these failures and “unconditional failures,” while 
identifying which among these failures are “recoverable” or “critical.” 

The CSRM modeling approach focuses on the representation and assessment of software 
risk at the system functional level.  It uses proven PRA techniques for systematic identification 
and analysis of key operational mission scenarios as the basis for developing its software risk 
models and associated quantitative estimations of software levels of assurance in relation to the 
mission-critical and safety-critical system functions. 

The remainder of this chapter addresses the formulation, application, and practical utilization 
of the CSRM model and associated processes. 

9.4.1 Conceptual Formulation 

The CSRM model is based on the concept of “condition coverage,” i.e., an extension of the 
concept of “fault coverage” which has been widely used in the formulation of other software 
assurance and reliability assessment approaches.  The reader may refer to Section 9.6 for  
definitions of these terms.  Discussion of the concept of “condition coverage” that clarifies what 
is intended by the term, can be found later in Section 9.4.2.2 and in the example provided in 
Section 9.4.4.2. 

Before discussing the CSRM formulations for software risk, it is useful to briefly discuss 
earlier attempts at modeling software risk.  Typical past formulations have been based on an 
unconditional reliability model, by which software was assumed to have a failure rate s in the 
time dimension, exactly like any system hardware component.  In this paradigm, the software 
failure rate may be estimated by use of one of a variety of parametric or test-based techniques 
(see discussion in Sections 9.4.6.3 and 9.4.6.4).  However, once this was done, one single 
overall unconditional probability of failure would be typically calculated for the entire flight 
software of a spacecraft, according to the standard reliability/unreliability formulations: 

t
s

seR             (9-1) 

t
s

sePOF 1           (9-2) 

In the above equations t is the mission time, s, is the software failure rate in time, Rs is the 
software reliability, and POFs is the software unreliability or probability of failure, which also 
represents the “software risk” for a mission time t. 

The validity of the above formulation of software risk hinges in practice on two key 
assumptions, i.e.: 
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A. The failure of software is driven by mission time, and can be represented by means 
of a failure rate in time. 

B. The failure behavior of a given piece of software is well represented by one average 
value of the failure rate, which can be estimated by testing the software across its 
normal “operational profile,” i.e., the range of normal inputs to the software during its 
nominal operation. 

The above assumptions may be justified for certain types of large scale software 
applications where a “software failure” is merely an interruption of service with undifferentiated 
consequences, and, in fact, a seemingly random behavior in time, i.e. the type of failure 
behavior that lends itself to a failure-rate model, has been reported in the literature as 
characteristic of certain types of software failures (see for example [9-3]).  However, neither of 
the above assumptions applies well to space system flight software executing critical, and well 
differentiated, functions whose failure may also often produce well differentiated immediate 
effects.  Indeed, as discussed earlier in Section 9.2, the actual recorded history and experience 
relative to space missions shows without much doubt that space system software risk is not 
primarily driven by such semi-random types of failures, but by critical failures deterministically 
rooted in, and traceable to, software design and specification faults. 

The CSRM model of software failure uses a logic and probabilistic formulation that can 
represent both “unconditional” and “conditional” software failures, as well as “recoverable” and 
“critical” ones.  In the CSRM top-level representation of software risk, a generic software action 
can be represented as the “logic intersection” of two principal composing events, as expressed 
below: 

{System Enters Condition “i”} AND {SW Responds Correctly} => {Successful Software Behavior }       (9-3) 

so that the corresponding risk scenario is also represented as the logic intersection of two 
composing events a : 

{System Enters Condition “i”} AND {SW Responds Incorrectly} => {Software Failure }       (9-4) 
 

With the notation : 

 FSW = software failure event  

 MCi = i-th type of mission condition entered by the system  

 RSWi = risk scenario induced by software in relation to i-th type of mission condition (MCi) 

 RSW = overall mission risk induced by software, 

the risk scenario in expression (9-4) can be formulated in logic symbolic terms as : 

 MCFMCR iSWiSWi            (9-5) 

                                                 
a The term “event” is to be interpreted in a flexible way in the context of this discussion.  Either of the two events to 
which the discussion refers can actually be a combination of more events or conditions.  The distinction that matters 
between the two types of events is between the scenario-initiating “system condition” that requires a certain type of 
“software response,” and the software response itself. 
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and the overall software induced risk is accordingly expressed as : 

   
N

i
iSWiSW MCFMCR

1

         (9-6) 

The probabilistic formulations corresponding to expressions (9-5) and (9-6) are, respectively: 

   MCFPMCPP iSWiSWi          (9-7) 

and 

    



N

i
iSWiSW MCFPMCPP

1

       (9-8) 

where the terms appearing in the equations are defined as follows: 
 

P(FSW   MCi) =  conditional probability of software failure, given mission condition of type i 

 P(MCi ) =  probability that the i-th type of mission condition is entered by the system 

 PSWi  =  unconditional probability of mission condition type-i occurrence accompanied by a software 
failure  

PSW  =  overall probability of software-induced mission failure. 

9.4.2 Key Objectives and Characteristics of CSRM Application 

The CSRM risk model and associated formulations are flexible and easily adapted to cover 
the range of software risk scenarios of potential interest, including the effect that software test 
processes may have in reducing risk.  The following general considerations are relevant in this 
respect. 

9.4.2.1 Software  Function and Response Mode Identification Objectives 

A key objective of the application of the CSRM conceptual formulation of software risk is to 
“partition” in a systematic and organized fashion the functional space of the software being 
investigated, so that its specific differentiated functions and “response modes,” i.e., the intended 
set of control and/or safety actions that it is designed to carry out in response to a defined set of 
system conditions, can be clearly identified at the very onset of the risk assessment process.  
The pursuit of this objective should come as no surprise to the PRA practitioner, as the 
identification of risk for any given system component requires as a first step the identification 
and understanding by the analysts of what that component is designed to do within the overall 
functionality of the system to which it belongs. 

9.4.2.2 Condition and System Design Coverage 

It was mentioned earlier that the CSRM formulation is conceptually based on the idea of 
“condition coverage.”  This is directly related to the objective of software function and response 
mode identification discussed above.  In the execution of software modeling and analysis,the 
“condition coverage” modeling approach mirrors the orderly software design process by which 
the system operational conditions that determine the need for differentiated software function 
and response requirements are identified as the first step of the design process that ultimately 
leads to detailed software requirements and specifications.  Thus the systematic identification of 
system conditions and of the corresponding software functionality may be viewed as a “design 
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validation and verification” (Design V&V) contribution of the software PRA process as 
implemented via CSRM. 

9.4.2.3 Explicit Representation of Routine Software Functionality 

A possible misinterpretation of the CSRM formulation is that it may force a “conditional 
scenario” model for software risk onto situations where what is of interest is the possibility of 
software anomalies or failures that occur under normal system conditions, i.e., which may be 
viewed as occurring without any preceding trigger condition while the software is performing a 
routine function.  This is not an issue, however, since the conceptual model expressed by 
Equations (9-5) through (9-8) also includes routine software functionality as a subcategory of a 
risk scenario, permitting its modeling and inclusion in an overall risk assessment by appropriate 
means.  Such means may include formulations based on failure rate models, if pseudo-random 
models of software failure, as mentioned earlier in Section 9.4.1, are believed to be well suited 
to represent the behavior of certain “routine” portions of the software functionality. 

In mathematical terms, the risk contribution of a software “routine function” can be 
expressed, in logic and probabilistic versions respectively, via the equations: 

 MCFMCR rSWrSWr          (9-9) 

and 

   MCFPMCPP rSWrSWr          (9-10) 

where the notation retains the same meaning as in Equations (9-5) through (9-8), but the 
subscript “r” is now used to indicate that the associated entities refer to a “routine” type of 
mission condition. 

The implication of referring to routine conditions is that in any given mission the probability 
of occurrence of such conditions is 1, i.e.:  

  1MCP r
           (9-11) 

so that  

 MCFPP rSWSWr            (9-12) 

Thus, in practical terms, the portion of the software risk contribution that is modeled as being 
produced by routine software functionality is no longer conditional, in a probabilistic sense, on 
any preceding trigger-events, and is to be assessed accordingly, e.g., via models that consider 
the possibility of anomalies or errors during the cyclical execution of routine software functions.  

 One type of conditioning that may continue to exist in the execution of routine software 
functions is that associated with the different phases of a nominal space mission.  As an 
example, different subroutines or modules of the GN&C flight software subsystem of a planetary 
spacecraft might hypothetically be activated in association with various types of orbital 
maneuvers in the vicinity of a target planet.  This obviously would translate in the identification 
of more than one “routine condition” of software functionality, each with its own risk contribution 
per Equations (9-9) and (9-12), and an associated definition of the timeframe to which the risk 
contribution applies. 



 

 9-14

9.4.2.4 Time Dependency of Software Failure Probability 

Some observations are useful with respect to the way time affects the formulation and 
quantification of CSRM software risk scenarios.  From the discussion in Sections 9.4.1 and 
9.4.2.3, it follows that, in the most general cases, the CSRM probabilistic formulation for 
software risk may be conceptually re-written as 

        


N

i
iSWi

M

r
rSWSW MCFPMCPMCFPP

11

     (9-13) 

The above formulation reflects the separation of the software risk contributions into two groups, 
one reflecting the existence of M routine regimes of functionality, and one reflecting the 
existence of N trigger conditions requiring non-routine software response and functionality.  For 
any particular mission, the number of routine vs. non-routine conditions may vary.  The number 
of routine conditions is typically defined and limited by design, whereas the number of potential 
off-nominal conditions that the system may enter is, in theory, open-ended.  In practice, 
however, the system designer and the system safety engineers will have to make a deliberate 
decision with regard to the identification of a closed set of off-nominal conditions and events to 
be included in the system design basis, and for which, if they do arise in the course of a 
mission, the software will be called upon to functionally respond in some specified manner.   

Once the sets of conditions, routine and off-nominal, which constitute the two groups in 
Equation (9-13) have been identified, the risk analysts have to decide what type of probabilistic 
model applies to each of them.  In general, the routine function portion of the risk model may be 
addressed with the more or less traditional approach of pseudo-random  software failure rate 
modeling, such as, for example, embodied in the group of probabilistic quantification models 
known under the label of “Software Reliability Growth Models” (SRGMs).   

In a typical SRGM, the time dependence of the probabilistic formulation is usually included 
in a “failure rate” parameter estimation, which then translates into probability quantifications for 
any specified period of time of interest (see also Section 9.4.6.4). 

The situation is usually different with regard to the off-nominal portion of the risk 
contributions.  In the terms that appear in the rightmost portion of Equation (9-13), i.e., in each 
of the terms that are best individually expressed in the form represented by Equation (9-7), the 
time dependence of the probabilistic scenario is normally contained in the term P(MCi) that 
represents the probability of occurrence of the i-th off-nominal trigger-condition during the span 
of a given mission.  On the other hand the remaining part of the contribution, i.e., the conditional 
probability of an incorrect software response to the condition MCi , i.e., the term P(FSW MCi), is 
usually in its dominant part time-independent, because it reflects whether the software logic and 
algorithms are by design suited to respond correctly to the time-dependent chance condition 
MCi , or not.  In this respect, barring any kind of exotic self-modifying software, and considering 
individual mission phases during which no software design upgrade is loaded into executable 
memory, the probability of the software design correctness does not change as mission time 
elapses.  Thus the terms P(FSW MCi) are usually to be addressed as time-invariant conditional 
probabilities, i.e., as a conceptual equivalent of a hardware component conditional probability of 
successful start of operation “on demand.” 

9.4.2.5 Models for Identification of Individual Risk Contributors 

The formulations provided by Equations (9-6), (9-8), and (9-13) are very useful as a 
conceptual aid and foundation for effective investigation and analysis of software risk.  In 
practical terms any such process will need to employ appropriate analytical means for the 
identification and quantification of the individual factors that appear in the equations, i.e., the 
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systems conditions MCi for which software is called upon to respond, and the probability values 
P(MCi) and P(FSW  MCi). 

In a PRA context, the identification of the software risk terms of interest can be 
accomplished by seeking the identification of “cut-sets” that contain the SW related elements of 
interest.  In general, given a PRA framework that is inclusive of software models, three types of 
cut-sets can be identified with regard to the identification of the terms of interest in Equations (9-
6), (9-8), and (9-13), namely: 

A. Cut-sets that are not software related and thus do not identify any software risk 
contribution. 

B. Cut sets that identify a spontaneous software failure event occurring under “routine 

system conditions,” i.e., corresponding to the risk contributions P(FSW  MCr) in Equation 
(9-13). 

C. Cut sets that identify a software failure event triggered by the occurrence of a system 
“trigger event,” i.e., a contingency, anomaly, or hardware failure condition MCi that has 

occurred, and thus corresponding to the risk contributions P(FSW  MCi) in Equation (9-
13). 

Once software-related “events” have been identified and included in the PRA framework of 
models, they will need to be quantified probabilistically if a full quantification of the PRA models 
is desired, as is the case in a standard PRA process.  The CSRM application process within a 
typical PRA framework, the choice of techniques for detailed analysis of software-related 
events, and important considerations for the probabilistic quantification of such events are 
discussed with examples in the following Sections 9.4.3 and 9.4.4. 

9.4.3 Application Process 

The general formulation of the CSRM, as further refined via the observations discussed 
above, essentially states that the software contributions to overall mission risk may be 
conceptually classified into two basic categories, i.e., those originated by the unconditional 
failure of some routine software function, and those triggered by the occurrence of an off-
nominal “trigger condition” to which the software is not able to respond correctly.  As discussed 
in Section 9.2, the distinction between the two basic types of risk is important because earlier 
models of software failure did not properly address the conditional category, whereas the space 
mission data shows that in general this category accounts for a majority of recent failure events 
where software was a key contributor. 

In practical terms a CSRM application needs to be carried out as part of an overall PRA/PSA 
(probabilistic risk assessment / probabilistic safety assessment) process.  Initial guidance for 
application of the process in the execution of Constellation Program PRA analyses is 
documented in [9-4] and will be followed by a more general NASA application guide which is in 
the making at the time this PRA guide goes to publication.  This section defines the basic steps, 
and provides examples, of a typical CSRM application process.   

Generally speaking, CSRM can be applied at different levels of detail, to match the system 
and software design information that is available at a particular stage of program and system 
development.  In practical terms it is convenient to reduce this to the definition of two basic 
stages and forms of CSRM application, which in the following are referred to as “Specification-
Level CSRM” and “Design-Level CSRM”.  In either case of application, the general steps of 
execution can be summarized as follows: 
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1. Identify the mission-critical software functions.  

2. Map the critical software functions to corresponding PRA model events. 

3. Develop a set of associated logic models.  

4. Identify, from the above models, the software-related cut sets for system and mission 
failure events. 

5. Estimate the probability contribution from the software-related cut-sets to the system and 
mission failure events of interest. [This may include, at the top-level, the contribution to 
key risk metrics such as Loss of Mission (LOM) or Loss of Crew (LOC).]   

9.4.3.1 Specification Level CSRM 

A Specification-Level CSRM analysis is applied in the early system design phase, and may 
typically make use of top-level system specification/design information and generic data to 
provide initial insight and preliminary definition of the risks that the software functions contribute 
to the overall system risk.  In this context “generic data” means that software reliability and risk 
data gathered from other systems which are similar to the system of concern may be typically 
used in the CSRM analyses, as a surrogate for software test and operational data specific to 
that system, which are usually not yet available in the early system design stages.   

The development of the Specification-Level CSRM models to be integrated with an existing 
PRA/PSA framework and set of system models will normally make use of information developed 
and documented for the relevant systems as part of the PRA/PSA activities, supplemented with 
information on software related functionality and software design characteristics, as available in 
system design documentation.  A discussion and illustration of a Specification-Level CSRM 
execution is provided in Section 9.4.4.1. 

9.4.3.2 Design Level CSRM 

As the system definition and development progresses, more resolution is desired in a PRA.  
Accordingly, a Design-Level CSRM analysis is executed at such a matured development phase, 
when more software design information and data are available.   

A Design-Level CSRM application builds on the insights gained from a Specification-Level 
CSRM analysis.  When more detailed system and software design information becomes 
available, this information is used in the design-level analysis to validate, augment, and refine 
the CSRM models.  The updated models decompose software risk into scenarios that include 
not only nominal mission operations, but also off-nominal conditions within the system design 
and mission planning envelope.  This type of analysis can produce, in addition to more detailed 
qualitative and quantitative risk scenario information, risk-informed guidance for the execution of 
software testing, oriented towards reducing the risk of software failure or anomalies for specific 
scenarios of interest. To this end, it calls for coordination and cooperation between the PRA 
team and the software development team.  In this mode of execution, CSRM analysis results 
are provided by the PRA team to the software development team to “risk-inform” the software 
testing activity.  The goal is to perform testing that targets specific scenarios identified via the 
CSRM analysis, expanding the level of effort on testing consistent with the level of risk initially 
identified and associated with the conditions triggering those scenarios.  The results of testing 
are then used to re-assess and quantify the risk scenarios of initial concern, with the ultimate 
goal of keeping the projected software risk contribution within acceptable bounds.   
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Risk-informed testing should be carried out based on the risk-priority of the scenarios 
identified in the updated PRA and CSRM analyses, and the risk-informed test results may 
validate the software design or even lead to software modifications and corrections if any faults 
are identified.  When the test process has driven the software to an acceptable level of risk and 
reliability, all the information produced can be integrated back into the PRA and used for final 
quantification of the specific scenarios of concern.   

The illustration of a CSRM Design-Level process is provided in Section 9.4.4.2. 

9.4.4 Examples of Application  

An explanation of the detailed steps of application of the CSRM process is better provided 
by example.  As stated in Section 9.4.3 the essential steps of the process are the same for the 
two basic types of application that have been identified.  The differences between the two are at 
a more detailed level of model development and quantification, reflecting the greater amount of 
information available once the design of the software functions has reached a stage of firm 
definition, and, even more importantly the ability to transfer information from the software risk 
assessment into the software testing activities and vice versa.  The two following subsections 
describe, respectively, a typical Specification-Level and a typical Design-Level Application. 

9.4.4.1 Specification Level CSRM Example 

A Specification-Level CSRM analysis can be carried out at an early design phase to identify 
potential software risk contributors.  The inputs required include general system and software 
design information, and, for quantification of risk, generic software failure and/or anomaly data 
from similar systems or projects.  The example used here to illustrate its application pertains to 
the “Pad Abort – 1” (PA-1) test mission, which was analyzed as part of the Constellation 
Program activities, initially according to a conventional PRA process that contained only 
“placeholder,” undeveloped software-related events.  The CSRM analysis was carried out at the 
“specification level” because only minimal information about the actual software design was 
available to the analysts at the time of execution. 

The CSRM process has been expressly designed for application within the framework of a 
traditional PRA, i.e., a set of Boolean event-tree / fault-tree models that are being or have 
already been developed for the non-software portions of a space system. Consistently with this 
and with the introduction given in Section 9.4.3, the CSRM application steps may be carried out 
as follows: 

1. Identification of mission-critical software functions.  

In this step the analyst identifies and tags the mission-critical software functions in the PRA 
framework, using a reference mission event tree as a logic-model aid and, if necessary, 
complementary sub-event-tree and fault-tree structures linked to the former.  The level of 
detail represented in these logic models is to be consistent with the level of available 
information that describes the software functions and their modes of execution.  The 
objective of this analytical step is the identification, along the mission timeline, of all critical 
software functions at a consistent first-level of detail and in one documented set of models, 
without necessarily proceeding to duplicate the level of modeling detail of any pre-existing 
set of PRA models derived to analyze hardware and human operator functions.  If no 
system-specific software information is available at the time the CSRM development is 
initiated, the mission event tree representation should by default include the software 
functions that are typically executed in a NASA mission of similar nature.  In order to cover 
the full spectrum of risk scenarios, it is important that the identification of critical software 
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functions include all contingency and safe-mode operation that are anticipated within the 
mission and system design envelope. 

Figure 9-2 shows a pictorial representation of the test mission, which consisted of an un-
crewed test launch of the Launch Abort System (LAS) of the Orion spacecraft, and Table 9-
2 shows the basic actions and maneuvers carried out in the mission sequence. 

Figure 9-3 shows a Mission Event Tree that identifies the primary software functions directly 
associated with the successful execution of the key sequential mission maneuvers and 
actions.  This simple analytical step provides the initial reference frame for the more detailed 
analytical steps that follow. 

 
Figure 9-2. PA-1 Mission Sequence Illustration. 

Table 9-2. System Actuations and Maneuvers in PA-1 Mission. 
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CHUTE

Parachutes
Deployed

JETT
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REORIENT
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CANARDS

Canards Deployed

CTRL-COAST

Controlled Coast
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MOTORS-IGN

ACM & Abort
Motors Ignition

# END-STATE-NAMES

1 SUCCESS

2 FAILURE

3 FAILURE

4 FAILURE

5 FAILURE

6 FAILURE

7 FAILURE

PA-1 - PA-1 Event Tree 2009/01/15 Page 1

Discretes
Actuation 
SW function

HW / Manual 
function per 
PA‐1 design

GN&C
SW function

 
Figure 9-3. PA-1 Mission Event-Tree for Identification of Key SW Functions. 

2. Mapping of software-functions to PRA logic-model events.  

In this step it is assumed that a set of PRA models has been developed prior to the CSRM 
process application, i.e., essentially without inclusion of SW models, or with SW events only 
introduced as top-level “placeholders.”  In this pre-existing PRA framework a systematic 
mapping is then created between the software functions identified and categorized in the 
preceding CSRM application step and appropriate “CSRM entry-point events” directly 
related to the execution of such functions.  These events: 

a) either already exist and are identifiable in the pre-existing PRA models (e.g., 
because they are associated with a system function that also has critical non-
software components, or because they were introduced in the initial PRA models 
as top-level “SW-event placeholders”); 

b) or they did not originally appear in such models structures, and may now be 
appropriately inserted. 

Figures 9-4 and 9-5 show examples of entry points identified, respectively, in a detailed sub-
event-tree and in a fault-tree model structure of the initially developed PA-1 Mission PRA.   

Once an existing set of PRA models has been reviewed and appropriate entry-point events 
have been identified or added therein, with the aid of the software-function identification 
reference provided by the top-level CSRM Mission Event Tree (i.e., a mission event tree like 
the one provided as an example in Fig. 9-3), these events can be further analyzed and/or 
expanded via dedicated logic models, as discussed below.  The quantification portion of the 
software PRA process is also addressed below, with more discussion and documentation 
provided in Section 9.4.6. 
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Failure of GN&C 
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Figure 9-4. CSRM Entry-Point Events Identified in PA-1 PRA Event-Tree Model. 
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analysis of GN&C 
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Figure 9-5. CSRM Entry-Point Events Identified in PA-1 PRA Fault-Tree Model. 

3. Expansion of CSRM entry-point events via dedicated logic models.  

In this step appropriate logic models are developed to analyze the critical software “entry-
point events.” The level of modeling detail and sophistication employed for this objective 
may vary greatly, depending on the nature of the event and associated software function(s): 

 At one end of the spectrum are events that may be treated as PRA “basic events” 
and therefore can be directly assessed and probabilistically quantified.  Actuation 
trigger-events controlled by software, i.e., conditional events of the type “if 
measured variable V exceeds value x, then issue command to actuate hardware 
device D,” often fall into this category.   



  
 

 9-21

 At the other end of the spectrum are events determined by the outcome of complex, 
time dependent software functions.  The modeling of these events may require the 
use of special techniques.  For example, use of the Dynamic Flowgraph 
Methodology (DFM) technique [9-5, 9-6] is recommended for the representation 
and analysis of the dynamic interaction between system and control-software 
variables and parameters at a level of detail and fidelity appropriate for the 
identification of the important system failure modes (i.e., the combinations of basic 
events and conditions that may result in an overall system function failure). 

 In the middle of the spectrum are events that are driven by more than elementary 
software trigger-logic, but which are amenable to satisfactory representation and 
analysis by means of standard Boolean PRA techniques, such as binary fault-tree 
models and analyses. 

Figure 9-6 shows an example of DFM model created to represent and analyze the GN&C 
function of the PA-1 system.   

att

TT1

Causality Flow
The current attitude (att) is 
determined by the ACM thrust 
(ACM_Th), the feed flow (Sbn), and 
the previous attitude (att)

ACM_Th

Continuous Variable
FTA attitude:
5 states
(‐‐, ‐, nom, +, ++)

Discrete Component States
Pintle System
Ok 
Failed

SW States
Control Algorithm
Ok 
Over‐correcting 
Under‐correcting 

SW States
Set‐point Determination :
High
Ok 
Low 

 
Figure 9-6. DFM Model of Pa-1 GN&C System. 

It is beyond the scope of this guide to explain the details of DFM modeling, for which the 
reader is referred to the existing literature [9-5, 9-6].  In essence, a DFM model represents 
the key parameters of a system as nodes connected by cause-effect edges, and expresses 
in multi-valued logic and discrete-timing terms the behavior of a complex system which 
includes software control functionality.  Automated analytical searches executed on a 
system model permit a systematic and thorough identification of time-dependent “cut-setsa“ 
for the failure or success of a given system function.  Such DFM “cut-sets” represent 

                                                 
a The term “cut-set,” although normally applicable to binary (Boolean) fault-tree logic is conveniently used here 
because it is very familiar to PRA practitioners.  In multi-valued logic applications, the technically appropriate term is 
“prime implicant.” 
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combinations of individual hardware and software events, occurring in some time-sequence 
and order, which determine the success or failure of the system function of concern. 

4. Identification of basic event cut-sets for CSRM entry-point events.  

In this step the CSRM entry-point events are analyzed via the models developed for them in 
the preceding Step 3, in order to identify the corresponding basic-event cut-sets.  No special 
analytical process is needed in the particular cases, mentioned in the brief discussion of 
Step 3 given above, where an entry-point event can itself be treated as a basic-event.   For 
situations where the entry-point events are expanded into conventional binary-logic PRA 
models, standard cut-set identification techniques and software aids may be employed, 
whereas in the cases where the more complex multi-valued, dynamic DFM logic models are 
utilized, specific deductive analysis techniques are available to the analyst via DFM 
implementation software such as DYMONDATM [9-7]. 

Figure 9-7 shows the principal cut-sets identified by the DFM analysis of the PA-1 system 
GN&C function (the full list, including conditions determined by more than two simultaneous 
component failures, is not shown here).   

# Prime Implicant Probability 
1 Pintle system failure xxx 
2 GN&C set-point high 

AND 
Control algorithm normal 

xxx 

3 GN&C set-point low 
AND 
Control algorithm normal 

xxx 

4 SIGI1 biased high xxx 
5 SIGI1 biased low xxx 
6 GN&C set-point high 

AND 
Control algorithm over-correcting 

xxx 

7 GN&C set-point low 
AND 
Control algorithm over-correcting 

xxx 

HW cut‐sets

SW function cut‐sets

 
Figure 9-7. DFM-Produced Cut-Set for Failure of Pa-1 GN&C Function. 

It is noted that, because the DFM model shown in Fig. 9-6 includes both the software and 
hardware components of the GN&C subsystem, the cut-sets obtained from it include not 
only software-related failure scenarios, but also conditions caused exclusively by hardware 
component failure(s).  In fact, generally speaking, a DFM analysis based on a model that 
represents both software and non-software elements, will yield results that, from a CSRM 
point of view, can be classified as belonging to the three distinct categories of risk 
contributions defined and discussed earlier in Section 9.4.2.5, i.e.: 

A. “non-software” cut-sets, i.e., cut-sets that imply only hardware, human operator, or 
other non-software failure events; 

B. “software only” cut-sets, i.e., cut-sets that correspond to software failures 
spontaneously occurring under “system routine conditions”;  

C. “non-software-triggered, software-related” cut-sets, i.e., cut sets that represent 
“conditional” software failures triggered by a non-software event. 

The examples of PA-1 system cut-sets shown in Fig. 9-7 are of type A or B.  The absence of 
type C cut-sets is not surprising, because these are typically associated with software 
contingency modes of operation, and the PA-1 system and mission did not contemplate, at 
the specification-level of the information that was made available for the CSRM analysis, 
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any such modes of software functionality triggered by potential “balance of system” 
anomalies or failures.  The cut-sets of strict CSRM relevance generated by the DFM 
analysis were, therefore, all of type B.  With regard to DFM-generated type A cut-sets, 
although outside the primary focus of a CSRM application, they do provide a check and 
validation of the hardware-oriented analyses that may have previously been performed via 
traditional PRA techniques. 

It is finally noted that, besides DFM, another process capable of logically expanding a given 
entry point event and providing its logically equivalent representation in PRA cut-set-
compatible format could, if available, be used to carry out the CSRM Steps 3 and 4 
described here. 

5. Probabilistic quantification of software contribution to system and mission risk.  

In this final step of the CSRM application process, CSRM entry-point event probability 
estimates are obtained via quantification of the corresponding cut-sets, providing, in turn, 
overall estimates of the software contribution to system and mission risk.  The quantification 
may proceed differently, depending on the nature of the software cut-sets, i.e., whether they 
are of “type B” or “type C” and on the type of applicable data which are available.  Generally 
speaking, the quantification of potential software failure events in a Specification Level 
CSRM application cannot count on the availability of system-specific test data, since at the 
early developments stages when such an application is typically carried out, software 
modules rarely exist in an executable and testable form.  Thus, any risk quantification will 
usually utilize “surrogate data,” i.e., failure and anomaly records from software systems 
similar in nature to the one(s) of interest, which have been developed and used in earlier 
projects and missions, and for which data have been collected and compiled in usable form.  

A survey and discussion of the software reliability and risk quantification techniques 
generally available as possible options to the analyst is provided in Section 9.4.6.  For clarity 
of presentation and explanation, the software probability quantification topic is better 
handled as one subject, and it is therefore preferable not to disperse it in non-contiguous 
sections of this chapter.  For this reason, the discussion in Section 9.4.6 actually covers 
both the quantification processes and models that may be available for use at the 
Specification-Level of an application, i.e., when usually only “surrogate data” are accessible 
for a given type of software, and those that can be used in the Design-Level stage, when 
system-specific software test data normally become available.   

In this section the discussion deals with aspects of a typical Specification-Level analysis that 
are significant for the choice of an appropriate quantification model out of the possible 
options.  In this regard, the categorization of risk contributors and system-failure cut-sets first 
discussed in Section 9.4.2.5, and also addressed immediately above in step 4, produces the 
following important observation: for type B cut-sets, a pseudo-random failure rate model 
probability may be applicable for probabilistic quantification of the software event(s) in those 
relatively common situations when the failure event of concern lends itself to a “failure in 
time,” rather than a “failure on demand” representation; however, this is normally not the 
case for type C cut-sets.  In the latter, in fact, the time dependence of the risk contribution is 
normally in the “trigger event” probability, whereas the software response is quantifiable in 
terms of a conditional probability that is usually not time-dependent.  Thus, it can generally 
be asserted that the software event(s) in type C cut-sets are quantifiable via “failure on 
demand” conditional probability models, not by unconditional time-based failure rate models.  

An additional observation, which is also valid with regard to a Design-Level application, 
applies to the situations where the analysis and quantification of a CSRM entry-point event 
is carried out via an expansion of the event itself by means of a dedicated model (i.e., a 
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DFM, or other type of model and associated analytical process).  Under such circumstances, 
the following options are available, at the analyst’s discretion, for the final representation of 
the expanded event within the PRA framework: 

A. the entry-point event can be treated in the existing PRA as a “basic event,” with the 
associated probability transferred as the results of a DFM analysis (or other 
equivalent analysis) are separately carried out and documented; 

B. the entry-point event is linked in the existing PRA to an underlying fault-tree model 
constructed and making use of the cut-sets and associated cut-set probabilities 
obtained from the DFM or other equivalent analysis. 

The above two options are equivalent in risk quantification terms, but Option B transfers 
more detailed analytical information directly into the structure of the existing PRA models, in 
the traditional binary logic-model format. 

9.4.4.2 Design Level CSRM Example 

A  Design-Level CSRM analysis is carried out at a stage of the system development when 
relatively detailed system and software design information are available, and software test data 
may also have been collected and compiled in a form suitable for use in the estimation of 
software reliability and risk metrics.  This type of analysis may be an iteration and refinement 
over a specification-level analysis carried out at an earlier stage; or be executed without a 
preceding interim analysis.  The first mode of execution is the preferred one when a mission or 
project is being assessed from its inception, to maximize any opportunity for positively 
influencing the system design with the insights gained from the PRA and CSRM activities. 

In terms of process flow, a CSRM Design-Level analysis follows the same steps illustrated 
for the Specification-Level analysis in the preceding section.  As will be apparent from the 
discussion in this section, the principal differences between the two types of application are 
primarily in Steps 3 and 5, i.e., in the modeling and quantification steps.  The more complete 
and detailed information that becomes available after the initial stages of system development 
may in fact have a significant impact on how these steps are carried out. 

The examples in this section are based on the reference mission of a mini-spacecraft called 
“Mini AERCam.”  This system consists of a video-camera and associated recording and video-
transmission devices, hosted in a spherical body equipped with thrusters and a GN&C function.  
The GN&C function utilizes input from a GPS receiver and onboard gyros.  This input 
information is then elaborated by autonomous control software algorithms to actuate the 
thrusters in such a way as to execute translational/rotational motion and station-keeping 
necessary to execute video display and recording requests by Space Shuttle or International 
Space Station astronauts.  An illustration depicting the spacecraft and the thruster set-up 
arrangement is provided by Figure 9-8. 

For completeness we discuss below all the Design-Level CSRM execution steps, indicating 
which ones are essentially identical to the corresponding Specification-Level steps, and which 
ones differ in some substantial way.  A detailed discussion and illustration with the Mini 
AERCam example system is provided for the latter. 
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Figure 9-8. Mini AERCam Spacecraft and Thruster Arrangement. 

1. Identification of mission-critical software functions.  

This step is carried out in a fashion essentially identical to a Specification-Level application.  
If at the current stage of system development new information has emerged by which key 
software functionality has been added or modified for the mission of concern, any previously 
developed top-level CSRM mission event-tree will have to be updated accordingly. 

For the Mini AERCam a typical mission consists of the following phases: 
1. Release from the docking bay. 
2. Autonomous control of the Mini AERCam to reach the vicinity of the target position. 
3. Autonomous station keeping to maintain relative position with the target, so as to carry 

out the video capture and transmission functions. 
4. Autonomous control of the Mini AERCam to return to the docking bay. 
5. Retrieval of the Mini AERCam into the docking bay. 

A top-level mission event tree may be drawn for such a mission as shown in Figure 9-9.  

 
Figure 9-9. Mini AERCam Mission Event Tree. 

2. Mapping of software-functions to PRA logic-model events.  

This step also closely resembles the corresponding step of a Specification-Level application.  
The only difference may be that, because of the greater level of detail and maturity of the 
conventional (i.e., non-software oriented) PRA models already developed for the system of 
interest, the number of potential CSRM entry-point events identifiable in those models may 
be higher than in an earlier Specification-Level application.  In the Mini AERCam application, 
given the extent of the software control functions implemented in the system, a number of 
entry-points would exist in any associated, conventionally developed set of PRA models.  
However, this particular application was intended from the start to be a “deep-dive,” but 
limited breadth, demonstration project.  Thus, the analysis was directed to concentrate on 
entry-point events associated with the GN&C system function.  
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3. Expansion of CSRM entry-point events via dedicated logic models.  

As mentioned, the Mini AERCam GN&C function relies on a complex time-dependent 
interaction of hardware and software components.  Therefore it was appropriate to utilize the 
Dynamic Flowgraph Methodology (DFM) for its modeling and failure analysis.  Given its 
complexity, a full Mini AERCam model including both the GN&C software and hardware 
components (electronic and mechanical), as well as interfacing subsystem components, was 
developed in modular fashion, as illustrated by Figures 9-10, 9-11 and 9-12. 

 
Figure 9-10. Top-Level DFM Model of the Mini AERCam System. 

 
Figure 9-11. Lower-Level DFM Model of the GN&C Sub-System. 
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Figure 9-12. Lower-Level DFM Model of the Propulsion Sub-System. 

A DFM model of the scope illustrated by the above figures can be used to analyze a wide 
range of possible system operational conditions, including success, anomaly, and failure 
events and scenarios.  However, for the purpose of the present example, the discussion will 
focus on a specific GN&C function entry-point event of interest, defined as the “Failure to 
Maintain Position” event. 

4. Identification of basic event cut-sets for CSRM entry-point events.  

The identification of cut-sets for the CSRM entry-point events is carried out in this step in a 
fashion similar to the corresponding step of a Specification-Level application.  For the 
specific “Failure to Maintain Position” event on which the focus of the example discussion is 
pointed, the DFM analysis process yielded, as one might expect based on the earlier 
discussion in Sections 9.4.2.5 and  9.4.4.1 (step 4), the same three types of cut-sets 
introduced there, i.e.: 

A. “non-software” cut-sets, e.g. :   
 “Isolation Valve = Stuck Closed at time -1”  

B. “software only” cut-sets, e.g. :   
 “Calculated Target Position = Inaccurate at time -1”  

C. “non-software-triggered, software related” cut-sets, e.g. : 
 “Propellant Line Status = Small Leak at time -1 . AND . 
 Calculated Thruster Command = Slightly Inaccurate at time -1”  

The type B software related cut-set “Isolation Valve = Stuck Closed at time -1” identifies a 
possible “spontaneous” software failure occurring during the execution of a routine software 
calculation, and may be accordingly quantified.  Usually more than one option is available 
for doing this, but in the best of circumstances for a Design-Level application, a combination 
of surrogate data from similar missions and system-specific test data fed into one of the 
better-validated “SRGMs” (Software Reliability Growth Models) would usually provide the 
best quantification avenue, as is further discussed in Section 9.4.6.8. 
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The type C cut-set “Propellant Line Status = Small Leak at time -1 . AND . Calculated 
Thruster Command = Slightly Inaccurate at time -1” identifies, on the other hand, a 
combination of hardware anomaly condition and software inadequate response to such a 
condition.  The hardware condition is a small leak in one of the propellant lines.  The Mini 
AERCam GN&C software design includes such a condition as one that the software can 
compensate for by making appropriate algorithmic adjustments to issue commands to the 
non-faulty portions of the thruster subsystem.  Thus a software response failure would be 
caused in this situation by an algorithmic fault that causes a drift of the attitude control, given 
the non-nominal thrust condition caused by the propellant line leak trigger event.   

Although it is directly implied by the “and” logic, it is worth underscoring that, if only one of 
the two fault events appearing in the definition of the above type C cut-set were to be true at 
any given time, the Mini AERCam station-keeping function would not fail.  In particular, even 
if the GN&C software contingency-algorithm had a fault present in it, such a fault would 
remain in a dormant status indefinitely during mission executions, and would have no 
mission impact as long as no small propellant-line leak were to occur in any of those 
missions.  Conversely, if a small leak of the type included in the GN&C subsystem design 
envelope were to occur, but no algorithmic fault were present in the GN&C contingency 
function, the latter would successfully compensate for the leak by a modified use of the 
thrusters and the station-keeping function would be successfully accomplished. 

5. Probabilistic quantification of software contribution to system and mission risk.  

As mentioned earlier, the full range of options that are available to the analyst for the 
quantification of entry-point event probability is discussed in Section 9.4.6.  In an application 
that proceeds in stages, i.e., from an earlier “Specification-Level” to a later “Design Level,” a 
combination of quantification techniques would normally be applied, typically using 
“surrogate data” in the earlier stage, and in the latter superimposing, e.g., via Bayesian 
“updating” techniques, system-specific software test data to the preliminary results thus 
obtained. 

While Section 9.4.6 presents the general features of the various quantification techniques 
that can be applied, individually or in combination, in a software risk process like CSRM, this 
section addresses an aspect of the Design-Level quantification that is directly related to the 
nature of the specific information provided by the logic model analysis and cut-set 
identification steps discussed above, i.e., an example of quantification driven  by “risk-
informed testing” applied to “type C” cut sets.  A general discussion of the concept of risk-
informed testing is the main subject of Sections 9.4.6.6 and 9.5.1. 

In the MiniAERCam analysis carried out per step 4, the type C cut-set “Propellant Line 
Status = Small Leak at time -1 . AND . Calculated Thruster Command = Slightly Inaccurate at 
time -1” was found to be one of the possible software-related causes of GN&C function 
failure, triggered by a small propellant line leak hardware fault condition.  “Risk-informed 
testing” was, as a result, applied to quantify the cut-set and verify whether this theoretical 
risk contributor was sufficiently bounded in probabilistic risk terms or not. 

The key observation here is that the conditional nature of type C cut-sets dispels the 
conventional wisdom perception that a prohibitive amount of software testing is necessary to 
bound risk contributions at some reasonable level.  In fact, if for example it is ruled that an 
individual risk contributor like this should be demonstrated to be at a probabilistic risk level 
lower than a given value Ri , from Equation (9-7) it follows that this condition is satisfied if: 

PSWi = P(MCi) x P(FSW MCi) < Ri         (9-14)  

i.e., if: 
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P(FSW MCi) <  Ri / P(MCi)        (9-15) 

In terms of the MiniAERCam risk contribution of interest, the term P(MCi) in inequality (9-15) 
is the probability of a small propellant leak during a mission and P(FSW MCi) is the time-
independent conditional probability of faulty software response to that hardware anomaly 
condition, which may be used as a risk-informed bounding value to be demonstrated for the 
software when it operates under such condition.  The term Ri / P(MCi) represents the 
maximum value of P(FSW MCi) that allows the risk contribution limit Ri to be satisfied, and 
will in the following be referred to with the symbol RBSWi , short for “risk bound for software 
under condition-i." 

As discussed earlier in Section 9.4.2.4, the hardware condition is mission-time dependent 
and thus can be quantified with data from a HW failure rate database such as NPRD or 
equivalent data.  NPRD-95 suggests a failure rate value of 6.0E-06/hr for a small fluid line 
leak.  Given a single MiniAERCam mission duration of 5 hours, but also assuming the more 
stringent condition that the mini spacecraft is required to function without propellant leaks for 
a number missions M, we get for the risk-informed conditional software probability bounding 
value: 

RBSWi  = Ri / P(MCi)  

= Ri / ( M x 5 x 6.0E-06 ) 

= Ri / ( M x 3.0E-05 )        (9-16) 

Thus, for example, if Ri is set at the quite conservative value of 1-in-100,000 (i.e., 1.0E-05) 
for a sequence of 20 MiniAERCam missions, the conditional software probability bounding 
value is: 

RBSWi  =  1.0E-05 / ( 20 x 3.0E-05 ) = 0.017      (9-17) 

As a second example, assuming a much more prolonged use of the mini-spacecraft, e.g., in 
a one-year time-span where no astronaut inspection and maintenance would be possible, 
an Ri value of 1.0E-05 would translate into the following conditional software probability 
bounding value: 

RBSWi  =  1.0E-05 / ( 5 x 365 x 24 x 6.0E-06 ) = 3.8E-05    (9-18) 

Type C cut-sets and associated bounding values for software conditional failure probability 
provide “risk-informed” criteria for software testing, which is illustrated here by example.  It is 
recalled that the cut-set of interest is for the particular scenario in which the MiniAERCam 
fails to maintain its station-keeping position in the presence of a small propellant line leak 
affecting one of its thrusters.   

The key consideration for testing the system in realistic conditions is that the leak: 

a) may be of varying magnitude, up to the rate specified as the maximum value that 
the GN&C software logic and algorithms must be able to compensate for, and 

b) may occur while the mini-spacecraft is in any of its possible station-keeping 
positions, i.e., it may be in any rotational orientation with respect to a reference 
coordinate system. 

Therefore, the testing should “sample” the combination of leak-rate and spacecraft initial 
rotational-orientation dimensions in an orderly fashion such as to give reasonable assurance 
of coverage of the variability of conditions within the given scenario.  Ideally, one would want 
to conduct space-system software tests in a TAYF (“test-as-you-fly”) hardware-in-the-loop 
configuration, but this was beyond the budget and scope of the MiniAERCam PRA 



 

 9-30

demonstration project.  A second-best option was followed instead, by testing the attitude 
control function under the simulated presence of the entry condition using a Virtual System 
Integration Laboratory (VSIL) simulation of the hardware (made available to the project by 
the Triakis Corporation).  The VSIL simulation used hardware documentation to produce a 
realistic software model of the hardware that was interfaced with the actual GN&C software.  
The use of the VSIL tool allows the software test engineers to easily generate any failure 
modes of interest in the simulated hardware and observe how the actual software responds 
under these conditions.  The simulation maintains a record of the state of the hardware and 
the software at any point during the simulation, so the GN&C software variables can be 
observed and compared to hardware parameters and algorithmically correct representations 
thereof, to determine the correctness of the GN&C software response. 

Repetition of the test, with the spacecraft at different initial rotational orientations, and with 
the simulated leak at different flow rates, producing different force and torque exerted on the 
spacecraft itself, provides the statistical basis for an estimate of the probability  
P(FSW MCi) that is of interest for the risk scenario investigated in this example.   

A random sampling of the above “test space” with a total of 350 simulated tests resulted in 
no GN&C software failure to control the spacecraft.  This result can be used in a 
straightforward Bayesian estimation to obtain P(FSW MCi).  For example, an estimation 
starting from an uninformative Jeffreys prior (i.e., a beta distribution with parameters =0.5 
and =0.5) gives the following estimates for P(FSW MCi): 

5th percentile  5.61E‐06

Median  6.49E‐04

Mean  1.42E‐03

75th percentile  1.89E‐03

95th percentile  5.47E‐03

The above table thus shows that, with the stated test results, the 1.9E-03 RBSWi risk-bound 
established for P(FSW MCi), in order to limit the unconditional risk cut-set contribution to less 
than 1.0E-05, is satisfied not only at mean and median levels of confidence, but up to about 
a 75% level.  Working the Bayesian estimate math in reverse, one can also easily calculate 
the number of input space sampling tests needed to satisfy a given RBSWi limit for  
P(FSW MCi) at a desired level of confidence.  For example, assuming the same required 
RBSWi value of 1.9E-03, a target 95% level of confidence requires 1010 sampling tests if no 
software response failures occur.  That number more than doubles to 2050 if one failure 
does occur. 

The last very important observation to make before concluding this example is that the 
above considerations on probability and associated confidence level estimation are valid 
only if the tests are well set up to sample the key dimensions of variability associated with 
the “trigger event” conditions.  Optimistic estimations and false confidence would in fact be 
generated if any number of successful tests were in practice just the repetition of a 
previously executed successful test.  The means for avoiding falling into such logic trap are 
not purely statistical, but require good engineering judgment of the factors that may truly 
introduce variability into the “system-trigger, software-response” process. 
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9.4.5 CSRM Modeling Detail and Representation of Software Failure Modes 

The level of detail to be sought in the development of a PRA logic model is in general a 
simple question, to which unfortunately there exists no simple answer.  This is because there is 
more than one factor to be considered, depending on the ultimate purpose of the PRA itself. 

If the sole purpose of a PRA were to provide a risk metric at the system and subsystem 
level, then the answer to the modeling detail question would be driven by the availability of 
quantification data.  That is, there would be no point in developing the PRA logic models beyond 
the level of detail at which the corresponding “basic events” can be directly quantified with the 
available data. However, such is in general not the case when the PRA is used, as it should be, 
as a system design and validation aid and a means to anticipate and understand system risk 
scenarios that could otherwise be overlooked.  Under these conditions, a model can be 
developed in greater detail than suggested by the availability of direct quantification data, and if 
data are desired at a lower level of detail, they may be derived by sub-allocation techniques, 
often combined with and facilitated by the use of expert elicitation. 

In the case of software, the lack of data argument has been a sort of “catch-22,” i.e., the lack 
of data to quantify risk has been one of the primary arguments used to explain the high-level 
nature of software PRA model developments, if any were even attempted; conversely, given the 
place-holder format of such models, no need has been perceived to exist for better organized 
test and operational data collection, and therefore software data collection efforts have for the 
most part also been kept at the high-level, without developing classifications of failures or 
anomalies by function, or by lower-level categorizations when a software unit is programmed to 
carry out more than one function and contains identifiable sub-functions. 

In general, software data collection has not progressed to the level of organized 
categorization that is currently standard for hardware data.  That is, at the present time software 
operational data are generally not systematically recorded according to a classification of basic 
functional characteristics, by which the likelihood of a software fault can be correlated with the 
type of basic functions that are been executed within a given software module or unit, such as, 
for example, logic operations, algorithmic implementations of a mathematical calculation, control 
of data flow, etc.  

At the current state of the art, very little exists in the way of a software failure mode 
classification of the type just mentioned.  From a CSRM modeling point of view, however; some 
steps may be taken that go in the right direction, while at the same time being practically 
executable without an excessive level of effort . 

The basic purpose of a CSRM model development is to permit the integration of both 
qualitative and quantitative software risk information into the standard framework of a system 
PRA, as typically carried out in NASA programs and projects.  In practical terms the software 
risk contribution is of interest because the consequences are felt at the material level, i.e. in 
what happens to the hardware and human components of a mission.  Thus, while the “mode” of 
a fault inside the software may be of analytical interest, the mode of manifestation of the fault at 
the interface between the software and the “balance of system” is what ultimately determines 
the eventual effect of a software fault on the system as a whole.  This suggests that a 
recommended minimum level of CSRM modeling detail, and a corresponding definition and 
identification of “software failure modes,” should be at least be at the level of the software / 
balance-of-system interface(s).  Thus, for CSRM purposes, it is appropriate to focus the 
modeling and analytical attention on the “software interface failure modes,” and from the 
identification of these, possibly proceed, if this is judged useful, to identify potential failure-
modes that may occur within the software. 



 

 9-32

An example of the above is provided with the aid of the DFM model in Figure 9-13. The 
model represents a software control-module that receives as input the value of a tank pressure 
(TP node), and provides as outputs commands to a valve actuator (VAA node) and to a pump 
motor (PM node).  The non-software portion of the model is shown in blue, whereas the 
software and interface portions of the model are shown in green.  The actual pressure reading 
goes through a sensor-to-software interface (e.g., an analog-to-digital converter) represented by 
the box labeled T7 to become an internal software variable (TPSP node).  The TPSP value is 
then elaborated by the software logic and algorithm (box TT2) to determine a pressure “control 
action” (SPCA node).  This is turn determines the specific software commands (VCSP and 
PCSP nodes) which are addressed to the valve actuator (VAA node) and to the gas pump motor 
(PM node) via software-to-hardware interfaces represented by the boxes TT3 and TT4. 

 

 
Figure 9-13. DFM Model for Illustration of SW Failure-Mode Representations. 

In the above model, relevant software failure modes are identified: 

 first by tracking the interfaces between the balance-of-system and the software and 
accordingly represented in the interface-status nodes TPSIS (on the sensor side at 
the interface between the “true pressure” TP and its “software image” TPSP), VSIS 
(on the actuation side between the software valve command VCSP and the valve 
actuator VAA) and PSIS (on the actuation side between the software pump-motor 
command PCSP and the pump-motor PM); 

 then by proceeding one layer-further, into the basic algorithmic function and logic of 
the software control, which governs the interaction between the internal software-
image TPSP of the controlled pressure variable and the control action selected 
SPCA by the software itself; the software function failure modes are accordingly 
represented by the software-status node SCLS. 

In the particular example represented in Fig. 9-13, the following software-interface and 
software-function failure modes were identified following the process illustrated above: 

Sensor / software interface failure modes: 

a. reading stuck at high end of pressure scale 
b. reading stuck at low end of pressure scale 
c. reading drifted higher than true pressure value 
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d. reading drifted lower than true pressure value 

Software / valve-actuator interface failure modes: 

a. command stuck at “close-valve” value 
b. command stuck at “open-valve” value 
c. command frozen at last active value 

Software / pump-motor-actuator interface failure modes: 

a. command stuck at “start-motor” value 
b. command stuck at “stop-motor” value 
c. command frozen at last active value 

Software internal function failure modes: 

a. function execution frozen at last active execution 
b. function execution logic “reversed” (i.e., response to low pressure selected when 

pressure is high and vice versa) 
c. spurious activation of low pressure response 
d. spurious activation of high pressure response. 

The above definition of software-related failure modes is of course presented as an 
illustration of the reasoning process that can be applied, and should not be interpreted as a 
“recipe” to be universally applied in any modeling context.  As underscored earlier, the method 
and format of definition of failure modes of a given system is a decision that the PRA analyst 
has to make case by case, as it is intimately intertwined with decisions concerning the desirable 
level of modeling detail that is sought.  This is always true, regardless of whether the modeling 
of concern regards hardware, software, or human aspects of a system. 

9.4.6 Software Risk Quantification 

The topic of software risk quantification is undoubtedly a complex one.  In earlier sections it 
has been addressed from the point of view of the nature of the data that may be available at 
certain stages of application of the CSRM process, and of how a certain type of data, e.g., data 
that may provide an estimate of software failure rate in time, vs. data that fit a conditional “failure 
on demand” model, may fit the two basic types of CSRM model cut-sets.  The discussion in this 
section, although certainly not exhaustive, provides a broad review of the main types of software 
reliability data that are typically available for use in a space system risk application, as well as of 
the types of estimation models that may be associated with these data. 

In general terms, before entering any more detailed discussions, it is appropriate to make 
the reader aware of a general classification of software quantification models that may be 
encountered in the literature, i.e., the distinction between “black box” and “white box” models: 

 A black box model of a given software unit or module is a model that assumes no 
structural or functional information about the software itself. 

 A white box model of a given software unit or module is a model that relies on, and 
reflects, structural or functional information about the software itself.   

With respect to the above, it is noted that, strictly speaking, in the mathematical world a 
white box model is defined as a model that reflects complete information about the object being 
modeled.  In reality, in real-world circumstances the information at hand is never “complete,” 
thus even in the best of cases the modeling effort results, in practice, in a “gray model.”  For this 
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reason, in referring to these subjects, the term “functional model” is used in place of “white box 
model,” to make a distinction from “black box model” types of modeling approaches. 

It is also noted that the distinction between black box and functional modeling approaches is 
entirely relative to the level of indenture/detail at which a modeling effort is carried out.  That is, 
a functional modeling approach at the system level may become a black box approach at the 
subsystem or lower level of modeling.  In this respect, from the discussion throughout this 
chapter, it should be clear to the reader that CSRM calls for a functional modeling approach, as 
a minimum, at the system level and subsystem level. 

The discussion that follows addresses the basic types of models that may be used and 
includes observations and suggestions on how the models and the data on which they rely may 
be utilized in the CSRM context.   

9.4.6.1 Basic Types of Software Reliability Data 

The software reliability and failure data that are applicable, or proposed as being applicable, 
for use in space system software risk quantification generally can be classified as corresponding 
to one of the following three categories: 

A. Surrogate Raw (SR) Data, i.e., data collected from systems and mission operations 
judged to be sufficiently similar to the ones being assessed to permit probabilistic 
estimates extracted from the SR data to be used for the systems and missions of 
present concern; 

B. Surrogate Parametric (SP) Data, i.e., surrogate data from other systems and 
operations that are no longer accessible in their original raw state, but have been 
processed and collapsed into some type of parametric correlation model; 

C. System-specific Debugging (SD) Data, i.e., data collected during a process of 
software test and fault-correction for the same system and software modules that 
are of interest; 

D. System-specific Operational (SO) Data, i.e., data collected during software test or 
operation, but in any case after the end of any planned and systematic fault-
correction process, for the same system and software modules that are of interest; 

Each of the above four basic types of data may be used in the estimation of reliability and 
risk parameters of interest during the execution of a software PRA process like CSRM.  A 
common characteristic of these four types of data is that they usually exist externally and 
independently of the PRA and/or CSRM activities that may be underway.  

An additional type of data which, on the contrary, is produced in concurrence with a PRA 
and CSRM application is: 

E. Risk-informed Test (RT) Data, i.e., data generated via tests specifically formulated 
and prioritized in accordance with risk information produced in the course of a 
software PRA and CSRM application. 

A survey of the estimation techniques used or proposed in various contexts and applicable 
in association with each of the above categories of data follows below in Sections 9.4.6.2 
through 9.4.6.6.  These sections and the following Sections 9.4.6.7 and 9.4.6.8 discuss the 
relevant aspects of the possible use of the surveyed techniques in the context of a CSRM 
application. 
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9.4.6.2 Parameter Estimation with SR Data 

Surrogate Raw (RS) Data can be used according to their nature and the nature of the risk 
parameter that is to be estimated.   

In the CSRM context, we have discussed in Sections 9.4.4.1 and 9.4.4.2 how software cut-
sets that represent the failure of a routine software function at some point during a time-cyclical 
execution may be quantified via a pseudo-random failure rate model, whereas software cut-sets 
that represent the conditional failure of a specific software contingency function upon the 
occurrence of a system trigger-condition should be quantified using a probability-of-failure-on-
demand estimation. The techniques to be applied in the estimation are not different from those 
that are applied in a corresponding hardware reliability or risk parameter estimation. 

An estimation of CSRM probabilities based on SR data is usually satisfactory at the stage of 
a “Specification-Level” application, when no system-specific software test or operational data 
are usually available.  Of course the predictive value of SR data is dependent on the degree of 
similarity between the software and system of present concern and the systems and software 
from which the data were collected.  Reference [9-4] discusses two SR databases that have 
been assembled and used in recent CSRM applications executed within the now discontinued 
Constellation Program. 

9.4.6.3 Parameter Estimation with SP Data and Parametric Models  

As implied in the short description given above, Parametric Surrogate (SP) Data are not 
actually data available to the PRA analyst.  The actual data are substituted by a parametric 
correlation model.  This type of model is not strictly speaking a “black box” model, in that it 
attempts to incorporate certain information about the software system being modeled, but it is 
not a “functional model” either, since it does not attempt to identify, nor rely on, structural 
differentiation of functionality within the system being assessed.  In this respect, parametric 
models are closer to a “black box” than to a “functional” approach to parameter quantification. 

To use such a model, the analyst has to identify certain characteristics or “factors” pertaining 
to the software for which he/she is interested to carry out the reliability/risk estimation, typically 
by answering a questionnaire built into the specific parametric model package being used.  
These are factors which have been identified in the model built into the parametric tool of choice 
as factors whose strength or weakness drives software reliability according to a multivariate 
correlation formula.  The correlation model usually provides a “software defect density” 
prediction, which can be translated into a failure rate or failure probability estimate by the 
analyst, on the basis of additional information about the specific nature of the software and 
system of interest.  More details on two parametric models of the kind described here can be 
found in [9-8] and [9-9]. 

In theory, SP data and the associated parametric model may be used in lieu of SR data, 
saving the analyst the time and effort that is usually required to organize and categorize SR 
data into formats amenable to an estimation of the parameters of interest.  Unfortunately, 
however, the original data used to derive the parametric correlation models that generate the 
desired estimations are generally not available to the PRA analyst.  Unlike in the case of SR 
data usage, the analyst has therefore no insight to judge whether such data have reasonable 
applicability for the type of estimation of current concern, nor to judge whether the correlation 
formula contained in the model is being extrapolated beyond its limits of validity in the current 
application. 

A comparison of quantifications for the software risk contribution in the Constellation 
Program PA-1 mission, using SR versus SP data, found the latter to produce predictions more 
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“optimistic” by a factor of 100 to 1000 [9-10], whereas the former was in apparent alignment with 
the historically observed rate of software-related mission failures in the decade up to the year 
2007.  

9.4.6.4 Parameter Estimation with SD Data and SW Reliability Growth Models (SRGMs) 

System-specific Debugging (SD) data are normally associated with a process of repeated 
software test, fault discovery, and fault removal.  This process and the associated SD data that 
it generates provide the basis for reliability parameter estimation via the use of a Software 
Reliability Growth Model (SRGM). 

SRGMs are “black box” models that provide an idealized description of the way in which the 
reliability of a software system grows as defects are identified and removed during test.  Taking 
as input a software system’s failure history observed during test, they return the parameters of a 
probability density function (pdf) for the time to the next failure (or the number of failures in the 
next test interval), which can be used to estimate and forecast reliability and reliability-related 
quantities (e.g., failure rate, number of failures to be observed in a future time interval t, etc.). 

All SRGMs make the following assumptions about the defect discovery and removal process 
during testing [9-11, 9-12]: 

A. The software is operated in a similar manner as that in which reliability predictions are to 
be made. 

B. Every fault within a severity class has the same chance of being encountered as any 
other fault in that class. 

C. The failures, when faults are detected, are independent. 

Assumption A is made to ensure that model results are produced from failure history data 
that are applicable to the environment in which the reliability estimates and forecasts are to be 
made.   

Assumption B requires the failures or anomalies within a “severity class” to have the same 
distributional properties.  However, each severity class may have a different failure rate than the 
others, requiring a separate analysis be conducted. This particular assumption has a relevant 
CSRM-specific implication which is discussed below. 

Assumption C makes the models mathematically tractable – by assuming independence of 
the failures, the joint pdf from which the model parameters are estimated can often be solved 
analytically, thereby dispensing with computationally-intensive numerical techniques.   

It is important to note that although the above assumptions are usually not a strictly accurate 
representation of the testing process, they are frequently satisfied in sufficient measure to allow 
satisfactory estimates of software reliability to be produced. 

In addition to assumptions A through C, all SRGMs make the more basic implicit assumption 
that the reliability of the software is increasing during test through the process of observing 
failures, identifying defects responsible for the failures, and removing these defects.  If a 
software system is not exhibiting reliability growth during test, SRGMs may still yield reliability 
estimates, but those estimates are likely to be largely inaccurate. 

With respect to their use in a CSRM context, two observations can be made with respect to 
SRGMs.  The first observation is that the SD data on which they rely usually become available 
only in the “Design-Level” CSRM application stage.  The second is that the assumptions on 
which SRGMs rely, and especially Assumption B, make them primarily suitable for the 
estimation of “routine” software function cut-sets, i.e., those labeled as “type B” in Section 
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9.4.2.5.  This is because SRGMs can make distinctions between failures of different “severity,” 
as assigned by the personnel running the software tests and detecting defects, but the test 
themselves are not usually set up to sort “conditional-defect” by the trigger-events that may be 
causing them. 

In summary, the considerations discussed above suggest that SRGMs may be primarily 
utilized in a CSRM “Design-Level” application context for the assessment of “type B” software 
routine-function cut-sets. 

More detailed information and specific mathematical formulations of SRGMs are easily 
found in the open literature.  In the NASA environment, an SRGM data gathering and parameter 
estimation environment that incorporates more than one SRGM model, from which an analyst 
can choose a preferred type of estimation, is available in JPL’s CASRE tool [9-13]. 

9.4.6.5 Parameter Estimation with SO Data 

System-specific Operational (SO) Data usually become available after “debugging test” 
cycles have been completed, thus estimation of reliability parameters via the use of SO data is 
generally only possible at the Design-Level CSRM stage. 

In practical terms, these data consist of the recorded observations of anomalies or failures, 
or absence thereof, during the operation of the deployed system of interest, i.e., in their basic 
nature these are the same type of data that are usually represented in a SR (surrogate raw) 
database.  The estimation techniques that can be applied are therefore generally the same 
standard estimation techniques that may be applied in the utilization of SR data.   

It is noted that, if the operational data collection is preceded by the collection and utilization 
of SD (system-specific debugging) data via the application of an SRGM, then the SO-based 
estimation may be combined with the SD- based estimation, for example via a Bayesian 
updating technique (see also Section 9.4.6.7 on this subject). 

9.4.6.6 Parameter Estimation with RT Data 

Risk-informed Test (RT) data are data collected as a result of a software and system test 
effort organized and prioritized on the basis of an initial software risk assessment process.  In 
general this may be driven by the result of an initial Specification-Level CSRM effort, and the 
results of the RT data estimation processes may become a key part of the basis for a final 
Design-Level analysis and quantification. 

RT data may take a form equivalent to SD or SO data, depending on the nature of the risk-
informed test procedure applied, i.e.., whether it involves a process of defect removal and 
software retest, which in turn clearly may depend on the initial level of defects detected at the 
start of the risk-informed test process. 

Additional considerations on the concept of “risk-informed testing” can be found in Section 
9.5.1. 

9.4.6.7 Parameter Uncertainty Estimation  

Standard PRA practice recommends the assessment of uncertainty in risk model 
parameters and its ultimate effect on top-level risk metrics.  To follow this practice, any 
estimation of parameters from software reliability data should also incorporate an uncertainty 
analysis.  This presents no special problems when a parameter estimation is carried out by the 
means typically employed in a conventional-PRA context, e.g., a Bayesian estimation that 
provides the estimated parameter statistics in the form of a full distribution function. 
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The assessment of uncertainty is a little more difficult when an estimation is carried out by 
means of an SRGM, since such models usually don’t have built-in mechanisms to provide 
estimated values at varying confidence levels in a statistical sense.  However, an analysis of the 
underlying SD data from an uncertainty estimation point of view can still be carried out by a PRA 
analyst with sufficient experience and expertise. 

The most problematic case for proper inclusion of uncertainty in software reliability 
parameter estimation would be if a parametric model with pre-collapsed SP data is used.  These 
models do not provide an uncertainty estimate with the output they provide.  In addition, in the 
third-party models that are currently commercially available, the PRA analyst has no access to 
the underlying proprietary data in order to execute an uncertainty estimation based on the actual 
data content that is directly or indirectly reflected in the parameter estimation. 

9.4.6.8 Use of Multiple Data Sources in Parameter Estimation 

Generally speaking, the golden rule of data utilization in PRA is: “use all that are available 
and applicable, if they carry real information content.”  This remains true in the use of software 
reliability data, thus it would generally be expected that a parameter estimation will be based on 
a combination of data sources.   

The data will usually become available in a sequential and progressive augmentation, 
paralleling the progression of a project and associated system design, which in turn will be 
reflected in the Specification-Level or Design-Level stage of development of the CSRM analysis.  
In a typical sequence of this kind, one can, for example, envision an estimation that is initiated 
with SR data at a CSRM Specification-level of application, and then is continued at the Design-
Level first with inclusion of SD data fed into an SRGM, then with inclusion of RT scenario-
related data, and possibly in the end with inclusion of SO mission data. 

There are no mandatory prescriptions for how multiple data sources of varying nature can 
be selected and combined in a probabilistic parameter estimation, but the usual, and most 
naturally convenient technical route for such an aggregation is the use of a Bayesian 
assessment framework, which permits successive “updates” of the estimation of a given 
parameter.  In a Bayesian framework the updating process can incorporate new batches of data 
as these data become available, also automatically producing a new uncertainty assessment as 
an output of each “update.”  The degree of estimation uncertainty, as for example indicated by 
the range of parameter values comprised between the 5th and 95th percentile of the updated 
parameter distribution function, will normally decrease as new data are added into the 
estimation process. 

9.4.6.9 Quantification of Specific Software Failure Modes 

The last sub-topic of the software risk quantification subject that requires some discussion in 
this chapter is the quantification of lower-level, specific software failure modes, such as those 
provided as examples in Section 9.4.5. 

The pre-existing surrogate data which are available for quantification of software reliability or 
probability of failure, are usually categorized at a higher level of detail than that reflected in the 
definitions of the example failure modes of Section 9.4.5.  For example, the SR database 
utilized in the Constellation Program assessments described in [9-4] and [9-10] permitted the 
direct estimation of more generic and higher level failure modes, such as: 

 Failure of continuous control function 
 Failure to issue discrete command 
 Inadvertent issue of discrete command. 
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On the other hand, the system-specific test processes that may be applied at a later stage of 
CSRM application can be more specifically directed at an assessment of lower-level failure 
modes that are of concern for one reason or another.  In such cases, to permit the utilization of 
both types of data at the lower level which is eventually of interest, the initial estimation with SR 
data can be brought down to the desired lower level by a process of sub-allocation. 

Sub-allocation refers to the process of apportioning the value of the estimated probability of 
a certain type of failure among the different “sub-modes” identified for such a failure, according 
to pre-defined ratios that are either assumed, analytically derived via a specific model, or 
obtained via expert elicitation.   

For example, in the case of the software control function represented in Section 9.4.5, Fig. 
9-13, the PRA analysts, in preparation for an eventual updating with specific test data, may want 
to sub-allocate the corresponding probability of failure.  This may have initially been derived 
from an SR database like the one mentioned above, i.e. using data corresponding to a software 
failure category described as “Failure of continuous control function.”  The sub-allocation will 
thus consist of deciding how the corresponding estimated probability may be apportioned 
among the five failure-modes identified in the Fig. 9-13 example as sub-cases of the continuous 
control function failure category, i.e.: 

a. function execution frozen at last active execution 
b. function execution logic “reversed” (i.e., response to low pressure selected when 

pressure is high and vice versa) 
c. spurious activation of low pressure response 
d. spurious activation of high pressure response. 

Although it may appear at first that an objective sub-allocation rationale or basis may not be 
easy to identify, once specific situations are examined, it is usually possible to find sufficient 
justification to execute it, given also that the usual objective is that of obtaining a “good enough” 
starting point for more directed testing and detailed estimation. 

9.5 Use of Software Risk Information 

A last subject that requires discussion within the topic of “software risk assessment” is the 
use of the software risk information that is produced, both in qualitative and quantitative terms, 
and from both a software-specific and general system perspective. 

From the start of this specific discussion subject, it is important to note the influence that 
software testing can have on the actual residual level of operational risk.  This is a characteristic 
of software that is relatively unique and without a close equivalent in the hardware world.  The 
special significance of this characteristic is that it makes for an even stronger argument than in 
the utilization of a conventional hardware-oriented PRA, for a proactive use of the PRA results, 
much beyond the objective of providing a “risk number.” 

9.5.1 Conditional Scenarios and Risk-informed Software Testing Strategies 

From a software design and validation point of view, the most important insight possibly 
obtainable from a CSRM assessment is the validation of software logic for contingency 
operations, i.e., the systematic identification and analysis of risk scenarios in which the software 
is by design supposed to respond with a contingency, or “fault-management,” action to a system 
hardware anomaly, or to some specific and potentially critical environmental condition 
encountered during mission execution.  As has been illustrated with the discussion of the 
examples provided in Section 9.4, this type of insight can be achieved in comprehensive fashion 
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via the combined use of traditional and more advanced models, depending on the nature of the 
subsystems and functions being addressed in the analysis. 

The analysis results can preliminarily be used to focus analytical attention on areas that are 
identified as potentially critical on the basis of both qualitative and quantitative risk information, 
i.e., either because the software functions involved are recognized as being characterized by 
high complexity, or because initial quantification with “Specification-Level” surrogate data 
indicates that similar functions have experienced anomalies or failures with relatively higher 
probability in preceding missions. 

A risk-informed prioritization or focus on specific software-related contingency scenarios can 
then lead to the process of “risk-informed testing,” i.e. to a strategy of software tests that are 
directed at the higher risk “partitions” of the overall theoretical software test space.  This can be 
done with the specific purpose of sampling the specific test partition of concern in such a way as 
to be able to achieve reasonable confidence of maintaining the probability of software failure for 
the related scenario(s) below a given risk limit value.  This type of risk-informed approach to 
software testing has been illustrated with the MiniAERCam GN&C test example given in Section 
9.4.4.2.  As discussed there, this type of risk-informed software testing ideally calls for a 
“hardware-in the-loop” approach, which can be realized via simulation if a true 
hardware/software test set-up is impractical and/or too costly. 

9.5.2 Integration of Results into Pre-existing PRA Models 

The most obvious and standard utilization of a CSRM analysis from an overall system 
assessment point of view is the completion of the system PRA model with models and 
quantifications of breadth and depth in the software “dimension” comparable to the breadth and 
depth of the PRA models developed for the hardware portions of the system. 

As discussed in Section 9.4, the CSRM models employed to represent and analyze the 
system software functions are generally amenable to integration with a conventional PRA 
framework of event-tree and fault-tree models, and the quantifications thereof can be applied to 
a corresponding “entry-point event” in one or the other type of conventional PRA binary models. 

In addition, even the more sophisticated forms of CSRM logic models, i.e., the DFM models, 
produce results that can be easily translated into equivalent binary cut-set format.  Thus, if it is 
desired to insert the CSRM information into an existing PRA set of models utilizing a 
conventional binary logic format, this can be easily done by simply appending to the CSRM 
entry point event of interest a fault tree structure that represents the cut-sets obtained via the 
CSRM analysis.  Figure 9-14 graphically shows the standard binary cut-set representation of a 
higher-order failure event as the logic “union” of the underlying cut-sets, which in turn are either 
basic-events, or “intersections” thereof.  Based on this type of equivalence, all quantitative 
information, including not only cut-set probability, but also the attendant uncertainty information, 
can be transferred from the CSRM models into the conventional PRA structures.  Pilot 
automated or semi-automated integrations of DFM models and analyses, constructed and 
carried out via the DFM tool DYMONDATM [9-7], with widely used PRA software tools (e.g., 
CAFTATM [9-14] and SAPHIRETM [9-15] have been programmed and demonstrated.  
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Figure 9-14. Notional Example of Expansion of Entry-point Event into CSRM Cut-Sets. 

9.6 Definitions 

The following definitions are provided to facilitate the interpretation of terms and language used 
in Chapter 9.  The definitions are listed in a top-down logical/hierarchical, rather than 
alphabetical order: 

Software Reliability: 
The probability of failure-free software operation for a specified period of time in a specified 
environment. [9-16] 

Software Defect: 
A specific feature or characteristic of a software component, by which such component may 
deviate or differ from its design specifications. 

Software Fault: 
A software defect serious enough that, if executed during actual system operation, it will result 
in a system functional anomaly or failure. 

Software Error: 
The actual operational execution of a software defect. 

Software Anomaly: 
The actual operational execution of a software fault that causes a system functional anomaly. 

Software Failure: 
The actual operational execution of a software fault that causes a system functional failure. 

Condition Coverage: 
The ability of a modeling or test process to address the key mission operational scenarios, 
including risk scenarios that are, or should be included in the design basis of a mission. 

Fault Tolerance: 
The capability built into a system to identify and isolate faults, preventing them from producing 
system anomalies or failures. 



 

 9-42

Software Testing: 
An organized and formal process of pre-operational software execution carried out for the 
purpose of identifying and correcting software defects and faults. 

Software Operational Fault Coverage: 
The degree by which a given software architecture and design is capable of identifying, 
isolating, and recovering from, functional failures occurring in the software system and 
supporting computer and network hardware during the operational phases of a mission. 

Software Test Fault Coverage: 
The degree by which a given type of test process is capable of exercising software functionality 
and identifying any associated potential faults. 

Software Test Fault Coverage Percent Metric: 
A quantitative expression in percentage terms of the fraction of software faults that a given test 
process or procedure is capable of identifying, usually estimated by intentionally injecting faults 
in some fashion across the functional range of a given software component a. 

Software Operational Fault Coverage Percent Metric: 
A quantitative expression, in probability or “measured” percentage terms, of the fraction of 
functional failures, among those which may occur in the software system and supporting 
computer and network hardware during the operational phases of a mission, that a given 
software architecture and design is capable of identifying, isolating, and recovering from. 

9.7 References 

9-1  J.C. Munson, A.P. Nikora A., J.S. Sherif, “Toward A Quantifiable Definition of Software 
Faults,” Advances in Engineering Software, Volume 37, Issue 5, May 2006, Pages 
327-333. 

9-2 Mars Global Surveyor Operation Review Board, “Mars Global Surveyor (MGS) 
Spacecraft Loss of Contact,” Preliminary Report, 13 April 2007. 

9-3 M.C. Hsueh and R. Lyer, "Performability modeling based on real data: A case study", 
IEEE Transactions on Computers, vol. 37 no. 4, April 1988, pp. 478-484. 

9-4 “Instruction Guide for Integration of the Context-based Software Risk Model (CSRM) 
with a Cx Probabilistic Risk Assessment (PRA),” ASCA Report for NASA Johnson 
Space Center, AR 09-03, September 15, 2009. 

9-5 T. Aldemir, S. Guarro, et al., “A Benchmark Implementation of Two Dynamic 
Methodologies for the Reliability Modeling of Digital Instrumentation and Control 
Systems,” U.S. Nuclear Regulatory Commission Report NUREG/CR-6985, 
Washington, DC, February 2009. 

                                                 
a  Note:  A quantitative measure of test fault coverage may depend to a non-negligible extent on the very way by 

which faults are injected and also on the nature of the faults that are injected.  For example if a certain type of 
software functionality is not explicitly recognized and no associated fault is injected, the “measured” fault coverage 
will not reflect the perceptivity of the test process with regard to that specific type of software functionality.  Also, a 
certain type of injected fault may be more easily detectable by a certain type of test process than another type of 
fault, although both may be equally severe in mission impact terms. 



  
 

 9-43

9-6 M. Yau, M. Motamed and S. Guarro, “Assessment and Integration of Software Risk 
within PRA,” International Journal of Performability Engineering, Vol. 3, No. 3, July 
2007. 

9-7 www.ascainc.com/dymonda/dymonda.html 

9-8 J. McCall and J. Cavano, "Methodology for Software Reliability Prediction and 
Assessment," Rome Air Development Center (RADC) Technical Report RADC-TR-
87-171, volumes 1 and 2, 1987. 

9-9 http://softrel.com/ 

9-10 “Application of Context-based Software Risk Model (CSRM) to Project Orion Pad Abort-
1 Flight Software,” ASCA, Inc. report for NASA Johnson Space Center, AR 09-01, 
April 30, 2009. 

9-11 P.A. Keiller and D.R. Miller, "On the Use and the Performance of Software Reliability 
Growth Models", Software Reliability and Safety, Elsevier, 1991, (pp. 95-117). 

9-12 M.R. Lyu , “Handbook of Software Reliability Engineering,” McGraw-Hill Publishing, 
1995, ISBN 0-07-039400-8. 

9-13 http://www.openchannelsoftware.com/projects/CASRE_3.0 

9-14 http://teams.epri.com/RR 

9-15 https://saphire.inl.gov 

9-16 ANSI/IEEE, "Standard Glossary of Software Engineering Terminology", STD-729-1991, 
ANSI/IEEE, 1991. 

 
 
 





10-1 

10. Physical and Phenomenological Models 

Models that describe physical events and phenomenology of interest are widely used in risk 
modeling, to complement and help quantify the logic models that constitute the backbone of a 
typical PRA.  

Phenomenological modeling is a physics-based analysis method used to study and 
characterize complex, interactive systems where the progression of events is governed by 
physical processes. Phenomenological modeling techniques are used to complement and 
extend traditional reliability modeling methods by evaluating the nodes in a logic tree that are 
driven by physical processes. Fault trees and event trees found in probabilistic risk 
assessments (PRAs) include failure initiators that are statistically generated based on reliability 
methods. However, the nodes that represent the subsequent events following such failure 
initiators often require phenomenological models in order to compute the probabilities. This is 
especially true when the sequence of events and processes depends upon the physical 
interactions of the system with its current surroundings. 

Engineering models based on the fundamental laws of motion, heat transfer, chemical 
reactions, gas dynamics, structural analysis, and other phenomena can be used to represent 
faithfully the conditions and state of the environment surrounding the system. These physical 
processes evolve as a function of time and system state, and are defined using mathematical 
equations that describe fluid flow, wave propagation, structural fatigue, combustion, 
crystallization, and so forth. A failure is defined to occur when the system observes physical 
conditions that violate a subsystem’s specific physical limit or capacity. 

In phenomenological risk models, the interactions of a complex system are coupled through 
common physical parameters, and the subsequent responses and consequences are 
dynamically determined based on the current conditions of the system, its environment, and its 
design limits. Failure probabilities are then developed by calculating the range of current state 
conditions, and determining whether they violate a specific design limit or system threshold. 
Failure probabilities developed by this approach directly and explicitly connect the existing 
design definition to the physical failure mechanism, providing design teams with actionable 
engineering information. 

At the backend of a PRA, consequences of the system failure events need to be estimated 
and reported on some form of continuous or discrete scale with a large number of states. Thus 
non-binary physical and phenomenological models, such as “health effects models” and 
“casualty expectation models” are also applicable and commonly found in this portion of a PRA. 

In some cases, a specific type of scenario that lends itself to modeling via physical and 
phenomenological models may be addressed as a special subject within a PRA, or as a 
complementary study.  This can be the case, for example, for the analysis of the threat to space 
missions posed by “micro-meteoroid and orbital debris” (MMOD). 

The sections of this chapter discuss the types of physical and phenomenological models 
more commonly encountered in PRAs. Examples are provided in these sections to show how 
these models are formulated and applied within the PRA process. Topics covered include: 

 Phenomenological modeling during the design process 

 Stress-strength formulation of physical models 

 Range safety models 
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 MMOD risk modeling 

 Ground-based fire PRA 

10.1 Role of Phenomenological Methods in Risk Assessment 

This section presents some of the fundamental characteristics and attributes of 
phenomenological risk models, and how their application differs from and augments traditional 
reliability analyses. Phenomenological modeling is a powerful tool for improving the 
understanding of a system under a wide range of nominal and off-nominal conditions. It is used 
to quantify dynamic failure modes that are driven by physical conditions, interactions, and 
design limits. While statistical analyses focus on reliability-based failures driven by random 
faults, anomalies, and part failures, phenomenological models instead focus on assessing 
failure mechanisms that are due to design and engineering vulnerabilities or unintended 
physical interactions in an integrated system.  
 

Phenomenological models focus on characterizing unintended physical interactions among 
systems and/or between a system and its environment. Developing a strong understanding of 
system-environment interactions is extremely important because the environment is not a 
directly controllable system and may deviate unexpectedly. Therefore, system capabilities must 
be explored within a range of conditions, not just nominal conditions, in order to better 
understand potential vulnerabilities and the levels of safety margins required. Because 
phenomenological modeling is based on specific conditions and physical interactions, it can be 
used to characterize off-nominal system behavior and unsteady physical processes in addition 
to nominal, steady behavior. 
 

When steady-state processes are being studied, it may be appropriate to use statistical 
methods. Since the environment and system interactions studied in phenomenological methods 
are highly dynamic, however, traditional reliability methods based on statistical means and 
steady-state behaviors are often not appropriate in these situations. Instead, physical modeling 
is needed to understand how potentially small off-nominal events or deviations can cascade into 
more serious failures. These interactive, unsteady processes do not follow statistical behavior 
and must be evaluated through time-dependent algorithms that dynamically track the key 
conditions of the system over time. The physical models that are used to define the processes, 
whether they are steady or unsteady behaviors, are mathematical engineering models based on 
deterministic equations. 
 

Because physics-based models depend on the laws of nature, they are not heavily 
dependent on expert opinion or failure data developed through traditional reliability techniques 
or data sources such as military handbooks to determine expected outcomes. The mean time to 
failure cannot be evaluated using handbooks because the system state is constantly evolving 
and the outcome is dependent on these evolving conditions. Physics-based models also do not 
specifically address such things as human factors or human error since they are not governed 
by laws of nature. 

 

10.2 Phenomenological Modeling During the Design Process 

A key attribute of phenomenological modeling is that it can be effectively employed 
throughout the design cycle. An evolving range of physics-based analysis techniques can be 
employed to address the most relevant, risk-driving performance and safety factors at each 
point during the design cycle, using different sources and levels of data as they become 
available. During the early phases of development, high-level physical models can focus on the 
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general characteristics of a system and gross behaviors of the proposed designs. As the design 
matures, higher fidelity models can be developed to address more specific characteristics and 
system details. Each analysis phase requires using methods and data that are of the 
appropriate precision for the maturity of the system design and the varying level of details that 
are available at each stage. There is no “one size fits all” solution and understanding which 
modeling approach to use at each phase is critical to defining an effective analysis process. 

The choice of model fidelity and complexity depends on the specific questions being asked 
at each phase of development. Selecting the proper model or models can be done as an 
iterative process, where simple, engineering-level models are chosen first to understand the 
dominant physical processes and how they generally interact. The proper set of models may 
also be chosen with an adaptive process, where simple models are used to identify local 
conditions, which then provide the inputs to more sophisticated models. A strong analysis does 
not necessarily require the incorporation of detailed physics models to answer every question. 
Rather, a strong analysis requires models that increase the understanding of the interactions 
between systems, environments, and their changing states. As further information is developed, 
more sophisticated, higher-fidelity models can be introduced to reflect more accurately the 
evolution of the processes and answer finer-level questions as needed, but only when the 
existing models become insufficient. 

The amount and quality of the input and system data will also evolve and needs to be 
incorporated appropriately as the system design solidifies. While data are sparse and less 
detailed in the early system design phases, the ability to develop useful inputs from other 
sources is important. Understanding the sources and magnitude of uncertainty in the available 
data and reconciling them with their potential impact on the overall design choices is a major 
aim of phenomenological modeling in the early analysis cycle. Detailed analyses with 
insufficient or placeholder data are much less meaningful than general analyses developed with 
uncertainty ranges that accurately reflect the state of knowledge and of the design. In fact, the 
uncertainties that are identified in the early design phases provide a valuable mechanism for 
developing a clearly defined, risk-based analysis path by logically exposing the next most 
pertinent set of design issues or weaknesses. As details of the system are defined and 
understanding of system interactions increases, the associated modeling uncertainties will 
generally decrease and actively managing them through focused studies or design changes will 
become less important.  

The nature of the dominant sources of failures and errors will also change as the design 
matures and failure modes are successively driven down. These evolving failure modes span a 
spectrum of fundamentally different problems, initiators, and solutions. Potential failure modes 
must therefore be explored and discovered through systematic but flexible techniques that are 
targeted at exposing the specific, risk-driving features at each design phase. The techniques 
should come from a variety of methods that complement one another in order to provide 
thorough coverage and depth of understanding. 

Following is a list of different techniques that can be used: 

 Top-down parametric – identify general behaviors 

 Dispersion studies – identify potential weaknesses, vulnerabilities 

 Sensitivity studies – determine which dispersive (and hard to manage) parameters 
impact the system the most 

 Calibration and validation – check model assumptions with pertinent tests 

 Refinement – update and improve models and data 
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10.3 Stress-Strength Formulation of Physical Models 

Probabilistic “stress-strength” models were originally formulated to predict the reliability of 
structural elements in civil and mechanical engineering calculations. The term derives from the 
fact that they are based on the estimation of the probability distributions of the mechanical 
“stress” applied to a structural component and of the “strength” of its constituent material. The 
probability of failure (POF) of the component is then calculated as the probability that the 
applied stress may exceed the inherent strength. This type of formulation can be generalized to 
a formulation in which the “strength” of a component is represented by a parameter that 
describes the component capability in a particular dimension, and this capability is 
probabilistically compared to a demand parameter, i.e., the “stress” applied to the component. 
This generalized form is often encountered in the use of physical models, to carry out 
quantification of standard PRA binary models such as FTs and event sequence diagrams 
(ESDs).   

For example, the ESD in Figure 10-1 describes the possible sequences of events following 
an attitude control malfunction of a launch vehicle (LV) at lift-off. In this particular ESD, both the 
branch point that determines whether there is sufficient time for the Flight Control Officer (FCO) 
to activate the launch vehicle Flight Termination System (FTS) before ground impact occurs, 
and the branch point that models whether an automated destruct is triggered (as a result of 
vehicle breakup induced by structural failure) before ground impact, can be quantified using 
probability values obtained from “stress-strength” models and underlying physical models.   

In the first of the two branch points mentioned above, the probability of successful FCO 
destruct action can be estimated by comparing the time to ground intact impact of the LV, which 
is the “demand parameter” chosen to represent the effectiveness of the FTS, with the response 
time of the FCO for FTS actuation, which is the parameter that represents FTS capability. 
Similarly, in the latter branch point, the probability of successful automated destruct action can 
be quantified by comparing the time to ground intact impact of the LV (stress, or demand, 
parameter) with the time to LV structural breakup under the dynamic loading induced by the 
attitude control malfunction (capability/strength parameter). 

Yes
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to activate FTS?
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Figure 10-1. Event Sequence Diagram for Attitude Control Malfunction at Lift-off. 
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Figure 10-2 illustrates how the comparison is carried out in probabilistic terms, using the first 
of the two previously mentioned branch point estimations as the example. The integral 
formulation in the box inset uses the probability density functions (pdfs) of the stress and 
strength parameters and represents the probability that the strength parameter is greater than 
the stress. This formulation is the instantiation, for the example discussed, of the general 
expression of the probability of success (POS), or reliability, of a system function expressed in 
stress-strength terms.  A generalized formulation is given by: 







  d)(fd)(f EEPOS
0

)Pr(  (10-1) 

where E denotes the strength parameter and Σ denotes the stress parameter. 

We note that quantification of stress-strength physical models is often based on Monte Carlo 
techniques, due to the inherent difficulty of obtaining a closed-form solution for the associated 
integral formulations, or even of the pdf terms that appear in Equation (10-1), given the 
complexity of the variable factors that determine their actual forms. For example, the time to 
intact impact, after a guidance or propulsion system malfunction immediately after LV lift-off, 
depends on several parameters that are affected by variability and randomness. These include 
the nature of the guidance or propulsion system failure mode that causes the LV attitude 
malfunction, the time of the initial failure, and the wind direction and velocity affecting the vehicle 
trajectory. 

A probabilistic physical model for the time to intact impact can be set up as follows: 

 Step 1:  Assume variability distributions for the above basic parameters. 

 Step 2: Use Monte Carlo sampling to draw an input parameter-set to use in the flight 
dynamics calculation. 

 Step 3:  Calculate time to impact according to the flight dynamics model applicable to the 
LV of interest. 

 Step 4:  Repeat with randomly drawn input parameter sets enough times to obtain a good 
approximate representation of the time-to-impact distribution. 

The process outlined above can be used to obtain a distribution for the time to LV intact 
impact, Ti, like the one drawn for illustration in Figure 10-2. A probability distribution for the FCO 
response time and FTS activation, Ta, is also shown in Figure 10-2 and can be obtained by 
using a human response model, reflecting the human reliability modeling concepts discussed in 
Chapter 8. 
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Figure 10-2. Probability Distributions for Time to LV Ground Impact and Time to FTS 
Activation by FCO. 

As outlined earlier, the probability for the yes branch for the question box “Enough time for 
FCO to activate FTS?” in Figure 10-2 can be obtained using the distributions for Ti and Ta. 

Thus, as stated at the beginning of the section, the evaluation of a “Stress-Strength” model 
can yield probability values for PRA binary models. 

10.4 Range Safety Phenomenological Modelsa 

In space system PRAs, phenomenological models are often encountered in the backend, 
i.e., consequence evaluation portion of the PRA analysis, where they are often needed to 
estimate casualty or health effects impacting range safety, e.g., effects associated with launch 
vehicle accident scenarios. Examples of these “range safety phenomenological models” include: 

 “Inert debris” phenomenological models: used to carry out probabilistic estimations of injury 
or loss of life that may be caused by direct launch vehicle/spacecraft debris impacts on 
populated areas as a result of a launch accident. 

                                                 
a. Some of the launch risk and blast risk materials and examples discussed in this chapter refer to methodology and 
information originally produced by ACTA Inc. in support of Eastern and Western Range Safety Office activities and of 
U.S. Air Force and NASA launch activities [10-1,10-2]. The discussion on re-entry risk is based on methodology 
developed by The Aerospace Corporation in support of U.S. Air Force launch activities. 
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 “Blast Impact” models: used to implement the corresponding estimations for the effects of 
blasts caused by solid or liquid propellant explosive impacts on populated areas. 

 “Ray Focusing” models: used to take into account local blast overpressure concentration 
effects in estimates of the probability of casualties or injuries produced by window breakage 
induced by launch vehicle explosions. 

 “Plume Dispersion” models: used to estimate the health effects of toxic plumes produced by 
launch vehicle propellants during a nominal mission or in an accident. 

These phenomenological consequence models all have similar characteristics. They seek to 
quantify the variability of physical processes that determine the effects of a system failure on a 
specific area of impact, such as the effects on public health or the environment. They are, at 
least in part, based on deterministic knowledge of the particular physical processes of interest.  
In addition, they all use probabilistic methods to assess the aleatory and epistemic uncertainty 
affecting key physical process parameters that are input variables for the overall model and the 
effects of this variability on the output parameter(s).  

A subset of these phenomenological models will be discussed, and examples will be 
provided in the following subsections. 

10.4.1 Inert Debris Impact Models 

Inert debris impact models are the simplest kind of phenomenological consequence 
evaluation models. They are used to estimate “Casualty Expectation” (EC) effects. EC is a 
measure of collective public risk and is defined as the expected number of casualties in a 
geographic area for a single launch. The baseline criterion for EC is defined by the range safety 
requirements in EWR 127-1, which state that the maximum acceptable Ec, without a waiver, 
summed over all geographic areas for a single launch is 30 in a million. 

An example of an inert debris impact model is the Launch Risk Analysis (LARA) program. 
LARA is an approach implemented in a software tool that can be used to evaluate the 
compliance with EWR 127-1 at the Western and Eastern Ranges.  The LARA model is used for 
all Space Shuttle launches. 

A synopsis of the LARA approach (Figure 10-3) can be summarized in the following steps: 

1. Select a flight time interval and assume a failure occurs. 

2. Select a specific failure mode and the resulting vehicle breakup mode. 

3. Given the mode of vehicle breakup, focus on a particular fragment and develop the 
impact point distribution for the selected fragment. 

4. Using the fragment impact point distribution and the pdf, estimate the EC for the 
fragment. 

5. Weight the casualty expectation result with the POF during the selected time interval and 
sum to obtain the total risk profile. 

Since debris impact risk is affected by variability in the physical and launch vehicle 
parameters, such as vehicle guidance and performance deviations, variability in the vehicle 
attitude due to control malfunction, wind uncertainties, and variability in the debris aerodynamic 
characteristics and the fragment perturbation velocities, Monte Carlo techniques can be 
superimposed on a model framework like LARA. This integrates deterministic and probabilistic 
models into an overall EC risk model that takes into account the above described variability and 
uncertainty factors. 
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Figure 10-3. Synopsis of the LARA Approach. 

10.4.2 Blast Impact Models 

Like inert debris impact models, blast impact models also seek to estimate casualty 
expectation risk. The modeling process for blast impact models is similar to that used for debris 
impact models but accounts also for the explosive yield of solid propellant fragments. Effects of 
liquid propellants are not usually considered because of the very low probability of undispersed 
liquid propellant impacts on public land. Even though re-entry of solid upper-stages from high 
altitude can also cause blast impact damage, this type of accident is treated with different 
models because of the typical absence of FTS safeguards against this type of scenario and the 
different considerations that go into the evaluation of re-entry trajectories. Some specific 
aspects of re-entry risk models will be discussed in Section 10.4.3. 

A typical blast impact model includes the representation of explosive impact and glass 
breakage risk and is used to evaluate EWR 127-1 compliance. It considers several types of 
launch vehicle accident / breakup scenarios, mostly concerning low altitude accident initiation 
and solid fragment effects. The blast impact model calculates EC induced by solid fragment 
explosive yield and glass fragments produced by window breakage. The dataflow for a blast 
impact model is summarized in Figure 10-4.  On the input side are: 

 The population density descriptions,  

 Breakage and casualty versus overpressure tables, 

 Explosive yield histogram computed according to an impact model, 

 Terrain information, including water and land locations, and 

 Wind and temperature covariance information. 

These inputs are combined in the blast model with real-time weather data to generate 
outputs such as casualty statistics, breakage statistics, risk profile, overpressure map, focusing 
map, breakage map, and sonic velocity profiles. Similar to inert debris impact models, blast 
models also utilize Monte Carlo simulations to integrate deterministic and probabilistic inputs. 



  
 
 

 10-9

 

Figure 10-4. Dataflow for Blast Impact Model. 

As a prerequisite for the blast model calculation, the impact calculation results are first 
generated as a yield histogram using an impact model.  Within the impact model, Monte Carlo 
simulation is implemented to compute the explosive yield probability. The simulation procedure 
can be summarized in the flowchart shown in Figure 10-5. First, a launch vehicle failure 
scenario is defined. For that failure scenario, the launch vehicle failure condition (failure mode 
and flight time) is sampled. Given the launch vehicle failure condition, the expected yield and 
impact location for propellant debris are computed by accounting for the failure mode, the 
simulated destruct and breakup logic, the ensuing fragmentation scenario, the destruct-induced 
velocity perturbation, the impact mass and velocity, and the impacted surface hardness.  The 
aggregate results are obtained by repeating the sampling procedure and calculation for other 
failure scenarios. 
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Figure 10-5. Monte Carlo Simulation for Explosive Yield Probability Computation. 

For example, to estimate the Titan IV solid rocket motor unit (SRMU) blast risk, failure 
scenarios (Figure 10-6) are first defined using approaches that combine ESDs (binary logic 
models) and physical models. These failure scenarios are then analyzed in the impact model to 
generate yield probability results. 
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Figure 10-6. Titan IV-SRMU Blast Scenarios. 

The yield probability results are in the blast model in combination with breakage and 
casualty versus overpressure tables (Figure 10-7) to obtain the EC. Since atmospheric 
conditions are known to influence strongly the far-field overpressure propagation and 
subsequent damage potential, real-time weather data propagated through ray-focusing models 
(Figure 10-8) is a key input for the blast model calculation.  Examples of outputs produced are 
shown in Figure 10-9. 

 

Figure 10-7. Glass Breakage Risk Analysis Modeling Process. 
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Figure 10-8. Models for Overpressure Propagation. 

 

Figure 10-9. Blast Risk Analysis Output. 

10.4.3 Re-Entry Risk Models 

Re-entry risk models address high altitude accident scenarios resulting in possible ground 
impact. As mentioned in Section 10.4.2, re-entry of solid propellants from high altitude can 
cause blast and impact damage similar in nature to that which may result from a launch area 
accident. However, the area affected by re-entry accidents is much larger. In addition to 
focusing on the types of accident scenarios and re-entry debris that may result from these, this 
modeling approach hinges on trajectory simulation for the launch vehicle.  For example, for a 
Titan-IV IUS (Inertial Upper Stage) mission launched from the Eastern Range, the vacuum-IIP 
(Instantaneous Impact Point) trace (Figure 10-10) crosses the African and Australian continents. 
Hence, in the case of an IUS solid rocket motor re-entry accident, there are potential risks to the 
populations in the aforementioned land masses. 
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Figure 10-10. Vacuum IIP Trace for a Titan IV/IUS Mission. 

By comparing the IIP trace with population density data, the risk areas can be identified.  To 
estimate the risk more specifically in terms of casualty expectation, for the affected areas, 
phenomenological models combine the time-distribution of IUS failure probability with trajectory 
and IIP dispersion models in a Monte Carlo simulation to yield the time/space distribution of IUS 
solid fragment impact probability. This time/space distribution solid fragment impact probability 
is then combined with population density distribution to yield the EC distribution (Figure 10-11). 
In the EC calculation, explosive yield is also taken into account, typically as a factor defining an 
equivalent impact surface. This equivalent impact surface can be considerably larger than the 
area mechanically affected by the fragment impacts. 

 

Figure 10-11. Casualty Expectation Distribution in Re-entry Accidents. 
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10.5 MMOD Risk Modeling 

In the term Micro-Meteoroid and Orbital Debris (MMOD) is generally used to refer to any 
kind of small-size (on the order of 1 cm in diameter or less) body traveling in space outside of 
the Earth’s atmosphere. The term Orbital Debris refers to material that is in orbit as the result of 
space launches but is no longer serving any function. 

Sources of Orbital Debris include discarded hardware, such as Spent Launch Vehicle  
Upper Stages left in orbit, Space Vehicles left in orbit after useful-life expiration, and deployment 
and separation hardware, as well as fragments produced by collisions, explosions, or 
byproducts of Space Vehicle solid rocket motor combustion.  Orbital Debris also include 
degradation products such as paint flakes, insulation particulates, and frozen leaked-fluids (e.g., 
nuclear reactor coolant leaked from Russian RORSATs). 

10.5.1 Risk from Orbital Debris 

MMOD generally move at high speed with respect to operational spacecraft. In low Earth 
orbit (< 2,000 km) the average impact velocity relative to the latter is 10 km/s (~ 22,000 mi/hr). 
At 10 km/s a 1.3 mm diameter aluminum particle has the same kinetic energy as a .22-caliber 
long-rifle bullet. At geosynchronous altitude, average impact velocity is lower ( ~ 200 m/s), but 
considerable damage can still result.  For example, a 1 cm object in geosynchronous orbit has 
damage potential similar to a 1 mm object in low Earth orbit. 

If a relatively large fragment impacts a spacecraft, a “debris cloud” of smaller fragments is 
generated around the orbit of the impacted spacecraft, spreading progressively in spiral motion 
until it envelops the entire orbit. 

10.5.2 MMOD Risk Modeling Framework 

Note that while NASA has developed specialized methods for dealing with MMOD risk, this 
section treats the issue in a more general fashion.  For additional detail, the reader is 
encouraged to consult NASA documents such as NASA-HDBK 8719.14, Handbook for Limiting 
Orbital Debris [10-3]. 

A basic framework for estimating spacecraft damage risk may be set up in a fashion that 
conceptually reflects the ET shown in Figure 10-12 and the corresponding risk representation 
given below: 

Probability	of	Mission	Loss	=		PI		•	PC/	I	•	PD/C	 (10-2)

The formulation provided by Equation (10-2) is a conditional probability formulation that 
expresses the MMOD-induced Probability of Mission Loss as the product of the probability of an 
MMOD impact on the spacecraft or launch vehicle of concern, PI ; the probability that a critical 
system component is affected by the impact (given that an impact has occurred), PC/ I; and the 
probability that fatal damage of the critical component results (given that such a component has 
been affected by the impact), PD/C. 

The following sections discuss typical approaches for the estimation of the probability terms 
that appear in Equation (10-2). 
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Figure 10-12. Conceptual MMOD Event Tree Modela. 

10.5.3 Probability of MMOD Impact PI  

Computer models like ORDEM (NASA JSC) [10-4] and MASTER (ESA) provide MMOD flux 
distribution in space, direction, and velocity, as well as average total cross-sectional flux, F, for a 
specified spacecraft orbit. Although exact formulations of collision probability require complex 
integral calculations, a simplified calculation of collision rate, CR, can be obtained from the 
approximate formula: 

F
A

CR 
4

 (10-3) 

Where: 

CR = collision rate [impacts/yr]  

A = total spacecraft surface area [m2]  

F = total cross-sectional flux [particles/m2/yr]  

Then an approximate expression for the probability of impact can be simply obtained as: 

MTCRPI   (10-4) 

Where: 

MT = mission time duration [yrs]. 

10.5.4 Probability of MMOD Impact Affecting Critical SV Components, PC/ I 

This conditional probability is essentially a reflection of the spacecraft geometry. A simplified 
estimation can be based, as illustrated by Figure 10-13, on the calculation of the approximate 
ratio between the sum of non-overlapping cross-sectional areas of critical components located 
near the spacecraft outer surfaces and the total spacecraft cross-sectional area, i.e.: 
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Where: 

aXi = cross-sectional area of i-th critical component 

AX = spacecraft cross-sectional area  ~ A / 4 

A = spacecraft surface area 

Spacecraft Body Critical Component
Cross Sections

 

Figure 10-13. Approximate Calculation of Probability of MMOD Impact Affecting a Critical 
Component. 

10.5.5 Probability of Critical Component Damage, PD/C 

Detailed damage probability modeling can be quite complex due to consideration of 
component geometry and material non-homogeneity. Complex and laborious hydrocode 
computer modeling and/or Ballistic Limit Equations (empirically based on ground “hypervelocity” 
impact tests) are used to model the impact damage dynamics. 

Approximate estimations can be obtained in terms of simplified “stress-strength” models, 
using the “kinetic energy content” of MMOD flux as the stress-term and the “energy absorption 
capacity” of any materials shielding a critical component as the strength-term.  

Assuming that critical component failures are guaranteed to occur if MMOD goes through 
the shielding material, the conditional probability of damage PD/C—i.e., the probability that fatal 
critical component damage results, given that an impact has occurred on an area where such a 
component is located—can be obtained by estimating the integral stress-strength formulation: 





e

''
K

0

C de)(efde(e)f)(/ CKCD EEPP  (10-6) 

Where: 

EC   = energy absorption capacity of SV shielding material 

fC(e)  = pdf of shielding material energy-absorption capacity 

EK   = kinetic energy of impacting MMOD flux 

fK(e) = pdf of impacting MMOD flux kinetic energy. 

10.6 Ground-Based Fire PRA 

The risk due to fires in a ground-based facility is ultimately estimated by applying Equation 
(6-1). For a particular end state of interest, the frequency at which this end state results from 
fire, (ESF), is: 
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J

j
j ESFESF

1

  (10-7) 

where  j(ESF) denotes the frequency at which fires originating in location, j, cause the end 
state to occur. 

The summation in Equation (10-7) implies that fire risk is location dependent. This geometric 
aspect of the assessment is necessary because the:  

 Frequency at which fires ignite; 

 Probability the fire propagates; and  

 Amount of equipment (or number of personnel) that could contribute to the end state if 
damaged (or injured) by fire;  

are location dependent. Consequently, an initial step in performing a fire risk assessment is to 
divide the facility into separate regions or fire zones. If U symbolizes the entire space occupied 
by the facility and Zj designates the jth fire zone, then: 


J

j
jZU

1

  (10-8) 

and, in a Boolean context, the fire zones are mutually exclusive. With respect to Equation (10-
7), the summation is over the facility fire zones. 

Focusing on the jth fire zone, signify by j the frequency at which fires are ignited within the 
zone. This is primarily dependent upon: 

 The quantity and type of combustible material (including transient combustibles); along with  

 Ignition sources;  

located within the zone. Normally, an inventory of fire zones is performed that identifies the 
combustible material loadings and potential ignition sources within each. Using this facility-
specific information, generic statistical databases are consulted in order to ascertain prior 
distributions for each j. Posterior distributions are derived by combining these generic 
distributions with fire records from the facility using Bayes’ Theorem. The process utilizes the 
techniques described in Sections 6.6 and 5.3. 

Fire propagation must next be considered. The concern is that if a fire is ignited within a 
particular zone, no risk impact will result unless the fire causes damage to equipment, or injury 
to personnel. Note that if personnel injury is a risk assessment end state, the safety of all 
personnel who enter the zone to fight the fire must also be considered. 

Fire propagation is a complex process that usually augments generic statistical data with 
computer simulations. In addition to modeling the combustion of materials located within the fire 
zone, a propagation analysis must also evaluate possible detection (by automatic sensors and 
personnel), as well as suppression (either by automatic fire suppression equipment or facility 
personnel). If the fire is detected and suppressed before it damages any equipment or injures 
any personnel, no seriously adverse end states result. However, if the fire:  

 Remains undetected; or  

 Is detected but not suppressed;  
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before injury or damage occurs, then it is necessary to determine whether any undesirable end 
states ensue. If personnel injury is an end state, then occurrence of personnel injury resulting 
from the fire directly results in that end state. No further analysis is required. 

End states not involving personnel injury may require further examination, even if equipment 
damage is caused by the fire. This is especially important if the facility includes redundant 
system designs. The issue is illustrated in Figure 10-14. 

 

Figure 10-14. Facility Power Schematic. 

Figure 10-14 depicts power distribution to a Control Computer. Three fire zones are 
identified: 

1. Zone 1 contains the Emergency Power Unit and is enclosed by a fire barrier. The 
presence of the fire barrier is significant because it inhibits the spread of fire from one 
zone to another. 

2. Zone 2 is not completely enclosed by a fire barrier. Since it contains the normal power 
source, the second fire zone could be an outdoor switch yard where the facility connects 
to the power grid. 

3. The facility Control Computer resides in Zone 3. Like the Emergency Power Unit in Zone 
1, it is protected by a fire barrier to inhibit zone-to-zone propagation. 

If the end state of interest is loss of the Control Computer, Figure 10-15 is the corresponding 
FT. 
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Figure 10-15. Fault Tree for Loss of the Control Computer. 

The Boolean equation for Figure 10-15 is: 

 EPFNPFLPFCFESF   (10-9) 

If phenomenological events were being excluded from the PRA, event LPF is unlikely to be 
included in the model of the world because local power distribution, comprised of the: 

 Local bus; and  

 Electrical connection between the local bus and computer;  

has such a low failure rate (since the components are passive) that its contribution to risk is 
negligible. However, because wires and cables are vulnerable to fire, loss of local power 
distribution is an event in Figure 10-15. 

Returning to Equation (10-7): 

   



3

1

Pr
j

jj FESFESF   (10-10) 

Here, Pr(ESF|Fj), is the conditional probability that the end state results, given that a fire starts 
in Zone j. 
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An actual ground-based facility will have numerous fire zones. However, even for the simple 
illustration in Figure 10-14, it is evident that Equation (10-10) can become complicated if zone-
to-zone fire spreading is assessed in detail.  This is depicted in Table 10-1, which lists the 
combinations of events needed for a fire initiated in a certain zone to cause end state ESF.  
Fortunately, the information in Table 10-1 can afford a basis for screening certain combinations 
of events that will contribute only negligibly to the PRA results. 

Table 10-1(and Figure 10-14) demonstrate that a fire confined to Zone 1 or Zone 2 cannot, 
by itself, cause end state ESF. In order for end state ESF, to ensue, independent failures of 
other systems must occur in conjunction with the fire. This is depicted in the Figure 10-16 ET. 

 

Figure 10-16. Facility Fire Event Tree. 
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Table 10-1. Fire Progression. 

Originating 
Zone 

Propagation 
to Zone Equipment Damaged 

Other Equipment 
Failures Needed 

for End State ESF 
Occurrence 

1 None Emergency Power Unit Yes 

  Emergency power cable Yes 
 2 Emergency Power Unit Yes 
  Emergency power cable Yes 
  Normal power Yes 
  Normal power cable Yes 
  Emergency Power Unit AND normal power No 
  Emergency Power Unit AND normal power cable No 
  Emergency power cable AND normal power No 
  Emergency power cable AND normal power cable No 
 3 Emergency Power Unit Yes 
  Emergency power cable Yes 
  Local power distribution No 
  Control Computer No 
 2 and 3 Emergency Power Unit Yes 
  Emergency power cable Yes 
  Normal power Yes 
  Normal power cable Yes 
  Emergency Power Unit AND normal power No 
  Emergency Power Unit AND normal power cable No 
  Emergency power cable AND normal power No 
  Emergency power cable AND normal power cable No 
  Local power distribution No 

  Control Computer No 
2 None Normal power Yes 

  Normal power cable Yes 
 1 Normal power Yes 
  Normal power cable Yes 
  Emergency power Yes 
  Emergency power cable Yes 
  Emergency Power Unit AND normal power No 
  Emergency Power Unit AND normal power cable No 
  Emergency power cable AND normal power No 
  Emergency power cable AND normal power cable No 
 3 Normal power Yes 
  Normal power cable Yes 
  Local power distribution No 
  Control Computer No 
 1 and 3 Normal power Yes 
  Normal power cable Yes 
  Emergency power Yes 
  Emergency power cable Yes 
  Emergency Power Unit AND normal power No 
  Emergency Power Unit AND normal power cable No 
  Emergency power cable AND normal power No 
  Emergency power cable AND normal power cable No 
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The IE in Figure 10-16 is a fire originating in Zone j. Given that the fire occurs, the first 
pivotal event considers whether equipment within the zone is damaged by the fire. If the fire is 
insufficiently intense to cause equipment damage, there is no loss of the facility Control 
Computer. Even if the fire damages equipment, end state ESF can be averted if the continued 
operation of other facility equipment prevents Equation (10-9) from being satisfied. Note that, 
according to Table 10-1, if the fire ignites in Zone 3 and damages any equipment, end state 
ESF is inevitable. Relative to Figure 10-16. Facility Fire Event Tree., the conditional probability 
that sufficient equipment survives to avert loss of the Control Computer is zero. 

Propagation between zones must be evaluated as part of a fire PRA. Relative to Figure 
10-14. Facility Power Schematic., if the fire barriers have a high, certified rating (e.g., three 
hours), then it is very unlikely that a fire in one zone can propagate to another. Under this 
condition, equipment damage by fire is restricted to the zone in which the fire originates. If: 

 Pr(Dj|Fj) symbolizes the conditional probability that equipment in Zone j is damaged, given a 
fire ignites in Zone j; and 

 Pr(ESF|Dj∩Fj) is the conditional probability that end state, ESF, results, given that 
equipment in Zone j is damaged by a fire initiated in Zone j; 

then 

     



3

!

PrPr
j

jjjjj FDESFFDESF   (10-11) 

Techniques for quantifying j and Pr(Dj|Fj) are described in conjunction with Equations (10-
7) and (10-8). Given that certain equipment is damaged by the fire, Pr(ESF|Dj∩Fj) can be 
quantified using Figure 10-15. Fault Tree for Loss of the Control Computer. and Equation (10-9). 
Beginning in Zone 1, if fire damages any equipment in that zone, event EPF is true. Combining 
this with Equation (10-9): 

         NPFLPFCFNPFLPFCFFDESF PrPrPrPrPr 11   (10-12) 

if the rare event approximation is applicable. Similarly, for Fire Zone 2: 

         EPFLPFCFEPFLPFCFFDESF PrPrPrPrPr 22   (10-13) 

while, for Zone 3 

  1Pr 33 FDESF  (10-14) 

Table 10-2 lists some illustrative values for j and Pr(Dj|Fj). 
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Table 10-2. Illustrative Values for λj and Pr(Dj|Fj). 
Zone Statistic j (per year) Pr(Dj|Fj) 

1 5th percentile 1.1x107 0.32 

Median 1.3x105 0.62 

Mean 1.2x104 0.62 

95th percentile 3.7x104 0.90 

2 5th percentile 1.2x107 0.20 

Median 8.4x106 0.55 

Mean 4.2x105 0.87 

95th percentile 1.6x104 1.00 

3 5th percentile 5.3x107 0.12 

Median 3.3x105 0.45 

Mean 1.5x104 0.80 

95th percentile 5.0x104 0.48 

 

10.7 A Launch Vehicle Ascent Abort Model 

In Chapter 14 we will use a launch vehicle ascent abort scenario to illustrate the analysis 
process and how phenomenological modeling fits into it and is developed. 
 

The top-level problem is to understand the efficacy of an emergency system, given that an 
ascent failure requiring abort has occurred. In the example, the emergency system is a launch 
abort system and we are interested in understanding how well this launch abort system 
performs under the most likely failure scenarios. The performance of the launch abort system, 
then, must be understood within the context of the conditions that are produced by these 
failures, regardless of how these failures were initiated. For launch systems, the conditions 
occurring after a failure during the ascent phase are typically limited to a few, fundamentally 
different classes of off-nominal situations. We are interested in understanding how the ascent 
failure physically manifests itself and whether it produces one or more of the following 
environments: a blast, a debris field, a fireball, or flight conditions that are outside the nominal 
flight conditions. A blast environment would produce overpressure conditions, which would 
potentially compromise the structural integrity of the crewed compartment. It could also 
contribute to extremely severe flight conditions for an abort system. A debris field would produce 
shrapnel or large fragments that could also compromise the structural integrity of the crewed 
compartment. A fireball could melt or burn parts of the system that are flammable. Although 
there may be other resulting failure conditions, these environments, and various combinations of 
them, cover the majority of resulting failure scenarios. 
 

A time-dependent model is required because the ascent phase of a launch system has a 
short timeframe and the magnitude of the resulting failure environments and their impact on the 
system are tightly coupled to the current conditions (such as amount of propellant, vehicle 
velocity, altitude, mixture ratios, etc.). Failure environments generally develop rapidly, and the 
analysis of an abort system must be able to reflect these potentially severe changes. Assuming 
the failure environments are independent of each other, the characterization of each failure 
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environment may be modeled separately using first-principles physics models. The 
characterizations should include parameters that can be compared directly to the thresholds of 
a critical system (e.g., abort system or crew compartment). Any worst-case simplifying 
assumptions would lead to potentially conservative results. As a result, the methodology 
naturally identifies the specific areas requiring refined analyses and improved input data, thus 
providing a well-defined analysis path. 

10.8 Summary 

As discussed in this chapter, physical and phenomenological effects models are extensively 
needed and applied as key components of various types of PRAs. Because the nature of these 
models depends on the type of risk and application of interest, it would be impossible to cover 
all possible types from a completely generalized point of view. The discussion and examples 
presented in the preceding sections (and in Chapter 14), however, should provide the reader 
with the basic understanding necessary to develop the form of model that is appropriate for a 
specific PRA need. 
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11. Probabilistic Structural Analysis 

This chapter provides guidance for Probabilistic Structural Analysis within the context of 
PRA. Probabilistic structural analysis entails propagation of uncertainties through deterministic 
structural analysis models, which can range from simple analytical equations to complex finite 
element and computational models. Failure is modeled using a limit state that separates the 
safe and failed regions of the design space, as will be described.  An analytical approach that 
compares applied stress to allowable strength is presented and illustrated for several structural 
analysis models. Probabilistic methods for solving general structural analysis problems are 
introduced. 

In many cases, numerical approaches such as finite element analysis are required to predict 
the performance of the system.  Practical guidance for solving probabilistic finite element 
analysis problems is provided.  The fracture mechanics limit state is defined for many NASA 
applications including many Space Shuttle structural and engine components.  Guidance for the 
solution of these types of probabilistic fracture problems is provided.   Examples are also 
provided that illustrate the application of probabilistic structural analysis methods to the solution 
of realistic structural analysis problems.   

11.1 Basic Concepts of Probabilistic Structural Analysis 

Structural analysis consists of predicting the response of a structural component or system 
subjected to external loading.  The response (e.g., displacement, stress, strain, vibratory 
frequency) is dependent on the geometry and material properties of the component/system as 
well as the values of external loads. Once computed, the structural response can be compared 
to established limit values (e.g., maximum deflection, yield stress) to determine the performance 
(i.e., probability of failure or reliability) of a system. 

In a deterministic structural analysis, the response is predicted using single-valued 
descriptions (e.g., typical or conservative values) of the applied loads or stresses, component 
geometry, and material properties. This calculation generates a single value of the predicted 
response. 

A probabilistic structural analysis is usually based on the same structural model used for the 
deterministic structural assessment. However, selected input parameters are represented as 
random variables with specified probability distributions rather than as single values.  
Probabilistic methods are used to propagate the model uncertainties (the random variables) 
through a performance model (the underlying structural model) to predict the range and 
associated likelihood of the response. The performance model may be simple (e.g., a closed-
form stress intensity solution for a simple model geometry), or complex (e.g., nonlinear finite 
element analysis, fracture mechanics). 

A schematic representation of probabilistic structural analysis (i.e., uncertainty propagation 
through a performance model) is shown in Figure 11-1.a  The results include a probabilistic 
description of the performance measure (reliability function) as well as probabilistic sensitivity 
factors that characterize the relative contribution of each random input parameter to the 
variability in the performance measure.  This information can be used to guide decisions 
associated with PRA. 

                                                 
a Figures in Chapter 11 are reprinted with the Permission Copyright © 2006 Southwest Research Institute®. 
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Figure 11-1. A Schematic Representation of Probabilistic Structural Analysis. 

When a Probabilistic Structural Analysis is Needed 

During the design stage, it is common practice to apply safety factors to deterministic load 
values to account for the uncertainty associated with the magnitude and duration of applied 
loads.  The dimensions of simple structural components can be identified based on various 
combinations of load values that include safety factors.  This approach is often applied to the 
assessment of structural systems where the relationship among member strength values is 
selected to provide a conservative result.  However, most structures are modeled as complex 
systems consisting of many members, failure modes, and post-failure modes.  It is difficult to 
assess the degree of conservatism in the relationships used among load and strength values 
and among the individual member strengths when such a conservative assessment is 
performed.  This is particularly true when uncertainties are large, which they often are. Once a 
component or system has been placed in service, it may also experience loads that are different 
from the design values.  The member strengths and structural configuration may change, or the 
intended use of the structure may change.  Even if a component failure history can be 
established, it may not provide any insight into the reasons for failure or the conditions 
associated with future failures. 

A probabilistic structural analysis can be used to address these problems.  It directly 
accounts for the uncertainties in the relationships among load and resistance and among the 
individual member resistances.  Unlike the factor of safety approach, it provides a quantitative 
estimate of the risk of failure that can be used for the assessment of both new and existing 
components and systems.  It has been used for the solution of structural problems since the 
early 1950s, including a number of NASA problems in recent years [11-1 through 11-3]. 

11.2 Probabilistic Structural Response Modeling 

Probabilistic Structural Response modeling involves the basic steps of formulating a limit 
state function and assigning uncertainty distributions to the variables involved.  

11.2.1 Limit State Formulation  

In mathematical terms, a model can be represented as 
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where Z(X) is a computed response from the model and X is the vector of n random variables 
affecting the response.  In a probabilistic analysis, the objective is to compute the probability of 
failure.  To proceed, the concept of performance must be defined.  From Equation11-1, the 
performance or limit state function can be defined as 

 (11-2) 

or 

 (11-3) 

where z is a particular value of Z(X). The condition g = 0 defines the limit state, which separates 
the variable space into failure g  0 and non-failure g  0 regions.  The alternative forms of 
writing the limit state function shown in Equations (11-2) and (11-3) provide the means to 
denote failure as g  0 for any situation. 

For example, if the model relates the tip deflection of a cantilevered beam to the uncertain 
load (W), length (L), stiffness (E), depth (b) and width (a), the response function can be written 
as: 

 (11-4) 

where Z is an analytical or numerical model and Z(X) is the tip deflection, which is also a 
random variable.  If performance is defined as the tip deflection meeting a certain criterion, such 
as not exceeding 2 cm, then the performance function, g, must be written such that failure is 
denoted when g  0 or g = 2-Z(X). 

The probability of failure, pf, can defined as 

 (11-5) 

where pf is the probability that 2 cm minus the computed deflection will be less than or equal to 
zero. 

Computing the probability given in Equation (11-5) generally requires a numerical approach.  
To visualize the calculation it is useful to consider two random variables at a time.  If two 
random variables are plotted on different axes, the resulting combined (or “joint”) probability 
density function (JPDF) can be visualized as shown in Figure 11-2. The g = 0 curve (generally 
not a line) lies in the X1-X2 plane. The intersection of g = 0 with the JPDF is shown in the figure 
with the g  0 portion of the JPDF removed for clarity. The probability of failure pf is the volume 
under the JPDF in the g  0 region, or the portion of the JPDF removed in the figure. The 
volume under the JPDF in the g > 0 region in the figure (i.e., the volume under the remaining 
part of the JPDF) corresponds to the reliability, or 1 - pf.  It can be observed in Figure 11-2 that 
the limit state defines the locations of the failure and safe regions. 
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Figure 11-2. Joint Probability Density Function for Two Random Variables showing the 
Failure Region. 

11.2.2 Assigning Uncertainty Models to Random Variables 

Uncertainty models must be assigned to the structural analysis model variables that are 
random in order to perform a probabilistic analysis based on the defined failure condition. 
Uncertainties can be classified as inherent uncertainties (aleatory uncertainty) or model error 
(epistemic uncertainty). Inherent uncertainties are irreducible and describe the inherent 
variations in the system.  Examples of inherent uncertainties include variations in system 
geometry or material properties, loading environment, and assembly procedures. Inherent 
uncertainties are typically modeled using probability density functions (such as Weibull or 
lognormal) or by a random process or field, if the statistics vary temporally or spatially, 
respectively.   

Model error describes deficiencies that result from a lack of complete information about the 
system being modeled.  This type of uncertainty is reducible.  For example, consider a situation 
in which limited data are available to estimate the statistical distribution of a geometric property 
of a population of parts.  Even with a large sample size, the statistics and distribution shape will 
still be in error.  The error in the statistics and distribution shape decrease as additional data 
become available. 

One common misconception of uncertainty modeling is that extensive experimental data are 
required to characterize the uncertainties of all of the variables that contribute to the failure 
condition.  However, in many cases, only a few important variables drive the reliability of the 
system.  A probabilistic analysis can identify the important variables and assist in allocating 
resources to collect experimental data only for these important variables. 

11.3 Stress Versus Strength Modeling 

Stress versus strength modeling is a particular form of structural response modeling and is 
widely used. Therefore a separate section is devoted to it. The classical structural reliability 
problem considers the potential for stress (S) exceeding strength (R).  Strength is the capacity 
of the system, sometimes called resistance.  Stress is the loading on the system, sometimes 
called load.  The system performs adequately as long as the stress is less than the strength.  
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The system fails when the stress is greater than the strength.  Therefore, the problem in 
probabilistic structural analysis is to compute the probability that the stress is greater than the 
strength: 

 (11-6) 

What makes this classical model probabilistic is the fact that R and S are not deterministic 
quantities but are instead random variables.  To clarify, a deterministic variable is defined by a 
single value, whereas a random variable is typically defined by a probability density function 
characterized by a mean value, a standard deviation and a distribution type.   

The limit state function (i.e., performance, g, or g-function) divides the design (or variable) 
space into failure and safe regions.  It is defined such that the probability that g < 0 is also the 
probability of failure.  For example, g can be defined such that g is less than zero when stress 
exceeds strength.  In equation form, 

 (11-7) 

11.3.1 Normal Distributions 

Analytical solutions for the probability of failure are available for specific forms of Equation 
(11-7). If the function is linear and composed of independent normal random variables then an 
analytical solution is available. Let Z be the sum of normally distributed random variables  

 (11-8) 

where ai is a constant and Xi is normally distributed with mean of i  and standard deviation of 

i .  Z is then normal with mean of z  and standard deviation of z  where: 

 (11-9) 

 (11-10) 

Cumulative probabilities can be calculated using standard approaches for a normal 
distribution once the mean and standard deviation are determined for the new random variable 
Z. There is no closed form solution for the cumulative distribution function (CDF) of a normal 
distribution but values for a standard normal CDF have been extensively tabulated and are 
available using most engineering calculators and spreadsheets. (A standard normal probability 
density function is a normal distribution with a mean of zero and standard deviation of 1.) Z can 
be formulated as standard normal distribution using 

 (11-11) 

where U is now  a standard normal variable whose cumulative distribution is defined as  

 (11-12) 
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The probability that Z is less than a specific value can be then computed by converting the 
normal distribution to a standard normal  

 (11-13) 

Then the value for the standard normal variable for z0 is 

 (11-14) 

and  

 (11-15) 

Then, if stress and strength are independent normally distributed random variables, the 
probability of failure can be quantified in closed form by identifying the main descriptors (i.e., 
mean and standard deviation) of g and computing the probability that g is less than zero. The 
mean and standard deviation of g are computed using Equations (11-9) and (11-10):  

 (11-16) 

 (11-17) 

Next, g is converted into a standard normal distribution using Equation (11-15) where Z=g 
and z0=0. The standard normal variable is then 

 (11-18) 

and the probability of failure is finally computed as 

 (11-19) 

11.3.2 Lognormal Distributions 

Another often applied analytical solution is when the model can be expressed as a 
multiplicative function and the random variables are all lognormally distributed. Assume that 
H(X) is a multiplicative function of the model parameters 

 (11-20) 

where B and all ai are constants. Let Z=ln(H) 

 (11-21) 
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If all Xi have lognormal distributions, lnXi is normal and the formulation becomes identical to 
the normal formulation. By definition of the lognormal distribution 

 (11-22) 

 (11-23) 

Where the ~ indicates the median value and C is the coefficient of variation computed as 

 (11-24) 

and 

 (11-25) 

The distribution of Z is normal and CDF can be computed using Equation (11-15). 

If stress and strength are independent lognormally distributed random variables, the limit 
state function can be expressed as 

 (11-26) 

The probability of failure can then be formulated as 

 (11-27) 

The probability of failure is consequently 

 (11-28) 

For the simpler two variable R-S problem, the main descriptors of g for lognormal variables 
are given by 

 (11-29) 

 (11-30) 

where 

1

ln ln i

n
a

Z i
i

Z H B X


 
    

 
  

 
2

2 2

1

ln 1
i

n a

Z i
i

C


 
  

 


i

i

X
i

X

C





21
iX

i

i

X
C







/ 1 0g R S R S    

[ 0] [ 0] 1 0 1 ln 0f

R R R
p P g P R S P P P

S S S

                            

[ 0] Z

Z

P g



 
    

 

 lng

R

S


 
  

 





   2 21  1   1  g R Sn C C     



 

 11-8

 (11-31) 

 (11-32) 

 (11-33) 

 (11-34) 

The standard normal variable is then 

 (11-35) 

and the probability of failure is finally computed as 

 (11-36) 

Even though the stress versus strength model given by Equation (11-6) is simple compared 
to other structural models, it has important applications. The above normal and lognormal 
formulations are often used for first stage evaluations where information is not detailed enough 
or precise enough to select other distributions.  Where applicable, formulations for other 
distributions can be handled using the general relationship given by Equation (11-6). In the most 
general case, Monte Carlo simulations can be carried out. 

11.4 Monte Carlo Simulation and Most Probable Locus Approaches 

Numerical approaches are often required when the form of the random variables and 
structural model does not lend itself to an analytical solution described in the previous section. 
Monte Carlo simulation, a random sampling technique, is a well-known technique for computing 
the probability of failure [11-4,11-5] for a general reliability problem.  In Monte Carlo simulation, 
random samples are obtained from the input distributions associated with each random variable.  
The values for the input variables are applied to a structural model to obtain the response. 
The number of samples is dependent on the probability being computed, with low probabilities 
requiring a large number of samples. An example of Monte Carlo simulation is shown in Figure 
11-3.  Monte Carlo simulation can be used to estimate probability of failure or for computing the 
probability density function of the response. 

The advantages of Monte Carlo simulation are that it is simple to implement, will work even 
if the model response is not smooth and continuous, and the efficiency is not a function of the 
number of random variables. However, a major drawback of Monte Carlo simulation is the 
relatively large number of samples required to compute small probabilities. The sampling error 
and associated confidence bounds for a Monte Carlo estimate, viewed as an average from the 
Monte Carlo samples, can be determined from the estimate of the standard deviation and 
associated confidence bounds using the individual values for each of the Monte Carlo samples.  
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Figure 11-3. Probabilistic Structural Analysis using Monte Carlo Simulation. 

In general, to accurately estimate a failure probability, at least 10 failures are required from the 
number of Monte Carlo samples used. Thus, to accurately compute a probability of 10-3 would 
require approximately 10,000 samples. Probability of failure values much lower than this are not 
uncommon; in commercial aviation gas turbine engine components, the failure probability must 
be at or below 10-9 failure events per flight. 

The primary reason that Monte Carlo simulation is inefficient is that the random samples are 
clustered near the mean of both input and output values. Recognizing this led to the 
development of more efficient random sampling techniques such as Latin Hypercube Simulation 
(LHS) [11-6] and Adaptive Importance Sampling (AIS) [11-7].  The objective of LHS is to 
distribute the samples so that the sampling density is more evenly spread over the probability 
distribution of each input random variable.  This can produce more failure samples than Monte 
Carlo for the same number of simulations.  In the AIS approach, the initial sampling region is 
defined by an approximate g(X) = 0 function developed at the failure region. The g(X) < 0 area 
is gradually increased by changing the sampling boundary until the sampling region covers the 
failure region sufficiently. 

The inefficiency of random sampling and the computationally-intensive nature of finite 
element analysis motivated the development of efficient and accurate probabilistic analysis 
methods that were based not on random sampling, but on the concept of a most probable point 
(MPP). The MPP is a point on the g = 0 limit state that corresponds to the maximum value of the 
joint probability density function (JPDF) associated with the input random variables.  This point 
is also the minimum distance from the origin to the limit state in a transformed probability space 
(u-space) as shown in Figure 11-4.  There are several unique characteristics about this 
transformed space. The JPDF is rotationally symmetric about the origin and the origin 
corresponds to the mean response. Since the MPP is a minimum distance, optimization 
algorithms can be used to locate the minimum distance.  The number of standard deviations 
from the mean to the MPP is referred to as the reliability index.  The MPP is only a single point 
on the limit state and most MPP methods use an approximation to the limit state, which 
introduces some error into the probability of failure results.  In many cases, this error is small 
since the majority of the probability is concentrated near the MPP where the approximate limit  
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Figure 11-4. Joint Probability Density Function (JPDF), Exact and Approximate Limit-
State, and Most Probable Point (MPP) for Two Random Variables in Transformed (u) 

Space. 

state function is usually accurate.  Once the MPP is located, different probabilistic methods are 
used to determine the probability in the failure region.  

Although many variations have been proposed, the best-known and most widely-used 
MPP-based methods include the first-order reliability method (FORM) [11-8 through 11-10] and 
the second-order reliability method (SORM) [11-11 through 11-13].  These methods describe 
how the probability integration is performed after locating the MPP.  The FORM probability 
solution is based on the linearization of the g-function at the most probable point (MPP) in the u-
space. The concept is shown in Figure 11-5 for two random variables.  The linear approximation 
to the limit state allows the probability to be computed as 

 (11-37) 

where  is the distance from the origin to the MPP.   is the standard normal cumulative 
distribution function (CDF), which relates cumulative probabilities to standard deviations in a 
standard normal probability distribution.  The figure shows that the possibly nonlinear limit state 
is replaced with a linear approximation for the probability integration.  The error in the probability 
integration will depend on the degree of nonlinearity.  FORM can either over- or under-predict 
the probability depending on whether the surface is concave or convex. 
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Figure 11-5. Concepts of 1st Order Reliability Method (FORM) for Probability 
Approximations. 

SORM approximates the limit state as a parabolic surface and the probability is estimated 
using  and the curvatures at the MPP.  Approximate and exact solutions to the probability 
associated with a parabolic surface in the transformed probability space are available [11-11 
through 11-13].  The SORM concept is shown in Figure 11-6.  The computed probability may be 
in error if the exact limit state is not approximated well by the parabolic surface, but is usually an 
improvement over FORM at the additional cost of computing the curvatures. 

 

Figure 11-6. Concepts of 2nd Order Reliability Method (SORM) for Probability 
Approximations. 

Advanced mean value (AMV) methods are most suitable for complicated but relatively well-
behaved response functions requiring computationally intensive calculations [11-14].  The AMV 
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methods replace the exact function with a fast running low order polynomial approximation for 
locating the MPP. The method typically uses successive linear approximations to the limit state 
until the MPP is located within a user specified tolerance.  Once the MPP is found, the 
probability is usually estimated using the FORM or SORM approach.  AMV was developed to 
efficiently locate the MPP for solving problems where the solution of each response function is 
computationally intensive. In practice, when a performance function is implicitly defined and is 
highly nonlinear, it is difficult to assess the error introduced by the polynomial approximation.  
Therefore, the approximate solutions should be checked using other more accurate methods 
such as an efficient importance sampling method. 

A summary of the advantages and disadvantages associated with common probabilistic 
methods is provided in Table 11-1.  Monte Carlo simulation is the preferred approach when the 
g-function is analytical because the result approaches the exact solution as the number of 
samples increases, it can be used with any type of response function, and it quantifies the error 
associated with the result. The MPP-based methods are approximate, but generally provide 
sufficiently accurate predictions much more efficiently than many sampling-based methods.  
Further information regarding the errors and uncertainties associated with these methods is 
provided in References 11-15 and 11-16. The probabilistic methods described in this section 
have been implemented in several commercially available software packages as described in 
Reference [11-17]. 
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Table 11-1. Advantages and Disadvantages of Several Common Probabilistic Methods. 
Method Type Advantages Disadvantages Comments 

Monte 
Carlo 

Sampling Works for any model; 
Simple to implement; 
Multiple limit states 

Large number of 
samples required to 
estimate small 
probabilities with high 
accuracy and confidence

Benchmark to verify 
other methods; 
Method of choice when 
computational models 
allow 
 

Latin 
Hypercube 
Simulation 

Sampling Works for any model; 
Samples distributed 
more evenly than 
Monte Carlo for small 
samples sizes; Multiple 
limit states 

Large number of 
samples required to 
estimate small 
probabilities  
 

Typically used for 
computing the mean, 
standard deviation, and 
distribution of the 
response 

FORM MPP Relatively efficient for 
small probabilities of 
failure; 
Exact for linear 
functions composed of 
normal random 
variables 
 

Locating MPP may be 
difficult for nonlinear 
response functions; 
Error in probability 
prediction for nonlinear 
limit state; 
Single limit state only 

Accuracy of linear 
approximation improves 
for small probability of 
failure 

SORM MPP Relatively efficient for 
small probabilities of 
failure; 
Exact for parabolic 
surfaces 
 

Locating MPP may be 
difficult for nonlinear 
response functions; 
Error in probability 
prediction for non-
parabolic limit state; 
Single limit state only 

Accuracy of parabolic 
approximation improves 
for small probability of 
failure 

AMV MPP More efficient than 
FORM since MPP 
search is performed on 
a fast running 
approximate function; 
Exact for linear 
functions composed of 
normal random 
variables 
 

Locating MPP may be 
difficult for nonlinear 
response functions; 
Error in probability 
prediction for nonlinear 
limit state (based on 
FORM); 
Single limit state only 

Accuracy of linear 
approximation improves 
for small probability of 
failure 

AIS Hybrid More efficient than 
standard Monte Carlo 
since samples are 
focused in the failure 
region; 
Number of samples 
independent of the 
probability of failure; 
Multiple limit states 

Must have information of 
the failure region (MPP) 
so this method has the 
same limitations as 
FORM/SORM for 
locating the MPP 
 

Provides an efficient 
error check for MPP 
methods 
(FORM/SORM/AMV) 
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11.5 Probabilistic Finite Element Approaches 

Finite element analysis (FEA) has become a popular tool for simulating the behavior and 
response of complex structures and mechanical systems.  Fundamentally, FEA provides a 
numerical approximation of the response of a structure to applied loadings. Reasonably simple 
finite element models are used to predict response and behavior when analytical solutions are 
not possible, for example, when the geometry is nontrivial or nonlinear materials are involved.  
FEA can also be performed for complete processes and systems with multiple interacting 
physics such as solid mechanics, dynamics, hydrodynamics, heat conduction, fluid flow, 
transport, chemistry, and acoustics.  For deterministic finite element analysis, the response is 
predicted using single-valued descriptions for all of the input variables, and the computation 
yields a single response value. 

A probabilistic finite element analysis is based on a deterministic finite element model, 
except that some of the input parameters are represented as random variables with specified 
probability distributions rather than as single values.  Quantifying the effect of uncertainties in a 
finite element model provides the analyst with an estimate of the true margin of safety for a 
particular design and allows alternative designs to be assessed on the basis of quantified 
reliability. Knowledge of the effect of uncertainties can also lead the analyst to drastically 
different conclusions regarding which input parameters are most influential. It is for this reason 
that probabilistic FEA is rapidly gaining widespread acceptance in design. 

11.5.1 When Probabilistic Finite Element Analysis is Needed  

Deterministic FEA is needed when the structural response cannot be accurately represented 
using analytical or empirical models.  A probabilistic FEA is required when the input variables 
exhibit significant uncertainty.  A probabilistic FEA can be used to quantify the reliability of a 
component or system, and to identify the design or operating parameters that have the most 
influence on the performance of the component or system.  

11.5.2 Mapping Random Variables to Finite Element Input 

When performing probabilistic FEA, a specific (e.g., sample) realization of the random 
variables must be reflected in the FE input. Random variables that affect a single quantity in the 
FE input are called scalar variables and random variables that affect multiple quantities are 
called field variables.  Typical examples of scalar random variables include Young’s modulus or 
a concentrated point load.  Examples of field random variables are a pressure field acting on a 
set of elements or a geometric parameter that affects multiple node locations, e.g., radius of a 
hole. Scalar random variables are directly mapped from the random variable value to the 
analysis program input.  Field variables require a functional relationship between the random 
variable and the analysis program input.  Because different realizations of these field random 
variables are required, a general approach can be used to relate the finite element input to a 
change in the random variable value.  For example, if the random variable is the radius of a 
hole, changes to a set of nodal coordinate values will be required each time the radius is 
changed.  This can be accomplished by defining a scaling vector that relates how the FE 
coordinates change for a given change in the random variable, i.e., radius in this example.  

Figure 11-7 shows an example of a field random variable, where a change in the random 
variable h produces a change in the finite element mesh. This approach can be used for any 
type of field random variable (e.g., pressure and temperature distributions). If the scaling vector 
does not change during the analysis, then the relationship between the random variable and the 
finite element mesh is linear. Nonlinear relationships can also be defined if warranted. 
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Figure 11-7. A Random Dimension h and its Effects on the FE Mesh. 

In most situations, the analyst or engineer will have access to a commercial FEA code. 
However, in far fewer situations will the commercial FEA code have any built-in capability for 
performing probabilistic analysis.  Fortunately, there are now a number of probabilistic analysis 
codes [11-17] that provide interfaces to commercial FEA codes.  In some cases, these 
probabilistic analysis codes also have capabilities for interfacing with other software available to 
the analyst, e.g., internally developed software. A probabilistic analysis algorithm can be 
incorporated within a FEA code, but it is far more common to “drive” or control the FEA code 
from the probabilistic analysis code.  In this approach, several practical issues arise, and 
because of their importance in the overall modeling process, are worthy of briefly mentioning 
here.  These include defining performance measures from finite element outputs, mapping 
random variables into finite element input, and results extraction 

A typical FEA produces voluminous amounts of computed results, especially when the 
results are time varying. In the case of stresses, for example, the probability that the stress 
exceeds yield at one point in the mesh and at one point in time will seldom be a meaningful 
performance measure.  A more realistic measure would be the condition that the stresses 
across a net section or along a remaining ligament exceeded yield at any point in time. 
Therefore, the probabilistic FEA must have the capability of reducing multiple FEA responses 
into a single meaningful performance measure.  Since the types of performance measures are 
problem dependent, capabilities that are user-definable will typically be needed.  

In many cases, in addition to reducing finite element output data, a failure model is required.  
For example, if the condition of interest is failure by fatigue crack growth, stresses from the FEA 
must be extracted from the location of interest in the model, reduced or processed, and then 
passed to a fatigue crack growth model to compute remaining life.  The fatigue crack growth 
model could be analytical or numerical and have random variable inputs associated with it as 
well.  Thus, the probabilistic FEA must have the capability for linking multiple numerical and 
analytical models such that the analyst can include and describe all important failure modes. For 
efficiency reasons, most FEA programs store results from the analysis in some type of binary 
database file.  Consequently, a probabilistic code must be able to open and extract specified 
results quantities from this binary database file.  Since each FEA code defines the format of the 
binary results file, a different results extraction utility must be defined for each FEA code to 
which the probabilistic software is interfaced. 

11.6 Probabilistic Fracture Mechanics 

Fracture control is a standard NASA practice for critical structural components.  
Standard guidelines and templates have been developed to define when fracture mechanics 
(FM) calculations are required and how they are to be performed [11-18 through 11-20].  Those 
guidelines and templates address a deterministic FM calculation where inputs to the calculation 
are either average or conservative values.  The “safe life” limit for NASA applications is defined 
by performing the fatigue crack growth (FCG) life computation based on these nominal inputs 
and then dividing the life by a factor of four to account for material variability.   
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The NASGRO® computer program is the standard NASA tool for FM analysis of metallic 
structures.  Fatigue crack growth rate calculations in NASGRO use the so-called NASGRO 
equation,  

 (11-38) 

Here da/dN is the average crack growth rate per cycle; ∆K = Kmax – Kmin is the stress 
intensity factor (SIF) range (the driving force for FCG), where Kmin and Kmax are the minimum 
and maximum values of the SIF in the cycle; R = Kmin/Kmax; f is a crack opening function that 
describes the effect of stress ratio and constraint on growth rate; and C, n, ∆Kth, Kc, p, and q are 
FCG material properties.  The SIF is generally calculated according to the relationship 

  aFSFSFSFSFSK 4433221100   (11-39) 

where a is the crack size, the Si terms are the various load or stress quantities 
(tension/compression, bending, pin loading, etc.), and the Fi terms are geometric correction 
factors which are themselves functions of the size and shape of the crack and the cracked body.  
Advanced weight function SIF solutions perform a more sophisticated integration of crack-line 
stress distributions and geometric factors. 

Fatigue crack growth life is calculated by re-arranging and integrating Equation (11-38) 
between initial and final crack sizes to determine the number of cycles required for the growth to 
occur, 
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 (11-40) 

The final crack size often corresponds to failure by complete fracture (when Kmax exceeds 
the fracture toughness Kc). The NASGRO software provides a convenient graphical user 
interface to facilitate the definition of the crack and component geometry and the applied loads 
or stresses for a library of SIF solutions, as well as the selection of material properties from a 
large library database (or the specification of user-defined properties).  NASGRO then performs 
the integration of the crack growth equation and the calculation of the corresponding SIF 
solutions. 

11.6.1 Differences of Probabilistic Fracture Mechanics 

In deterministic FM, these calculations (which are based directly on the physics of fracture) 
employ single-valued descriptions (either typical or conservative choices) of the applied loads or 
stresses, the crack and component geometry (including the initial crack size), and the material 
resistance to crack growth.  The calculation generates a single value of the predicted FCG life, 
or predicts whether or not fracture will occur under the specified single-value input conditions. 

The foundation of probabilistic fracture mechanics (PFM) is the underlying deterministic FM 
model employing the physics-based equations.  However, selected input parameters are 
represented as random variables with a specified probability distribution rather than a single 
value.  Appropriate probabilistic methods are used to propagate the model uncertainties 
(random variables) through a performance model (physics-based equations) to predict the 
probabilistic response and sensitivity factors of the system performance measures.  Typical 
performance measures in PFM include the number of fatigue cycles to cause failure or the 

da

dN
C

f

R
K

K
K

K
K

n
th

p

c

q


































1

1

1

1






max



  
 
 

 11-17

cumulative probability of failure at some point in the component history.  The results include a 
probabilistic description of the performance measure as well as probabilistic sensitivity factors 
that characterize the relative contribution of each random input parameter to the variability in the 
performance measure.  The probability density and sensitivity information generated by the 
PFM analysis provides support for subsequent decision analysis. 

11.6.2 When Probabilistic Fracture Mechanics is Needed 

The well-established paradigm for deterministic fracture control may be inadequate in 
certain situations.  When significant inputs to the (deterministic) fracture calculation exhibit 
significant scatter or uncertainty, it is common practice to select conservative (perhaps “worst-
case”) bounding values to perform the analysis, and this often gives acceptable results.  
However, in some cases the resulting calculation of safe life may give an overly conservative 
(and highly unlikely) result that cannot be sustained due to program cost or schedule factors (for 
example, when the answer requires frequent, expensive replacement or inspection of the 
component, but the actual risk of fracture is very low).  This outcome is especially likely when 
more than one independent input variable exhibits large variability and is conservatively 
bounded, because the probability of two or more independent variables simultaneously 
exhibiting extreme values is often a negligibly small value. For example, the probability that 
nondestructive evaluation (NDE) will miss a large crack on a component fabricated from a 
material with unusually low resistance to FCG, and that same component also experiencing 
abnormally high load levels, is likely to be very low. 

Furthermore, the existing deterministic fracture control paradigm does not produce any 
quantitative measure of the risk of fracture.  In some cases, it may be essential to understand 
and manage the total risk of system failure, since system failure may have severe 
consequences for mission success and even loss of human life.  Component fracture is 
sometimes a significant contributor to the total system risk.  However, without some probabilistic 
assessment of the fracture problem, it is not possible to provide a meaningful quantitative input 
to the system risk summation from the component fracture perspective.  In some cases where 
significant component failure history has been established, a failure rate can be defined 
empirically.  However, this is not possible for new designs, for components with such low failure 
rates that few or no failures have been observed, or in systems (such as those employed by 
NASA) where few replicates exist. 

A probabilistic fracture mechanics (PFM) analysis can address these shortcomings.  PFM is 
a mature technology that has been applied in numerous industries since the 1970s.  Although 
standard NASA damage tolerance analyses are deterministic, the most recent NASA fracture 
control requirements [11-21] permit use of probabilistic damage tolerance analysis with the 
specific approval of the responsible fracture control authority.  PFM has been applied to solve 
several specific NASA applications problems (for example, [11-22 through 11-24]). 

11.6.3 Probabilistic Characterization of Input Variables 

The primary challenge in a PFM assessment is to identify and characterize the significant 
random input variables.  These variables generally fall into four major classes: describing the 
initial crack size and state, in-service inspections (if any), applied loads or stresses, and life 
scatter considerations arising from material variability and life modeling error. 

Initial Crack.  NASA fracture control assessments typically assume that a single initial crack 
with a standard aspect ratio is always present in the structure at a critically stressed location.  
The assumed size of the initial crack is often defined by a nondestructive evaluation (NDE) 
probability-of-detection (POD) curve, the cumulative distribution of crack detection probability as 
a function of increasing crack size.  The probability distribution of initial crack sizes is taken to 
be the inverse of the median POD curve, interpreting the POD in terms of the probability of non-
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detection to estimate the size of the largest crack remaining in the component following 
inspection.  Alternatively, the initial crack size distribution may also be defined by initial material 
or manufacturing defect sizes, by the PFM analysis of a structural proof test, or by an 
“equivalent initial flaw size” (EIFS) distribution that has been back-calculated from final crack 
sizes associated with known fatigue lifetimes (such as field cracking data).  A more 
comprehensive PFM assessment may also consider the probability of occurrence of the crack, 
the possibility that more than one crack is present, and the possibility of the crack occurring at 
other locations in the structure, as well as variability in the initial shape of the crack. 

In-Service Inspection(s).  In some applications, an in-service NDE inspection is performed 
in an attempt to detect and remove cracked components from the fielded population.  The 
inspection will alter the distribution of probable crack sizes remaining in the population following 
the inspection.  This process can be treated in at least two different ways.  First, the POD curve 
corresponding to the in-service inspection can be used to define a new distribution of initial 
crack sizes (as described earlier).  An alternative, more rigorous treatment of in-service 
inspection first determines the distribution of fatigue crack sizes just prior to the inspection by 
conducting a full PFM assessment of this earlier phase of life.  The distribution of prior crack 
sizes is then altered by applying the in-service POD curve, removing a selection of the larger 
flaws in the population.  The altered distribution then becomes the starting point for a PFM 
assessment of the next increment of fatigue cycles.  In-service inspection also introduces two 
other potential sources of uncertainty:  (1) the time at which the in-service inspection is 
conducted, and (2) the probability that the in-service inspection is missed entirely. 

Loads.  Variability and uncertainty in the applied loads or stresses is often one of the most 
significant considerations in a PFM analysis.  Because of the substantial variety of load types 
that can occur in NASA hardware, it is more difficult to construct a simple conceptual framework 
to define the proper probabilistic treatment of loads.  

If the loading history is best characterized as constant amplitude (the load amplitudes do not 
vary substantially from cycle to cycle), then the key random variable is the constant load 
amplitude.  If the loading amplitude varies substantially from cycle to cycle, then the 
characterization can be considerably more complex.  The relative distribution of different load 
amplitudes and different load ratios within the spectrum must be considered.  For complex load 
spectra, the appropriate statistical representation of the spectral content can itself be a complex 
issue. 

Variability in the number of fatigue cycles may be significant.  The fatigue loading may have 
a deterministic occurrence rate (e.g., a start-up/shut-down cycle that occurs once per mission).  
However, the loading may be driven by uncertain events (e.g., structural vibration during 
temporary resonance conditions).  Both the frequencies of the resulting fatigue cycles and the 
total time that the structure is subjected to this cycling may be uncertain.  The product of the 
load frequency and the time of cycling will be the total number of cycles occurring in a unit 
history (e.g., one mission). 

In some cases, the available information about loading uncertainty is indexed to remote 
mechanical or thermal loads applied to the entire structural system, but the fatigue damage 
occurs at a specific fatigue-critical location subjected to a specific local stress state.  
The analytical or numerical transfer function used to convert the remote loads to the local 
stresses (for example, a finite element analysis, or a regression analysis) may introduce 
uncertainty due to modeling error.  Local residual stresses (if any) may introduce additional 
uncertainties. 

Life Scatter.  Even if the initial crack size and state and the applied stresses are known 
exactly, there will still be uncertainty associated with the life prediction analysis.  This 
uncertainty, which is here described as “life scatter,” arises from two fundamental sources. The 
first source is inherent material variability.  This variability will be reflected in the materials data 
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used to determine the material properties, and so it may be appropriate to perform a statistical 
analysis of the supporting materials data.  Unfortunately, replicate FCG data of sufficient 
quantity to support a rigorous statistical analysis are rarely available, and so estimates are often 
required.  Since FCG material properties involve multiple parameters (for example, the Paris 
coefficient and exponent), statistical correlations between the different parameters must be 
addressed to accurately describe the overall material variability.  In some cases, it may be an 
acceptable approximation to treat one or more FCG property parameters as deterministic and to 
express all of the variability in the other parameter(s).   

The second source is inaccuracy in the FCG life prediction model itself (including the stress 
intensity factors, the FCG equation, and the load interaction model).  No model will be able to 
address the complex effects of crack and component geometry, load history, temperature, and 
environment with perfect accuracy.  Unfortunately, the uncertainties arising from life modeling 
errors are difficult to quantify in isolation, because the test data that might be used to 
characterize the modeling uncertainties also contain inherent material scatter to some degree. 

As a result, material scatter and life model error are sometimes described by a single life 
scatter variable.  This parameter may be derived from a statistical analysis of actual and 
predicted laboratory test results employing the relevant FCG life model.  The statistics of the 
pooled and ordered actual-to-predicted (A/P) values provide a quantitative assessment of both 
the mean A/P value (describing bias in the life model) and the scatter in the data (expressible as 
a coefficient of variation (COV) for life scatter).  The test data base should comprise an 
appropriate range of different material sources, load histories, and test conditions relevant to the 
structural application in question. Finally, if the environment (temperature or chemistry) has a 
significant impact on material resistance to crack growth, and if there is significant uncertainty in 
the environment (or in the nature of the environmental effects), then these factors may need to 
be addressed. 

11.7 Probabilistic Structural Analysis Examples 

Two probabilistic structural analysis examples are presented in this section. Section 11.7.1 
presents an example of a stress versus strength evaluation.  Section 11.7.2 presents an 
example of a probabilistic finite element analysis. More examples as well as expanded 
discussions of the approaches are given in [11-25]. 

11.7.1 Example of a Probabilistic Stress versus Strength Analysis  

This first example examines a load bearing structure that can be modeled as a cantilever 
beam (Figure 11-8). The constant load at the tip of the beam will cause maximum deflection at 
the beam tip and maximum stress on the upper surface of the beam root and the beam can fail 
either by exceeding a yield stress or by exceeding a deflection limit in this scenario. 
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Figure 11-8. Cantilever Beam. 

The stress for this component is the bending moment, M, times the distance from the neutral 
axis to the outer surface, c, divided by the moment of inertia I. The bending moment and 
moment of inertia can be expressed in terms of the load, Q, beam length, L, the beam base and 
height, b and h:  

 (11-41) 

The component fails when the stress, S, exceeds the yield strength, R.  The limit state can 
be formulated as 

 (11-42) 

The nominal, mean values for these variables are given in Table 11-2. 

Table 11-2. Parameters for the Stress Limit State. 
Variable Mean 

Length, L 18 in 
Width, b 1 in 
Height, h 1.5 in 
Load, Q 1.888 kips 
Yield Limit, R 120 ksi 
Young’s Modulus 30,000 ksi 

 
If any of these variables have uncertainty, then they can be modeled as random variables 

and the probability of failure is 

 (11-43) 

The manufacturing process, material quality, and environment will determine which variables 
have uncertainty.  One scenario is that the material is very high quality and the manufacturing 
process (machining beam dimensions for examples) is very tightly controlled.  This may lead to 
very small variations in the geometry and yield strength resulting in uncertainties only in the load 
(environment).  A probability density function can be defined to describe the variations in the 
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load.  This distribution information may come for measured data, similar components, or expert 
knowledge.  For this example, the load Q is defined as a normal probability density function with 
a mean of 1.888 kips and a standard deviation of 0.283 kips.  This one random variable problem 
can be solved using approaches developed in the previous section. 

 (11-44) 

 

The standard deviation of the limit state is 

 (11-45) 

Finally, the probability of failure is computed from the mean and standard deviation as 
follows: 

 (11-46) 

11.7.2 Example of a Probabilistic Finite Element Analysis  

In this example, several uncertainties are propagated through a finite element model of an 
elastic isotropic simply supported beam. This example is similar to the previous one but the 
beam is now supported. This second examples shows how more detailed PFM is performed 
when more accurate and detailed results are to be obtained. A point load, P,  acts in the 
downward direction at the center of the beam. Due to symmetry, only one half of the beam is 
modeled with finite elements.  The geometry, boundary conditions, loading and finite element 
discretization are shown in Figure 11-9.  The response of interest is the maximum stress due to 
bending, which occurs at either node 3 (tensile) or 9 (compressive). 

 

Figure 11-9. Beam Finite Element Example. 

The finite element mesh shown in Figure 11-9 is used only to illustrate the process of 
performing a simple probabilistic FEA.  In reality, a much finer discretization of finite elements 
would be required to resolve the computed stresses with sufficient accuracy. 
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Uncertainties considered in the probabilistic finite element analysis include the magnitude of 
the loading and the depth and length of the beam.  All uncertainties are characterized using 
probability distributions. The specific input is listed in Table 11-3.  The goal of the probabilistic 
FEA is to quantify the effect of these input uncertainties on the maximum computed stress in the 
beam. 

Table 11-3. Uncertain Inputs for the Simply Supported Beam Example. 
Input Parameter Mean Value Standard Deviation Distribution 
Load, P 3.33333a 0.33333 Lognormal 

Length, S 8.0 0.8 Normal 

Depth, B 2.0 0.2 Normal 

a  ½ the load value due to symmetry in the model 
 

A representative finite element input file for the simply supported beam shown in Figure 11-9  
is listed in Table 11-4.  This input is not intended to be specific to any particular finite element 
analysis software but rather representative of the input required for any FEA code. The various 
sections of the input are shown in bold in the table. 

Table 11-4. Example Finite Element Input. 
*NODE  
1, 0.0, 0.0  
2, 2.0, 0.0  
3, 4.0, 0.0  
4, 0.0, 1.0 Nodal coordinates 
5, 2.0, 1.0  
6, 4.0, 1.0  
7, 0.0, 2.0  
8, 2.0, 2.0  
9, 4.0, 2.0  
  
*ELEMENT  
1, 1, 2, 5, 4  
2, 2, 3, 6, 5 Element connectivity
3, 4, 5, 8, 7  
4, 5, 6, 9, 8  
  
*MATERIAL  
*ELASTIC Material properties 
30.0E3, 0.3  
*BOUNDARY  
1, 2, , 0.0  
3, 1, , 0.0 Boundary conditions 
6, 1, , 0.0  
9, 1, , 0.0  
  
*LOAD Loading 
9, 2, 3.3 
 

 

The most straightforward technique of performing a probabilistic FEA is to execute the FEA 
software from the probabilistic analysis software.  The basic functions of the interface are to:  1) 
modify the FEA input given a specific sample of the input uncertainties, 2) execute the FEA 
software, and 3) extract the result of interest.  By properly interfacing the two software codes, 
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the probabilistic analysis can be fully automated regardless of the probabilistic method 
employed. 

The last step is the results extraction.  The desired FEA output quantity must be returned to 
the probabilistic analysis software.  For efficiency, most FEA software programs store computed 
results in a binary output file.  Therefore, a results extraction program will typically be required to 
locate the desired output quantity in the file and then return this value to the probabilistic 
analysis program. 

A typical result from a probabilistic analysis of the simply supported beam is shown in Figure 
11-10.  The figure shows the cumulative distribution function (CDF) of the maximum stress in 
the beam.  Comprehensive uncertainty and sensitivity studies can also be produced showing 
uncertainty contributions and the most sensitive variables. 

 

 

Figure 11-10. CDF of Maximum Stress for the Three-Point Bend Specimen Plot on Normal 
Probability Scale. 
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12. Uncertainty Propagation 

Randomness (natural variability) of physical processes modeled in PRAs imposes the use of 
probabilistic models, which is central to risk analysis. Additionally, the development of scenarios 
introduces model assumptions and model parameters that are based on what is currently known 
about the physics of the relevant processes and the behavior of systems under given 
conditions. Because there is uncertainty associated with these conditions, probabilistic models 
are also used to represent our state of knowledge regarding the numerical values of the 
parameters and the validity of the model assumptions. It is important that the uncertainties in the 
natural variability of physical processes (i.e., aleatory uncertainty) and the uncertainties in the 
knowledge of these processes (i.e., epistemic uncertainty) are properly accounted for.  
Epistemic uncertainty associated with phenomenological models will be described in this 
chapter. 

 

This chapter focuses on the uncertainties regarding the numerical values of the parameters 
of a given model (parameter uncertainty), rather than on the uncertainty regarding the validity of 
the model itself. It examines the technique to propagate the uncertainty in the risk model outputs 
induced by epistemic uncertainties in input parameter values. With uncertainty propagation 
bounding values for output functions of the PRA can be estimated. These bounds are 
associated with a probability that has bounds, which include the true value of the numerical 
result predicted by the model. Here, the term “output function” refers to the function 
corresponding to the risk metric of interest. The term “input parameters” represents the 
uncertain input to the output function.  

As stated in Chapter 7, the widely used framework within which the uncertainty of the model 
output is calculated is the Bayesian. In this approach the uncertain input parameters are 
characterized by probability distributions. The approach follows a two-step process:  

 Construct a probability density function (pdf) for each input parameter value (a pdf reflects 
state of knowledge about the value of the parameter); and  

 Generate a probability distribution for the output function by mathematically combining the 
probability distributions on the values of the input parameters using an appropriate mapping 
technique. 

Care should be exercised in interpreting the probability distribution obtained for the output 
function. The resulting distribution represents only a portion of the uncertainty, which arises from 
uncertainty in the parameter values. The distribution is predicated on validity of: 

 The modeling assumptions made in the PRA model; and 

 The distributions assumed for the input parameters. 

The uncertainty associated with the risk model assumptions is handled with sensitivity analysis. 

The following techniques have been used for propagation of uncertainties [12-1]:  

 Sampling—The distributions for input parameters are mapped using crude Monte Carlo or 
Latin Hypercube sampling (LHS) techniques to obtain an empirical distribution for the output 
function; 
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 Moment propagation—First and second moments of the input parameters are mapped to 
obtain the mean and variance of the output function using variance/covariance propagation; 
and 

 Discrete Probability Distribution—The distributions for input parameters are converted to 
discrete probability distribution before mapping. The resulting distribution for the output 
function is empirical. 

In this guide only the sampling technique is described. This is because this technique has 
become the industry standard for propagating uncertainties. Sampling analysis is often 
supported by PRA codes. In addition, powerful spreadsheet-based sampling codes are now 
available that allow the PRA analysts to easily set up and execute complex analysis tasks.   

12.1 Problem Statement for Uncertainty Propagation 

Suppose R is an output of the risk model. Mathematically, R can be represented with a 

function h with uncertain input quantity ix : 

)x.,......,..x,(x n21 ji xxhR   (12-1) 

The main question to be investigated is the following: 

How does R  vary when the set of ix  that are uncertain vary according to their assumed 

probability distributions?    

The question of what the confidence bounds and other statistics (e.g., median) are for the 
output function is closely linked to the question posed above. 

How to Interpret xi in Equation (12-1)  

Suppose that the basic event ix  in the logic model is failure of a certain component to 

perform its mission, and that this failure probability is symbolized by )Pr( ix .  If i  is the 

component failure rate and ti its mission time, then 

iit
i ex  1)Pr(  

(12-2)

Typically, the failure rate is predicated upon a Bayesian analysis of available data and has 

an uncertainty distribution. Let )( i  be the epistemic pdf for the failure rate in Equation (12-2). 

For the purpose of illustration, postulate that )( i is a lognormal density function with 

parameters: 91.61   and 658.01  . (Section 6.5 describes the properties of lognormal 
density functions). This corresponds to a mean failure rate of 10–3 per hour, and an error factor 
(defined as the ratio of the 95th. percentile to the median) of 3. The curve shown in the lower left 

corner of Figure 12-1 depicts )( i . 

Combining Equation (12-2) with the pdf of i  results in the pdf for )Pr( ix  once the mission 

time is specified. Let it be assumed that ti is 0.1 hour (i.e., 6 minutes). Then the graph in the 

upper left corner of Figure 12-1 is the pdf for )Pr( ix . 
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Relative to Equation (12-1), )Pr( ix  is an example of an uncertain input event. This is 

because the fundamental parameter used to calculate the probability of xi  (i.e., the failure rate 

i ) has epistemic uncertainty. 

12.1.1 How Does Sampling Work? 

Sampling can be described as a thought experiment in which a system of many components 
with varying failure rates is to be analyzed to obtain its failure probability. For example, we can 
imagine that we have thousands of components of type xi (mentioned above) with different 
failure rates that follow the lognormal distribution with parameters 91.61   and 658.01  ). 
For a fixed t of 6 minutes, the failures of these thousands of components will give us a set of 
probability values for xi. These probabilities will be distributed because λi is distributed. Now, in 
real life, we don’t have the benefit of this experiment, but we can simulate it, as long as we are 
careful enough to select an appropriate set of values for λi. The process of selecting the set of 
possible values for λi consistent with its distribution is called sampling.   

 

Figure 12-1. Propagation of Epistemic Uncertainties. 

The sampling technique uses random numbers (generated by a random number generator) 
and random (or stratified) sampling of the distributions assumed for the input parameters to 
obtain an empirical distribution for the output function. A value is drawn at random from the 
probability distribution of each input parameter. The set of random values, one for each input 
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parameter, is used to quantify the output function. The quantification of the output function in 
each simulation trial is referred to as “an iteration.” The process is repeated n times producing n 
independent output values. These n output values represent a random sample from the 
probability distribution of the output function. With enough iterations, the sampled values 
obtained for the probability distribution of each input parameter will approximate its assumed 
probability distribution.   

The two commonly used sampling methods are crude Monte Carlo sampling and LHS. To 
aid in understanding the difference between these sampling techniques, the reader is 
encouraged to review the concept of cumulative distribution function (CDF) as discussed in 
Section 4.3.2. 

12.1.2 Crude Monte Carlo Sampling 

This is the traditional technique to sample from a probability distribution. In this technique 
the sampling is completely random. That is, a value is drawn at random from the distribution for 
each input parameter. Of course, samples are more likely to be drawn in the areas of 
distribution where the probability of occurrence is higher (Figure 12-2).  Because of this 
property, low probability areas of the distribution (i.e., tail of the distribution) may not be 
represented adequately in the samples. As a result, a relatively high number of iterations is 
required to obtain reliable estimates of the output function. This issue is particularly problematic 
for risk and reliability models that employ skewed probability distributions.a This problem led to 
development of LHS technique [12-2].  

Areas of poor
representation

Sample Values

Input Distribution

 

Figure 12-2. Crude Monte Carlo Sampling. 

12.1.3 Latin Hypercube Sampling  

The sampling technique used in LHS is based on “sampling without replacement.” In this 
technique the cumulative distribution function for an input parameter is divided up into intervals. 
A single value is sampled at random from within each interval (or stratification) according to the 
probability distribution of the input parameter. This sampling technique is illustrated in Figure 
12-3. In this illustration, the cumulative curve has been divided into four intervals.   

Because the coverage of sampling over the input domain is more uniform, a smaller number 
of samples is required. For this reason LHS is more appealing than crude Monte Carlo 
sampling. 

                                                 
a. Skewed distributions have more values to one side of the peak; one tail is much longer than the other. 
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Figure 12-3. Latin Hypercube Sampling (LHS) Technique. 

12.2 Achieving Convergence  

The precision in the propagated distributions is improved by increasing the number of 
samples. It is important to run enough iterations so that the statistics generated for the output 
function are reliable. Therefore, care should be exercised to include enough sample iterations to 
achieve statistical regularity. By statistical regularity we mean as more iterations are run, the 
distribution for the output function becomes more stable as the statistics describing the 
distribution change less and less with additional iterations. The statistics of interest that should 
be monitored for convergence include the expected value and the standard deviation. With 
advanced simulation software codes, the analyst has the ability to monitor the change in the 
statistics of the output function at selected intervals (such as every 100 iterations). The 
simulation can be programmed to stop automatically once the changes in statistics meet the 
convergence criteria defined by the analyst. In the absence of any specified convergence 
criteria, the following steps can be taken to achieve convergence: 

1. Set the number of iterations to at least 5,000 and run the simulation. 

2. Records the statistics for: 

 mean;  

 standard deviation;  

 5th percentile;  

 median (50th percentile); and 

 95th percentile.   

3. Perform additional simulations by increasing the number of iterations by increments of at 
least 1,000. 

4. Monitor the change in above statistics.  

5. Stop if the average change for each statistic (in two consecutive simulations) is less than 
a desired value (generally in the range of 1 to 5%).  Note that some software performs 
convergence checking as a part of the uncertainty analysis. 
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12.3 Example: Uncertainty Propagation for an Accident Scenario Using LHS 

Figure 12-4 shows two FTs associated with two standby systems (System A and System B). 
System A represents a two-train redundant system that consists of two nominally identical 
devices (A1 and A2). Figure 12-5 shows an ET involving failure and success combinations of 
the two systems.    

In these schematics: 

 A  and B  denote failure of System A and B respectively;  

 Scenario 1 ( BAIE  ) represents the success path; and 

 Scenario 4 ( BAIE  ) is the risk scenario.  Its frequency is the risk metric )(R of interest. 

The reduced Boolean equation (rare-event approximation) for Scenario 4 has the following 
form (here, we use the symbol “+” for the union operation and the symbol “.” for the intersection 
operation.) 

11.21.11.11.22.11.12.21.11.12.22.11.

11.21.12.11.22.12.12.21.12.

12.22.12.12..11..

BAAIEBAAIEBAAIEBAAIE

BAAIEBAAIEBAAIE

BAAIEBACCIEBACCIER






 (12-3) 

 

Figure 12-4. Fault Trees for Systems A and B. 
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Figure 12-5. Event Tree for Uncertainty Propagation. 

The list of the basic events along with their probabilities (unavailabilities) and the 
expressions used to calculate these probabilities is shown in Table 12-1. The following 
assumptions are made: 

 Each standby device can fail to respond when actuated either due to: 

- Stress-related failures at the time of the demanda or 

- Time-related failures while in standby (the failure time follows the exponential 
distribution) 

 The average unavailability (Q) of each standby device has two contributions: 

- The probability it fails to start on demand (e.g., A1); and 

- Half of the product of the failure rate , in standby, and the fault exposure time  (e.g., 

2
1

1
AIA

IAQ


 ). 

The fundamental parameters used to calculate unavailabilities are identified in Table 12-2. It 
is assumed that the epistemic pdf for uncertain parameters (e.g., failure rate IA1 ) is lognormal. 
The shape and scale factors of the lognormal distribution assumed for each uncertain 
parameter are shown in Table 12-2. 

                                                 
a. In practice, distinguishing between stress-induced failures and standby failures may not be possible due to data 
limitations. 
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Table 12-1. List of Basic Events and Associated Uncertain Parameters. 
Basic Event Identification of Uncertain Parameters 

ID Description 

Unavailability Expression 
Used To 
Calculate 
Expected 

Value Parameter Description 

Treated 
as 

Random 
Variable? Symbol 

Expected 
Value 

A11 Device A1 fails 
to start once 
demanded 

QA11 1.0E-2  
1A  Probability of failure 

to start of device A1 
Yes 

A21 Device A2 fails 
to start once 
demanded 

QA21 2.0E-2  
2A  Conditional 

probability of failure 
to start of device A2 
given A1 failure 

Yes 

A12 Device A1 fails 
independent of 
A2 (while in 
standby) 

QA12 3.0E-2 
AI1A2

1
  

 

I1A  Failure rate of A1 
(due to independent 
causes; per hour) 

Yes 

A  Fault exposure time 
for System A (168 
hours) 

No 

A22 Device A2 fails 
independent of 
A1 (while in 
standby) 

QA22 3.0E-2 
AI2A2

1
  

 

I2A  Failure rate of A2 
(due to independent 
causes; per hour) 

Yes 

A  Fault exposure time 
for System A (168 
hours) 

No 

ACC Common 
cause shock 
disables two 
redundant 
channels of 
System A 
(while in 
standby) 

QACC 3.0E-3 
AACC2

1
  

 

ACC  Failure rate of A1 
and A2 (due to 
common cause; per 
hour) 

Yes 

A  Fault exposure time 
for System A (168 
hours) 

No 

B11 Device B1 fails 
to start once 
demanded 

QB11 2.0E-2  
1B  Probability of failure 

to start of device B1 
Yes 

B12 Device B1 fails 
(while in 
standby)  

QB12 4.0E-2 
B1B2

1
  

 

1B  Failure rate for 
device B1 (per 
hour)  

Yes 

B  Fault exposure time 
for System B (168 
hours) 

No 

IE Initiating event  1.0E-3 

frequency 

 
IEf  Frequency of 

initiating event (per 
mission) 

Yes 

 



  
 
 

 12-9

Table 12-2. Uncertainty Distributions for Uncertain Parameters. 

Random 
Variable 

Parameters of Epistemic 
Distribution (Lognormal) Statistics 

  
Expected 

Value Variance 

1A  4.83 0.668 1.0E-02 5.6E-05 

2A  4.14 0.668 2.0E-02 2.2E-04 

I1A  8.16 0.668 3.6E-04 7.2E-08 

I2A  8.16 0.668 3.6E-04 7.2E-08 

ACC  10.70 0.978 3.6E-05 2.1E-09 

1B  4.14 0.668 2.0E-02 2.2E-04 

1B  8.13 0.978 4.8E-04 3.6E-07 

IEf  7.89 1.400 1.0E-03 6.1E-06 

 
The point estimate for the risk metric can be obtained by directly substituting the average 

unavailability of each basic event in the Boolean expression (Equation (12-3)). Thus 

)..

......

......

.....(

112111

112211122111122211

112112112212122112

1222121211

BAA

BAABAABAA
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QQQQQQQQQ

QQQQQQQQQ

QQQQQQQfR





 (12-4)

Substituting the values of basic event probabilities shown in Table 12-1, the point estimate 

for the risk metric is calculated: 704.30  ER  per-mission.    

For uncertainty propagation we need to express Equation (12-4) in terms of fundamental 
parametersa. Using unavailability expressions listed in Table 12-1, the parametric representation 
of R (the output function) is obtained as  
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 (12-5)

                                                 
a. Although the PRA codes do not produce the parametric representation of the risk metric as output, they internally 
generate and process the parametric expressions to perform quantification of the model. 
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In this example, even though devices A1 and A2 are physically distinct, the assumption that 
they are identical requires that the same failure rate be used for both devices. Let us assume 

IAIAAI 21   . The parametric representation of R can be rewritten as followsa: 

)
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 (12-6)

The LHS technique was employed to generate a distribution for the risk metric R by 
propagating the epistemic uncertainties in its parameters. For this example @RISK software 
[12-3] was used.  This software operates in a Microsoft Excel® environment. 

The parametric expression of R (i.e., right side of Equation (12-6) shown above) was 
entered into @Risk as the output function for uncertainty propagation. The parameters 
AI, ACC, B1, and fIE were declared as input variables whose uncertainties are 
defined according to Table 12-2. 

The numerical distribution for R as generated by @Risk is shown in Figure 12-6. The 
statistics associated with this distribution are shown in column 2 of Table 12-3.  

  

                                                 
a. Note that in this expression the terms that reflect the average unavailability of two parallel devices are slightly 
underestimated (third and fifth).  This is because for two components in parallel (A1 and A2 in this example) the 

average unavailability is 223/1   as opposed to 224/1   [4]. 
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Figure 12-6. The pdf for the Risk Metric R. 
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Table 12-3. Statistics for Scenario 4 pdf. 

Statistic 

Value 

When the Risk Metric is 
defined by Equation (12-6) 

When the Risk Metric is 
Defined by Equation 

(12-5) 

Mean 3.32E-07 3.06E-07 

Variance 2.09E-12 3.00E-12 

5% Percentile 4.34E-09 4.48E-09 

50% Percentile 7.17E-08 6.91E-08 

95% Percentile 1.24E-06 1.15E-06 

 
Column 3 of Table 12-3 reflects the results of a run in which Equation (12-5) was declared 

as the output function. In this case despite the fact that our current state of knowledge about the 
failure rate of devices A1 and A2 is the same, the epistemic pdfs for AI1 and AI2 are assumed 
to be independent. This assumption leads to underestimation of the results as evident in this 
example (note the mean value is reduced by 5% when Equation (12-5) is used). This treatment 
of epistemic dependency between variables is the subject of the next section. 

12.4 Treatment of Epistemic Dependency  

It is important that epistemic dependency among variables of a risk model is correctly 
accounted for in the uncertainty propagation. The epistemic uncertainty in the failure rates of 
nominally identical components or basic events must be coupled. Failure to do so will lead to 
underestimation of the mean value of the results as well as an underestimation of its uncertainty 
[12-5]. The sources of epistemic dependency include: 

1. Use of identically designed and manufactured components—Assigning the same failure 
rate () to identical devices introduces dependency among the probabilities assigned to 
the affected basic events; and 

2. Organizational factors—Operation, test, and maintenance of a system by the same staff 
introduce dependency between parameters that are used in the unavailability expression 
for the system. Examples of such parameters include the component failure rate, the 
frequency of maintenance, the downtime of system, and the human error probability 
(HEP).  

Dependence among uncertain parameters is often specified in terms of correlation 
coefficient, which has a value between –1 and 1. Positive coefficient values indicate a positive 
relationship between two variables (i.e., uncertain parameters), so that when the value sampled 
for one variable is high, the value sampled for the second variable will be high as well. Negative 
coefficient values indicate an inverse relationship, so that when the value sampled for one 
variable is high, the value sampled for the other variable will be low.  

Due to lack of data, the PRA models often assume that the dependent variables are fully 
correlated. This is accomplished using one of the following techniques:  

 Declare dependent variables as fully correlated with correlation coefficient of 1.0 between 
each pair. In this case each parameter maintains its identity in the output function (for 
example define A1I and A2I as correlated in Equation (12-5)).  
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 Define one epistemic pdf for all dependent variables similar to the treatment of failure rates 
A1I and A2I in the previous example (this requires that the output function be modified and 
all dependent variables be replaced by a single variable; similar to Equation (12-6)). 

The reader should review the documentation of the simulation software to obtain specific 
instructions on handling of correlated variables. Chapter 10 provides additional information on 
the treatment of dependency. 

12.5 Epistemic Uncertainty in Phenomenological Models  

 
Risk assessment ultimately involves quantifying models.  An example is demonstrating 

compliance with a requirement that the probability of avoiding contact with the pad (reliability) 
during launch is at least 0.999.  One method for verifying compliance with the requirement is to 
develop a physics-based model for contacting the pad during launch, and quantifying it using 
Monte Carlo simulation.  By sampling from the input distributions for the model parameters, the 
probability of contacting the pad could be quantified and compared with the requirement.  
Mathematically, if x is the minimum distance between a launch vehicle and an imaginary 
mathematical surface coincident with the pad, the probability of contacting the pad is the 
probability that x is negative.  Although it may require thousands of lines of script to create, 
ultimately there is some function, g(1,2,...,N), which represents the physics-based model and 
satisfies the relationship: 

 
 N21 ,...,,gx    (12-7) 

 
If there are probability density functions for the input parameters, 1 through N, Monte Carlo 
simulation can estimate the probability that x is negative.  If that probability is 10-3 or less, it 
could claim that the requirement is satisfied.  Of course, if only a small sample size is used in 
performing the simulation the simulation may not have converged to an accurate estimate of the 
probability that x is negative.  Achieving convergence is a very necessary consideration when 
evaluating the uncertainty in the risk of pad contact, and in any Monte Carlo simulation. 
 

There are, however, other contributors to the uncertainty that the risk requirement is 
satisfied besides convergence.  These other contributors can best be appreciated in the context 
of epistemic uncertainty described, for example, in Reference [12-6].  The context is illustrated 
in Figure 12-7. 
 

The universe is vast, and compared to it our Milky Way galaxy is insignificant.  Within the 
Milky Way our solar system is insignificant, and on Earth our launch complex is a mere speck.  
Thus, compared to the entire universe (i.e., the World in Figure 12-7) our launch complex is 
entirely irrelevant but, conversely, we do not expect most of the World to have any appreciable 
risk impact on our launch complex.  Consequently, our model (i.e., the script representing 
Equation (12-7)) will ignore most of the World. 
 

Even within the launch complex our model will exclude much.  Most likely, instead of the 
entire complex our model will be constrained to the launch vehicle, the pad, and support 
facilities with which there is an interface.  The model will also likely include the launch 
environment (e.g., meteorological conditions).  While planets, stars, and galaxies are unlikely to 
pose any risk to launch, the world in proximity to those portions of the launch complex included 
in our model could potentially have a non-negligible risk impact.  Unless, as Appendix D 
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recommends, a broad spectrum of candidate events is examined to ensure that the risk model 
is reasonably  

 
Figure 12-7. A Context for Epistemic Uncertainty in Risk Assessments 

 
complete, verifying that the model results actually satisfy the requirement becomes problematic.  
In the context of Reference [12-6], this limitation on our ability to verify that the requirement is 
satisfied constitutes completeness uncertainty. 
 

All models contain simplifications and approximations.  Hence, even for that portion of the 
World included in Equation (12-7), our model is inexact.  Unless we can demonstrate that our 
risk predictions are insensitive to our simplifications and approximations the associated model 
uncertainty (in the context of Reference [12-6]) limits our ability to verify compliance with the 
imposed requirement. 
 

Postulate that a sufficiently board spectrum of events has been examined so that there are 
compelling arguments to convince reviewers that completeness uncertainty is negligible.  
Hypothesize further that a comprehensive set of sensitivity or other studies conclusively 
demonstrate that the model (e.g., Equation (12-7)) has so significant uncertainty.  Even then 
there remains the issue Reference [12-6] categorizes as parameter uncertainty. 
 

Monte Carlo simulation will quantify the probability that the risk requirement is satisfied by 
repeatedly sampling from the probability distributions characterizing the model parameters (1 
through N in Equation (12-7)).  However, verifying that the result of this quantification is 
acceptable for comparison with the imposed risk requirement necessitates understanding the 
uncertainty in these parameter distributions.  As examples, if some distributions were derived 
from laboratory tests where the test environment was fairly benign, the resultant distributions 
may tend to underestimate harsh launch conditions and overestimate the probability of a 
successful launch.  If other distributions were obtained from field data under conditions far more 
harsh than is expected during launch, these input parameters will tend to overestimate launch 
risk. 
  

Relative to parameter uncertainty, it is necessary to assess the: 
 

Portion of the World being 
Modeled 

 
The Model 

The World 

Data 
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 Probability that a specific model, or collection of candidate models, apply to each 
input parameter (e.g., there is high confidence that parameter, n, can be 
characterized by a normal distribution, or the probabilities that a Weibull or 
lognormal distribution describe n are similar, so a weighted combination of these 
two distributions should be applied); and 

 Uncertainty in the distribution parameters (e.g., the mean and standard deviation 
for a normal distribution, or the shape and scale parameters for a Weibull 
distribution). 

Even if there were sufficient resources to ensure that a Monte Carlo simulation had converged 
to several significant digits, if the: 
 

 input data; 

 models (e.g., Equation (12-7)); or 

 phenomena ignored by the models; 

are uncertain, this uncertainty will translate into uncertainty in the risk prediction.  Without 
addressing these contributors to risk uncertainty, compliance with probabilistic requirements 
cannot be verified. 
 

Section 2.1 defines risk as including uncertainty, so in order to integrate results from 
phenomenological models into PRA, some understanding of their uncertainty (i.e., the epistemic 
uncertainty explained in the context of Figure 12-7) is needed.  Without an understanding of 
uncertainty there is no context within which decision-makers can determine, with confidence, 
whether quantitative risk requirements are satisfied or one design option is truly superior to 
another. 
 

Given the computational challenges associated with phenomenological modeling it is 
unrealistic to apply Monte Carlo simulation techniques such as those described in Section 12 to 
the quantification of epistemic uncertainty in phenomenological models.  The resources required 
for such an approach would, in most instances, be inordinate.  However the use of sensitivity 
studies involving the statistical data and physics-based modeling assumptions could furnish 
some insight into how much confidence should be applied to the phenomenological model 
results.  Such an approach has already been recommended to enhance understanding of 
phenomenological model results, and must serve as a substitute for the more rigorous, 
quantitative techniques applicable elsewhere.  Sections 13.4 and 14.9.2 provide guidance 
relating to sensitivity studies in the context of PRA. 
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13. Presentation of Results 

While this chapter discusses the presentation of PRA results as though it is a one-time 
activity, it should be recognized that in general PRAs are done in stages or are periodically 
updated, and their evolving results may be presented numerous times at discrete points in the 
life cycle, rather than just once at the "end."  The Space Shuttle, International Space Station, 
and Constellation are examples of programs wherein the results of “living PRAs” are presented 
many times over the course of their life cycles. 

As discussed earlier, a risk analysis generally consists of the following three analysis tasks: 

 Identification of accident scenarios; 

 Estimation of the likelihood of each scenario; and  

 Evaluation of the consequences of each scenario.    

The final step in performing a PRA is to integrate the data obtained in the above analysis 
tasks and to interpret the results. The integration includes, among other things, development of 
best estimates for frequencies and consequences, development of distributions reflecting the 
uncertainty associated with those estimates, propagation of the uncertainties to obtain final 
results, and development of appropriate displays to communicate the results with their 
associated uncertainties.  

It is also imperative to check the results for accuracy.  This will ensure that the model of the 
world is a technically reasonable representation of the entity being evaluated, and its mission.   
Documentation related to PRA models whose analysis results are used to make critical 
decisions regarding design, development, manufacturing, and ground or flight operations that 
may impact human safety or program-defined mission success criteria should be reviewed.  
Specific methods and procedures should be used for assessing and communicating the 
credibility of PRA model analysis results based on factors such as peer review, input pedigree, 
uncertainty analysis, results robustness, use history, qualifications of the analysts, and the 
Technical Authority.  [13-1, 13-2]. 

To provide focus for the presentation of results, the results should include identification of 
system features that are the most important contributors to risk. Insights into relative importance 
of various features of the system, and the relative importance of various modeling assumptions, 
may be developed from uncertainty and sensitivity analyses. A discussion of these insights is 
required to provide the proper interpretation of the “bottom line” conclusions. Such insights 
should include an appreciation of the overall degree of uncertainty about the results and an 
understanding of which sources of uncertainty are critical to those results and which are not.  In 
general, many of the insights gained are not strongly affected by the uncertainties. The 
numerical results need only be accurate enough to allow the decision maker to distinguish risk-
significant elements from those of lesser importance.  

The level of detail and the style of presentation of risk results depend on the risk 
assessment objectives. The results section must communicate the project’s motivations and 
objectives and should be done in a way that clearly establishes the appropriateness of the 
generated results in meeting the risk assessment objective. For example, if the risk assessment 
is intended for evaluation of alternative design features as in risk-informed decision making 
(Section 2.3.1), the results should be presented in a structure that allows comparison of various 
design options according to an appropriate ranking scheme.  



 

 13-2

One section of the results should be dedicated to highlighting the key characteristics of the 
PRA that collectively make the results of the PRA credible.  This is important to building a strong 
Safety Case (Section 3.1.5).  Types of information that should be presented include: 

 Insights into how various systems interact with one another; 

 Insights into the relationship between system operability states and accident scenarios;  

 Results of activities undertaken to ensure completeness in the types of events that trigger 
an accident scenario; 

 A very clear and concise tabulation of all known limitations and constraints associated with 
the analysis; 

 A very clear and concise tabulation of all the assumptions used in the PRA especially with 
respect to mission success criteria and omission of certain failure modes; 

 Identification of key parameters that greatly influence the numerical results of the PRA;  

 Results of activities undertaken (e.g., sensitivity studies) to ensure that the results of the 
PRA would not be negated if an alternative parameter value or modeling assumption is 
employed; and  

 Results of activities undertaken to ensure technical quality. 

13.1 Graphical and Tabular Expression of Results 

In general, graphical and tabular displays are effective means for conveying the results of a 
risk assessment. The suitability of display designs depends on the PRA objective and the 
experience of the intended audience. Graphical and tabular displays can be used to report the 
following types of information generated in a typical PRA: 

 Total likelihood of various end states; 

 List of dominant risk scenarios and quantitative measure of the likelihood of each scenario; 

 The relative ranking of each scenario to the total end state likelihood or total mission risk;  

 Estimates of scenario consequences in terms of mission loss, payload damage, 
damage to property, number of injuries or fatalities, and dollar loss; 

 Total mission risk and its comparison with reliability and safety goals and thresholds 
(Section 3.1.5), if specified;  

 Importance measures;  

 Display of uncertainties associated with various estimates; and 

 Risk curves. 

List of Dominant Risk Scenarios and the Likelihood of Each Scenario 

The description of each dominant risk scenario along with its likelihood should be provided. 
The narrative should discuss the nature of initiator and system failures involved in the scenarios. 
The dominant contributors to each system end state should be presented.  A consistent 
presentation scheme needs to be adapted to systematically delineate the progression of the 
accident starting from the initiator and all system failures and interactions that are captured in 
the definition of accident scenario. The method of presentation should permit detailed technical 
review, including recalculation. The following is an example of a “road map” to report dominant 
accident scenarios in tabular form (this is only an example, the actual headings will differ): 
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Example of How To Describe a Dominant Scenario (See Example from Chapter 10): 

For scenario number 4 )( BAIE   the likelihood is 3.04x10-7 per mission. This scenario 
is initiated by the event IE. The FTs for System A and System B are presented in Figure 12-4. 
More detailed descriptions of these systems and initiators can be found in Section 12.3.  

The major contributing minimal cut sets (MCSs) are summarized in Table 13-1 below. 

Table 13-1. An Example of Presenting Dominant Risk Scenarios in a Tabular Forma. 

Initiator 

Risk 
Scenario 

No. As Defined in Event Tree 

Dominant Cut Sets 

Cut Set Frequency 

IE 4 )( BAIE   12B.ACC.IE  1.2E-7 

11B.ACC.IE  6.0E-8 

12B.22A.12A.IE  3.6E-8 

 

Event Description Probability Basis 

IE Initiating event 1.0E-3 

Specify 
appropriate 

section(s) of the 
report 

ACC Common cause shock disables two redundant 
channels of System A (in standby) 

3.0E-3 

B12 Device B1 fails (in standby) 4.0E-2 

B11 Device B1 fails to start once demanded 2.0E-2 

A12 Device A1 fails independent of A2 (in standby) 3.0E-2 

A22 Device A2 fails independent of A1 (in standby) 3.0E-2 

 

13.2 Communication of Risk Results 

As stated earlier, it is important that the degree of uncertainty about the results of 
quantitative risk analysis be communicated clearly. This means it is incumbent on the analyst to 
find ways to present the uncertainty associated with risk information in a manner that is 
understandable to those who need these results. This section presents examples of graphic 
methods that have been used in PRAs to display uncertainties.   

13.2.1 Displaying Epistemic Uncertainties 

If the consequence of interest is a single undesired end state that either occurs or not (e.g., 
failure of a system or loss of a mission), the risk metric is defined as the frequency of the 
undesired event (a non-observable quantity). In this case the epistemic uncertainty associated 
with the numerical value of the frequency can be displayed using one of three methods:   

                                                 
a This table is intended for the example presented in Chapter 10 and should not be considered as a general template. 
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 Probability density function (pdf) – Simulation software codes often generate the results in 
histogram form, which is the discretized version of the density function.  A histogram can be 
fitted with a continuous curve, (see Figure 13-1, Display A).  

 Cumulative distribution function – This represents the integral of the pdf (see Figure 13-1, 
Display B). 

 Displaying selected percentiles as in a Tukey box plota (see Figure 13-1, Display C). 

13.2.2 Displaying Conditional Epistemic Uncertainties 

The PRA analyst may want to show how the epistemic uncertainty of the risk metric varies 
under certain conditions. For example, he or she may wish to communicate the epistemic 
uncertainty of risk metric R conditional on the value of parameter X1 (the parameter is assigned 
a fixed value).  In this case, the analyst displays the uncertainty of the risk metric conditional on 
the value of the parameter.  Several representative values of the parameter of interest may be 
selected, say, X1=p1 and X1=p2. A separate simulation run is performed for each case. The 
resultant probability distributions RX1=p1 and RX1=p2 are superimposed on a single graph as 
shown in Figure 13-2. As in the single dimensional case, the distributions may be shown as 
pdfs, as CDFs, or as “band-aid” plots.   

                                                 
a Named after John Tukey, an American statistician. 
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Figure 13-1. Three Displays of an Epistemic Distribution. 
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Figure 13-2. Alternative Displays for Conditional Epistemic Distribution. 

13.2.3 Displaying Aleatory and Epistemic Uncertainties 

If the consequence of interest is a continuous random variable (CRV), such as number of 
fatalities (an observable quantity), then aleatory and epistemic uncertainty associated with the 
risk metric is shown using risk curves.  An example of such a display is a graph that shows 
multiple exceedance curves, each of which represents a different confidence level. An 
exceedance curve provides the frequencies of exceeding a given level of consequence. Since 
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these curves are often used to communicate uncertainty associated with PRA results, their 
construction is discussed below.  

Construction of Exceedance Curves 

The exceedance probability for a given consequence value is the probability of all analyzed 
accidents whose consequences are greater than or equal to the given consequence value. 
Figure 13-3 illustrates an exceedance probability versus consequence plot.  
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Figure 13-3. A Representative Aleatory Exceedance Curve (Without Consideration 
of Epistemic Uncertainties). 

To obtain an equation for the exceedance probability, let ),( ii Cp  be the probability and 

consequence of the individual accident scenario, which has been assessed, where the 
consequences have been ordered by increasing severity (i.e., N321 C.......CCC  ).   It is 

assumed there are N consequence categories (i.e., end states). If iP  is the exceedance 

probability for a consequence iC , then 





N

ik
ki pP  (13-1) 

The individual expressions used to calculate exceedance probability value for various 
scenarios are shown in Table 13-2. 

Table 13-2. List of Scenarios and Exceedance Probabilities. 

Scenario 
S  

Likelihood 
p  

Consequence 
C  





N

ik
ki pP  

S1 p1 C1 121 pPP   

S2 p2 C2 232 pPP   

S3 p3 C3 . 
. . .  
Si pi Ci i1ii pPP    

. . . . 

SN1 pN1 CN1 1NN1N pPP    

SN pN CN NN pP   
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If we now plot the points ),( ii Cp , we obtain i discrete points. By drawing a smooth curve 

through these points and using a logarithmic scale, a probability exceedance curve similar to the 
curve shown in Figure 13-3 is obtained. Note that when a risk curve is plotted on a log-log scale, 
it exhibits a concave downward shape. The asymptotes are interpreted as “maximum possible 
consequence” and “probability of any consequence at all [13-1].” 

Example of Constructing an Exceedance Curve 

This example will deal with risk to the public. Assume the risk assessment has analyzed 
seven undesired end states. Also assume the consequence is measured in terms of fatalities. 
Column 2 in Table 13-3 provides the expected number of fatalities associated with each end 
state (the values are conditional). The end states are arranged in order of increasing 
consequence. The point estimates for the frequencies of end states are shown in Column 3. 
Column 4 gives the exceedance frequency for each consequence. The data in columns 2 and 4 
are used to construct the exceedance frequency as shown in Figure 13-4. 

Table 13-3. Construction of Exceedance Frequency for the Example Problem. 

End 
State 

Consequence 
(Fatality) 

Frequency 
f





7

ik
ki fF  

S1 5.0E03 2.0E01 1.5E01+2.0E01=3.0E01 

S2 1.0E02 1.0E01 5.1E02+1.0E01=1.5E01 

S3 5.0E02 5.0E02 2.0E03+5.0E02=5.1E02 

S4 5.0E01 1.0E03 1.0E03+1.0E03=2.0E03 

S5 1.0E+00 1.0E03 3.0E05+1.0E03=1.0E03 

S6 3.0E+00 2.0E05 1.0E05+2.0E05=3.0E05 

S7 6.0E+00 1.0E05 1.0E05 
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Figure 13-4. Exceedance Frequency versus Consequences for the Example Problem. 

Inclusion of Epistemic Uncertainty in Exceedance Curves 

If a comprehensive uncertainty analysis were done, it would be possible to produce multiple 
exceedance curves to reflect different confidence levels. Since both frequency and 
consequence estimates have epistemic uncertainties, one can produce multi-layered 
exceedance curves to communicate uncertainty in: 

 Frequency estimates;  

 Consequence estimates; or 

 Frequency and consequence estimates. 

Figure 13-5 shows a set of multi-layered exceedance curves developed for a typical space 
nuclear risk analysis. These curves communicate the uncertainty in the health effects 
parameters (e.g., cancer fatalities). Each curve represents a level of confidence in the frequency 
vs. health effects. For example, the curve labeled “95 percentile” reflects an analyst’s view that 
with 95% confidence the real answer lies on or below that curve. The curve labeled “mean” may 
be thought of as the “average” confidence level of all possible curves.   
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Figure 13-5. Aleatory Exceedance Curves with Epistemic Uncertainties for a Typical 
Space Nuclear Risk Analysis. 

13.3 Importance Ranking 

Ranking of risk scenarios based on their frequencies provides limited insight regarding the 
contribution of individual events such as component failures to the total risk. Scenario ranking 
provides insights on importance of group of failures, not failure of individual events. An event 
(say, component x failure) can appear in the structure of many low frequency scenarios, yet it 
may be absent in the definition of the dominant risk scenarios.  If the contribution of low 
frequency scenarios to the total risk is comparable to that of a few dominant risk scenarios, then 
scenario ranking will not capture the risk importance of component x. To address this issue, and 
to provide perspective on importance of individual events or parameters of the PRA model, 
several quantitative importance measures are calculated. These measures typically determine 
the change in the quantitative risk metric (e.g., likelihood of a mishap) due to change in 
probability of an event (or parameter value) in the risk model. Once the importance measures 
are calculated, the events or parameters of the risk model are ranked according to the relative 
value of the importance measure. The information generated in the ranking process is often 
used to support risk-informed decision making (e.g., allocating resources) and to establish 
guidance for risk mitigation efforts, such as redesign of hardware components, the addition of 
redundancy, etc.  

The following quantitative importance measures are introduced in this section: 

 Fussell-Vesely (F-V); 

 Risk reduction worth (RRW); 

 Birnbaum; 

 Risk achievement worth (RAW); and 

 Differential. 
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13.3.1 Importance Measures for Basic Events Only 

These importance measures are strictly formulated to assess the sensitivity of the risk metric 
to changes in the probability of basic events. [13-4] They are designed to handle the importance 
of basic events when the expression of the risk metric has the following form:  

)x,...,,,...,x,f(x n21 ji xxR   (13-2) 

where 

ix   the basic event i, with probability pi 

Fussell-Vesely and Risk Reduction Worth Importance Measures 

The F-V importance measure is used to determine the importance of individual MCSs 

containing basic event ix  to the risk. F-V of event ix is given by: 

0

)Pr(

)Pr(

)Pr(

R

MCS

MCS

MCS

I j

x
j

j
j

j

x
j

FV
x

ii

i






  (13-3) 

Where: 

FV
xi

I  is F-V measure of importance for event ix ; 


j

x
j

iMCS )Pr(  is probability of the union of the MCTs containing event ix ; and 

0)Pr( RMCS
j

j   symbolizes baseline expected risk. 

The above formulation can be interpreted as the conditional probability that at least one 

MCS containing event ix  will occur, given that the system has failed. When the expression for 

the risk is in the sum of the product form, F-V importance is calculated by 

0

0 0)Pr(

R

xRR
I iFV

xi


  (13-4) 

where, 0)Pr( ixR  signifies conditional expected risk when probability of event ix  is set to zero. 

The RRW importance is a measure of the change in risk when a basic event (e.g., 
unavailability of a hardware device) is set to zero. It measures the amount by which risk would 
decrease if the event would never occur. Mathematically, the RRW measure is calculated by 

taking the ratioa of the baseline expected risk to the conditional expected risk when event ix  is 

set to zero (assuming that the hardware device is “perfect”):  

                                                 
a. Instead of ratio, some PRA codes calculate “Risk Decrease Interval,” which is the difference between baseline 
expected risk to the conditional expected risk when event Xi is set to zero.   
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0)Pr(
0




i

RRW
x xR

R
I

i
 (13-5) 

where,  RRW
xi

I  is the risk reduction worth for event ix .   

The F-V and RRW measures are related. The right side of Equation (13-4) can be 
rearranged and be expressed in terms RRW as shown below: 

R

xR
I iFV

xi

0)Pr(
1
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RRW
x

FV
x

i

i I
I

1
1  (13-7) 

In practice F-V and RRW measures are used to identify hardware elements that can result in 
the greatest risk benefit if more resources are allocated to improve their reliability or availability.  

Birnbaum Measure (BM) and Risk Achievement Worth (RAW) 

The BM is the rate of change of the expected risk as a result of the change in the probability 

of an individual event.  Mathematically, the BM importance of event ix  is 

i

BM
x x

R
I

i 


  (13-8) 

Because of its formulation, ranking based on BM importance measure does not account for 
probabilities of events. Highly important but highly reliable hardware equipment  (e.g., passive 
components) exhibit high BM importance measures.     

When risk metric has a linear form, the BM can be calculated using the expression below: 

)0)Pr(()1)Pr((  ii
BM
x xRxRI

i
 (13-9) 

where 1)Pr( ixR  signifies conditional expected risk when the probability of event ix  is set to 

unity.  

The RAW importance is a measure of the change in risk when the probability of a basic 
event (e.g. unavailability of a component) is set to unity.  Similar to risk reduction worth, the 
calculation is typically done as a ratio.a By setting event probability to unity, RAW measures the 
amount of change in system risk due to assuming the worst case of failing an item.   

The RAW measure is calculated using the following expressionb: 

                                                 
a. Similar to RRW, some PRA codes calculate “Risk Increase Interval,” which is the difference between the 
conditional expected risk when event Xi is set to unity and the baseline expected risk.   

b. Care should be exercised to ensure that the Boolean expression used to calculate conditional risk is reduced.  The 
RAW is normally calculated by re-quantifying the PRA model with the probability of the given event set to unity. 
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0

1)Pr(

R

xR
I iRAW

xi


  (13-10) 

The RAW measure is useful for assessing which basic events of the risk model are the most 
crucial for causing the system to have a higher risk. Elements with high RAW are the ones that 
will have the most impact, should their failure unexpectedly occur. 

It can be shown that the BM and RAW measures are also related. By dividing the 

expression for BM
xi

I  by the expected risk, 0R , the following relationship is obtained: 

RRW
x

RAW
x

BM
x

i

i

i

I
I

R

I 1

0
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The above equation can be rearranged to express BM in terms of RAW and RRW:  
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13.3.2 Differential Importance Measure for Basic Events and Parameters 

The importance measures discussed previously are defined to deal with basic event 
probabilities one event at a time. These measures have limitations for use in PRA applications. 

 They generally correspond to sensitivity cases in which the basic events values are 
assigned extreme values (i.e., 0 or 1). 

 They are not designed to identify the importance of PRA parameters (they cannot measure 
the importance of changes that affect component properties or failure modes).     

 They do not have additive properties. 

Because of these limitations, differential importance measure (DIM) was introduced [13-5].   

Definition of DIM 

Let R be the risk metric of interest expressed as a function of basic events or fundamental 
parameters of the PRA model as shown below: 

)x,...,,,...,x,f(x n21 ji xxR   (13-13) 

where ix  is the generic parameter such as basic event probability of a component ix  or the 

failure rate of a component ix .   

The differential importance measure of ix  is defined as 
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DIM reflects the fraction of the total change in R due to a change in parameter ix . 

It can be shown that DIM has the additive property.  That is 

IM
x

IM
x

IM
x

IM
xxx kj

I DDDD
... kjii

I............II   (13-15) 

Calculations of DIM 

With respect to calculation of DIM for a parameter of the PRA model, there are two 
computational difficulties: 

 The DIM can be calculated only if the expression for the risk is in parametric form, which is 
not a standard output form generated by the PRA codes.  

 There is no available computer program for use. 

However, one can compute DIM for basic events using the F-V and RAW importance 
measures. The latter measures are often generated by standard PRA codes by applying 
formulas developed in the previous section on the risk metric that is linear (expressed in 
disjunctive normal form). 

As noted, calculation of DIM deals with change in R (its differential). Since the change 
depends on how the values assigned to a parameters are varied, DIM is calculated under two 
different criteria. 

 Criterion H1 assumes a uniform change for all parameters (i.e., ji xx   ). Under this 

criterion, parameters are ranked according to the effect they produce on R when they 
undergo small changes that are the same for all. This is applicable when parameters of the 
model have the same dimensions (i.e., the risk metric is expressed in terms of basic event 

probabilities only). Under the H1 criterion, DIM for parameter ix  is calculated as follows:   
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 Criterion H2 assumes a uniform percentage change for all parameters ( 



j

j

i

i

x

x

x

x
.) 

Under this criterion, PRA parameters are ranked according to the effect they produce on R 
when they are changed by the same fraction () from their nominal values. This ranking 
scheme, which is applicable to all analysis conditions, can be calculated from: 
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The relation between DIM and traditional importance measures (F-V, RAW, and BM) are 
shown in Table 13-4.  These relationships hold only when the risk metric is (1) linear, and (2) 
expressed in terms of basic events only. 
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Table 13-4. Relation among DIM and Traditional Importance Measures. 
DIM F-V RAW BM 
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13.3.3 Example of Calculation of Importance Rankings  

In this section, the importance measures are obtained for the basic events and parameters 
of the example problem of Chapter 12.   

Ranking of Basic Events 

The expression for the risk metric in terms of basic events is as follows: 

11.21.11.11.22.11.12.21.11.12.22.11.

11.21.12.11.22.12.12.21.12.

12.22.12.12..11..

BAAIEBAAIEBAAIEBAAIE

BAAIEBAAIEBAAIE

BAAIEBACCIEBACCIER
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Substituting the values of the basic event probabilities given in Table 12-1 produces the 
baseline value for the risk: R0=3.07E-7 per mission. The importance measures at the basic 
event level are tabulated in Table 13-5. Also shown is DIM at subsystem level (recall DIM has 
an additive property). Figure 13-6 shows the ranking of basic events with respect to various 
importance measures. The following observations are made: 

 Basic events IE, ACC, B12, and B11 have the highest ranking with respect to all measures. 

 At the basic event level F-V ranks individual basic events in the same order as DIM under 
H2, while RAW rankings are the same as those obtained with DIM under H1. 

 Under both H1 and H2, the importance of System A is higher than that of System B. 

 



 

Table 13-5. Calculation of Importance Measures for the Example Problem. 
Importance of Individual Basic Events 

ix  )xPr( i  0R  1)Pr( ixR  0)Pr( ixR FV
xi

I  RRW
xi

I  BM
xi

I  RAW
xi

I  

DIM
xi

I  

H1 H2 

A11 1.00E-02 3.00E-07 3.27E-06 2.70E-07 1.00E-01 1.11E+00 3.00E-06 1.09E+01 7.86E-03 2.93E-2 

A12 3.00E-02 3.00E-07 3.21E-06 2.10E-07 3.00E-01 1.43E+00 3.00E-06 1.07E+01 7.86E-03 8.85E-02 

A21 2.00E-02 3.00E-07 2.65E-06 2.52E-07 1.60E-01 1.19E+00 2.40E-06 8.84E+00 6.29E-03 4.69E-02 

A22 3.00E-02 3.00E-07 2.63E-06 2.28E-07 2.40E-01 1.32E+00 2.40E-06 8.76E+00 6.29E-03 7.09E-02 

B11 2.00E-02 3.00E-07 5.20E-06 2.00E-07 3.33E-01 1.50E+00 5.00E-06 1.73E+01 1.31E-02 9.75E-02 

IE 1.00E-03 3.00E-07 3.00E-04 0.00E+00 1.00E+00 Undefined 3.00E-04 1.00E+03 7.89E-01 2.94E-01 

ACC 3.00E-03 3.00E-07 6.01E-05 1.20E-07 6.00E-01 2.50E+00 6.00E-05 2.00E+02 1.56E-01 1.76E-01 

B12 4.00E-02 3.00E-07 5.10E-06 1.00E-07 6.67E-01 3.00E+00 5.00E-06 1.70E+01 1.31E-02 1.97E-01 

 

Importance of Multiple Basic Events (Selected Cases) 

Subsystem kj xxx  ...i  

D
...i kj xxxI   

H1 H2 

Train A1 A11+A12 1.57E-02 1.18E-01 

Train A2 A21+A22 1.26E-02 1.18E-01 

System A A11+A12+A21+A22+ACC 1.84E-01 4.12E-01 

System B B11+B12 2.63E-02 2.94E-01 
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Figure 13-6. Ranking Results for the Basic Events of the Example Problem.

Ranking by F-V
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Ranking by DIM (H2)

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

DIM(H2) 2.9E-02 8.9E-02 4.7E-02 7.1E-02 9.8E-02 2.9E-01 1.8E-01 2.0E-01

A11 A12 A21 A22 B11 IE ACC B12

Ranking by RAW (LOG scale)
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Ranking by BM (LOG scale)
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Ranking by DIM (H1)
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Ranking of Parameters 

The risk metric in terms of component parameters is shown below: 
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 (13-19) 

The results of the computation of DIM under H2 (using Equation (13-19)) are shown in Table 
13-6 and  Figure 13-7.  Because the parameters appearing in the expression for R have 
different dimensions, in this case DIM cannot be generated under the H1 criterion.   

Table 13-6. DIM Ranking for the Parameters of the Numerical Example. 

PRA Parameter 
DIM 

under H2 Criterion

1A  0.0293 

2A  0.0469 

AI  
I1A  

0.1595a 
I2A  

ACC  0.1762 

1B  0.0975 

1B  
0.1996 

IEf  
0.2940 

                                                 
a. The failure rates A1I and A2I are treated as a single parameter because of epistemic dependency. 



  
 
 

13-19 

 

Figure 13-7. Ranking Results for the Parameters of the Example Problem. 

13.4 Sensitivity Studies and Testing Impact of Assumptions 

As stated earlier, the PRA model is conditional on the validity of its assumptions. The 
uncertainty associated with the modeling assumptions is usually handled by performing 
sensitivity studies. These studies are performed to investigate PRA assumptions that are 
suspected of having a potentially significant impact on the results.  Additionally, sensitivity 
studies are used to assess the sensitivity of PRA results to dependencies among equipment 
failures. 

13.4.1 Impact of Modeling Assumptions 

PRA models often use assumptions to overcome data’s shortcomings. When information is 
lacking, heavy reliance is placed on the analyst’s judgment.  The assumptions made for the 
mission success requirements and for accident progression can significantly impact the PRA 
results.  The impact of such assumptions needs to be investigated by sensitivity analyses. The 
results of sensitivity analyses should be reported in tabular form and it should include the 
original assumption, the alternative assumption and it basis, and the change in the numerical 
results.   

The PRA study of the Galileo mission [13-6] handled uncertainty in the efficacy of the 
redesign of the solid rocket booster with sensitivity studies.  The failure of seals led to the 
Challenger accident. The extreme cases of a perfect and of a totally ineffective correction were 
analyzed as bounding cases in the PRA.  

13.4.2 Analysis of Impact of Hardware Failure Dependence 

Extreme environmental conditions can cause multiple hardware devices to fail 
simultaneously.  (Chapter 10 provides additional information on the treatment of dependency.)   
Such environmental conditions can be generated either externally to the system by phenomena 
such as meteoroids; or internally to the system by fires, explosion, etc.  Several PRAs have 
investigated the impact of failure couplings using sensitivity studies as summarized below:   

 Examination of risk metric expression (cut sets) to identify dependence-suspect minimal cut 
sets (DSMCS).  DMCS are minimal cut sets containing failure of components, of which two 
or more have a common property, which renders them susceptible to dependent failures.  
DSMCS affected by the following types of coupling: 

0.00

0.10

0.20

0.30

      

DIM for the Parameters
(under H2 criterion)
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1. Common environment 

2. Common testing procedure 

3. Common design 

 Re-quantification of each DSMCS using the following scheme:  

1. Identify the highest failure probability among the coupled events 

2. Assign the product of the balance of coupled failure probabilities to a high number such 
as 0.1 

3. Tabulation of results for the risk metric using re-quantified DSMCS one at a time  

 Identification and discussion of DSMCS whose impact on the risk metric is substantially high 
(say, by a factor of 2 or higher) 
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14. Launch Abort Models 

Please note: While this chapter could for the most part stand on its own, for the purposes of 
this Guide it should be viewed in the context of specialized modeling that is to be appropriately 
interfaced and coupled to the overall system risk model discussed in previous chapters. 

14.1 Abort Assessment overview 

Crew safety remains a primary goal of NASA’s continued efforts to implement new means of 
transporting humans to space. NASA’s current human rating requirements call for any new 
crewed space transportation system to have a crew escape capability [14-1]. Abort capability is 
crucial because a state-of-the-art booster will be unlikely to meet acceptable safety levels, 
based on current launcher reliability records [14-2]. The Space Shuttle experience has shown 
that expecting high reliability from launch vehicles without sufficient analysis is often not 
justifiable, considering that early ascent flight safety estimates were on the order of one loss for 
every 100,000 flights, while experience yielded two losses within the first 113 flights. 
Probabilistic crew safety goals that NASA is considering for any new human spaceflight 
transportation system acquisition, are more likely to be satisfied by developing effective abort 
and crew escape capabilities (as well as efforts to reduce the likelihood of failures that can 
initiate an abort). Figure 14-1 shows an example of loss-of-crew probability versus abort 
effectiveness rates for different launcher reliability [14-3]. 

 
Figure 14-1. Impact of Abort Effectiveness On Crew Risk for Various Booster Reliabilities. 

When abort is a cornerstone of crew safety, the ability to meaningfully assess a vehicle’s abort 
capabilities and vulnerabilities is important to understanding overall safety and viability. An 
effective abort assessment is important both to ensuring that the design meets required safety 
standards and to designing safer systems up-front by providing actionable insight into key risk 
drivers and safety tradeoffs as the vehicle is developed. 

So, what are the salient attributes of an effective abort assessment? What factors must be 
considered, what analysis methodologies should be employed, and how should the assessment 
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be incorporated into the vehicle development process to provide the highest return on 
information?  

This section provides a description of current best practices for assessing abort capabilities. The 
analysis approach presented extends binary-modeling probabilistic risk assessment techniques 
through the explicit inclusion of phenomenological models and simulation-based risk models. 
The abort-modeling process provides an integrated, quantitative estimate of abort risk and 
provides designers and decision makers with insights into key risk drivers and sensitivities to 
abort failure. 

14.2 Evolution of the Abort Risk Assessment with Program Phases 

A successful crew safety risk assessment will inform the vehicle development program of the 
impact that key design options and decisions will have on crew safety. In this section, we 
describe the stages of risk assessment and its evolving role throughout the course of a space 
vehicle program. 

The assessment process described here assumes that the program follows a logical series of 
phases to bring the vehicle from concept studies to initial deployment and, where appropriate, 
repeated operation. Throughout these phases, the risk assessment is tailored to address the 
critical questions that arise at each phase or decision point, and evolves as the design develops 
and matures. 

The risk assessment follows a cycle of initial conservatism and successive refinement to 
produce basic guiding results early and then zero in on the areas that will yield the greatest 
improvements to crew safety. As more design data become available, the assessment will take 
on increasingly detailed inputs, focusing on areas with actionable crew safety factors or risk 
drivers. The assessment should inform the program of the crew safety impacts of requirements, 
design factors, and operational parameters, particularly in ways that maximize benefit to crew 
safety for the amount of effort or cost. 

NASA’s primary vehicle development phases are used here to illustrate how the risk 
assessment and the questions it addresses evolve through the course of a space systems 
program. During each of these phases, the decision to proceed is considered in at least one 
important review.  

In the Pre-Phase A period, high-level concepts of the space system and its mission are 
proposed and compared. At this stage, architectures are compared for mission capability, 
operational concepts, performance, development effort, cost, feasibility, and safety. At this level, 
gross attributes of the architectures, such as choice of propulsion technology and arrangement 
of launch vehicle stages, have great impact on all figures of merit. In support of risk-informed 
decision making, the decision factors that a risk assessment must address include the relative 
crew risks of the candidate abort concepts and, perhaps more importantly, the gross attributes 
driving their risks. 

In Phase A, a concept is selected, requirements are formulated, and preliminary system 
definition and design work are carried out. As for the PRA in general, the abort risk assessment 
answers questions pertaining to the safety impacts of requirements, system criteria, and high-
level design options, especially those that prescribe the performance and features of a launch 
abort system. For abort modeling, the assessment will typically focus on sensitivity studies and 
trade analyses that are based on the underlying physics of the most critical failure modes and 
crew hazards. These studies give insight into how much different variables are likely to impact 
risk levels, providing a valuable tool to guide and risk-inform decisions regarding the abort 
system. 
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In Phase B, the design process is underway, yielding more detailed, component-based design 
data and failure mode data. Needed technology development is also carried out. The questions 
addressed by the risk assessment in this phase include identifying the design and technology 
developments that would best improve crew safety (or least not degrade crew safety in some 
cases). Again, as for the PRA development in general, the more detailed definition of the abort 
system in this phase permits the risk assessment to better account for the failure initiators, 
propagation, and impact to the crew. 

In Phase C, the space system design, including the fabrication and integration process, is 
finalized. Testing of vehicle elements and subsystems also occurs. At this stage, the risk 
assessment uncertainties are tightened as much as possible with the additional detail in design 
data and preliminary test data. Where design options are not yet fully finalized, impact on crew 
safety is still assessed. This can include abort trigger selection and logic or system operation 
aspects. The risk assessment can also identify any specific new tests or measurements that 
would best reduce the remaining uncertainties in the crew risk assessment. 

In Phase D, the initial system integration occurs, followed by integrated system testing and 
actual launch tests, so that flight readiness can be assessed. As this phase represents the final 
opportunity to evaluate crew safety prior to the first crewed flight, it is critical that the risk 
assessment uncertainties be reduced even further. 

With Phase E, the system is put into operation. The risk assessment uses any additional flight 
data obtained during this phase to inform design, process, and, operational improvements. 

14.3 Abort Assessment Process Overview 

The general PRA is used to determine the likelihoods of the various ways a vehicle can fail 
(Chapters 4 through 12}. The abort assessment takes these failure “initiators” from the PRA as 
inputs and evaluates the scenarios and resulting impacts that each one could have on the crew. 

Figure 14-2 illustrates the various components of this assessment process, beginning with a 
specific failure initiation, followed by its propagation to a particular problem manifestation, 
potential further propagation to other systems, potential development of near-field failure 
environments capable of directly endangering the crew, the probability of a loss of crew (LOC) 
given those environments, and finally, the risks associated with the abort process given survival 
of the near-field environments. 
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Figure 14-2. Schematic of the Abort Assessment Problem. 

Analyzing the failure propagation involves quantifying the relationships between the failure 
initiators and the ultimate, crew-threatening failure environments. In many cases, a failure can 
propagate in more than one way. To handle this, the scenario modeling allows for probabilistic 
branching between the multiple failure evolution scenarios that may stem from a single initiator. 
In addition, quantifying the timing of the failure evolution and identifying possible methods of 
detecting it will be critical to evaluating the abort system’s ability to escape the resulting failure 
environments.  

To assess the direct crew risks posed by the failure environments, the severities of the potential 
crew threats are evaluated against the vulnerabilities of the crew escape system. In doing so, 
the assessment must account for how flight conditions at the time of failure affect the severity 
and extent of the failure environment and how various abort system parameters affect the 
vulnerability of the crew abort vehicle. For example, a confined-by-missile (CBM) explosion 
generates crew threats including blast overpressure waves and high-speed fragment fields. The 
magnitude of the explosion depends on the amount of fuel remaining at the time of failure, the 
speed and range of the blast wave and debris depend on the altitude and relative velocities of 
the vehicle and aborting crew capsule, and the level of overpressure or debris that the abort 
vehicle can withstand depends on its structural properties and how quickly it can escape the 
danger zone. 

Given survival of the near-field failure environments, the abort system is likely to face a number 
of remaining risks during descent. For example, a capsule abort system is likely to require 
reorientation to a heat-shield forward flight attitude, guidance to a suitable location for rescue of 
the crew, and deployment of parachutes or other deceleration devices. The assessment must 
quantify the ability to perform these functions, including any dependencies on flight conditions, 
or mission elapsed time (MET). 
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Finally, the abort risk assessment integrates all of the components described above to obtain 
overall loss-of-crew probability and abort effectiveness estimates, and the individual risk 
contributions from each failure initiator. This integration is typically performed using a Monte 
Carlo simulation that is effectively coupled with logic-based risk models. The variable, uncertain 
elements sampled during the simulation may include initiator probabilities, warning time ranges, 
detection probabilities, branching probabilities for alternate failure propagations, and failure 
probabilities associated with each specific failure environment. 

The overall risk assessment process is highly iterative, evolving to include the effects of any 
design changes as the vehicle matures. In initially developing the risk scenarios, conservative 
assumptions are made and bounding cases are assumed to assure coverage of all potential 
contributions. These assumptions and approximations are then progressively refined as more 
information becomes available. 

In the following sections, the main abort assessment elements summarized above—failure 
initiators, failure propagation and detection, failure environments, crew escape system 
capabilities and vulnerabilities, and integrated modeling—are discussed in more detail. 

14.4 Abort Failure Initiators 

The starting point of the abort analysis is the loss of a critical function required for the mission’s 
successful ascent. Based on the failures identified in the PRA, a list of “failure initiators” is 
generated, describing each critical vehicle function that could jeopardize the vehicle’s ascent if 
lost and the general state of the launch system at the time of the loss. 

To support the abort modeling, the failure initiator information must describe the functional loss 
in enough detail to identify the component involved, the physical manifestation of the failure, and 
the severity of the manifestation. These elements are needed to determine the likely 
progression of off-nominal events that follow. Also required are the probabilities of occurrence 
for each failure initiator, which are used for Monte Carlo simulation modeling and information 
about the particular phases of ascent during which each failure initiator could occur. The time of 
failure is needed to identify the state of the vehicle and ascent environment, and to establish 
correct initial conditions for any physics-based simulations of the resulting failure environments. 

An example of a suitable failure initiator description is lost functionality of structural integrity of a 
load-bearing upper stage structure while under thrust. This statement identifies the component 
as the upper stage structure, the lost functionality of structural integrity as the failure mode,  and 
the state of the system as “under thrust.” The more information that is provided, including the 
cause of the loss of functionality, the better the identification of subsequent events and the 
development of the key conditions associated with the surrounding environment.  

Probabilities of occurrence are associated with each failure initiator and uncertainties are 
modeled with a probability distribution (uncertainty distribution). The probability distributions for 
the failure initiators are obtained from the general PRA (Chapters 4 through 12).  

During the concept design phases, when architecture-level information exists but little detailed 
design information has been developed, specific knowledge of the failure initiators and the exact 
mechanisms or physical parameters may not be known. During these early phases, the initial 
list of failure initiators may cover general characteristics of the failure initiation process or 
similarities in physical failure outcomes, with the details left as large uncertainties. In the 
beginning, the failure initiators may be simplified to remove the proximate cause of the failure 
and list only the effect of the failure on the system as a whole. The initiator list at that stage 
would consist of a list of functional failures and failure types, such as: loss-of-control failures, 
explosion failures, heating failures, structural failures, and others. In this case, the probability 
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distribution for each failure initiator can be derived from proxy sources such as historical launch 
logs. When proxies are used as a substitute for necessary input data or conditions, the 
probability distributions must also then include appropriately large levels of uncertainty. 

Historical studies of launch vehicles can provide additional baseline failure mechanisms for 
launch systems that are do not involve random failures of components or piece parts. Some of 
the newer studies have shown that many launch vehicle failures stem from design and process 
failures that eventually become an ascent problem. These types of failures are typically system-
on-system interactions, induced vehicle-environment failures, or process-based errors, while 
relatively few launch failures are due solely to component or piece part failures. Anchoring the 
failure initiator set with data from historical studies to define the types of problems commonly 
encountered in the past is a good approach to developing an understanding of potential system 
vulnerabilities that can affect the abort system. 

A systematic exploration of system vulnerabilities starts by first refining the failure initiators with 
potential high probability or consequence and/or high uncertainty, and deferring refinement of 
those with smaller impact until a later time. This approach can give rise to a meaningful design 
and analysis feedback loop. The initial failure set can expand either in the number of failure 
initiators considered, or through additional off-nominal information on the existing set of 
initiators. The failure initiator set can grow because the failure paths themselves are becoming 
more specific and unique by including additional design information or by removing uncertainty 
due to less dispersive evolution paths. The failure initiator set can also incorporate additional 
initial conditions to replace generalized or conservative initial conditions, reducing the 
uncertainty in the input data. The failure descriptions may become more specific and include 
information about the timing of events, subsystem geometries and distances, knowledge about 
flow rates, system constraints, material differences, etc. All of the additional information would 
enhance the physics-based simulations of the off-nominal conditions immediately following 
failure initiation. 

14.5 Failure Initiator Propagation & Detection 

Failure initiators in themselves seldom pose a direct threat to the crew or the abort process. The 
initiator generates local failure conditions that are exacerbated to the point at which the vehicle 
state is affected. The local failure conditions generated by the initiator lead to interactions or off-
nominal performance beyond the local system boundaries, which eventually result in a direct 
threat to the crew. The potential for abort failure is therefore strongly dependent on the manner 
in which the failure progresses to other systems or drives system dynamics. At the same time, 
an abort will not even commence unless the failure is detected in an abort trigger. Even if a 
failure is detected, the abort will not be successful if hazardous environments develop more 
quickly than the abort process. Early detection is desirable, but presents challenges in 
identifying and verifying a failure early enough to produce a meaningful time margin.  

Thus, the three most safety-critical aspects of the failure process are: 1) the severity of the 
environment or event at the culmination of the propagation, 2) the ability to detect the failure 
during its evolution, and 3) the speed of the failure’s propagation. In this section, a model for 
failure propagation, abort triggers, and warning times in an abort risk analysis is discussed, and 
an example is offered to illustrate their roles. 

14.5.1 Failure Propagation 

Failure propagation describes the progression of a failure from initiator to crew threat. The 
description may include the intermediate states and final environments to which the initiator may 
branch, the conditional probability of given branches occurring, the rate of propagation, and the 
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presence of detectable physical parameters. These features support an integrated abort 
assessment that accounts for the relative severity and probability of potential intermediate 
states and subsequent environments.  

As for the PRA development in general, the level of detail with which failure propagation is 
modeled typically begins with higher level modeling and increases with the design and analysis 
cycles. For instance, in the concept study phase, failure initiators are represented as broad 
classes of failures that are simply mapped to crew-threatening failure environments (Figure 
14-3), allowing one to evaluate the gross sensitivity of the abort system to design parameters 
and to scope requirements. Because there are generally large design and propagation 
uncertainties in this early phase, scenarios are developed allowing for worst-case environments 
and zero propagation times. 

 
Figure 14-3. Failure Propagation Elements for an Early Concept Crew Risk Model. 

With each passing analysis and design cycle, failure propagation mechanisms become better 
understood and design information becomes more complete. The propagation details can be 
further refined into a three-stage propagation framework that includes intermediate failure 
manifestations between the previous failure initiators and failure environments (Figure 14-4). 
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Figure 14-4. Failure Propagation Elements for a More Mature Crew Risk Model. 

As the name suggests, a failure manifestation constitutes a critical phase or stage in the failure 
propagation beyond which the integrity of the mission or vehicle is irrevocably compromised. By 
allowing propagation paths to branch from the initiator and manifestation stages and converge 
at the environment stages, the framework efficiently captures a large number of unique failure 
paths with a relatively small set of common states. 

Refinements to the failure propagation model in this context are achieved by adding, when 
appropriate, more narrowly descriptive failure states (instances of initiators, manifestations, or 
environments) at each stage. Further refinements come with adding, where applicable, 
branches between stages to better represent likely outcomes from each failure state. Finally, 
model refinement is also achieved through better quantification of the likelihood of each state 
(through initiator and branch probabilities) and the propagation times accumulated in passing 
between states.  

In developing the three-stage failure propagation model, state definition, mapping probabilities, 
and timing are, again, initially allow for extreme and bounding cases assumptions and then 
progressively refined. For example, failure manifestations thought to either lead to fast-acting 
propagation or to have significant potential to interact across system boundaries are initially 
mapped to worst-case failure environments. Insights from initial analyses and sensitivity studies 
are then used to identify and focus further refinements to the mappings between failure 
initiators, manifestations, and environments. 

A combination of physics-based analyses, engineering assessments, heritage failure 
propagation data, and qualitative system analyses can be used to investigate the credibility of 
the mappings. Physics-based analysis of localized failure phenomena and/or cross-system 
effects, along with the use of ESDs in certain cases (Chapter 4), can enable quantification of 
warning times or a better understanding of credible failure manifestations and environments. If 
significant abort effectiveness improvements are observed as a result of either additional 
propagation time or re-mapping initiators to alternative failure environments, then further 
refinements are performed, drawing on physics-based analyses of progressively increasing 
fidelity.  
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14.5.2 Failure Detection, Warning Time, and Abort Triggers 

Failure detection is a necessary condition for any launch abort. Warning time is defined as the 
failure propagation time from abort initiation to the onset of an immediate threat to the crew. 
While humans (astronauts or ground crew) may successfully command a manual abort in 
response to an observable slow-acting failure, automatic failure detection and abort 
recommendation using an abort trigger may be necessary to survive fast-acting, high-
consequence failures. 

An abort trigger is a conceptual unit containing 1) a physical state, such as a vehicle health 
parameter, that is subject to anomalies during certain classes of failures, 2) a sensor to monitor 
the physical state and detect a failure in the event of an anomalous condition, and 3) failure 
verification and abort initiation logic embedded in avionics software. Abort triggers are intended 
to induce an automatic abort and reduce the chance of loss of crew by either increasing warning 
time through early failure detection, or by initiating direct failure mitigation measures.  

Developing an understanding of the intermediate physical states through which the launch 
vehicle’s systems pass during various failures allows the effectiveness of abort triggers to be 
evaluated. Similarly, an understanding of failure propagation paths allows for distinctions to be 
drawn between the speeds of propagation (fast acting versus slow acting), enabling warning 
time to be attributed to various failure scenarios. 
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14.5.3 Failure Propagation and Detection Analysis Example 

As an example of failure propagation and detection modeling, consider a bipropellant liquid 
propulsion system in a crewed launch vehicle. Figure 14-5 shows a sample failure progression 
for a fuel supply anomaly, following the three-stage failure propagation framework discussed 
above (failure initiator, manifestation, and environment). The model refinement from a simpler 
two-stage framework has already occurred. The “fuel supply anomaly” failure initiator may stem 
from an operational irregularity in the tanks and lines that supply propellant to the engine. The 
resultant failure manifestations are: “contained” failures that result in an engine shutdown or loss 
of performance, and “uncontained” failures that propagate beyond the engine system 
boundaries. Finally, the possible crew-threatening failure environments, from which an abort is 
attempted, range from stable (but disabled) launch vehicles to detonation-class “confined-by-
missile” (CBM) explosions. (The general PRA may only identify the failure manifestations as 
initiator failures, which is sufficient as long as the more basic initiator or cause of the failure 
manifestations, shown in the figure as fuel supply anomaly, does not affect the failure 
environments. If the more basic initiator can affect the failure environments then it needs to be 
identified.) 

 

 
Figure 14-5. Notional Diagram of Engine Failure Progression Through Three Stages of 

Failure. 

The probabilities and warning times allocated to the various failure paths linking the three 
stages of failure (initiators manifestations, and environments) are obtained through a more 
detailed understanding of the intermediate failure propagation and abort trigger processes that 
occur between each failure stage. For example, the intermediate events occurring in failures 
due to a fuel supply anomaly might be modeled as shown in Figure 14-6. 
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Figure 14-6. Expanded Failure Progression Showing Basis of Failure Path Branching 

Between Failure Stages. (Dashed arrows indicate mappings added after additional 
analysis.) 

The opportunities available for refining the representation of failure propagation in this example 
are extensive. Physics-based simulation of the engine’s steady-state and transient conditions, 
along with an understanding of material limits (e.g., melting temperature or burst pressure), can 
be used to determine the local failure conditions. For example, the off-nominal fuel supply 
condition results in an intermediate physical state: oxidizer rich combustion in one of the 
combustion volumes (e.g., gas generator or main combustion chamber). Elsewhere, engine 
redline sensors, which are mandated for human-rating to initiate engine shutdown under 
anomalous engine operating conditions, greatly impact the balance between contained and 
uncontained engine failures through their threshold settings. Engine redline sensors, when used 
with an abort trigger, could also provide opportunities for gaining warning time ahead of a 
catastrophic engine failure. 

Additional propagation refinements are possible. Detailed failure propagation analysis leads to 
the identification of a refined set of engine failure manifestations that could result in the 
uncontained branch of the event sequence. As shown in Figure 14-6, candidates for new failure 
manifestations might include the events External Fire and Turbomachinery Burst in place of 
Uncontained Engine Failure. The mappings from each of these new states to the final 
environments, based on local analysis of each state, would generally be unique, allowing for a 
richer and perhaps more faithful description of the failure propagation outcomes.  

Elsewhere, the relative likelihoods of propagating to environments resulting from an 
uncontained engine failure can be refined with a physical model of the engine explosion and its 
interaction with the propellant tanks. The original conservative assumption would map all 
uncontained engine failures to the worst-case CBM explosion environment. The physical 
analysis would bound the probability of the worst-case branch by the likelihood of engine 
shrapnel penetrating the tank walls and intervening propellant. This would establish minimum 
necessary conditions for a CBM explosion and enable the remaining outcomes to be mapped to 
less severe environments, as indicated by the dashed mapping lines in Figures 14-5 and 14-6. 

14.6 Failure environments 

The environment that exists at the culmination of the launch vehicle failure propagation process 
is called the launch vehicle-generated failure environment. For a given failure initiator and 
propagation path, loss of crew is prevented by survival of this near-field failure environment and 
successful return to earth and rescue. Survival in this context is meant to include health of the 
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abort vehicle life support systems as well as other systems needed to successfully complete the 
remainder of the abort process. Survival of the failure environment requires that either the 
launch vehicle is not capable of generating a threatening environment at the position of the crew 
on the stack, or that the crew module is given time and method of propulsion sufficient to 
escape the environment or that the crew module is sufficiently robust that it can protect the crew 
from the threatening environment. In order to quantify the probability of failure caused by these 
near-field environments, the intensity of the environment and its decay with distance must be 
quantified. In addition, the variation of these characteristics with vehicle flight condition must be 
represented. 

Examples of launch vehicle-generated failure environments include blast overpressure, 
explosive fragments, fireball, and loss of control. The first three of these are likely to be 
simultaneously present following a confined-by-missile explosion of a liquid propellant booster.  

14.6.1 Explosion Environments 

The primary concern with overpressure and fragments is the possibility of damaging the crew 
module and losing the integrity of the pressurized vessel. Fireball is not typically considered a 
significant threat to the crew module itself, but the threat of resulting radiant heating to a 
parachute system deployed after a pad abort must be evaluated. The intensity of explosive 
environments is known to be strongly dependent on the “blast yield,” or energy of the explosion, 
often expressed in terms of the equivalent mass of TNT. This factor is dependent on the degree 
of vaporization and mixing of the liquid propellants prior to ignition. As such, yield tends to be 
dependent on the detailed specifics of a given failure scenario and generally should be treated 
as highly uncertain. Early assessments may use a fixed ratio of TNT mass to propellant mass, 
but better estimates—based on volumes available for mixing, pressures, etc—can be obtained 
when detailed design information is available.  

Although not likely to involve chemical reaction, solid booster case bursts also produce 
explosive environments including both blast overpressure and fragment fields. The 
overpressure is considered to be of the type generated by a bursting pressure vessel with a 
relatively low yield. Fragment fields, on the other hand, are believed to be a significant, far 
ranging threat due to the internal pressures released and the mechanical properties of the solid 
propellant itself. 

14.6.2 Blast Overpressure 

The intensity of the blast overpressure environment is typically measured in terms of two 
parameters: the peak value of the overpressure and the time-integration of the overpressure 
distribution, i.e., the impulse. The blast environment intensity is strongly dependent on the 
speed with which the available, vaporized fuel is burned, i.e., the flame front speed. Supersonic 
flame fronts (detonation) produce much more intense overpressure environments compared to 
subsonic flame fronts (deflagration). Scenarios that lead to internal propellant mixing should be 
considered potentially capable of detonation, with attendant severe overpressure and fragment 
environments. Unconfined propellant release is unlikely to lead to detonation, except on the pad 
where the ground and surrounding structures may provide sufficient confinement and 
congestion to support detonation. 

Overpressure environments can be propagated to determine the spatial extent of the danger 
using either TNT or vapor cloud explosion (VCE) characteristics. Vehicle velocity affects the 
propagation by impeding the progress of the blast relative to what would be observed in 
quiescent air. This effect has a significant effect on the separation distance required of the abort 
system. Interaction of the blast with the abort vehicle‘s heat-shield can be modeled assuming 
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simple shock reflection theory, but improved representation is obtained by performing 
computational fluid dynamics (CFD) simulations of the interaction of the blast with the abort 
vehicle outer mold line (Figure 14-7). 

 

 
Figure 14-7. Sample Simulation of Blast Overpressure Wave Passing Over Crew Module. 

Outputs of the overpressure analysis might include peak overpressure and impulse as a 
function of distance for various mission elapsed times. Interaction effects also need to be 
included in these distributions. Specifically, the pressures produced must be consistent with the 
way the abort system vulnerability is expressed. For example, if vulnerability is expressed in 
terms of heat-shield-reflected peak overpressure and impulse, then the overpressure 
environments need to be represented by tables of reflected impulse and peak overpressure. 

14.6.3 Fragments 

Fragment field environments are strongly dependent on the initial distributions of fragment mass 
and imparted relative velocity, which are captured in the vehicle’s debris catalogs. Vehicle-
specific debris catalogs are rarely available early in the design process and initial assessments 
will require identification of suitable surrogate catalogs from existing vehicles. Initially, catalogs 
may be assumed to be independent of mission time and blast yield, but potential dependencies 
should be considered as design information becomes available, especially in the case of solid 
propellant boosters. A critical factor in the development of debris catalogs is the likely pattern of 
the debris’ outward directions, e.g., surface normal vs. spherically uniform vs. a combination. 

Given an initial debris catalog and flight conditions, the fragments may be propagated using 
simplified (i.e., 3-degree-of-freedom) trajectory dynamics coupled with some randomization 
process. Monte Carlo methods may be practical if the number of debris pieces is relatively 
small. Coupling the debris trajectories with the abort system trajectories provides an estimate of 
the strike probability during the abort. As with the overpressure, the fragment propagation is 
strongly dependent on flight conditions because of the effect of dynamic pressure on the 
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fragment drag. The output of the fragment field analysis would be something like debris density 
as a function of distance for various mission elapsed times.  

14.6.4 Fireball 

The fireball environment results from a relatively slow burn of propellant, which leads to high 
local temperatures within the fireball itself and radiated heating for many fireball diameters 
outward. As previously mentioned, this radiated heat is not likely to pose a threat to metallic 
components, but parachute designs and/or abort system range must be developed in 
consideration of the fireball environment. Simple engineering correlations are available for 
fireball diameter and duration. These can be coupled with point source approximations for the 
radiant environment decay to produce an initial thermal environment as a function of distance. 
The initialization of the environment can be improved with energy-volume computational 
methods, which provide better estimates of size and, especially, duration.  

14.7 Loss-of-Control Environments 

Loss-of-control environments may arise from failure initiators such as thrust vector control lock-
in-place or fail-hard-over, as well as from solid booster case breach failures. Loss-of-control 
failure environments differ in nature from explosive environments in that they do not spatially 
extend from the booster. Rather, their hazard is experienced through their effect on the attitude 
and rate conditions provided to the abort system at abort initiation. Such conditions can exceed 
structural limits of the abort vehicle or be difficult for the control system to stabilize following 
separation. As with the explosive environments, however, the conditions generated and the 
vulnerability of the crewed compartment to those conditions are strongly dependent on flight 
conditions, especially dynamic pressure and Mach number.  

Early assessments may make use of simplified analyses of bounding cases, chosen based on 
engineering judgment. The data required include: a nominal ascent trajectory, estimates of 
mass and inertia properties, gimbal authority limits, abort trigger thresholds, and vehicle failure 
limits (e.g., for structural breakup). In early design phases, many of these parameters will not be 
defined. In fact, given the expected sensitivity of crew safety to these parameters, the safety 
assessment should play an important role in their specification.  

With design maturity, detailed high-fidelity vehicle dynamics are used to assess the response of 
the vehicle to various failure modes, including failures of the control system as well as other 
failures with potential to generate off-nominal forces and moments.  

Output from the loss-of-control analyses would include distributions of potential attitude and rate 
conditions that can be used to initialize abort trajectory simulations. In addition, the amount of 
warning time between reaching the trigger threshold and reaching the failure limit is needed to 
assess the ability to escape potential subsequent explosions. 

14.7.1 Example of Failure Environment Quantification: Blast Overpressure 

This section presents an example of how to quantify the risks posed by a particular failure 
environment. The example presented here is based on an analysis of blast overpressure 
environments developed for the Ares I Ascent Abort Risk Assessment, and represents the level 
of analysis at the Preliminary Design Review (PDR) phase. 

In order to apply the blast model pressure propagation information in a risk assessment, the 
blast overpressure and trajectory must be converted into failure probabilities. Simple 
engineering-level models are used in this case to model the blast overpressure environment 
and predict the risk to the crew. These models also provide additional data and insight into the 



  
 
 

14-15 

design parameters that critically impact the ability to survive this failure mode. The components 
and inputs required to analyze the blast overpressure failure mode for this case are shown 
schematically in Figure 14-8.  

 

 
Figure 14-8. Schematic of the Components and Inputs in the Blast Overpressure 

Analysis. 

The model contains a series of component models for explosive blast overpressure propagation 
and abort vehicle trajectory to determine the overpressure experienced by the escaping crew 
module. This overpressure is then compared with the capsule’s vulnerability to blast 
overpressure to determine the failure status. Both the blast and abort vehicle propagation 
modules depend on multiple sub-components and inputs, including blast energy, flight 
conditions, etc. 

This model is then used to produce failure data in the form of tables of failure probability as 
functions of mission elapsed time (MET) and available warning time. Given a sufficiently 
efficient implementation, the model could also be used to perform sensitivity analyses with 
respect to critical design parameters (e.g., abort vehicle thrust profile, crew module 
overpressure vulnerability, etc.) to inform the development of requirements.  

Using the results of the integrated safety assessment, the component models can be enhanced 
to better reflect the physics involved. For example, a two-parameter Vapor Cloud Explosion 
(VCE) model was determined to be a closer representation of the liquid propellant explosion 
than a single-parameter, high explosive model. A simple peak overpressure limit only considers 
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one crew module failure mode for the blast wave. Using a two-dimensional pressure-impulse (P-
I) curve includes a second failure mode involving both the magnitude of the overpressure and 
the duration of the wave. 

The model described in this example clearly extends beyond simply characterizing the failure 
environment to include abort trajectories and crew module vulnerability. Performing integration 
at this level may provide significant efficiency benefits relative to performing this integration as 
part of the overall integrated safety simulation process. 

Step-by-step process used to generate failure probability due to blast overpressure in this 
example: 

1) Specify blast size – energy (fraction of fuel, pressurized cavity, etc) 

2) Specify initial blast rate – flame Mach (> 1 for detonation/CBM; < 1 for 
deflagration/non-CBM) 

3) Interpolate in Baker, Strehlow, Tang blast families to produce non-dimensional blast 
characteristic for specified flame Mach (assuming not one of original series) 

4) Dimensionalize the resulting curve for specific conditions (altitude) and blast energy 
using Sachs scaling. 

5) Use relationships between blast overpressure and Mach to integrate a blast trajectory 
(distance vs. time) for a blast in quiescent air. 

6) Represent effects of vehicle velocity on the blast overpressure and trajectory (e.g., 
using a model developed with help of CFD simulations). 

7) Represent effects of the shock’s interaction with the crew module. In the simplest 
case, for example, a shock reflection relation may be used to account for reflection of 
the shock off the crew module’s heat shield. 

At this point, a blast overpressure environment has been generated in the form of a table of 
peak overpressure, blast impulse, and arrival time as functions of distance from the blast 
center. To produce a failure probability for a specific situation, the following further steps are 
used for this case: 

8) Produce/obtain a trajectory of the abort vehicle for the specific conditions under 
consideration (altitude, velocity, etc.). 

9) Adjust the trajectory time and distance to account for warning time and the initial 
location of the abort vehicle relative to the blast center. 

10) Determine the point of intersection between the blast (distance vs. time of arrival) and 
the abort vehicle, i.e., the distance/direction at which the blast overtakes the abort 
vehicle (if it does). 

11) Assess overpressure characteristics at the point of intersection (peak overpressure 
and integrated impulse, including effects of interaction). 

12) Locate the resulting blast threat as a point specified by the post-interaction impulse 
and peak overpressure in blast impulse/peak overpressure (P-I) space. 

13) Assign failure probability based on the relative position of the blast characteristics in P-
I space relative to the failure or vulnerability curve of the crew module. Above and/or to 
the right of the curve represents conditions exceeding the failure criteria (failure 
probability = 1) and points below and/or to the left indicate conditions that can be 
withstood by the structure (failure probability = 0). Continuous probabilities between 0 
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and 1 may be obtained by representing uncertainties in the location of the failure 
curve, etc. In order to maintain consistency, it is important that this curve be defined 
with respect to the post-interaction (e.g., reflected) values of the blast characteristics 
rather than incident values. 

14.8 Crew module Capability & Vulnerability 

An abort assessment requires data about the crew module and abort system to establish both 
failure criteria and the severity of the potential failure environments. The design of the crew 
module will determine, in part, the loss-of-crew failure criteria. For example, the loss of crew due 
to blast overpressure will depend upon the strength of the crew compartment and its ability to 
withstand rupturing. Likewise, the seat design will determine the magnitude of crew module 
acceleration and deceleration that can occur without fatal injuries. 

The capabilities of the abort system and crew module are also factors in the environments that 
the crew will face during an abort. For example, the performance of the abort motor will 
determine the separation distance between the crew module and launch vehicle during an 
abort. Similarly, the aerodynamics of the crew module will determine the descent trajectories 
that can be flown to return the crew to earth, and the descent and landing system will determine 
the level of risk associated with landing the crew module onto land or water. 

The level of detail required depends upon the scope and goal of the assessment and the state 
of the design. An abort assessment can be used to provide information for design trades during 
conceptual design, to provide risk contributions of sub-systems during preliminary design, and 
to provide overall risk of a complete crew module and abort system. An abort assessment 
during the conceptual design phase will typically focus on sensitivity studies of system design 
parameters and their effects on crew risk. Designs at this stage are not complete and not all 
information required for the assessment will be available. In such cases, historical data and 
conservative assumptions can be used to fill in any data holes. These early assessments can 
be used to evaluate different design concepts (e.g., top-mounted or side-mounted, liquid or solid 
stages), to evaluate the effect of a range of system parameter values (e.g., launch abort motor 
thrust, crew module structural strength) on crew risk, or to highlight sub-systems that present 
the most risk for design trade studies. 

As the design matures, more data specific to the design can be integrated into the assessment. 
For example, during the conceptual design phase, aerodynamic data needed to compute the 
descent trajectory would be obtained from existing vehicles of similar shape or computed using 
simple, generic shapes that approximated the proposed design. Once the outer mold line of the 
crew module is established, aerodynamic data can be computed based on the specific design. 
The descent trajectories computed using these new data would better reflect the performance of 
the crew module design. As more design information gets incorporated into the assessment, the 
more specific the assessment becomes. 

However, it may not be necessary to use all of the design data available. Even with a mature 
design, it may be insightful to conduct a quick initial assessment of the abort system using low-
fidelity models. A low-fidelity assessment could provide a roadmap for further analysis by 
highlighting sub-systems that contribute the most risk to the crew. For example, an initial 
analysis of a given design may point to the landing phase as contributing the most loss-of-crew 
risk. This may be due to assumptions about the reliability of the parachute system, the 
capabilities of the crew seats, or limitations on where the crew module can land. A second pass 
of the assessment would refine the assumptions about the parachute reliability and conduct a 
more detailed analysis of the ability of the crew seats to absorb landing loads. If the crew 
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module design limitations on where it can land continue to be a large risk driver, this information 
can be used as part of a follow-up evaluation of that design decision. 

14.8.1 Example of Crew Module Vulnerability Assessment 

As an example, consider a crew module to be designed for an asteroid mission. For an abort 
assessment during the conceptual design phase, minimal information about the crew module 
would be available. At this point, historical data and conservative assumptions would be used to 
estimate the ability of the crew module to withstand the blast overpressure and debris strikes 
arising from the destruction of the launch vehicle during an ascent abort. Maximum survivable 
blast overpressure levels would initially be based on historical data of similar crew module 
designs. A model used to predict the probability of debris striking the crew module requires as 
input the characteristics of the launch vehicle debris (e.g., mass, area, imparted velocity) and 
the abort trajectory of the crew module. The relative position of the debris and the crew module 
along its abort trajectory is computed and used to determine if the debris can strike the crew 
module. A conservative assumption would be that any piece of debris striking the crew module, 
regardless of size and relative velocity, would damage the crew module sufficiently to cause a 
loss of crew. An example of the debris strike probability, as a function of abort time during 
ascent, is shown in Figure 14-9. 

 
Figure 14-9. Example of Debris Strike Probability as a Function of Abort Time During 

Ascent. 

As the crew module design progresses and information about the structural design becomes 
available, the failure criteria can be updated. The maximum blast overpressure can be 
determined using the maximum design strength of the crew module instead of an estimate 
based on historical data. For debris vulnerability, an analysis can be conducted to determine the 
impact velocity required for a piece of debris of a given mass to penetrate the crew module’s 
exterior skin. Such an analysis would yield a relationship between the debris mass and the 
impact velocity required to penetrate the crew module skin, as shown in Figure 14-10. 
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Figure 14-10. Debris Mass and Impact Velocity Required to Penetrate the Crew Module 

Skin. 

Within the debris strike probability model, this penetration criterion would be incorporated by 
checking whether each piece of debris found to be within striking distance of the crew module 
has a sufficient impact velocity for its mass. This would eliminate pieces from the debris count, 
reducing the strike probability by reducing the number of debris pieces that could lead to loss of 
crew. The resulting reduction in strike probability is shown by the dashed line in Figure 14-11. 

 
Figure 14-11. Example of Reduction in Debris Strike Probability Due to Imposing 

Penetration Criteria. 

As the designs for both the crew module and launch vehicle evolve and the failure environments 
become better defined, the failure criteria can become more specific. A general failure criterion 
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based only the peak overpressure of the blast wave can be replaced by a failure of a structural 
component obtained from structural analysis of the design. As detailed structural models of the 
design become available, the structural response of the entire crew module, including the abort 
hardware, to potential blast waves can be computed. An example is shown in the Figure 14-12.  

 

 

 

Figure 14-12. Example of Detailed Structural Response Computed for a Crew Module. 

Such an analysis evaluates the effect of both peak overpressure and impulse on structural 
integrity and can highlight potential weak areas that could lead to structural or sub-system 
failure resulting in loss of crew. Debris penetration criteria could include such parameters as 
impact angle and debris material properties, and could account for the different wall thicknesses 
and materials in the crew module design.  

Each refinement should provide a better estimate of the impact the vehicle design has on the 
risks associated with an ascent abort. As the design matures, the structural models can be used 
as part of the assessment. The strength of the structural design can be used to determine the 
maximum blast overpressure that the structure can withstand. The wall thickness and design 
can be used to determine the impact velocity a given piece of debris must have in order to 
penetrate the crew module. In turn, the results obtained from the risk assessment can be used 
to refine the design in order to reduce the risk to acceptable levels. 

14.9 Integrated Abort Modeling 

All of the abort assessment elements discussed in the preceding sections—failure initiators, 
failure propagation and detection mechanisms, failure environments, and crew module 
capabilities—need to be integrated into a single stochastic model. Such an integration model 
links the separate abort assessment pieces with their inputs and supports the assessment of 
LOM and LOC, as well as any other figures of merit defined for each phase of the project. The 
model must support sensitivity analyses needed to inform the designer and managers about the 
relative importance of the modeling parameters and their acceptable ranges. The model also 
needs to answer questions regarding uncertainty in the outputs or uncertainty added by each 
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additional step of the process. Since answering these questions requires a great deal of 
processing power, the integration model must also be light and flexible. 

 

 

Figure 14-13. Schematic of Integrated Risk Modeling Elements. 

14.9.1 Integrated Modeling Evolution 

In the early phases of vehicle design and assessment, the integration model may be comprised 
of very few elements: failure initiators or categories that describe failure manifestation 
scenarios, probabilities representing the likelihood of each scenario, error factors that describe 
the uncertainty about each failure probability, and abort effectiveness distributions describing 
the chances of survival for each failure scenario. To put the elements of this model together, a 
simple spreadsheet tool may be sufficient. Total LOM probability will be the sum of the individual 
LOM probabilities due to each failure initiator, and LOC probability will be the sum of each LOM 
probability multiplied by its corresponding abort effectiveness value. To perform uncertainty 
analysis, one can perform the above-mentioned process many times using one single sample 
from the distributions of each of the parameters in each round. The normalized histogram of 
LOM and LOC probabilities can give a good representation of LOM and LOC distributions. 

As the design matures, the risk model becomes more detailed as well—failure initiators get 
broken down to more specific failure scenarios with more specific mappings, failure probabilities 
become a function of phase and mission elapsed time, failure detection mechanisms are added 
to the model, rough abort effectiveness estimates are replaced by hazard environments that are 
a function of failure time or other flight parameters, abort trigger mechanisms are included to 
provide earlier warning times, and so on. Integrating a model with all of these details usually 
calls for a more flexible modeling environment like a Monte Carlo simulation tool. 
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The integration model needs only to be as detailed as necessary to meaningfully assess the risk 
with the available information. Details should not necessarily be added just because they are 
available, but rather because they facilitate superior estimation of the figures of merit defined for 
that specific phase of the project. For example, if the effectiveness of the failure triggers is one 
of the metrics that is in question, then trigger mechanisms need to be an explicit part of the 
model. However, if the overall abort effectiveness is the main focus of the project and triggers 
are assumed to be part of the vehicle design, then one might decide to integrate triggers with 
the detection mechanism and thus have a simpler model for assessment. 

It may be convenient to integrate the explosive failure environment information with the abort 
system vulnerability data (including trajectory data) separately from the overall safety 
assessment integration. Details of the environment propagation are difficult to capture without 
storing large amounts of data so the process may benefit from considering the abort vehicle 
vulnerability as part of the environment development. In this case, the output generated consists 
simply of failure probabilities associated with blast overpressure and with fragments. These may 
be produced as tabular functions of warning time and mission elapsed time. 

14.9.2 Uncertainty and Sensitivity Analyses 

Providing decision makers with point estimates for figures of merit without expressing the 
uncertainty associated with them can be misleading. This is especially true when the outcomes 
are used to demonstrate that the proposed design meets stated requirements. However, not all 
of the benefits of uncertainty analysis are for the decision makers; the risk analysts may benefit 
from this information as well. High uncertainty in parts of the model, especially when there is a 
wide range of consequences and a big impact on the outcomes, can prompt the analyst to take 
a more serious look at the problem and try to understand the underlying source of the 
uncertainty. Uncertainty can be reduced by better investigation of the physical phenomena, 
higher fidelity modeling, adding more test cases, changing the design to reduce the range of the 
response to the inputs, and so on. 

When uncertainty analysis is a part of the process, every piece of data that is used needs to be 
examined to determine its precision and accuracy. The uncertainty is usually expressed as a 
probability distribution function for the possible values of a variable. When computing the 
uncertainty is prohibitively difficult or costly, sensitivity analyses can be performed to study the 
effects of changing certain variables and determine the importance of knowing their 
uncertainties. 

14.9.3 Abort Model Review 

Like all systems engineering processes, the abort effectiveness assessment process needs to 
be reviewed. Routine model reviews, discussions with the design teams regarding the findings, 
and consultation with peers are all part of this process. 

Other than these typical tools, the following processes can be useful as well: 

 Trying both top-down and bottom-up approaches if possible. A top-down approach uses 
historical or heritage data while the bottom-up approach is based on the reliability 
assessment of individual components. These approaches may generate different results, 
but a comparison between the two can provide analysts with information that can be 
useful for the review process. 

 Comparing the assessment results from one phase to another. As the model becomes 
more mature, the sources of changes in the assessment results can be defined and 
studied. For example, if the contribution of a failure initiator to the overall LOC probability 
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has increased from one revision of the model to another, the reason behind this change 
can be discussed by all of the parties involved, including designers, managers, and risk 
analysts. Using this process can help to avoid introducing errors into the model. 

14.9.4 Example of Integrated Modeling: Ares I Abort Assessment GoldSim Model 

To illustrate the elements and processes involved in integrated risk simulation, this section 
presents an example of an integrated risk model developed for the Ares I Ascent Abort Risk 
Assessment. This example represents the risk model at the Preliminary Design Review (PDR) 
phase of vehicle development, when all the risk model components have been developed and 
incorporated into the model.  

The Ares I ascent abort risk model was built using the GoldSim [14-4] simulation environment to 
integrate known sources of risk in the ascent abort process and estimate overall abort 
effectiveness. GoldSim is a Monte Carlo hybrid simulator tool that supports the simulation of 
dynamic systems with stochastic behavior. Such hybrid simulator tools combine the features of 
continuous simulators and discrete simulators—they solve differential equations, but can also 
superimpose discrete events on the continuously varying system. The abort risk simulation 
model follows the simplified algorithm presented in Figure 14-14. 

 
Figure 14-14. Simplified Representation of Risk Simulation Model Algorithm. 

The process starts with sampling from the failure initiators at each phase of the mission. When a 
failure is triggered, the branching probabilities for the triggered scenario are sampled, as is the 
warning time range for the selected branch. Using the mapping between the failure 
manifestations and failure environments, a failure environment is selected and the relative 
hazard tables are sampled to calculate the LOC probability. After sampling from LOC 
probabilities, Orion and abort-only failure tables are also sampled to find the chance of surviving 
the abort after observing the Ares-generated potential LOC conditions. 

The Ares I GoldSim simulation model consists of five major sections presented as five folders in 
GoldSim environment: inputs, failure initiators, failure environments (Ares-generated), abort 
environments (abort-only), and end-states logic and results (Figure 14-15). 
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Figure 14-15. Influence Diagram of Main Sections of GoldSim Model. 

All of the data used in the simulation are imported from the MS Excel spreadsheets 
accompanying the model, into the inputs folder at the start of the simulation (Figure 14-16). 
Imported data include all of the failure initiator information, scenario information, failure 
manifestation and failure environment data, failure evolution mapping, hazard LOC probabilities, 
abort environment LOC probabilities, and so on. The inputs folder also includes the simulation 
elements that trigger the start and end of each mission phase (Figure 14-17). When any piece 
of these data are needed, a link to elements of this folder provides the needed information to the 
other parts of the model. 
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Figure 14-16. Sample GoldSim Inputs That Link to the Excel Spreadsheets. 

 

Figure 14-17. Sample GoldSim Inputs That Define the Start and End of Each Phase. 

The failure initiators folder simulates the failure behavior of the vehicle during each phase of the 
mission. Twenty failure initiators can be assigned to each mission phase, each mapping to a 
unique failure manifestation, and each mission phase can have up to 40 failure scenarios. When 
a failure scenario of a mission phase is triggered (presenting the failure of that phase), one of 
the failure manifestations under that scenario is randomly selected and the warning time range 
of that scenario/manifestation combination is sampled to get a unique warning time for that 
particular realization. Figure 14-18 shows a screenshot of this folder. 

In the failure environments folder, simulation elements needed for mapping between failure 
manifestations and failure environments are brought together with representatives of each 
failure environment and the hazard tables (Figure 14-19). When a failure is initiated, a possible 
failure environment is sampled from the failure mapping table. Each failure environment triggers 
a subset of hazard tables and the outcome determines whether or not a LOC incident has 
occurred. After sampling from the failure environments, abort environment is sampled as well, 
regardless of the outcome. The end-states logic and results folder mostly contains milestone 
and status elements to track the timing of the events and the outcomes of the random events. 
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Figure 14-18. Failure Initiation Logic. 

 

 

Figure 14-19. Ares-Initiated Failure Environments. 
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Appendix A– Probability and its Application to Reliability and 
Risk Assessment 

 

This appendix reviews elementary probability theory as it applies to reliability and risk 
assessment. We begin with the logic of certainty, i.e., logical operations with events. The 
concept of a structure function is introduced along with the important concept of minimal cut 
sets (MCSs). Elementary probability operations and distribution functions are then presented 
with examples from reliability and risk assessment. There are several books that cover parts of 
this material [A-1 through A-6]. 

A.1 The Logic of Certainty 

A.1.1  Events and Boolean Operations 

An event is an assertive statement that can be true or false. Thus, “it will rain today” is an 
event, while the statement “it may rain today” is not an event, because it can never be proven to 
be true or false. 

We may assign an indicator variable, X, to an event E whose values are 1 or 0 depending 
on whether the event is true or false, as shown in Figure A-1. 

X=

1, If E is TRUE

0, If E is FALSE
 

Figure A-1. Definition of an Indicator Variable. 

Indicator variables will be useful in performing Boolean operations, as we will see later.  At 
this time, we note that, since these variables are binary, they satisfy the following relation: 

,2,1 kXX k  (A-1)

We now imagine that we perform an “experiment” whose outcome is uncertain. For 
example, we throw a die; the possible outcomes are {1, 2, 3, 4, 5, 6}. We call the set of all 
possible outcomes the sample space of the experiment. Another example of an experiment with 
uncertain outcome is to place a component in operation and wait until it stops functioning. In a 
generic way, we may imagine the sample space (S) as being represented by all the points 
inside a rectangle (or any other figure).  Each sample point is a possible outcome of the 
experiment. A collection of points forms an event (E). Of course, such a representation would 
not be appropriate for an experiment such as the throwing of a die because the outcomes form 
a discrete set. However, we can work with a continuous set to demonstrate the Boolean laws 
without loss of generality. Such a representation is called a Venn diagram and is shown in 
Figure A-2. 



 

A-2 

S

E

 

Figure A-2. A Venn Diagram. 

We can now discuss the three basic Boolean operations: the negation, the intersection, and 
the union. 

A.1.1.1  Complement of an Event (Negation) 

 

For the event E, we define its complement E  such that E  is false when E is true. The 
indicator variable expression is 

EE XX  1  (A-2) 

Figure A-3 shows the Venn diagram for the NOT operation, as well as the logic gate “not.” 

 

Figure A-3. The NOT Operation. 

A.1.1.2  Union 

Given two events, A and B, we form a third event C such that C is true whenever either A or 
B is true. The logic gate OR is shown in Figure A-4. The Boolean and the indicator variable 
expressions are: 

 jBAC XXXX

CBA





)1)(1(1
 (A-3) 
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Figure A-4. The Union of Events. 

A.1.1.3  Intersection 

Given two events A and B, we form a third event C such that C is true whenever both A and 
B are true. The Venn diagram and the logic gate AND is shown in Figure A-5. The Boolean and 
the indicator variable expressions are: 

BAjXXXX

CBA

jBAC ,




 (A-4) 

 

Figure A-5. The Intersection of Events. 

Two events are said to be mutually exclusive if they cannot be true at the same time. In 
terms of the Venn diagram, this means that their intersection is empty, i.e.,     

 BA  (A-5) 

where   denotes the null, or empty set. 
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A.1.2 Simple Systems 

A series system is such that all its components are required for system success. 
Equivalently, the system fails if any component fails.  Its block diagram is shown in Figure A-6 
where each circle represents one “part” (i.e., a component) of the system.  Equations (A-6) and 
(A-7) show the logical expressions for the indicator variables for failure (X) and success ( X ).  In 
Figure A-7, “X” refers to the event “system failure.” X in Equation (A-6) is the indicator variable 
of this event. 

 

Figure A-6. A Series System of N Components. 

Failurea: 


N

j

N

j XXX
11

)1(1  
 

(A-6)

Success: 


N

jXX
1  

(A-7)

 

 

Figure A-7. Pictorial Representation of Equation (A-6). 

A parallel system is a redundant system that is successful, if at least one of its elements is 
successful. Equivalently, the system fails if all of its components fail.  Figure A-8 shows the 
system in block-diagram form. Equations (A-8) and (A-9) are the indicator variable expressions 
for failure and success.  Figure A-9 is the corresponding FT. 

                                                 
a Note that upside down capital pi symbol ∐	 represents the coproduct operation (i.e., a disjoint union). 

1 2 Ni+1i
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Figure A-8. A Parallel System of N components. 

Failure: 
N

jXX
1

 (A-8)

Success: 
N

j

N

j XXX
11

)1(1    (A-9)

 

 

Figure A-9. Pictorial Representation of Equation (A-8). 

A.1.3 Structure Functions 

Equations (A-6) through (A-9) show that the system indicator variable can be expressed in 
terms of the indicator variables of the components. In general, the indicator variable of the top 
event is a function of the primary inputs: 

1

2

i

i+1

N
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)(),.....,( 21 XSXXXSX FnFT   (A-10) 

where )(XS F  is the structure or switching function and it maps an n-dimensional vector of 0s 
and 1s into 0 or 1. 

As an example, consider a two-out-of-three system, in which at least two components are 
needed for success (Figure A-10). 

 

Figure A-10. Block Diagram of the Two-out-of-Three System. 

The system fails if any two or all three components fail (OR gate).  Thus, we write 

)1)(1)(1)(1(1 CBAACCBBAT XXXXXXXXXX  (A-11)

This is the structure function of this system. We now observe that, if we expand the right-hand 
side of Equation (A-11) and use Equation (A-1), we get a simpler form, i.e.,  

)1)(1)(1(1 ACCBBAT XXXXXXX   (A-12)

This observation leads us to the concept of cut sets. A cut set is a set of Xi that, when 
TRUE, they make XT TRUE, i.e., their failure guarantees failure of the system. Note that 

CBA XXX  is a cut set (Equation (A-11)). However, this cut set does not appear in the simpler 

Equation (A-12).  This leads us to the concept of minimal cut sets (MCSs). A minimal cut set is a 
cut set that does not contain another cut set as a subset.  

The MCSs for the two-out-of-three system are 

ACCBBA XXMXXMXXM  32,1 ,
 (A-13) 

The indicator variables for the minimal cut sets are M1, M2, and M3. 

Equation (A-12) can be written as 

A

B

C

2/3
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)1)(1)(1(1 321

3

1

MMMMX jT   (A-14)

We note that the concept of cut sets applies when the logic represented by the structure 
function does not contain negations (these are called coherent functions). If it does, the 
corresponding concept is that of prime implicants. A discussion of prime implicants is beyond 
the scope of this appendix (see Reference [A-5]). Equation (A-14) is shown pictorially in Figure 
A-11. 

 

Figure A-11. Pictorial Representation of Equation (A-14). 

We can generalize Equation (A-14) to describe a system with any number of MCSs and write 


N

i

N

iT MMX
11

)1(1    (A-15)

This is the disjunctive normal form (or sum-of-products form) of the structure function.  Carrying 
out the multiplication in the above expression yields: 
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1
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1

11

1... (A-16)

Expanding Equation (A-14) or its equivalent Equation (A-12) for the two-out-of-three system we 
get 

CBAACCBBAT XXXXXXXXXX 2)(   (A-17)

where we have used the fact that CBACBA XXXXXX 2
 (see Equation (A-1)). 

Similar expressions can be derived for system success. Then, the equation corresponding 
to Equation (A-15) is 
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n

iT RX
1

  (A-18) 

where Ri is the ith minimal path set. 

Another example is the two-out-of-four system. The system works if at least two components 
work. The MCSs are 

4214143343223211 XXXMXXXMXXXMXXXM   (A-19) 

And the structure function is 

)1)(1)(1)(1(1 4321 MMMMXT   (A-20) 

or 

4321421143432321 3 XXXXXXXXXXXXXXXXXT   (A-21) 

The identification of minimal cuts for complex structure functions (i.e., large FTs) has been 
computerized.    

A.2 Probability Basics 

A.2.1 Definition 

In the mathematical theory of probability, the probability of an event A, Pr(A) satisfies the 
following Kolmogorov axioms: 

0 ≤ Pr(A) ≤ 1                       (A-22) 

1)Pr( eventcertain  (A-23) 

For two mutually exclusive events A and B: 

)Pr()Pr()Pr( BABA   (A-24) 

In PRA, saying that the probability of an event is a mathematical entity that satisfies these 
axioms is not sufficient; we need to interpret this concept. There are two prominent 
interpretations of probability: 

In the relative-frequency interpretation, we imagine a large number n of repetitions of an 
“experiment” of which A is a possible outcome. If A occurs k times, then its relative frequency is 
k/n. It is, then, postulated that the probability of A is 

)Pr(lim A
n

k
n




 (A-25) 

In the Bayesian interpretation, there is no need for n “identical” trials. The concept of 
“likelihood” is taken as being primitive, i.e., it is meaningful to compare the likelihood of two 
events. Thus, Pr(A) < Pr(B) simply means that the assessor judges B to be more likely than A.  
Probability is a “statement of plausibility,” where distributions are carriers of incomplete 
information.  Definitions in the Bayesian approach include: 
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Data Distinct observed (e.g., measured) values of a physical process.  Data 
may be factual or not.  For example they may be subject to uncertainties, 
such as imprecision in measurement, truncation, and errors. 

Information The result of evaluating, processing, or organizing data and information in 
a way that adds to knowledge. 

Knowledge What is known from gathered information. 

Inference  The process of obtaining a conclusion based on what one knows. 

Both relative-frequency and degree-of-belief probabilities satisfy the mathematical theory of 
probability, i.e., the Kolmogorov axioms. The interpretation that is prevalent in PRA is that of 
degree-of-belief [A-6].  These concepts were presented in more detail in Section 6.3. 

A.2.2 Basic Rules 

A.2.2.1  Union of Events 

For non-mutually exclusive events: 
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Pr1PrPrPr (A-26)

For two events: 

       ABBABA PrPrPrPr   (A-27) 

In PRA, we usually deal with rare events; consequently the intersections of events have very 
low probabilities. It is very common to approximate Equation (A-26) by 

 









 N

i
i

N

i AA
11

PrPr     rare-event approximation (A-28) 

These results can be applied to the disjunctive form of the structure function, Equation (A-
16). Thus,  

       







 

N N

i
N

iT MMrPX
1 1

1 Pr1Pr   (A-29) 

The rare-event approximation is, then, 

   
N

iT MX
1

PrPr  (A-30)

Note that the intersections of the MCSs must be simplified first (using X2 = X ) before 
probabilities are taken. 

As an example, consider the 2-out-of-3 system (Equation (A-17)). Using the rule for the 
union of events, Equation (A-26), we get 

)Pr(2)Pr()Pr()Pr()Pr( CBAACCBBAT XXXXXXXXXX   (A-31) 
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A.2.2.2  Conditional Probability 

We define the conditional probability of event A given that we know that event B is TRUE as 

   
 B

AB
BA

Pr

Pr
Pr   (A-32)

Two events, A and B, are said to be independent if the knowledge that B is TRUE does not 
affect our probability of A, i.e., 

   ABA PrPr   (A-33) 

Thus, for the two-out-of-three system, assuming independent “identical” components and letting 

qXXX CBA  )Pr()Pr()Pr(  (A-34) 

we get 

32 23)Pr( qqX T   (A-35) 

For q  =  0.1, we get 

028.0)Pr( TX  

The rare-event approximation, Equation (A-30), gives 

030.03)Pr( 2  qX T  

A.2.3 Theorem of Total Probability 

Given a set of events, )1(, NiHi  , that are mutually exclusive and exhaustive 

),,(
1

SHjiforHH i
i

ji 




 , the probability of any event E can be expressed as 

     i

N

i
i HHEE PrPrPr

1




 

(A-36)

A.2.4 Bayes’ Theorem 

Suppose that evidence E becomes available. What are the new (updated) probabilities 

)Pr( EHi ? These are given by Bayes’ Theorem as follows: 
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1

Pr)Pr(

PrPr
Pr  

(A-37)

The probabilities )Pr( iH are the prior probabilities, i.e., those that are valid prior to receiving 
the evidence E. Similarly, the probabilities )Pr( EHi are the posterior probabilities. The factor 

)Pr( iHE is called the likelihood function. 

From Equation (A-32): 

   iii HHEEEH Pr)Pr(Pr)Pr(   

using Equation (A-36) we get Equation (A-37). 

As an example, suppose that a piece of piping is subjected to an aging mechanism. The 
probability that this mechanism exists is 0.5. A visual inspection has a probability of 0.6 of 
identifying the mechanism, if it exists, and a probability of 0.1 of declaring that it is there, if it 
does not exist (false alarm). What is the probability that the mechanism actually exists when the 
visual test is positive? 

Here, we have two mutually exclusive and exhaustive hypotheses: 

 H1: the mechanism exists 

 H2: the mechanism does not exist 

Let pvt and nvt denote a positive visual test and a negative visual test, respectively. We can 
see the various possibilities regarding the test in Figure A-12. The evidence is that a positive 
test is indeed obtained. Then, Bayes’ Theorem gives 

86.0
05.03.0

3.0

)Pr()Pr()Pr()Pr(

)Pr()Pr(
)Pr(

2211

11
1 







HHpvtHHpvt

HHpvt
pvtH  

Similarly, the probability that the mechanism actually exists when the test is negative is  

31.0)Pr( 1 nvtH  
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Mechanism Exists Positive Visual 
Test (pvt) 

  

    
 )Pr(6.0 1Hpvt

 

 
3.0)Pr( 1  Hpvt  

15.0 H    

 )Pr(4.0 1Hnvt
 

 2.0)Pr( 1  Hnvt  

   
 )Pr(1.0 2Hpvt

 

 05.0)Pr( 2  Hpvt
 

25.0 H    

 )Pr(9.0 2Hnvt
 

 45.0)Pr( 2  Hnvt  

   
Figure A-12. Various Cases for the Inspection Example. 

A.3 Failure Distributions 

A.3.1 Random Variables 

As we stated in Section A.1.1, events are represented as sets of sample points of the 
sample space. For example, the event  event  is represented by the set  6,4,2  of sample 
points of the die experiment. 

A function that maps sample points onto the real line is a random variable (RV).  For any 
(one-dimensional) RV, we can represent its possible values on the real number line and then we 
say that  xX   is an event.  Figure A-13 shows the real number line and the sample points for 
the die experiment. 

1 2 3 4 5 6

3.75

0

 

 

 
Figure A-13. The Random Variable for the Die Experiment. 

For the die experiment, the following are events: 

{X  3.75} = {1, 2, 3}  {1 or 2 or 3} 

{X  96} = S   (the certain event) 

{X  -62} =    (the impossible event) 
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The sample space for the die is an example of a discrete sample space. X is a discrete 
random variable (DRV). A sample space is discrete if it has a finite or countably infinite number 
of sample points. 

A sample space is continuous if it has an infinite (and uncountable) number of sample 
points. The corresponding RV is a continuous random variable (CRV). 

A.3.2 Distribution Functions 

The cumulative distribution function (CDF) of the random variable X is defined as 

   xXxF  Pr  (A-38) 

This is true for both DRV and CRV. 

A CDF has the following properties: 

  xF  is a non-decreasing function of x; 

   0F  (the probability of the impossible event) (A-39) 

   1F  (the probability of the certain event) (A-40) 

Figure A-14 shows the CDF for the die experiment. 

1 2 3 4 5 60

F(X)

X

1

1/6

 

Figure A-14. The Cumulative Distribution Function for the Die Experiment. 

As an example, using Figure A-14, we find the following: 

       
3

1

6

2

6

4
2443Pr3.41.2Pr  FForXX

 

For DRV, we define the probability mass function (pmf) as 

  ii pxX Pr  (A-41) 

From the definitions, it follows that 
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    xxallforpxF ii ,  (A-42)

Furthermore, property (A-40) of the CDF requires that (normalization condition): 

  iallforpi 1  (A-43)

For CRV, we define the probability density function (pdf) as 

   
dx

xdF
xf 

 (A-44) 

Then,  

      )(1 ionnormalizatdxxfanddssfxF
x

 






 (A-45)

Example: 

Determine k so that  

 
otherwisexf

xforkxxf

,0)(

10,2




 

is a pdf. 

Answer: 

For this function to be a pdf, it must satisfy the normalization condition, Equation (A-45), i.e., 

 
1

0

2 31 kdxkx
 

The CDF is 

xforxFandxforxF

xforxdssxF
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As an example, we calculate the probability that the RV will be between 0.75 and 0.875 (see 
Figure A-15). 

25.042.067.0)75.0()875.0()875.075.0Pr(  FFX  (A-46) 

Using the pdf, we calculate 

25.03)875.0
875.0

75.0

2   dxxX Pr(0.75  (A-47) 
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Figure A-15. CDF and pdf for the Example. 

A.3.3 Moments 

The moments of distributions are summary measures and are useful for communication 
purposes. 

The most common moments are 

Expected (or mean, or average) value:  
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Variance: 
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 (A-49) 

Standard deviation: 

sd  (A-50) 

Coefficient of variation:   

 xE


cov  (A-51) 

Other summary measures include 

Mode (or most probable value): 

For DRV  value of xi for which pi is largest. 

For CRV  value of x for which f(x) has a maximum. 

Median:   

The value xm for which F(xm) = 0.50 

For CRV we define the 100  percentile as that value of x for which 
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 (A-52) 

Example: 

For 
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 (A-53) 

We find: 

mean value: 

   
1

0

3 75.03 dxxxE
 (A-54) 

variance: 

  
1

0

222 0375.075.03 dxxx
 (A-55) 

standard deviation: 1936.00375.0   (A-56) 
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coefficient of variation:   2582.0cov 
xE


 (A-57) 

mode:  1x  (A-58) 

median:   79.05.03  mmm xxxF  (A-59) 

5th percentile: 37.005.0 05.0
3

05.0  xx  (A-60) 

95th percentile: 98.095.0 95.0
3

95.0  xx  (A-61) 
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Appendix B - Event Frequencies and Hardware Failure 
Models 

B.1 Probability of Failure on Demand: The Binomial Distribution 

We define: 

	 	 	 	 	  (B-1) 

	 	 	 			  (B-2) 

Clearly 

	 	 	 	1 (B-3) 

A distribution that is often used in connection with these probabilities is the binomial 
distribution. It is defined as follows. 

Start with an experiment that can have only two outcomes (see Figure B-1): 

X=

0, probability (1-q)=p

1, probability q  

Figure B-1. Binary States of an Experiment. 

Consider n independent “trials,” i.e., independent repetitions of this experiment with constant p. 
These are Bernoulli trials. 

Define a new discrete random variable (DRV): 

X = number of 1’s (failures) in  n  trials 

The sample space of X is {0,1,2,...,n}. 

Then, the probability of exactly k failures in n trials is 

    knk qq
k

n
kX 








 1Pr

 (B-4) 

This is the pmf of the binomial distribution. The binomial coefficient is defined as 

)!kn(!k

!n

k

n












 (B-5) 

The two commonly used moments are: 

  qnXE   mean number of failures  (B-6) 
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 qnq  12  variance (B-7) 

The pmf satisfies the normalization condition (see Equation (A-43)) 
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  (B-8) 

The probability that n trials will result in at most m failures is (see Equation (A-42)) 

  knk
m

k

qq
k

n
failuresmmostat 











 1)Pr(

0   (B-9) 

As an example, consider the 2-out-of-3 system. Assuming that the components are 
independent and nominally identical, each having a failure probability equal to q, we find the 
failure probability of the system is 

	 	 	 2	 3 1– 3 	– 	2  (B-10)

We can confirm this result by going back to Equation (A-17) which gives the indicator 
variable for the system as a function of the indicator variables of its components, i.e., 

		 		 	– 	2  (B-11)

Since the probability that each Xj , j = A, B, C, is true is q, Equation (B-11) gives 

	 	 	 		 	1 	 	3 	– 	2 	 (B-12) 

which is the same as Equation (B-10). Note, however, that the use of the Binomial distribution, 
Equation (B-10), required the assumption of independent and nominally identical components 
while Equation (B-10) can be used in general. More discussion on the Binomial distribution, and 
the other distributions presented in this appendix, can be found in References B-1 and B-2. 

B.2 Failure While Operating 

We are now dealing with a continuous random variable (CRV), namely, T, the time to failure 
of a component. Then (see Section A.3.2), 

F(t): failure distribution 

R(t)		1‐F(t)	=	reliability	 (B-13)

f(t): failure density 

f(t)dt = Pr(failure occurs between t and t+dt) (B-14) 

It can be shown that the mean time to failure (MTTF) is given by 

 dttRMTTF 



0

 (B-15)
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The hazard function or failure rate is defined as 

   
 tR

tf
th 

 (B-16) 

It follows that  

    .exp1
0









 

t

dsshtF

 (B-17) 

Note the distinction between h(t) and f(t) : 

f(t)dt unconditional probability of failure in (t,t +dt). 

h(t)dt conditional probability of failure in (t,t +dt) given that the component has survived up to t. 

Typical behavior of the failure rate is the “bathtub curve” (called this because of its shape). 

 

Figure B-2. The Bathtub Curve. 

Period I (see Figure B-2) is termed as “infant mortality.” This is when components that have 
design errors are eliminated. Period II is the “useful life.” The failure rate of the component is 
nearly constant (although, mechanical components may have a very short such period). Finally, 
Period III represents “aging (wear-out).” The failure rate is increasing due to mechanisms of 
cumulative damage during aging. 

B.3 The Exponential Distribution 

This distribution is used widely in reliability and risk assessment because it is the only one 
with a constant failure rate. Its probability density function (pdf) is 

  , 	 0	, 	 0 (B-18) 

where   is the failure rate. 

h(t)

t0 t
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I II III
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The CDF is 

t-e-1  F(t)   (B-19) 

and the reliability 

R(t) = 
te 
 (B-20) 

The hazard function is 

h(t) =   = constant 

and the first two moments are 
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TE  (B-21) 

Very often, we use the approximation  

  0.10tforttF   ,   (rare-event approximation) (B-22) 

Example: 

Consider again the 2-out-of-3 system. Assume independent and nominally identical 
exponential components with failure rate  . Then, the unreliability of each component as a 
function of time is 

tetq  1)(  

Thus, using Equation (B-10) we find that the unreliability of the system is   
32 )1(2)1(3)( tt

S eetF     (B-23) 

The MTTF of the system is (Equation (B-15)): 

6

5
)](

0

 


dttF-[1MTTF S  (B-24) 

Recalling that the MTTF for a single exponential component is 

1

, we see that the 2-out-of-3 

system is slightly worse.a 

Let’s assume that 310   per hour and 720t  hours (one month). Therefore, the 
unreliability of the system is 

                                                 
a. Note that this is one of the ways that the performance of the two systems can be compared.  For example, we may 
compare the actual unreliabilities as functions of time.  In particular, we are seeking the time τ for which

)1()1(2)1(3)( 32 ttt
S eeetF    .  Solving this inequality leads to the conclusion that the unreliability of 

the 2-out-of-3 system is smaller than that of a single component for t < (0.693/λ). Thus, for reasonable times, the 2-
out-of-3 system performs better. 
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0.52  Fs )720(  (B-25)

Note that the rare-event approximation in Equation (B-25) is inappropriate here because 
1.0t . 

The system reliability is  

0.480.521(t)Rs   (B-26) 

B.4 The Weibull Distribution 

A flexible distribution that is used widely in reliability is the Weibull distribution. Its CDF is 
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where b >0 and  > 0.   

It can be shown that 
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where  is the gamma function. 

The reliability is 

 btetR )(  for t  0 (B-30) 

and the pdf: 
btb etbtf )(1)()(    (B-31) 

The hazard function is 

1)()(  btbth   (B-32) 

We observe that for b  1, b = 1, and b  1, this distribution can be used as a life distribution 
for the infant mortality, useful life, and wear-out periods, respectively (Figure B-3). 
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Figure B-3. Weibull Hazard Functions for Different Values of b. 

B.5 Event Frequency: The Poisson Distribution 

This distribution, unlike the exponential and Weibull distributions but similar to the binomial 
distribution, deals with DRVs. Events occur over a continuum (time, space) at an average 
constant rate, . The occurrence of an event in a given interval is assumed to be independent 
of that in any other nonoverlapping interval.  

Given an interval (0,t), the DRV of interest is the number of events occurring in that interval. 
The sample space is {0,1,...} with a countably infinite number of sample points. 

The Poisson distribution gives the probability of exactly k events occurring in (0,t) 

!

)(
)Pr(

k

t
ek

k
t   (B-33) 

  λtσ   λt; kE 2   (B-34) 

This distribution is used to describe the occurrence of initiating events (IEs) in risk 
assessment. 

Example 1 

A component fails due to “shocks” that occur, on the average, once every 100 hours.  What is 
the probability of exactly one failure in 100 hours? Of no failure? Of at most two failures? 

Answer 

1100
100

1
t  

Pr(1) = e-1 = 0.37,  probability of exactly one failure. 

Similarly, Pr(0) = e-1 = 0.37, probability of no failure. 
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1  e  (B-35) 

Pr(at most two failures) = Pr (0 or 1 or 2) = 0.37 + 0.37 + 0.184 = 0.92 

B.6 Unavailability 

Unavailability at time t is the probability that the component will be down at t, i.e., 

q(t)  =  Pr[down at t] (B-36) 

Note the difference between unreliability (which refers to a time interval, Equation (B-13)) 
and unavailability (which refers to a specific time). 

We distinguish the following cases: 

 
1.  Unattended components 

q(t)  =  F(t),        the CDF (B-37) 

Example: 

The unreliability of 0.52 that was calculated in the example of Section B.3 is also the 
unavailability of that system, if we assume that it is unattended. 

2.  Continuously monitored and repairable components 

Each component is monitored so that its failure is immediately known. If the mean time for 
repair (or replacement) (MTTR) is , then the steady-state unavailability is 
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11  (B-38) 

since (usually) 10.0 . 

This expression for q is an asymptotic result. 

Example: 

Consider, again, the 2-out-of-3 system (Equation (B-11)). Suppose that 310   per hour and 
that, upon failure, a component is replaced. The mean replacement time is 24  hours.  Then, 

024.0  and 024.0q , and 332 qqX  107.123)1Pr(  is the system unavailability. 
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Appendix C - Bayesian Inference Calculations 
 

To illustrate the technique of using Bayesian inference for PRA parameter estimation, this 
Appendix provides several examples based upon NASA-SP-2009-569 Bayesian Inference for 
NASA Probabilistic Risk and Reliability Analysis. 

C.1 Inference for Common Aleatory Models 

We begin with the most commonly encountered situations in PRA, which meet the following three 
assumptions: 
 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) 

contains a single unknown parameter. 
 The prior information is homogeneousa and is known with certainty. 
 The observed data are homogeneous and are known with certainty. 
 

We treat the three most common aleatory models in this section: 
 Binomial distribution for failures on demand  
 Poisson distribution for initiating events and failures in time 
 Exponential distribution for random durations, such as time to failure or time to recover 
 

Lastly, we close this section with guidance on selecting prior distributions for single-parameter 
problems. 
 

Binomial Distribution for Failures on Demand  

This model is often used when a component must change state in response to a demand.  
For example, a relief valve may need to open to relieve pressure upon receipt of a signal from a 
controller that an over-pressure condition exists.  The following assumptions underlie the 
binomial distribution: 

 There are two possible outcomes of each demand, typically denoted as success and failure. 
 There is a constant probability of outcome (which would be the probability of failure in PRA, 

and the probability of success in reliability engineering) on each demand, denoted herein as p. 
 The outcomes of earlier demands do not influence the outcomes of later demands (i.e., the 

order of failures/successes is irrelevant). 
 
The unknown parameter in this model is p, and the observed data are the number of 

failures, denoted by x, in a specified number of demands, denoted as n.  Both x and n are 
assumed to be known with certainty in this section.  Cases in which x and n are uncertain are 
not discussed here. 

 
Note that the binomial distribution describes the aleatory uncertainty in the number of 

failures, x.  The Bayesian inference describes how the epistemic uncertainty in p changes from 
the prior distribution, which describes the analyst’s state of knowledge about possible values of 

                                                 
a A set of information made up of similar constituents. A homogeneous population is one in which each item is of the 
same type. 
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p before data are collected, to the posterior distribution, which reflects how the data have 
altered the analyst’s state of knowledge. 

 
Binomial Inference with Conjugate Prior—The simplest type of prior distribution from the 

standpoint of the mathematics of Bayesian inference is the so-called conjugate prior, in which 
the prior and posterior distributions are of the same functional type (e.g., beta, gamma), and the 
integration in Bayes’ Theorem is circumvented.  Not every aleatory model will have an 
associated conjugate prior, but the four most commonly used models do.  For the binomial 
distribution, the conjugate prior is a beta distribution. 

 
Two parameters are needed to describe the beta prior distribution completely, and these are 

denoted alphaprior and betaprior.  Conceptually, alphaprior can be thought of as the number of 
failures contained in the prior distribution, and the sum of alphaprior and betaprior is like the 
number of demands over which these failures occurred.  Thus, small values of alphaprior and 
betaprior correspond to less information, and this translates into a broader, more diffuse prior 
distribution. 

 
With the data consisting of x failures in n demands, the conjugate nature of the prior 

distribution and likelihood function allows the posterior distribution to be determined using 
arithmetic.  The posterior distribution is also a beta distribution, with newly adjusted (labeled 
“post”) parameters given by: 

alphapost = alphaprior + x 

betapost = betaprior + n – x. 

 

From the properties of the beta distribution, the prior and posterior mean of p are given by: 

Prior mean = alphaprior/(alphaprior + betaprior) 

Posterior mean = alphapost/(alphapost + betapost) 

Credible intervals (e.g., see Figure C-1) for either the prior or the posterior can be found 
using the BETAINV() function built into modern spreadsheets. 

Credible Interval Bayesian inference produces a probability distribution.  The “credible 
interval” consists of the values at a set (one low, one high) of specified 
percentiles from the resultant distribution.  For example, a 90% credible 
interval ranges from the value of the 5th percentile to the value of the 
95th percentile. 

   
Percentile A percentile, p, is a specific value x such that approximately p% of the 

uncertainty is lower than x and (100-p)% of the uncertainty is larger than 
x.  Common percentiles used in PRA include the lower-bound (5th 
percentile), the median (50th percentile), and upper-bound (95th 
percentile). 

 
In summary, for conjugate distributions (e.g., beta prior when using a binomial aleatory 

model), we can solve the Bayesian inference problem by: 
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1. Knowing that the posterior distribution is the same type, but with “updated” parameters, as 
the prior. 

2. Numerically integrating (via available software tools, e.g., Mathematica, Maple) with the 
applicable prior distribution and aleatory model.  Note that when using a conjugate prior, 
numerical integration is not needed since the posterior can be found directly (using the 
equations above), but numerical integration is a general method for Bayesian inference. 

3. Numerically simulating using Markov Chain Monte Carlo (MCMC) techniques (via software 
tools, e.g., OpenBUGS) with the applicable prior distribution and aleatory model. Note that 
when using a conjugate prior, numerical simulation is not needed since the posterior can be 
found directly, but numerical simulation is a general method for Bayesian inference. 

 
We demonstrated (above) method #1 for the beta/binomial case by noting that the posterior 

is a beta distribution with parameters alphapost = alphaprior + x and betapost = betaprior + n – x.   

 
 

Example 1. Relief valve fails to open (binomial model and beta prior). 
The prior distribution for failure of a relief valve to open on demand is given (from an industry 
database) as a beta distribution with: 

 alphaprior = 1.24 
 betaprior = 189,075. 

Assume two failures to open have been seen in 285 demands.  Find the posterior mean of p, 
the probability that the valve fails to open on demand and a 90% credible interval for p. 

 
Solution 

We begin by noting that the mean of the beta prior distribution is 1.24/(1.24 + 189,075) = 
6.56 × 10-6.  Because alphaprior is relatively small, the prior distribution expresses significant 
epistemic uncertainty about the value of p.  This can be quantified by calculating a 90% credible 
interval for p based on the prior distribution.  We use the BETAINV() function to do this.  The 5th 
percentile of the prior distribution is given by BETAINV(0.05, 1.24, 189075) = 5.4 × 10-7 and the 

Figure C-1. Representation of a Probability Distribution 
(epistemic uncertainty), Where the 90% Credible Interval 

(0.04 to 0.36) is Shown. 
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95th percentile is given by BETAINV(0.95, 1.24, 189075) = 1.8 × 10-5, a spread of almost two 
orders of magnitude. 

 
With two failures to open in 285 demands of the valve, and the assumption that these 

failures are described adequately by a binomial distribution, the posterior distribution is also a 
beta distribution, with parameters alphapost = 1.24 + 2 = 3.24 and betapost = 189,075 + 285 – 2 = 
189,226.  The posterior mean of p is given by 3.24/(3.24 + 189,226) = 1.7 × 10-5.  The 90% 
posterior credible interval is found using the BETAINV() function, just as was done for the prior 
interval above.  The posterior 5th percentile is given by:  

BETAINV(0.05, 3.24, 189226) = 5.0 × 10-6  

and the 95th percentile is given by:  

BETAINV(0.95, 3.24, 189226) = 3.5 × 10-5.  Note how the epistemic uncertainty in the prior 
distribution has been reduced by the observed data.  This is shown graphically in Figure C-2, 
which overlays the prior and posterior distribution for this example. 

 

 
Figure C-2. Comparison of Prior and Posterior Distributions for Example 1. 

Inference for conjugate cases can also be carried out using MCMC approaches (such as 
with OpenBUGS).  Script 1 implements the binomial/beta conjugate analysis.  For problems 
such as this, where there is only one unknown parameter to be estimated, the analyst should 
use 100,000 iterations, discarding the first 1,000 to allow for convergence to the posterior 
distribution.  Monitoring node p will display the desired posterior results. 

 
Within Script 1 (and the remaining scripts), the following notation is used: 

 “~” indicates that the variable to the left of “~” is distributed as the distribution on the right of 
“~.”  Examples of distributions include binomial (dbin), beta (dbeta), gamma (dgamma), 
Poisson (dpois), normal (dnorm), and lognormal (dlnorm). 

 “#” indicates that the text to the right of “#” is a comment. 
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 “<-” indicates that the variable to the left of “<-” is equivalent to the expression on the right of 
“<-.” 

 

Script 1.  WinBUGS script for Bayesian inference with binomial likelihood and beta conjugate 
prior. 

 
A directed acyclic graph (DAG) is a common way of displaying a Bayesian inference 

problem and is the underlying model used by WinBUGS (in script form).  In a DAG, observed 
aleatory variables (such as x for the binomial inference problem above) are displayed as ovals 
that contain no children nodes (i.e., the “lowest” level in the diagram).  Uncertain variables that 
influence x are shown at a higher level in the DAG, and are connected by arrows to the 
variables they influence (i.e., they are parents of the node they influence).   Constant 
parameters (such as n above) are also shown in the DAG as diamonds.  We will display the 
DAG associated with each WinBUGS script in this document; however, it is not necessary to 
develop the DAG, as WinBUGS uses the script representation for its analysis. 

 
For relatively simple problems, a DAG can be an aid in understanding the problem, 

particularly for an analyst who is new to WinBUGS.  However, as the complexity of the problem 
increases, most analysts will find that the script representation of the problem is clearer.  We will 
use the following conventions for DAGs in this document.  Note that all variables, which are 
referred to as nodes by WinBUGS, can be scalars, vectors, matrices, or arrays. 

 Ovals represent stochastic variables whose uncertainty (either aleatory or epistemic) is 
represented by a probability distribution. 

 Diamonds represent constant parameters (no uncertainty). 
 Rectangles represent calculated parameters.  As such, their probability distribution is not 

specified by the analyst but is calculated by WinBUGS from an equation within the script. 
 Dashed lines are sometimes used for clarification when certain parameters are entered or 

calculated in the script as part of other nodes.   
o In cases where the node is used as inference, the arrow will be connected to the dashed 

symbol.   
o In cases where the parameter within the node is used as inference, the arrow will be 

connected to the symbol within the dashed node. 
 

Figure C-3 shows the DAG corresponding to the WinBUGS Script 1.  This DAG illustrates 
that x is the observed variable, because it is a node with no children node.  This node (x) is an 
uncertain variable, indicated by its oval shape.  Its value is influenced by p (p is a parent node 
to x), which is the parameter of interest in this problem; we observe x (with n specified), and use 
this information to infer possible values for p.  The dashed region at the top of the DAG, labeled 
“Beta Prior,” clarifies the type of prior distribution used for p, and indicates that the parameters 
of this distribution (alpha and beta) are entered by the analyst. 

model {    # A Model is defined between { } symbols 
x ~ dbin(p, n)    # Binomial dist. for number of failures in n demands 
p ~ dbeta(alpha.prior, beta.prior)  # Conjugate beta prior distribution for p 
} 
 
data 
list(x=2, n =285)     # Data for Example 1 
list(alpha.prior=1.24, beta.prior=189075)  # Prior parameters for Example 1 
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Binomial Inference with Noninformative Prior—As the name suggests, a 

noninformative prior distribution contains little information about the parameter of interest, 
which in this case is p.  Such priors originated in a (continuing) quest to find a mathematical 
representation of complete uncertainty.  This has led some to conclude that they should be used 
when one knows nothing about the parameter being estimated.  As discussed in earlier 
sections, this is almost never the case in practice, and use of a noninformative prior in such a 
case can lead to excessively conservative results.  Therefore, there are two situations in which 
a noninformative prior may be useful: 

1. The first is where the observed data are abundant enough to dominate the information 
contained in any reasonable prior, so it does not make sense to expend resources 
developing an informative prior distribution. 

2. The second is where the analyst wishes to use a prior that has little influence on the posterior, 
perhaps as a point of reference. 

 
The most common noninformative prior for single-parameter inference in PRA is the 

Jeffreys prior. 

 
The Jeffreys functional form is dependent upon the likelihood function, so there is not a 

single “Jeffreys prior” for all cases.  Instead, there is a different Jeffreys prior for each likelihood 
function.  For the case here, where the likelihood function is the binomial distribution, the 
Jeffreys prior is a beta distribution with both parameters equal to 0.5.  Thus, inference with the 
Jeffreys prior is a special case of inference with a beta conjugate prior.  Using the Jeffreys prior 
with the binomial model leads to a posterior mean of (x + 0.5) / (n + 1). 

 
Note that if x and n are small (sparse data), then adding “half a failure” to x may give a result 

that is felt to be too conservative.  In such cases, a possible alternative to the Jeffreys prior is a 
beta distribution with both parameters equal to zero (the “zero-zero” beta distribution).  This is 

p

x

Beta Prior

n

alpha beta

Figure C-3. DAG representing Script 1.
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not a proper probability distribution, but as long as x and n are greater than zero, the posterior 
distribution will be proper and the posterior mean will be x / n. 

 
Conceptually, adjusting the beta prior so that alphaprior and betaprior both have small values 

(in the limit, zero) tends to reduce the impact of the prior and allows the data to dominate the 
results.  Note, though, that when alphaprior and betaprior are equal, the mean of this beta prior is 
0.5.  The prior should reflect what information, if any, is known independent of the data. 

 
Binomial Inference with Nonconjugate Prior—A nonconjugate prior is one in which the prior 

and posterior distribution are not of the same functional form.  In such cases, numerical 
integration is required for the denominator of Bayes’ Theorem.  In the past, this has been a 
limitation of Bayesian inference, and is one reason for the popularity of conjugate priors.  
However, cases often arise in which a nonconjugate prior is desirable, despite the increased 
mathematical difficulty.  As an example, generic databases often express epistemic uncertainty 
in terms of a lognormal distribution, which is not conjugate with the binomial likelihood function.  
In this section, we describe how to carry out inference with a lognormal prior, which is a 
commonly-encountered nonconjugate prior, and with a logistic-normal prior, which is similar to a 
lognormal prior but is more appropriate when the values of p are expected to be closer to one. 

 
Although spreadsheets can be used to carry out the required numerical integration for the 

case of a single unknown parameter, another way to deal with nonconjugate priors is with 
WinBUGS.  We illustrate the case of a lognormal prior with the following example. 

 
Example 2. Relief valve fails to open (binomial model and lognormal prior). 

Continuing with the relief valve from Example 1, assume that instead of the conjugate prior in that 
example, we are using a generic database that provides a lognormal prior for p. 

 
Assume the generic database lists the mean failure probability as 10-6 with an error factor of 10.  

As in Example 1, assume that our observed data are two failures in 285 demands.  The WinBUGS 
script shown below is used to analyze this example. 

 
 
 

Script 2.  WinBUGS script for Bayesian inference with binomial likelihood function and lognormal 
prior. 

 
 
 

model { 
x ~ dbin(p, n)     # Binomial model for number of failures 
p ~ dlnorm(mu, tau)    # Lognormal prior distribution for p 
tau <- 1/pow(log(prior.EF)/1.645, 2) # Calculate tau from lognormal error factor 
# Calculate mu from lognormal prior mean and error factor 
mu <- log(prior.mean) - pow(log(prior.EF) / 1.645, 2) / 2 
} 
data 
list(x=2, n=285, prior.mean=1.E-6, prior.EF=10) 
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Solution 
Running this script for 100,000 iterations, discarding the first 1,000 iterations to allow for 
convergence to the posterior distribution, gives a posterior mean for p of 4.7 × 10-5 and a 90% 
credible interval of (1.9 × 10-6, 1.8 × 10-4).  Note that when the prior distribution is not conjugate, 
the posterior distribution cannot be written down in closed form.  In such cases, an analyst may 
replace the numerically defined posterior with a distribution of a particular functional form (e.g., 
lognormal), or may use the empirical results of the WinBUGS analysis to construct a 
histogram. 
 

Generic databases may not always describe the lognormal distribution in terms of a mean 
value and an error factor; quite often the median (50th percentile) is specified rather than the 
mean value.  This may also be the case when eliciting information from experts as an expert 
may be more comfortable providing a median value.  In this case, the analysis changes only 
slightly.  In Script 2, the line that calculates mu from the lognormal prior mean and error factor is 
replaced by the following line: 

mu <- log(prior.median) 

and prior.median is loaded in the data statement instead of prior.mean. 

 
Cases may arise where the value of p could be approaching unity.  In such cases, using a 

lognormal prior is problematic because it allows for values of p greater than unity, which is not 
meaningful since p is a probability (either failure probability or reliability, depending on the 
context).  In such cases, a logistic-normal prior is a “lognormal-like” distribution, but one that 
constrains the values of p to lie between zero and one.  The WinBUGS Script 3 uses the 
lognormal mean and error factor (e.g., from a generic database), but “constrains” the distribution 
to lie between zero and one by replacing the lognormal distribution with a logistic-normal 
distribution. 

 

Script 3.  WinBUGS script for Bayesian inference with binomial likelihood function and logistic-
normal prior. 

 
Poisson Distribution for Initiating Events or Failures in Time  

The Poisson model is often used for failures of normally operating components, failures of 
standby components that occur at some point in time prior to a demand for the component to 

model { 
x ~ dbin(p, n)     # Binomial distribution for number of failures 
p <- exp(p.constr)/(1 + exp(p.constr)) # Logistic-normal prior distribution for p 
p.constr ~ dnorm(mu, tau) 
tau <- 1/pow(log(prior.EF)/1.645, 2) # Calculate tau from lognormal error factor 
 
# Calculate mu from lognormal prior mean and error factor 
mu <- log(prior.mean) - pow(log(prior.EF)/1.645, 2)/2 
} 
 
data 
list(x=2,n=256, prior.mean=1.E-6, prior.EF=10) 
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change state, and for initiating events.  The following assumptions underlie the Poisson 
distribution: 

 
 The probability of an event (e.g., a failure) in a small time interval is approximately proportional 

to the length of the interval.  The constant of proportionality is denoted by lambda. 
 The probability of simultaneous events in a short interval of time is approximately zero. 
 The occurrence of an event in one time interval does not affect the probability of occurrence in 

another, non-overlapping time interval. 
 
The unknown parameter in this model is lambda, and the observed data are the number of 

events, denoted x, in a specified time period, denoted t.  Both x and t are assumed to be known 
with certainty in this section.  (Cases in which x and t also have epistemic uncertainty are 
treated in Reference [C-1].)  Note that the Poisson distribution describes the aleatory 
uncertainty in the number of failures, x.  The Bayesian inference describes how the epistemic 
uncertainty in lambda changes from the prior distribution, which describes the analyst’s state of 
knowledge about possible values of lambda before empirical data are collected, to the posterior 
distribution, which reflects how the observed data have altered the analyst’s prior state of 
knowledge. 

 
Poisson Inference with Conjugate Prior—As was the case with the binomial distribution, a 

conjugate prior is sometimes chosen for purposes of mathematical convenience.  For the 
Poisson distribution, the conjugate prior is a gamma distribution.  Two parameters are needed 
to describe the gamma prior distribution completely, and these are denoted alphaprior and 
betaprior.  Conceptually, alphaprior can be thought of as the number of events contained in the 
prior distribution, and betaprior is like the period of time over which these events occurred.  Thus, 
small values of alphaprior and betaprior correspond to little information, and this translates into a 
broader, more diffuse prior distribution for lambda. 

With the observed data consisting of x failures in time t, the conjugate nature of the prior 
distribution and likelihood function allows the posterior distribution to be written down 
immediately using simple arithmetic:  the posterior distribution is also a gamma distribution, with 
new (adjusted) parameters given by: 

alphapost = alphaprior + x 

betapost = betaprior + t. 

 

From the properties of the gamma distribution, the prior and posterior mean of lambda are 
given by alphaprior/betaprior and alphapost/betapost, respectively.  Credible intervals for either 
distribution can be found using the GAMMAINV() function built into modern spreadsheets. 

 
 

Example 3.  Circulating pump fails to operate (Poisson model and gamma prior). 
The prior distribution for the circulating pump is given as a gamma distribution with 
parameters alphaprior = 1.6 and betaprior = 365,000 hours.  No failures are observed in 200 
days of operation. 
 
Find the posterior mean and 90% interval for the circulating pump failure rate.  Use the 
posterior mean to find the probability that the pump will operate successfully for a mission 
time of 1,000 hours. 
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Solution 
Because the gamma prior distribution is conjugate with the Poisson likelihood function, the posterior 
distribution will also be a gamma distribution, with parameters alphapost = 1.6 + 0 = 1.6 and betapost = 
365,000 hours + (200 days)(24 hours/day) = 369,800 hours.  The posterior mean is the ratio of 
alphapost to betapost, which is 4.3 × 10-6/hour. 
 
The 90% credible interval is found using the gamma inverse (GAMMAINV) function.  Note that most 
spreadsheet software uses the reciprocal of beta as the second parameter.  This can be dealt with 
either by entering 1/beta as the argument, or entering one as the argument, and dividing the overall 
result of the function call by beta.  Thus, the 5th percentile is given by either GAMMAINV(0.05, 1.6, 
1/369800) or [GAMMAINV(0.05, 1.6, 1)]/369800.  Either way, the answer is 5.6 × 10-7/hour.  Similarly, 
the 95th percentile is given by either GAMMAINV(0.95, 1.6, 1/369800) or [GAMMAINV(0.95, 1.6, 
1)]/369800.  The answer either way is 1.1 × 10-5/hour. 
 
Using the posterior mean failure rate of 4.3 × 10-6/hour, the probability that the pump operates 
successfully for 1,000 hours is just exp[-(4.33 × 10-6/hour)(1000 hours)] = 0.996. 
 
The plot below shows how little the prior distribution has been affected by the relatively sparse data in 
this example. 

 
Figure C-4. Comparison of Prior and Posterior Distributions for Example 3. 

Bayesian inference can also be carried out using WinBUGS.  The script below implements 
the analysis.  Monitoring node lambda will display the desired posterior results. 
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Script 4.  WinBUGS script for Bayesian inference with Poisson likelihood and gamma conjugate 
prior. 

 
 

Poisson Inference with Noninformative Prior—As was the case for the binomial 
distribution, there are many routes to a noninformative prior for lambda, with the most commonly 
used one in PRA being the Jeffreys prior.  In the case of the Poisson, the Jeffreys 
noninformative prior is like a gamma distribution with alphaprior = 0.5 and betaprior = 0.  This is not 
a proper distribution, as the integral over all values of lambda is not finite.  However, it yields a 
proper posterior distribution, with parameters alphapost = x + 0.5 and betapost = t.  Thus, the 
posterior mean of lambda is given by (x + 0.5)/t.   

 
Note that if x and t are small (sparse data), then adding “half an event” to x may give a result 

that is felt to be too conservative.  In such cases, a possible alternative to the Jeffreys prior is a 
gamma distribution with both parameters equal to zero.  This is not a proper probability 
distribution, but as long as x and t are greater than zero, the posterior distribution will be proper 
and the posterior mean will take on the value (x / t). 

 
Poisson Inference with Nonconjugate Prior—As was the case for the parameter p in the 

binomial distribution, a lognormal distribution is a commonly encountered nonconjugate prior for 
lambda in the Poisson distribution.  The analysis can be carried out with WinBUGS, exactly as 
was done for p in the binomial distribution.  Here, however, there is no concern about values of 
lambda greater than one, because lambda is a rate instead of a probability, and can take on any 
positive value, in principle. 

 
Example 4.  Circulating pump fails to operate (Poisson model and lognormal prior). 

Assume that the prior distribution for the failure rate of the circulating pump is lognormal 
with a median of 5 × 10-7/hour and an error factor of 14.  Again, assume the observed 
data are no failures in 200 days.  The WinBUGS script below can be used to find the 
posterior mean and 90% interval for lambda. 

model { 
x ~ dpois(mean.poisson)   # Poisson likelihood function 
mean.poisson <- lambda*time.hr # Parameterize in terms of failure rate, lambda 
time.hr <- time*24    # Convert days to hours 
lambda ~ dgamma(1.6, 365000)   # Gamma prior for lambda 
} 
data 
list(x=0, time=200) 
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Script 5.  WinBUGS script for Bayesian inference with Poisson likelihood function and lognormal 

prior. 
 

 
Running this script for 100,000 iterations, discarding the first 1,000 iterations to allow for 

convergence, gives a posterior mean for lambda of 1.6 × 10-6/hour and a 90% credible interval 
of (3.5 × 10-8/hour, 6.5 × 10-6/hour). 

  
Exponential Distribution for Random Durations  

There are cases where the times at which random events occur are observed, instead of the 
number of such events in a specified period of time.  Examples are times to failures of 
components, times to suppress a fire, etc.  If the assumptions for the Poisson distribution are 
met, then the times between events are exponentially distributed with unknown parameter 
lambda; this is the same lambda that appears as the unknown parameter in the Poisson 
distribution. 

 
The following assumptions underlie the Exponential distribution: 

 The probability of an event (e.g., a failure) in a small time interval is approximately proportional 
to the length of the interval.  The constant of proportionality is denoted by lambda. 

 The probability of simultaneous events in a short interval of time is approximately zero. 
 The occurrence of an event in one time interval does not affect the probability of occurrence in 

another, non-overlapping time interval. 
 The random event that is observed is the time to an event. 

 
Because the observed data consist of n number of failure times (with n specified), the form 

of the likelihood function changes from a Poisson distribution to a product of n exponential 
distributions.  However, much of the analysis is very similar to the analysis done for the Poisson 
distribution.  In this section we treat only the case in which all failure times are observed and 
known with certainty.   

Exponential Inference with Conjugate Prior— As was the case for the Poisson 
distribution, the conjugate prior for the exponential likelihood is again a gamma distribution, with 
parameters denoted alphaprior and betaprior.  Once again, betaprior has units of time, and these 
units must match the units of the observed times that constitute the data.  The posterior 
distribution will again be a gamma distribution with parameters alphapost = alphaprior + n (the 

model { 
x ~ dpois(mean.poisson)   # Poisson distribution for number of events 
mean.poisson <- lambda*time.hr # Poisson parameter 
time.hr <- time*24    # Convert days to hours 
lambda ~ dlnorm(mu, tau)   # Lognormal prior distribution for lambda 
tau <- 1/pow( log(prior.EF)/1.645, 2)  # Calculate tau from lognormal error factor 
mu <- log(prior.median)  # Calculate mu from lognormal median  
} 
 
data 
list(x=0, time=200, prior.median=5.E-7, prior.EF=14) 
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number of observed times), and betapost = betaprior + ttotal, where ttotal is the sum of the observed 
times.  From the properties of the gamma distribution, the prior and posterior mean of lambda 
are given by alphaprior / betaprior and alphapost / betapost, respectively.  Credible intervals for either 
distribution can be found using the GAMMAINV() function built into modern spreadsheets. 

 
Example 5.  Circulating pump fails to operate (exponential model) and gamma prior. 

The following seven times to failure (in hours) have been recorded for ATCS circulating water 
pumps:  55707, 255092, 56776, 111646, 11358772, 875209, and 68978.  Using the gamma prior 
for lambda from Example 3 find the posterior mean and 90% credible interval for the circulating 
water pump failure rate lambda. 

 
Solution                     

The prior distribution was given in Example 3 as gamma with alphaprior =  1.6 and betaprior = 
365,000 hours.  In this example, we have n = 7 and ttotal = 12782181 hours.  Thus, the posterior 
distribution is gamma with parameters alphapost = 1.6 + 7 = 8.6 and betapost = 365000 hours + 
12782181 hours = 13147181 hours.  The posterior mean is given by alphapost/betapost = 6.5 × 10-

7/hour.  The 5th percentile is given by [GAMMAINV(0.05, 8.6, 1)]/13147181 hours = 3.4 × 10-

7/hour.  The 95th percentile is given by [GAMMAINV(0.95, 8.6, 1)]/13147181 hours = 1.1 × 10-

6/hour. 

WinBUGS can also be used for this example.  The WinBUGS Script 6 shows how to do this. 

 

Script 6.  WinBUGS script for Bayesian inference with exponential likelihood and gamma 
conjugate prior. 

 
 
 

Exponential Inference with Noninformative Prior—The Jeffreys noninformative prior for 
the exponential likelihood is like a gamma distribution with both parameters equal to zero.  This 
might seem odd, given the relationship between the exponential and Poisson distributions 
mentioned above.  In fact, it is odd that the Jeffreys prior changes, depending on whether one 
counts failures or observes actual failure times.  However, we will not delve into the reasons for 
this difference and its philosophical implications here.  Again, the Jeffreys prior is an improper 
distribution, but it always results in a proper posterior distribution.  The parameters of the 
posterior distribution will be n and ttot, resulting in a posterior mean of n/ttot.  This mean is 
numerically equal to the frequentist maximum likelihood estimator (MLE), and credible intervals 
will be numerically equal to confidence intervals from a frequentist analysis of the data.  

model { 
 for(i in 1:n) { 
  time[i] ~ dexp(lambda) # Exponential likelihood function for n failure times 
 } 
lambda ~ dgamma(alpha, beta)  # Gamma prior for lambda 
} 
 
data     # Note the nested () for the time array 
list(time=c(55707, 255092, 56776, 111646, 11358772, 875209, 68978), n=7, alpha=1.6, 
beta=365000) 
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Exponential Inference with Nonconjugate Prior— Again, the lognormal distribution is a 

commonly encountered nonconjugate prior for a failure rate.  The only thing that changes from 
the earlier discussion in is the likelihood function, which is now a product of exponential 
distributions.  We again use WinBUGS to carry out the analysis. 

 
Example 6.  Circulating pump fails to operate (exponential model and lognormal prior). 

Using the prior distribution from Example 4 and the failure times from Example 5, find the 
posterior mean and 90% interval for the failure rate lambda. 

 
Solution 
The WinBUGS script for this example is shown below. 
 

 
 
 

Using 100,000 iterations, with 1,000 burn-in iterations discarded to allow for convergence to the 
posterior distribution, the posterior mean is found to be 5.5 × 10-7/hour, with a 90% credible interval of 
(2.6 × 10-7/hour, 9.2 × 10-7/hour). 
 
 

C.2 Reference 

 
C-1 Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, NASA/SP-2009-
569, June 2009.

model { 
 for(i in 1:n) { 
  time[i] ~ dexp(lambda) # Exponential likelihood function for n failure 
times 
 } 
lambda ~ dlnorm(mu, tau)   # Lognormal prior for lambda 
tau <- 1/pow( log(prior.EF)/1.645, 2)  # Calculate tau from lognormal error factor 
mu <- log(prior.median)   # Calculate mu from lognormal mean  
} 
 
Data     # Note the nested () for the time array 
list(time=c(55707, 255092, 56776, 111646, 11358772, 875209, 68978), n=7, 
prior.median=5.E-7, prior.EF=14) 
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Appendix D - Logic-Based PRA Modeling Examples 
 

Two examples of the Boolean logic-based (i.e., using cut sets generated from fault and 
event trees) PRA modeling process are presented in Sections D.1 and D.2.  The first example 
pertains to a Lunar Base, while the second example is a science mission to another planet. 

D.1 PRA Example 1 Problem Description 

The first example is intended to demonstrate the classical PRA technique of using small ETs 
to depict perturbations to the system and failure scenarios. Since much system information is 
modeled in the FTs, this technique involves a small ET/large fault approach. 

The methodology is most suited for steady state type situations, such as a Lunar Base, 
orbiting space station, or Earth-based facility. The unique characteristic of such applications is 
that maintenance activities ensure that system components eventually achieve a steady-state 
availability. In the three situations cited, humans are present and can perform necessary 
maintenance. 

Example 1 addresses: 

1. PRA objectives and scope; 

2. mission success criteria; 

3. end states; 

4. system familiarization; 

5. initiating event (IE) development; 

6. MLDs; 

7. other IE development methods; 

8. IE screening and grouping; 

9. risk scenario development; 

10. ESD analysis; 

11. system success criteria; 

12. ET analysis; 

13. FT analysis; 

14. data analysis; along with 

15. model integration and quantification. 

These are the subjects of Sections D.1.1 through D.1.15, respectively. 

D.1.1 PRA Objectives and Scope 

The mission objectives for the Lunar Base are not the same as the PRA objectives.  Mission 
objectives are: 

 Operate a Lunar Base in the Sea of Tranquility with a crew of six for 20 years; and 

 Perform science studies. 
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Success criteria for these objectives are the topic of Section D.1.2. 

There are two PRA objectives: 

1. Support decisions regarding crew health and safety; plus 

2. Identify and prioritize the risks to the Lunar Base. 

Crew safety is paramount, although accomplishing science objectives is important to justify 
the program. It is these two objectives that the PRA will examine. 

The extent of the examination is constrained by the programmatic scope imposed on the 
PRA. For Example 1, the emphasis is on hardware failures, so this is the risk assessment 
scope. Software failures are not considered. Regarding phenomenological hazards, only 
energetic internal events (e.g., storage tank or battery explosions and associated missile 
generation) are assessed. 

D.1.2 Mission Success Criteria 

Four success criteria are needed to satisfy the mission objectives cited in Section D.1.1. To 
operate the Lunar Base it is necessary to: 

 Maintain a habitable environment for crew working and living on the lunar surface; as well as 

 Provide a rescue vehicle (for returning to Earth) in case of catastrophic failure. 

Relative to performing science studies, the corresponding mission success criteria are: 

 Maintain the science instruments; and 

 Transmit data back to Earth. 

The baseline science mission time is 20 years. 

D.1.3 End States 

Section D.1.1 specifies two PRA objectives. With respect to ensuring crew safety, loss of 
crew (LOC) is a separate end state.  Any scenario that results in crew injury or demise 
engenders the end state, LOC. 

The two other end states are: 

1. Loss of mission (LOM); and  

2. Mission success (OK). 

End state, LOM, pertains to the second objective (the science mission). Failure to achieve 
the baseline mission objectives results if the science program is terminated before its 20-year 
lifetime expires (e.g., due to an inability to repair or replace vital instrumentation, or loss of 
capability to transmit data to Earth). If the 20-year mission is accomplished without crew injury, 
the OK end state ensues. 

D.1.4 System Familiarization 

This step in the PRA process is the one most often taken for granted. It is extremely difficult 
to analyze a system without understanding its: 

 Composition; 

 Operation; 

 Design objectives; and 
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 Failure modes. 

This information cannot be obtained solely from a functional diagram or design report. It 
requires considerable effort to truly understand a system and to be able to model it adequately 
for the PRA. Often, extensive interaction with mission specialists and system designers is 
necessary to understand a system in detail sufficient to develop a comprehensive PRA model. 

The Lunar Base in Example 1 is intended to illustrate the application of PRA concepts 
without introducing pedagogically unnecessary complexity.  Hence, the Lunar Base being 
considered has a minimalist design and mission.  It consists of seven systems needed for: 

1. Environmental control and life support (ECLS); 

2. Power generation, storage, and distribution (PW); 

3. Command and control (CC); 

4. Communication (CM); 

5. Fire suppression (FS); 

6. Emergency escape (EE); plus 

7. Science (SC - e.g., data collection and instrumentation). 

The Lunar Base operates continuously with a crew of six. Two people specialize in 
maintaining the base, leaving four to perform science activities. Normally, a ship from Earth re-
supplies the base every 60 days, although base stores are sufficient for 120 days without 
replenishment. Periodically, a re-supply ship brings a vehicle that will return lunar samples as 
cargo. The rescue vehicle has a 5-year storage life. As stated in Section D.1.2, the baseline 
mission duration is 20 years. 

Table D-1 is the Lunar Base dependency matrix. Beginning with the ECLS, it is supported 
by: 

 PW (which is required for the system to operate); 

 CC (which furnishes overall system control); and 

 FS (since the system is vulnerable to fire). 

Note that:  

 ECLS; 

 PW; and  

 CC;  

afford vital support to all base systems. 

The CM System supports only: 

 CC; and  

 SC. 

Support to CC is essential so that the CC System can interface with other base systems and 
the crew. Relative to SC, the principal dependency on CM is among those crew members 
performing the science experiments and sample collections. 

Only the ECLS depends upon the FS System. Although fire in other areas of the base is a 
hazard, the designers limited automatic fire suppression to just the ECLS. 
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Table D-1. Lunar Base Dependency Matrix. 
This  

Supported 
by   ECLS PW CC CM FS EE SC 
ECLS X X X X X X X 

PW X  X X X X X 

CC X X X X X X X 

CM   X X   X 

FS X    X   

EE      X X 

SC       X 

 

Emergency escape is for the crew, so it is listed as a support for SC in Table D-1. Of course, 
all crew members would be evacuated and returned to Earth in an emergency.  No systems are 
supported by SC. 

D.1.5 Initiating Events Development 

Initiating Events (IEs) are the start of a sequence. They are the perturbation or failure that 
begins the scenario. An important aspect of IE development is that a broad spectrum of 
candidate events must be considered. This spectrum should extend from likely perturbations to 
extremely unlikely failures, and the impact of candidate IEs on the system should range from the 
relatively benign to the catastrophic. The breadth of considerations is essential for ensuring 
completeness of the IE development process and differs from other types of analyses such as 
Failure Modes and Effects Criticality Analysis (FMECAs) or Hazard and Operability studies 
(HAZOPs). 

Once a broad list of candidate IEs is developed, the derivation of PRA IEs proceeds through 
an iterative process involving screening and grouping. The screening process eliminates 
candidate IEs from further consideration if: 

 Their likelihood of occurrence is low (e.g., a candidate IE could be eliminated if its probability 
of occurrence is negligible relative to other IEs with similar impacts on the system); 

 Their impact on the system is too benign to perturb the system into another state; or 

 They exceed the scope of the risk assessment. 

Grouping (also referred to as binning) combines different IEs into a single, representative IE 
group if they induce a similar response from the system. When different IEs are combined into a 
representative group, the frequency or probability of occurrence for the representative group is 
the sum of the individual frequencies or probabilities of each group member. Since not every 
member of the group will cause the exact same response from the system, typically the impact 
of the representative group is modeled as the most severe perturbation caused by individual 
group members. This technique is conservative. 

The primary challenge in developing IEs for an aerospace application is preparing the 
preliminary list of candidate IEs. For the nuclear industry, standardized lists of IEs have evolved 
for each plant type. Hence, these can serve as the preliminary list of candidates.  However, 
such lists are unavailable for aerospace applications and, due to the diversity among missions, 
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it is conceptually difficult to envision a standardized list analogous to those available for nuclear 
power applications. 

It is important to remember that the PRA process is iterative.  The list of IEs may not be 
initially complete, but as the analysis develops it should become complete, exhaustive, and lead 
to a mutually exclusive set of scenarios. 

Due to the importance of considering a broad spectrum of candidate IEs, significant 
experiential research should be performed.  This could include: 

 Consulting with individuals or groups who have experience with similar systems or missions; 

 Researching background experience; 

 Brain-storming; 

 Eliciting expert opinion; and 

 Performing system simulations. 

The vital requisite is to develop a comprehensive list of candidates before the IE screening 
and grouping process begins. Table D-2 is a perfunctory list of candidate IEs that resulted from 
a brain-storming session for the Lunar Base example. 

Table D-2. Perfunctory List of Candidate IEs. 
IE Number Description 

1 Primary O2 generation failure 

2 Primary CO2 removal failure 

3 Waste management subsystem failure 

4 Power generation failure 

5 False alarms (e.g., fire or ECLS failure) 

6 Failure to maintain a pressurized 
environment 

 

D.1.6 Master Logic Diagram for IE Development; Pinch Points 

Master logic diagrams (MLDs) (see also section 3.3.1) are graphical representations of 
system perturbations. They are useful IE development techniques because they facilitate 
organizing thoughts and ideas into a comprehensive list of candidate IEs. An MLD resembles an 
FT, but it lacks explicit logic gates. An MLD also differs from an FT in that the initiators defined 
in the MLD are not necessarily failures or basic events. 

Specifically, MLDs are a hierarchical depiction of ways in which system perturbations occur. 
Typically, these perturbations involve failure to contain (which is especially important for fluid 
systems), failure to control, and failure to cool or otherwise maintain temperatures within 
acceptable ranges. An MLD shows the relationship of lower levels of assembly to higher levels 
of assembly and system function. The top event in each MLD is an end state (e.g., one of the 
end states established in Section D.1.3). Events that are necessary but not sufficient to cause 
the top event are enumerated in even more detail as the lower levels of the MLD are developed.  
For complex missions it may be necessary to develop phase-specific MLDs since threats and 
initiators may change as the mission progresses. 
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A key concept in MLD development is the pinch point. Obviously, without some termination 
criterion an MLD could be developed endlessly. The pinch point is the termination criterion 
applied to each MLD branch. A pinch point occurs when every lower level of the branch has the 
same consequence (relative to system response) as the higher levels. Under such conditions, 
more detailed MLD development will not contribute further insights into IEs capable of causing 
the end state being investigated.  Figure D-1 illustrates the conceptual characteristics of an 
MLD. 

End State

FunctionLevel 2

Level 1

SystemLevel 3

ComponentLevel 4

Failure
Mode

Level 5

Phase

 

Figure D-1. Conceptual Characteristics of an MLD. 

Examination of Figure D-1 discloses that the top event in the MLD is an end state.  
Typically, the end states of interest are those associated with mission failure (e.g., LOC, or 
LOM, as discussed in Section D.1.3). At the next level the MLD considers those functions 
necessary to prevent occurrence of the top event. Relative to the Lunar Base example, end 
state, LOM, will occur if the lunar base is irreparably damaged. Crew injury would be excluded 
from an MLD for LOM because this function relates exclusively to end state, LOC (Section 
D.1.3). 

Table D-1 lists the base systems, as they would appear in subsequent levels of a Lunar 
Base MLD. Below them are the components, while failure modes are addressed in the lowest 
MLD level. Of course, human errors, phenomenological events, and software errors must be 
included in the MLD as appropriate. Applying this MLD development technique to the Lunar 
Base example, Figure D-2 results. 
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Figure D-2. Lunar Base MLD Extract. 

Figure D-2 is only an extract from a larger MLD. The extract suggests that MLDs can be 
relatively large. This is a valid inference, especially for MLDs during their initial stages of 
construction. 

The only component developed completely in Figure D-2 is the power distribution wiring. 
Five failure modes are identified: 

1. Arc tracking; 

2. Short; 

3. Overload; 

4. Insulation failure; and 

5. Others. 

The last failure mode is generic and serves as a placeholder in the MLD. Ultimately, it will be 
necessary to quantify the frequency of wiring failures by examining applicable operating data. If 
the first four failure modes identified in the MLD dominate wiring faults, the contributions from 
other failure modes can be ignored as insignificant.  However, if the data indicate that there are 
other significant contributors, they should be included and their impact on the system assessed 
as part of the iterative process used in MLD development. 

An important admonition in IE identification and grouping is that the final set of IEs should be 
mutually exclusive. Although theoretically IEs with common contributors are amenable to 
Boolean reduction, many PRA computer codes lack this capability. By ensuring that the IEs are 
all mutually exclusive, logical inconsistencies internal to the software are avoided. 
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D.1.7 Other IE Development Methods 

The use of FMECAs to support reliability assessments is a fairly standard practice in 
aerospace and other industries. Although there are a large number of techniques besides MLDs 
that can be used to develop IEs, FMECAs are emphasized because of their broad utilization. To 
illustrate IE development using a FMECA, consider the Power Subsystem batteries. Typical 
battery failure modes include: 

short; 

low voltage; 

rupture or explosion; 

no power; and 

electrolyte leakage. 

Table D-3 is an excerpt from a battery FMECA. Relative to candidate IEs, a short is a 
potentially important failure mode because it can cause loss of one entire side of the Power 
Subsystem.  If retained as an IE, it should not appear in the PW FT to avoid duplicating its 
contribution to risk. However, if a battery short is not included with the final IE groupings, then it 
should be incorporated into the PW FT as a basic event. 

An alternative to considering a battery short as an IE or FT basic event is to cite the failure 
cause instead of the failure mode. This has no impact on the model because, as Table D-3 
demonstrates, the effects of a battery short and its cause (overcharging, temperature, or wear) 
are identical. 

Rupture is another candidate IE. Although less likely to occur than a short, it is more severe 
because it is energetic and corrosive enough to cause collateral damage. This illustrates the 
need to consider both likelihood and consequences when assessing candidate IEs. 

Table D-3. Battery FMECA Excerpt. 

Item Phase 
Failure 
Mode 

Failure 
Cause 

Failure Effect 

Frequency Severity 
Compensating 

Provisions LRU System Base 

28 V 
DC 
Battery 
Pack 

All Short Overcharging, 
temperature, 
wear 

Loss of 1 
battery 
side, 
possibly 
both 

Possible 
loss of 
second 
side if 
protection 
fails 

Possible 
disruption of 
service 

D 1 Short protection 
through diodes 
and breakers, 
system 
redundancy 

  Low 
voltage 

Loss of cell, 
under 
charging 

Under 
voltage 
condition 
of 1 side 

Possible 
low power 
to base 

Possible 
loss of 
ECLS, CC, 
and CM 

D 1 Low voltage 
condition 
should be 
detected, 
system 
redundancy 

  Rupture Overcharging, 
temperature, 
wear, physical 
damage 

Battery 
ruptures 

Possible 
collateral 
damage 

Possible 
collateral 
damage to 
critical 
components 

E 1 Physical 
separation of 
critical 
equipment, 
barriers around 
the batteries 
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D.1.8 IE Screening and Grouping 

IE screening and grouping (or binning) should be performed as high in the MLD structure as 
possible. Ultimately, the binning level depends upon the PRA goals and system response to the 
candidate IEs. Therefore, some IEs may correspond to relatively high levels in the MLD, while 
other IEs are low-level pinch points. 

An example of binning is afforded by considering a rise in O2 partial pressure inside of the 
Lunar Base. This could result from: 

 An increase in O2 flow; or 

 A decrease in N2 flow. 

An increase in O2 flow could be caused by a faulty: 

 O2 sensor (fails low); or 

 O2 regulator (fails high). 

Similarly, a decrease in N2 flow might be due to a faulty: 

 N2 sensor (fails high); or 

 N2 regulator (fails low). 

Since all four of these faults cause the same response (a rise in O2 partial pressure), this 
event is the pinch point being illustrated, and the sum of the frequencies at which: 

 An O2 sensor fails low; 

 An O2 regulator fails high; 

 An N2 sensor fails high; and 

 An N2 regulator fails low. 

is the frequency assigned to the IE group. 

D.1.9 Risk Scenario Development 

Section 3.3 establishes that a risk scenario begins with an IE that perturbs the system, then 
progresses through a series of pivotal events to an end state. As was illustrated in Sections 
D.1.5 through D.1.8, preliminary scenario considerations are fundamental to the IE identification 
and grouping process. Without such considerations, the relationship between system 
perturbations (the candidate IEs) and end states cannot be understood adequately to bin the 
IEs. 

Because PRA is an iterative process, these preliminary scenario considerations are revised 
as the assessment proceeds until a final set of ETs is developed and quantified. After the 
preliminary IE identification and grouping, the next step in scenario development is to construct 
an ESD for each IE. This furnishes a more rigorous linkage between the IE and end states. As a 
result of insights from the ESD construction, some revision to the IE binning may be required. 
Subsequent to this step, the ESDs are converted into the ETs that are used to quantify event 
sequences and end states. 

D.1.10 ESD Analysis 

Four illustrative ESDs are presented for the Lunar Base. They are initiated by: 

1. An energetic event; 
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2. Electrolyte leakage; 

3. A smoldering event; and 

4. Atmosphere leakage. 

The corresponding ESDs are displayed in Figure D-3 through Figure D-6 and addressed in 
Sections D.1.10.1 through D.1.10.4, respectively. 

D.1.10.1  Energetic Event 

The energetic event is phenomenological in that it is capable of causing collateral damage 
(Table D-3). If this hazard causes crew injury, Figure D-3 depicts the event sequence ending 
with LOC.  If there is no crew injury resulting directly from the IE, the subsequent concern is 
whether critical base equipment survives. 

Loss of critical equipment will force a crew evacuation (since a habitable environment 
cannot be maintained). The end state associated with a successful evacuation is LOM.  An 
unsuccessful evacuation results in LOC. 

 

Figure D-3. Energetic Event ESD. 

Even if critical equipment survives the IE, structural damage may ensue (equipment and 
structures are evaluated separately in Figure D-3). Structural damage would engender 
significant loss of the exterior surfaces, rendering the base uninhabitable. Therefore, it is again 
necessary to consider crew evacuation with the same end states as described previously. 

Should all critical equipment and the base structure survive, damage to the compartment 
housing the component experiencing the energetic event could entail atmospheric leakage 
beyond the capacity of the ECLS. If the compartment can be sealed, the base and crew are no 
longer in jeopardy, so the end state is OK. If the compartment cannot be sealed, crew 
evacuation once more becomes necessary. 

D.1.10.2  Electrolyte Leakage 

Electrolyte leakage (Figure D-4) impacts the Power Subsystem, which is a vital support for 
Lunar Base operation (Table D-1). If electrolyte leakage occurs and critical base equipment 
fails, crew evacuation is mandated. Successful crew evacuation entails end state LOM, while a 
failed evacuation causes LOC. 

Energetic
Hazard

Loss of
Crew

Loss of
Mission

No crew
injury

Structural
integrity

protected

Seal
compartment

Loss of
Crew

Crew
evacuation

Yes

No

Critical
equipment
survives

OK
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Even if all critical equipment survives the IE, damage to irreplaceable science instruments 
engenders LOM. If neither critical equipment nor irreplaceable science instruments are 
damaged, the mission continues. However, if replaceable science instruments are damaged by 
the IE, a mission delay could be experienced until the instruments are restored. 

 

Figure D-4. Electrolyte Leakage ESD. 

D.1.10.3  Smoldering Event 

A salient consideration with smoldering events is the creation of gaseous toxics.  If these 
toxics are automatically removed from the base atmosphere by ECLS and no shorts occur 
(which could impact PW), the mission is OK. However, if the toxics are not automatically 
removed by ECLS, the crew may be able to detect their presence by olfactory sensations or 
detection equipment. If the toxics are detected and no shorts occur, it is postulated that the crew 
can remove the toxics and the scenario end state is OK. 

Inability to detect the toxics jeopardizes crew health and safety. Depending upon the type 
and concentration of the toxics, the impact on crew health may be negligible. If not, the end 
state is LOC. Even without deleterious impacts to the crew, shorts resulting from the IE could 
cause a loss of base power (either directly, or in combination with other failures). If the shorts 
are severe enough that critical equipment is unable to function, evacuation is required. If critical 
equipment remains operational, the mission can continue. 

Loss of
Crew

Loss of
Mission

Critical
equipment
survives

Irreplaceable
science

instruments
not damaged

Mission
Delay

Crew
evacuation

Loss of
Mission

Replaceable
science

instruments
not damaged

Yes

No

Electrolyte
Leakage

OK



 

D-12 
 

 

Figure D-5. Smoldering Event ESD. 

D.1.10.4  Atmosphere Leakage 

Failure to detect atmosphere leakage is conservatively postulated to result in an LOC.  If the 
leak is detected, the planned response is to seal the leaking compartment.  Sealing the 
compartment engenders end state, OK. Inability to seal the leaking compartment requires crew 
evacuation. 

 

Figure D-6. Atmosphere Leak ESD. 

D.1.11 System Success Criteria 

Two types of system success criteria are required for a PRA: 

1. The minimum number of trains in redundant systems necessary for the system to satisfy 
its functional requirements (this may depend on the IE); and 

2. The time the system must operate. 

For the Lunar Base example it is hypothesized that all redundant systems contain two 100% 
capacity trains.  Consequently, both trains must fail in order for the system to fail.  This 
supposition is independent of IE. 

The time each system must operate in response to an IE is conservatively modeled as one 
year. This is not the Lunar Base mission time because once the base recovers from the IE, it 
returns to an operational state. Instead, the operating time for systems needed to respond to an 
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IE is predicated upon consideration of how much time is required to recover from the IE and its 
consequences (i.e., return the base to an operational state). 

A standard assumption applied to continuously operating, ground-based facilities is that the 
system operating time subsequent to an IE is 24 hours. This is predicated upon the knowledge 
that within 24 hours: 

 Personnel from three working shifts will be available at the facility; 

 Support personnel (e.g., the engineering staff) can be summoned and will arrive; 

 Emergency responders can be summoned if necessary; 

 Support utilities (e.g., electrical power and water) are available if required; and 

 Within limits, needed replacement equipment can be obtained. 

For the Lunar Base, the re-supply interval is two months. Thus, even in an emergency it 
could require several weeks to a month before additional personnel arrive. Because the re-
supply ship has limited capacity (as compared to highway transportation at a ground-based 
facility), the number of personnel that can be transported per trip is limited. There are no 
emergency responders, public utilities are unavailable, and any needed equipment must be 
shuttled to the base from Earth. 

Predicated upon these considerations, the base systems may have to operate for several 
months before it can be assumed, with high confidence, that a normal operating state is 
restored.  Rather than determine whether the number of months is three, four, or six, an entire 
Earth year was adopted. If such a supposition causes excessively high risk estimates to ensue, 
a less conservative operating time could be developed and applied. 

D.1.12 ET Analysis 

Figure D-7 through Figure D-10 are the ETs corresponding to Figure D-3 through Figure D-
6, respectively. Relative to the event progression, the ETs and ESDs are equivalent. They each 
have the same IE, pivotal events, end states, and event sequences. The only difference is in the 
graphical presentation. As such, the ET descriptions are identical to those for the ESDs in 
Section D.1.10. 

 

Figure D-7. Energetic Hazard Event Tree. 
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Figure D-8. Electrolyte Leakage Event Tree. 

 

Figure D-9. Event Tree for the Smoldering IE. 
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Figure D-10. Atmosphere Leakage Event Tree. 

D.1.13 FT Analysis 

A key element in the FT construction process is establishing success criteria for the mission 
or, if the success criteria vary during the mission, determining the success criteria appropriate 
for each mission phase. For the Lunar Base example, the success criteria are the topic of 
Section D.1.11. 

Top event failure logic is established from the Boolean complement of the success criteria.  
For instance, if at least one of two power distribution subsystems or antennae must be available 
to satisfy the success criteria, then failure of both power distribution subsystems or antennae is 
necessary for system failure. Once the top event logic is established, the FT is constructed by 
identifying all significant faults that can cause the top event to occur. Typically, this involves 
failure to contain (which is especially important for fluid systems), failure to control, and failure to 
cool or otherwise maintain component temperatures within acceptable ranges.  Basic events are 
given specific names to facilitate Boolean reduction and numerical quantification. 

Basic event naming conventions need to be established to ensure consistency among all 
members of the PRA team, and for compatibility with software requirements. It is also important 
to establish a naming convention for intermediate gates in the FTs. The basic event naming 
convention for Example 1 uses: 

 Two characters to signify the system; 

 Five characters for the identification of a component or collection of components; while 

 Two additional characters symbolize the failure mode. 

Table D-4 is an example applied to the Lunar Base. The salient admonition is that a 
convention must be established early in the risk assessment and applied uniformly by all 
members of the PRA team throughout the analysis. Otherwise, the results can be invalid due to 
inconsistencies that cause faults in the Boolean reduction or quantification process.  In order to 
illustrate the FT construction process, the Oxygen Supply System will be considered. The 
assessment will focus on the liquid oxygen tanks and isolation valves, as depicted in Figure D-
11.  Figure D-11 is part of the Atmosphere Replenishment Subsystem of the Environmental 
Control and Life Support System.   
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Table D-4. Naming Convention Example for the Lunar Base. 
 Item Designation 

Subsystem ID Environmental Control and Life Support System ECLS 

Science Instrumentation System SI 

Component ID Partial pressure of oxygen sensor number 1 PPO21 

Partial pressure of oxygen sensor number 2 PPO22 

Side A isolation valve ISOVA 

Side B isolation valve ISOVB 

Failure Mode 
ID 

General failures FF 

Fails closed FC 

Independent failure IF 

Common cause failure CF 

Independently fails closed IC 

LOX Tank
Side A

Gas Generator
Side A

LOX Tank
Side B

Gas Generator
Side B

Modeled Not Modeled

ISO

ISO

 

Figure D-11. Lunar Base Oxygen Supply System. 

The FT for inability to replenish the base atmosphere is exhibited in Figure D-12.  This top 
event occurs if either there is a failure to replenish the: 

 O2; or  

 N2; 

(although the example will not examine N2 replenishment in detail).  
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Figure D-12. Fault Tree for Inability To Replenish the Base Atmosphere. 

Each of these intermediate events has two causes, either a: 

 Supply; or 

 Delivery; 

failure. These intermediate events, in turn, are connected to other FT logic modules through the 
triangular off-page connectors. 

Following off-page connector X to Figure D-13, notice that failure to supply O2 requires 
failure of both sides of the Oxygen Supply System shown in Figure D-11.  This, of course, 
corresponds to a success criterion where either side can fully supply the base O2 needs.  
Relative to the portion of the Oxygen Supply System being examined in this example, failure of 
a particular side results if either the tank or isolation valve fails. 

Because the system has redundancy, common cause failures must be considered.  
Components comprising common cause groups could include: 

 Sensors; 

 Valves; 

 Control computers; 

 Pumps; 

 Seals; and 

 Others, including storage tanks. 
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Since there are two redundant sides to the system, the beta factor model will be applied (see 
Chapter 7). 

 

Figure D-13. Fault Tree for Failure To Supply Oxygen. 

Before continuing with the tanks and isolation valves in the Oxygen Supply System, it is 
instructive to digress a moment and examine the partial pressure of oxygen sensors. The intent 
of this digression is merely to illustrate the construction of FTs pertaining to redundant 
components other than the mechanical components used to contain or control fluids. If the 
partial pressure sensors are redundant and either can provide the required sensing function, 
then both must fail before the capability to sense the oxygen partial pressure is lost. This is 
symbolized by the AND gate in Figure D-14. Since the sensors comprise a common cause 
component group, each sensor is modeled as having an independent and common cause 
failure mode. Because the common cause will fail both sensors, it has the same basic event 
name in the FT (ECLS-PPO2X-CF). 

The Boolean expression for this logic can be derived by noting that 

CF)-PPO2X-(EC  IF)-PPO21-(EC  FF-PPO21-EC   (D-1) 

and 

CF)-PPO2X-(EC  IF)-PPO22-(EC  FF-PPO22-EC   (D-2) 

which reduces to: 

CF)-PPO2X-(EC

IF)]-PPO22-(EC  IF)-PPO21-[(EC  FF-PPO2S-EC
 




 (D-3) 
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Applying this same concept to off-page connector X in Figure D-12, the resultant FT is depicted 
in Figure D-15. 

 

Figure D-14. Fault Tree for Loss of the Partial Pressure of Oxygen Sensors. 
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Figure D-15. Final Fault Tree for Failure To Supply Oxygen. 

D.1.14 Data Analysis 

The fundamentals of data analysis are the subject of Chapter 7. Consequently, the only 
illustration that will be furnished with the Lunar Base example will focus on common cause 
failure modeling. Returning to Figure D-14, recall that sensor failure is modeled as resulting 
from either an: 

 Independent; or  

 Common; 

cause. If their total failure rate is 10-6 per hour and beta (the common cause model being 
applied) is 0.1, then the independent failure rate is 9x10-7 per hour, while 1x10-7 per hour is the 
common cause failure (CCF) rate. 

D.1.15 Model Integration and Quantification 

Once the logic models and database are completed, model integration and quantification 
can begin. If only a limited scope reliability analysis of one system is being conducted, 
numerical FT reduction is performed to obtain the minimal cut sets (MCSs). The probability of 
system failure is then quantified from the union of the MCS. However, if a complete PRA 
quantification is desired, the MCSs for individual FT top events are obtained and stored. These, 
of course, correspond to pivotal events in the mission ETs. Boolean algebra and probability 
theory are then used to quantify the likelihood of each individual event sequence. End state 
logic is used to determine the likelihood of each particular end state being quantified for the 
mission. 
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Figure D-16 illustrates the process. Ultimately, the process involves using Boolean logic to 
develop expressions for event sequences and end states, then quantifying the event sequences 
and end states using probability theory. 

Suppose that the top event in the FT for failure of pivotal event, TE1, involves basic event, 
A, combined with either basic event: 

 B; 

 C; or  

 D. 

then 

     DACABA TE1   (D-4) 

if 

   DKAK TE2   (D-5) 

and the reduced Boolean expression representing event sequence 4 is 

     KDAIEKCAIEKBAIE TE2TE1IE   (D-6) 

Once the input data are combined with the MCSs, the basic quantification is complete.  This 
is generally a point estimate (i.e., without uncertainty).  At this stage in a PRA, all that remains is 
to check and interpret the results, and then perform an uncertainty analysis along with the 
quantification of any other risk metrics (e.g., importance measures) required. 

 

Figure D-16. Quantification of Linked ETs/Fault Trees. 

SAPHIRE [D-1] software was used to evaluate the Lunar Base example. Table D-5 is an 
extract from its input data. The primary name includes the basic event identifier and a brief 
description. For a Type 1 calculation, SAPHIRE merely uses the input probability value. In a 
Type 3 calculation, SAPHIRE calculates the basic event probability using an exponential 
distribution with the failure rate and operating time (Section D.1.11). 
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Two MCSs resulted from quantifying the FT for failure of the partial pressure of oxygen 
sensors: 

1. CCF; and 

2. independent failure; 

of both sensors. Table D-6 is the SAPHIRE quantification report for that FT. Since these are the 
only two MCSs identified, their individual probabilities sum to unity. From Table D-5, note that 
the probability of a common cause failure equals the input value for the basic event, while the 
probability for independent failure of both sensors is the product of their independent failure 
probabilities. 

Returning to event sequence 4 in Figure D-9, its occurrence frequency is 1.2x103 per year 
(Table D-7).  It is initiated by a smoldering wire event, in conjunction with: 

 Development of short circuits; 

 Critical equipment failure; and 

 Crew failure to escape. 

Note that the event sequence frequency is the product of the IE frequency combined with 
the probability of the other basic events in the cut set. 

A ranking of the four most dominant contributors to a loss of crew (end state LOC) is 
exhibited in Table D-8. The interpretation of this SAPHIRE output report is analogous to the 
previous example. Notice that since the four most dominant sequences have a total frequency 
of 1.13x102 per year, they comprise over 99.6% of the total frequency for end state LOC. 

The final step in the PRA process involves organizing and interpreting the results. It is 
imperative to check the results for accuracy. For example, if the independent failure probabilities 
reported for partial pressure of oxygen (PPO2) sensors 1 and 2 differ, this is indicative of a data 
entry error. 

Similarly, certain groups of failures should be symmetric. Remember that failure of liquid 
oxygen tank A and failure of isolation valve B will cause an Oxygen Supply System failure. A 
symmetric failure combination, involving liquid oxygen tank B and isolation valve A, should also 
appear in the quantification results and have an equivalent probability. 

Sanity checks should be performed to determine whether the results are technically 
reasonable.  In the Lunar Base example, the dominant IE relative to a loss of crew is a 
smoldering wire. It has an assigned frequency of two occurrences per year. A sanity check 
could confirm whether this is a reasonable value for the event in the Lunar Base environment. 

Recalling that PRA is an iterative process, these various checks are simply the last step in 
the iteration. Of course, if the results disagree with prior expectations, it may not be because the 
PRA has errors. What it does require is that the basis for this difference be investigated and 
thoroughly understood. 

Due to the large number of cut sets resulting in a PRA, it is advisable to focus primarily on 
the risk drivers. Also, addressing the risk drivers is often an effective technique for managing 
mission risks. 
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Table D-5. Input Data Extract. 
                            
                             Calc        Mean 
       Primary Name         Type     Probability     Lambda    
 ------------------------  -------   -----------   -----------  
 ECLS-ARFL1-FF                 1       5.000E-002    +0.000E+000 
 Air filter failure 
 
 ECLS-ARFL2-FF                 1       5.000E-002    +0.000E+000 
 Air filter failure 
 
 ECLS-PPO21-IF                 3       7.858E-003     9.000E-007 
 Partial Pressure of O2 sensor ind. failure 
  
 ECLS-PPO22-IF                 3       7. 858E-003    9.000E-007 
 Partial Pressure of O2 sensor ind. failure 
 
 ECLS-PPO2X-CF                 3       8.762E-004     1.000E-007 
 Partial Pressure of O2 sensors common cause failure 
 
 EX-CREQE-FF                 1       3.000E-001    +0.000E+000 
 Critical equipment failure 

 

 

 

Table D-6. SAPHIRE Quantification Report for Failure of Partial Pressure of Oxygen 
Sensors. 

 
 FAULT TREE CUT SETS (QUANTIFICATION) REPORT 
 
 Project    : PRA-COURSE                 Analysis : RANDOM 
 Fault Tree : AD                         Case     : CURRENT 
                               Mincut Upper Bound : 9.379E-004 
  
 Cut      %    % Cut     Prob/ 
 No.    Total   Set      Freq.        CURRENT CUT SETS 
------  -----  -----   ---------  ------------------------- 
     1   93.5   93.5    8.8E-004  ECLS-PPO2X-CF 
     2  100.0    6.5    6.2E-005  ECLS-PPO21-IF, ECLS-PPO22-IF 
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Table D-7. Cut Set Report for Event Sequence 4. 

 Sort/Slice Cut Set Report 
  

 Project-> PRA-COURSE    Event Tree-> SM             Seq-> 04 
 Mincut Upper Bound -> 1.200E-003              This Partition -> 1.200E-003 

                                 
 Cut  Total Cut set   Prob/                                         Event    
 No.    %      %      Freq.     Basic Event     Description         Prob.    

 ---  -----  -----  ----------  ------------ -------------------- ---------- 
  1   100.0  100.0  1.200E-003  SM            Smoldering Wire     2.000E+000 
 
                                EX-CREQE-FF   Critical equipment  3.000E-001 
                                              failure    
 
                                PW-SHRTS-FF   Short circuits      2.000E-001 
                                              develop      
 
                                UE-CRESC-FF   Crew fails to       1.000E-002 
                                              escape lunar base   

 
 

Table D-8. Cut Set Report for Loss of Crew. 
 

 Sort/Slice Cut Set Report 
  
 Project-> PRA-COURSE                  End State-> LOC 
 Mincut Upper Bound -> 1.134E-002      This Partition -> 1.134E-002 
                                 
 Cut Total Cut set   Prob/                                           Event     
 No.   %      %      Freq.     Basic Event    Description            Prob.     
 --- -----  -----  ----------  ------------ ---------------------- ---------- 
  1  44.1   44.1   5.000E-003  SM           Smoldering Wire        2.000E+000 
                               ECLS-ARFL1-FF  Air filter failure     5.000E-

002 
                               EX-CRTOX-IN  Crew injury due        5.000E-001 
                                            to toxic exposure         
                               SI-MASPC-CF  Failure to calibrate   1.000E-001 
                                            mass spectrometer    
  2  88.2   44.1   5.000E-003  SM           Smoldering Wire        2.000E+000 
                               ECLS-ARFL2-FF  Air filter failure     5.000E-

002 
                               EX-CRTOX-IN  Crew injury due to     5.000E-001 
                                            toxic exposure       
                               SI-MASPC-CF  Failure to calibrate   1.000E-001 
                                            mass spectrometer       
  3  98.8   10.6   1.200E-003  SM           Smoldering Wire        2.000E+000 
                               EX-CREQE-FF  Critical equipment     3.000E-001 
                                            failure                
                               PW-SHRTS-FF  Short circuits develop 2.000E-001 
                               UE-CRESC-FF  Crew fails to escape   1.000E-002 
                                            lunar base           
  4  99.6    0.9   1.000E-004  EH           Energetic Hazard       1.000E-003 
                               EX-CREWX-EI  Crew injured by        1.000E-001 

                          energetic debris  
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Uncertainty analyses can be performed for: 

 FTs; 

 Event sequences; and 

 End states. 

Table D-9 has the uncertainty analysis results for end state LOC in the Lunar Base example. 
Predicated upon the convergence criteria proposed in Section 12.2, a sample size involving 
50,000 iterations was needed.  The uncertainty analysis was performed using the SAPHIRE 
software. 

Importance measures can be calculated for: 

 FTs; 

 Event sequences; and 

 End states. 

Table D-9. Uncertainty Results for Loss of Crew. 

5th Percentile Median Mean 95th Percentile 

1.5x103 6.9x103 1.1x102 3.5x102 
 

Importance measures for the Lunar Base example are displayed in Table D-10. They are 
the: 

 Fussell-Vesely (F-V); 

 Risk reduction ratio; and 

 Risk increase ratio; 

importance measures SAPHIRE calculated for end state LOC. Sorted by F-V importance, the 
smoldering wire IE ranks the highest. However, IEs characterized by an occurrence frequency 
should not be examined using conventional risk importance measures. This is because 
conventional risk importance measures rely on sensitivity studies in which failure probabilities 
are increased to unity or decreased to zero. Although zero is also the lower bound of an 
occurrence frequency, IE frequencies have no upper bound. Hence, setting the value of IE 
event, SM (smoldering wire), to unity actually decreases the IE occurrence frequency. 
Consequently, even though SAPHIRE includes all basic events in its importance ranking, IEs 
should be ignored unless they are characterized by a probability of occurrence (instead of a 
frequency). 
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Table D-10. Lunar Base Importance Measures. 
 

 

IMPORTANCE MEASURES REPORT  (Current Cut Sets) 
Project  : PRA-COURSE                  EndState :LOC 

Analysis : RANDOM 
Case     : CURRENT 

 
(Sorted by Fussell-Vesely Importance) 

 
                  Num.  Probability  Fussell- 
                 of       of        Vesely 

   Event Name      Occ.    Failure   Importance 
-------------------------------------------------- 

 
SM                5  2.000E+000  9.856E-001 
EX-CRTOX-IN       4  5.000E-001  8.797E-001 
SI-MASPC-CF       2  1.000E-001  8.796E-001 
EC-ARFL2-FF       2  5.000E-002  4.387E-001 
EC-ARFL1-FF       2  5.000E-002  4.387E-001 
UE-CRESC-FF       7  1.000E-002  1.096E-001 
EX-CREQE-FF       2  3.000E-001  1.052E-001 
PW-SHRTS-FF       1  2.000E-001  1.049E-001 
EH                5  1.000E-003  9.595E-003 
EX-CREWX-EI       1  1.000E-001  8.731E-003 
AL                4  1.000E-002  4.650E-003 
ST-DRSEL-LK       2  3.549E-001  3.408E-003 
ST-LMECH-FF       2  8.393E-002  8.060E-004 
EC-PPO2X-CF       1  8.762E-004  7.650E-004 
EX-STRCT-FF       1  2.500E-001  2.183E-004 
EC-PPO22-IF       1  7.858E-003  5.391E-005 
EC-PPO21-IF       1  7.858E-003  5.391E-005 
SI-MASPC-FF       2  1.000E-006  8.731E-006 

IMPORTANCE MEASURES REPORT  (Current Cut Sets) 
Project  : PRA-COURSE                  EndState :LOC 

Analysis : RANDOM 
Case     : CURRENT 

 
(Sorted by Fussell-Vesely Importance) 

 
                  Num.  Probability  Fussell- 
                 of       of        Vesely 

   Event Name      Occ.    Failure   Importance 
-------------------------------------------------- 

 
SM                5  2.000E+000  9.856E-001 
EX-CRTOX-IN       4  5.000E-001  8.797E-001 
SI-MASPC-CF       2  1.000E-001  8.796E-001 
EC-ARFL2-FF       2  5.000E-002  4.387E-001 
EC-ARFL1-FF       2  5.000E-002  4.387E-001 
UE-CRESC-FF       7  1.000E-002  1.096E-001 
EX-CREQE-FF       2  3.000E-001  1.052E-001 
PW-SHRTS-FF       1  2.000E-001  1.049E-001 
EH                5  1.000E-003  9.595E-003 
EX-CREWX-EI       1  1.000E-001  8.731E-003 
AL                4  1.000E-002  4.650E-003 
ST-DRSEL-LK       2  3.549E-001  3.408E-003 
ST-LMECH-FF       2  8.393E-002  8.060E-004 
EC-PPO2X-CF       1  8.762E-004  7.650E-004 
EX-STRCT-FF       1  2.500E-001  2.183E-004 
EC-PPO22-IF       1  7.858E-003  5.391E-005 
EC-PPO21-IF       1  7.858E-003  5.391E-005 
SI-MASPC-FF       2  1.000E-006  8.731E-006 
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Table D-10 (cont.). Lunar Base Importance Measures. 
 

 

D.2 PRA Example 2 Problem Description 

The Lunar Base example demonstrated how a system operating in a steady state may be 
modeled using a set of multiple ETs with different IEs. Since the ETs are relatively small, 
system details are modeled with large FT constructs. This is a conventional PRA technique. The 
unique characteristic of such applications is that maintenance activities ensure that system 
components eventually achieve a steady-state availability. In these situations, humans are 
present and can perform necessary maintenance. 

The second example addresses a science mission to another planet. Since there is no crew, 
maintenance is precluded. From a reliability perspective, without maintenance all components 
will eventually fail, so the reliability of individual components monotonically decreases with time. 
Consequently, the probability that any individual component is available at the beginning of a 

IMPORTANCE MEASURES REPORT  (Current Cut Sets) 
Project  : PRA-COURSE                  EndState :LOC 

Analysis : RANDOM 
Case     : CURRENT 

 
(Sorted by Fussell-Vesely Importance) 

 
                Num.  Risk        Risk 

                   of  Reduction   Increase 
Event Name      Occ.  Ratio       Ratio 

-------------------------------------------------- 
SM                5  6.942E+001  5.080E-001 
EX-CRTOX-IN       4  8.309E+000  1.875E+000 
SI-MASPC-CF       2  8.308E+000  8.718E+000 
EC-ARFL2-FF       2  1.782E+000  9.336E+000 
EC-ARFL1-FF       2  1.782E+000  9.336E+000 
UE-CRESC-FF       7  1.123E+000  1.179E+001 
EX-CREQE-FF       2  1.118E+000  1.245E+000 
PW-SHRTS-FF       1  1.117E+000  1.420E+000 
EH                5  1.010E+000  1.050E+001 
EX-CREWX-EI       1  1.009E+000  1.079E+000 
AL                4  1.005E+000  1.460E+000 
ST-DRSEL-LK       2  1.003E+000  1.006E+000 
ST-LMECH-FF       2  1.001E+000  1.009E+000 
EC-PPO2X-CF       1  1.001E+000  1.872E+000 
EX-STRCT-FF       1  1.000E+000  1.001E+000 
EC-PPO22-IF       1  1.000E+000  1.007E+000 
EC-PPO21-IF       1  1.000E+000  1.007E+000 
SI-MASPC-FF       2  1.000E+000  9.512E+000 

IMPORTANCE MEASURES REPORT  (Current Cut Sets) 
Project  : PRA-COURSE                  EndState :LOC 

Analysis : RANDOM 
Case     : CURRENT 

 
(Sorted by Fussell-Vesely Importance) 

 
                Num.  Risk        Risk 

                   of  Reduction   Increase 
Event Name      Occ.  Ratio       Ratio 

-------------------------------------------------- 
SM                5  6.942E+001  5.080E-001 
EX-CRTOX-IN       4  8.309E+000  1.875E+000 
SI-MASPC-CF       2  8.308E+000  8.718E+000 
EC-ARFL2-FF       2  1.782E+000  9.336E+000 
EC-ARFL1-FF       2  1.782E+000  9.336E+000 
UE-CRESC-FF       7  1.123E+000  1.179E+001 
EX-CREQE-FF       2  1.118E+000  1.245E+000 
PW-SHRTS-FF       1  1.117E+000  1.420E+000 
EH                5  1.010E+000  1.050E+001 
EX-CREWX-EI       1  1.009E+000  1.079E+000 
AL                4  1.005E+000  1.460E+000 
ST-DRSEL-LK       2  1.003E+000  1.006E+000 
ST-LMECH-FF       2  1.001E+000  1.009E+000 
EC-PPO2X-CF       1  1.001E+000  1.872E+000 
EX-STRCT-FF       1  1.000E+000  1.001E+000 
EC-PPO22-IF       1  1.000E+000  1.007E+000 
EC-PPO21-IF       1  1.000E+000  1.007E+000 
SI-MASPC-FF       2  1.000E+000  9.512E+000 
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mission phase is time dependent. Such conditional events are difficult to model with most 
software using the small ET approach. Therefore, a large ET model, using linked ETs, will be 
illustrated.  Also, not every failure results in complete system failure. Some failures may result 
only in system degradation (e.g., loss of one side of a redundant system), or failure to 
completely satisfy mission objectives. 

A complete application of the PRA process to the science mission in the second example is 
not provided. This is because many of the PRA steps are analogous to those demonstrated 
previously. Since the salient difference between the two examples is use of a large ET approach 
(instead of the more conventional small ET technique), the second example will only proceed 
through the ET model for the science mission. 

D.2.1 PRA Objectives and Scope 

The mission objectives for Example 2 involve placing an Orbiter Module in orbit around an 
object identified as Planet X. The orbiter will collect atmospheric information and deploy a 
Landing Module to the surface. The Landing Module will collect surface data and soil samples. 
Besides these science objectives, the mission must also ensure planetary protection and public 
safety. As always in a PRA, the first step is to define the assessment objectives and scope. 

There are three PRA objectives: 

1. determining the risk to the public during the launch; 

2. determining the biggest risk contributors; along with 

3. suggesting ways to improve the mission architecture and operations. 

The scope of Example 2 includes: 

 An expected casualty analysis of the launch vehicle; 

 Assessing the spacecraft subsystems and science instrumentation; as well as 

 Illustrating human reliability. 

Chapter 8 addresses HRA aspects of the expected casualty analysis and possible 
instrumentation faults resulting from human errors. 

D.2.2 Mission Success Criteria 

The baseline science mission length is three Earth years, although minimum science 
objectives can be achieved with one year of operation. 

D.2.3 End States 

Six end states have been identified for the PRA, three for the launch phase alone.  The 
launch phase end states involve loss of vehicle (LOV): 

1. Before land clear (LOV-BLC); 

2. After land clear (LOV-ALC); and 

3. With no solid rocket motor (LOV). 

They are needed in order to satisfy the objective of determining risk to the public. 

The other three end states are: 

1. Mission success (OK); 
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2. Loss of mission (LOM); and 

3. Minimum mission (MIN). 

Loss of vehicle signifies that the lander was not successfully deployed to the surface of 
Planet X. Hence, it can occur during the final phase of launch or any subsequent mission phase 
prior to initiation of the science mission. 

Loss of mission designates those situations where the lander was successfully deployed to 
the surface of Planet X, but the science mission duration is less than one Earth year. If the 
science mission duration exceeds one year but terminates before the three-year objective is 
satisfied, the associated end state is MIN. Satisfying the three-year science objective 
corresponds to mission success (OK). 

It is important to identify transition states in transferring between the linked ETs. Transition 
states are used to transfer information from one phase to another. They differ from end states, 
which are used to terminate an event sequence. Typically, transition states designate the status 
of critical systems (e.g., whether they are fully functional or have experienced a loss of 
redundancy) as the mission progresses from one phase to another. 

D.2.4 System Familiarization 

The mission profile is comprised of: 

 Launch and separation; 

 The cruise phase; 

 The approach phase; 

 Deceleration and orbit insertion; 

 Landing module decent and landing; plus 

 The science mission. 

A two-stage, expendable vehicle serves as the launcher. The first stage has a cryogenic 
liquid oxygen/liquid hydrogen main stage plus two solid boosters. The second, or upper stage, is 
also cryogenic. 

The spacecraft vehicle has the: 

 Orbiter Module; 

 Lander Module; and 

 Deceleration Module. 

The Orbiter Module contains an ion-engine for low thrust acceleration and correction of the 
approach trajectory. A chemical engine using hydrazine powers the Deceleration Module. 

Table D-11 shows the launch phase timeline. 

It is assumed that trajectory course maneuvers are unnecessary during the cruise phase.  
There are no planetary fly-bys, but the vehicle remains in communication with Earth to provide 
telemetry and other data. These are critical functions the spacecraft must perform. Also, it must 
complete the cruise phase with sufficient hardware available to perform the remainder of the 
mission. 
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Table D-11. Launch Phase Timeline. 
Main stage boost 0 – 120 s Mission Elapsed Time (MET) 

Solid rocket booster (SRB) burn 0 – 90 s MET 

SRB separation 91.5 s MET 

Upper stage (US) separation 121 s 

US first burn 122 – 165 s MET 

US first coast stage 165 – 550 s MET 

US second burn 550 – 650 s MET 

US second coast stage 650 – 9900 s MET 

US third burn 9900 – 10,000 s MET 

Spacecraft separation  10,000 s MET 

 

Trajectory course maneuvers during the approach phase involve communication with Earth. 
In addition, the spacecraft must finish the approach phase with sufficient hardware available to 
perform the remainder of the mission. 

The Deceleration Module is used to insert the spacecraft into an elliptical orbit around Planet 
X and subsequently to circularize the orbit. After achieving a circular orbit, the Deceleration 
Module is separated from the Lander Module/Orbiter Module stack. 

One week after the circular orbit has been achieved, the Lander Module separates from the 
Orbiter Module and initiates a descent burn. A heat shield protects the Lander Module during its 
descent, which is controlled using braking thrusters and a parachute. 

The science mission has a desired length of three Earth years. However, minimum 
objectives can be achieved with one year of operation. Both the Lander and Orbiter Modules are 
required during the science mission because the Orbiter not only relays Lander data back to 
Earth, but it also performs its own science experiments. 

The spacecraft systems are: 

 Command and control (CNC); 

 Power generation, storage, and distribution (PWR); 

 Attitude and orbit control (AOC); 

 Ion Propulsion System (ION) (maintains orbit inclination); 

 Chemical deceleration engine (CHM, performs deceleration and orbit circularization 
maneuvers); 

 Communications (COM); and 

 Pyro (PYR);Thermal control (THC); along with 

 Science instrumentation (SCI). 

Some of these systems (e.g., CNC, PWR, COM, and SCI) have subsystems dedicated solely to 
the Lander or Orbiter. 
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D.2.5 Initiating Events Development 

IE categorization is the third step in the PRA process. Unlike the Lunar Base example, the 
mission to Planet X does not have a series of IEs in the literal sense. Instead, it begins with an 
entry point into the ET—initiation of launch. Since launch must be initiated for the mission to 
begin, the probability of this entry point event is unity. All other pivotal event probabilities are 
conditionally dependent on launch initiation. 

D.2.6 Risk Scenario Development (Including ESD and ET Analysis) 

Once the IE is selected, top level scenarios are then developed. The technique used with 
large ETs is to analyze the mission phases separately, then couple them using linked ETs with 
the appropriate transition states. Sections D.2.6.1 through D.2.6.6 address each phase of the 
mission to Planet X. 

D.2.6.1  Launch Phase 

Supporting the expected casualty analysis requires dividing the launch phase into three 
segments, as explained in Section D.2.3. Depending upon the PRA objectives, it may be 
possible to assess the probability of launch phase failure from historical data (if available). 
However, since this example includes an expected casualty analysis, the launch phase must be 
evaluated in detail. As indicated in Figure D-17, the mission begins with launch.  If the launch is 
successful, the event sequence transfers to the cruise phase.  A failure before land clear results 
in a loss of vehicle and end state, LOV-BLC.  If the launcher fails after land clear but before 91.5 
seconds transpire (recall that this is the time of solid rocket booster separation), the end state is 
LOV-ALC.  If the launcher fails after the solid rocket booster separates but before spacecraft 
separation, LOV is the resultant end state. Figure D-18 is the corresponding launch phase ET.  
Alternatively, if the PRA objectives permit launch to be modeled as a single event, the launch 
phase ET can be simplified. Figure D-19 exhibits a simplified, single ET model for launch. 

 

Figure D-17. Event Sequence Diagram for Launch Phase. 
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Figure D-18. Event Tree for Launch Phase 

 

Figure D-19. Simplified Event Tree for Launch Phase. 

D.2.6.2  Cruise Phase 

Three topics are addressed in conjunction with the cruise phase of the mission to Planet X: 

1. Basic ET models; 

2. Quantifying redundant system probabilities; and 

3. ET models for redundant systems. 

They are explained in Sections D.2.6.2.1 through D.2.6.2.3. 

D.2.6.2.1 Basic Event Tree Models 

The success paths in both Figure D-18 and Figure D-19 result in transitions from the launch 
to the cruise phase. Since there are no trajectory course maneuvers, the spacecraft only needs 
to survive the cruise phase. This means the spacecraft cannot experience: 

 System failures; 

 MMOD hits (the spacecraft is assumed vulnerable to MMOD); or 

 Excessive radiation (e.g., from solar flares). 

Furthermore, the spacecraft must successfully respond to any nuances. 

During the cruise phase only the: 
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 Thermal Control; 

 Command and Control; 

 Power; and 

 Communications; 

Subsystems are operating. Because failure rates for dormant systems tend to be very small, 
failures of dormant systems can be ignored as highly unlikely. Consequently, only MMOD hits or 
excessive radiation pose significant threats to the dormant systems.  Figure D-20 is a 
preliminary ET for the cruise phase. 

 

Figure D-20. Preliminary Event Tree for Cruise Phase. 

Figure D-20 depicts cruise phase survival as requiring successful operation of the: 

 Thermal Control; 

 Command and Control; 

 Power; and 

 Communications; 

Subsystems, in conjunction with either: 

 The occurrence of no nuances; or 

 Successful response to the nuances (which includes propellant valve closure). 

If any of the operating subsystems fail or there is an unsuccessful response to a nuance, the 
end state is LOV.  Otherwise, the event sequence enters a transition state and transfers to the 
approach phase (labeled “APR” in the ET). 

Neither MMOD hits nor excessive radiation appear in D-20. This is because in Example 2, 
their contribution to mission failure is negligible. However, to determine the probability that they 
cause a mission failure, the process is similar to that used with the small ET approach. Let P 
be the frequency at which a phenomenological event (e.g., a MMOD hit or excessive radiation) 
impacts the spacecraft. This frequency is the IE frequency that would be used for the initiator in 
a small ET model. The difference between the small and large ET techniques is that for a large 
ET, the probability that the phenomenological event occurs during a particular mission phase, P, 
is 
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tPeP 1  (D-7) 

where t is the duration of the mission phase being assessed. If P is negligible compared to other 
causes of mission failure, it can be ignored (as in Example 2). If it is not a negligible contributor 
to mission failure, its contribution is quantified using the same methods that are described in 
Chapter 10. 

Figure D-20 can be simplified if modeling individual subsystems is unimportant. A simplified 
ET is illustrated in Figure D-21. If modeling individual subsystems is important (e.g., to track loss 
of redundancy events), techniques for such modeling are required. 

 

 

Figure D-21. Simplified Event Tree for Cruise Phase. 

D.2.6.2.2 Quantifying Redundant System Probabilities 

Loss of system redundancy is an important issue in the mission to Planet X. Table D-12 lists 
the status of the redundant batteries as a function of mission phase. It is postulated that both 
batteries are available prior to launch, and that the common cause beta-factor applicable to the 
batteries has a value of 0.1. Notice that as the mission progresses, the probability that both 
batteries remain available continuously decreases, while the probability that only one side or 
neither side is available increases.  Nevertheless, because the failure rate for the batteries is 
small relative to the overall mission duration, the probability that both batteries fail is only 
2.91x104 at the end of the planned, three-year science mission. Figure D-22 displays the 
probability that: 

 Both; 

 Only one; or 

 No; 

batteries are operational as a function of the product, t. Here: 

  is the total failure rate for an individual battery; and 

 t represents the operating time. 

For any given failure rate, the probability that both batteries are available monotonically 
diminishes with time, since repair is precluded. Independent failures transfer the system to the 
state where only one battery is available. For this reason, the probability that only one battery 
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train is available initially increases with time. However, since repair is precluded, the probability 
that even a single battery train remains available eventually decreases to essentially zero. 
Consequently, the probability that neither train is available monotonically increases with time. 
Both Table D-12 and Figure D-22 were derived using the methodology from Chapter 7. 

 

Table D-12. Probability of Battery Status (per Mission Phase). 

End of 
Both Batteries 

Available 
Only Side A 

Available 
Only Side B 

Available 
Both Batteries 

Fail 

Launch ~1 8.60x10-8 8.60x10-8 9.56x10-9 

Cruise ~0.999 3.66x10-4 3.66x10-4 4.08x10-5 

Approach ~0.999 3.66x10-4 3.66x10-4 4.08x10-5 

Deceleration and 
Orbit Insertion 

~0.999 3.68x10-4 3.68x10-4 4.10x10-5 

Descent and 
Landing 

~0.999 3.68x10-4 3.68x10-4 4.11x10-5 

Minimum Mission  
(1 year) 

~0.998 1.10x10-3 1.10x10-3 1.23x10-4 

Desired Mission  
(3 year) 

~0.995 2.55x10-3 2.55x10-3 2.91x10-4 

 

Figure D-22. Probability of Battery Status (as a Function of t). 

  

1

0.8

0.6

0.4

0.2

t
1 2 3 4 5 6

Both
Trains

Available

Only One
Train

Available

Neither
Train

Available



 

D-36 
 

D.2.6.2.3 Event Tree Models for Redundant Systems 

Lack of maintenance prevents the probability that a system is in a particular state (e.g., 
completely available or degraded) from achieving a time independent value. Hence, it becomes 
necessary to consider how to model this time dependence. Although in theory this problem is 
independent of modeling technique, in practice most PRA software is more amenable to 
modeling this time dependence in ETs rather than FTs.  This is because ETs conceptually 
display event progressions over time, while FTs tend to represent a “snap-shot” in time. 

A system with two redundant trains must be in one of three states: 

1. Both trains are available; 

2. Only one train is available; or 

3. Both trains are unavailable. 

Figure D-23 and Figure D-24 are alternative techniques for modeling system redundancy in 
ETs. 

Beginning with Figure D-23, if there is no total system failure then the system must have: 

 Both trains available; or 

 Just one train available. 

Given that there is no total system failure and no loss of redundancy, the only state is that both 
trains are available. However, if there is no total system failure but a loss of redundancy occurs, 
then only one train can be available (in this case the end state is labeled “LOR”).  If there is a 
total system failure, no trains are available.  A total loss of the system would lead to an LOV end 
state. 

 

Figure D-23. Event Tree Model of System Redundancy. 

Alternatively (Figure D-24), these two pivotal events can be reversed. The event, “no loss of 
system redundancy,” signifies that we are not in a state where just one train is available.  
Consequently, the system must be in a state where either: 

 Both trains are available; or 

 Neither train is available. 

Combining this with the requirement that there is no total system failure, the system has both 
trains available. If we are not in a state where just one train is available and total system failure 
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occurs, both trains are unavailable. Finally, if we are in the state representing a loss of 
redundancy, then just one train is available. 

 

 

Figure D-24. Alternative Event Tree Model of System Redundancy. 

Mathematically, both models are equivalent (they reduce to the same set theoretic end 
states). However, there are two practical considerations in modeling loss of redundancy.  The 
approach selected must be: 

 Easy for the analyst to apply (in order to minimize the introduction of human errors into the 
assessment); and 

 Compatible with the PRA software being used. 

Experience indicates that the first technique (in Figure D-23) is conceptually easier for PRA 
analysts to apply and has no known software incompatibilities. 

D.2.6.3  Approach Phase 

There are several possible states for entering the approach phase: 
1. OK, meaning that the spacecraft is fully functional; or 

2. with various losses of redundancy. 

However, the basic modeling techniques are the same as those described previously. The key 
consideration is that the remaining system redundancy at the beginning of approach can be 
known explicitly from the transition states linking the cruise and approach phases. 

The process of modeling the approach phase begins by reviewing the mission events.  They 
indicate that it is necessary to: 

 Power up the spacecraft; 

 Communicate with Earth; and 

 Perform the entry turn. 

Naturally, the spacecraft systems must also survive since they are needed in subsequent 
mission phases. 

D.2.6.4  Deceleration and Orbit Insertion  

Deceleration and orbit insertion begin by firing the chemical propulsion engine. If this fails, 
the vehicle is lost.  If the initial firing is successful, it is next necessary to circularize the orbit. 
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After this final firing of the chemical propulsion engine, it must be separated from the spacecraft. 
Failure to separate results in loss of vehicle. 

If a circular orbit is achieved and the chemical stage separates, the Lander descent phase 
can begin. If a circular orbit is not achieved but the chemical stage separates, it may be possible 
to circularize the orbit using the ion-engine. However, this may result in an abbreviated science 
mission. 

D.2.6.5  Landing Module Decent and Landing  

The basic modeling approach to be applied for entry, descent, and landing is analogous to 
those given previously. Basically, it begins by reviewing the event list, then developing an 
appropriate ESD and ET. When this is finished, the science mission is assessed. 

D.2.6.6  Science Mission  

Figure D-25 is an ET depicting the Lander portion of the science mission. Since the Orbiter 
must also collect data and communicate with Earth, it could be appended to Figure D-24 to 
evaluate which of those successful Lander end states ultimately result in science mission 
success. 

 

Figure D-25. Event Tree for Lander Science Mission. 

Figure D-25 replicates the Lander success criteria. Basically, the Lander consists of three 
instrument packages: 

 Radar System; 

 Rock abrasion experiment; and 

 Mass spectrometer. 

The Radar System is vital for the science mission, so if it fails essential data are lost. 

The rock abrasion experiment collects samples and analyzes them inside of the Lander.  
However, if this experiment fails, remote sensing can be accomplished using the mass 
spectrometer. Two limitations of the mass spectrometer are: 

1. It has less analytical capability than the rock abrasion experiment; and 

2. due to calibration drift, its operating life is one Earth year. 

Relative to minimum mission requirements, Figure D-25 demonstrates that if the Radar 
System fails to operate for at least a year, the mission fails (i.e., LOM is the end state). If the 
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Radar System and rock abrasion experiment both operate for at least one Earth year, minimum 
mission requirements are satisfied. However, if the Radar System operates for at least one 
Earth year but the rock abrasion experiment fails during that year, minimum mission 
requirements can still be satisfied by the mass spectrometer. 

Relative to total mission requirements, they can only be satisfied after the minimum mission 
is completed. Thus, if the Radar System fails during the second or third year, the end state is 
MIN. If the Radar System and rock abrasion experiment both operate for two additional Earth 
years, the total science mission is a success. However, if the rock abrasion experiment fails 
during the second or third year, only minimum mission requirements are fulfilled because the 
mass spectrometer lifetime is too short. 

D.2.7 Remaining Tasks 

Remaining PRA tasks are those addressed in Sections D.1.13 through D.1.15. They are not 
elaborated in Example 2 because the methodology and techniques employed are analogous to 
those already presented. 

D.3 Reference 

D-1 Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), 
a computer code developed at the Idaho National Laboratory, https://saphire.inl.gov 
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Appendix E - PRA Simulation Example 
 
 
To demonstrate the use of simulation for risk assessment, we consider a couple of examples in 
this Appendix. 
 
E.1 Example 1:  Leaks at a Lunar Base 
 

First, to illustrate the technique of using simulation to model an ESD, consider the ESD 
developed for Atmosphere Leakage in section D.1.   
 

 
Figure E-1. Atmosphere Leak ESD. 

 
The system success criteria are the same for simulation as they are for the fault and event-

tree based approach to PRA: 

 
1. The minimum number of successful trains in redundant systems necessary for the 

system to satisfy its functional requirements. 
2. The time the system must operate. 

 
For the Lunar Base, the atmosphere of a habitat is not a redundant system.  Although 

multiple chambers most likely would be used in a lunar base habitat, for illustration, one 
chamber is modeled without redundancy in the atmospheric system.  The meteoroid flux and 
micro-meteoroid flux experienced on the lunar surface is evident in the visible craters present.  
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One studya points out that a 1 m2 surface would experience a flux roughly a factor of 4 less than 
that of low earth orbit: 

Table E-1. Lunar Surface Micrometeoroid Flux. 
Estimated flux: 

Crater Diameter (µm) 

# craters / m2 / yr 

0.1 3 X 105 
> 1 1.2 X 104 

> 10 3 X 103 
> 100 6 X 10-1 

> 1000 1 X 10-3 
 
 

The energy associated with a meteoroid is reliant on its velocity at impact.  Not all 
meteoroids would penetrate the lunar habitat wall, which would be specifically designed to 
survive impacts. 

A simulation model representing the ESD was constructed in order to model the scenario-
based events.  In this case, the hypothetical events in the scenario are: 

 
1. the initiating event of a leak 
2. the detection of the leak 
3. the repair of the leak 
4. evacuation from the lunar base (if necessary) 

 
 The ESD is decomposed into states and events and frequencies.  The first diagram shows 

the “Simulation Objects,” which in this case handle events simultaneously. The Simulation 
Objects are Compartment, Leak Detection, Maintenance, and Escape Craft. 

 

                                                 
a Introduction to the Moon, Paul D. Spudis, Lunar and Planetary Institute, presented at NASA Johnson Space Center, 
4 June 2008 
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Figure E-2. Lunar Base Atmospheric Leak Simulation Objects. 

 
The Compartment object is where the initiating event of a leak will occur. When simulating 

an atmospheric leak, the magnitude of the initiating event needs to be considered before its 
detection.  In this case, the size of a hole caused by a meteoroid is the initiating event and was 
split into the three magnitudes of small leak, medium leak, and large leak. 

 “SmallLeak” is defined as one which can be repaired while the habitat is still occupied. 

 “MediumLeak” is one that would cause the habitat to be evacuated. 

 “LargeLeak” is modeled as causing loss of crew before successful detection or repair 
could be performed. 

Probabilities of an occurrence of the initiating event over the operational period of the 
system are entered into the simulation for each of its leak type.  Considering published reports 
of micrometeoroid flux experienced at the ISS, the probabilities were calculated by using 
exponential distributions with the mu for a “SmallLeak” at a mean time to occur of 240 days, 
“MediumLeak” at 55,000 days, and “LargeLeak” at 270,000 days, respectively.  The block 
diagram of the habitat compartment is shown in Figure E-3 and shows the consequences 
associated with each leak size.  When the simulation is started, all of the block diagrams are at 
their initial states. With “MissionStart” arc, the Compartment node changes to the “Occupied” 
state and time to failure is calculated for the first Small, Medium, and Large Leaks along the 
mission timeline.  The simulation then handles the first event (which is typically “SmallLeak” 
since it has the shortest mean time to occur). 
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Figure E-3. Compartment Block Diagram. 

 
The event “SmallLeak” (when it occurs) activates the node “SmLeakOccured” on the 

Compartment diagram and “DetectLeak” on the Leak Detector diagram (Figure E-4).  The Event 
“SensorFailure” is checked using a probability of 0.001, which leads to the State of “Undetected” 
and loss of crew (LOC). In the very likely Event of “NeedRepair,” the State of “RequestRepair” is 
entered. 
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Figure E-4. Leak Detection Block Diagram. 

The event “StartRepair” returns the Leak Detector diagram back to the “Standby” state and 
moves the Maintenance diagram state of “Oncall” to “Repairing.”  Event “HumanError” is 
checked which includes repair failure and if it does not occur (meaning no failure to repair), then 
the event “Repaired” is generated, which has a mean time of one day before returning to the 
“SmallLeak” repaired state. 
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Figure E-5. Maintenance Block Diagram. 

The way the simulation keeps track of the size of a leak is to give a small leak a value of 1, a 
medium leak would be 2, and a large leak 3.  By using this state variable, if another “SmallLeak” 
occurs before the first one is repaired, the leak value (“LeakSize” variable within the simulation) 
increases to 2 and becomes the equivalent of a “MediumLeak” event.  If the variable “LeakSize” 
is 2 or larger, the event CriticalLeakage is generated and the model moves into the state of 
“CriticalLeak” on the Compartment diagram. Then, the value of “LeakSize” is checked again.  If 
the value is 3 or greater, LOC is output through the state “SevereLeak.”  If the value is 2, an 
evacuation is requested through the state “ModerateLeak,” which generates an event 
“Evacuate” and moves the Escape Craft diagram from the state “OnStandBy” to the 
state“AttemptEscape.”  The Escape Craft block diagram checks for successful launch, cruise, 
and landing of the escape vehicle on Earth through similar logic. 
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Figure E-6. Escape Craft Block Diagram. 

Note that there are exits from the simulation in nearly every block diagram and that the 
“Compartment” block diagram, despite sending and returning status to it, is not a “master” 
diagram, but just a part of the overall simulation. 

The simulation runs along the mission timeline, in this case 7,300 days (i.e., 20 years), using 
the transition rates described.  The initiating event of a leak checks the other events for follow-
on actions at that “date.”  Once a leak is initiated, the probabilities of the detection, successful 
repair, or successful evacuation, if necessary, are checked to see if they occur before the leak is 
fixed.  The repair time was set to 4 days.   

Once the leak is fixed, the next leak on the timeline is handled in the same manner, and 
then the next, until the mission time has been reached.  This constitutes an iteration of the 
simulation.  By running multiple iterations of the simulation, the simulation results converge to a 
state value (either occupying the base, evacuation leading to a loss of mission (LOM), or LOC 
for each day along the 7,300 days run for the simulation.  The resultant probabilistic outcomes 
of LOM and LOC along with the summation of an unsuccessful mission (either LOM or LOC) are 
presented in Figure E-7. 
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Figure E-7. Lunar Base Atmospheric Leak Simulation Results. 

The output of the simulation is a cumulative total versus time based upon 1,000 iterations.  
One of the limitations of simulation is the difficulty in modeling uncertainty.  To do so would 
require sampling from epistemic distributions for each parameter, and rerunning the simulation 
many more times. 

 

E.2 Example 2:  Expanded Atmospheric Leak Model 
 
In the first example, it would be difficult, but not impossible, to perform the analysis using 
traditional fault and event tree logic models.  To demonstrate further the capabilities of 
simulation, we modified the Example 1 model to include periods of time where the crew is 
removed from the habitat on outside missions such that there is not an immediate repair 
capability if a small leak occurs.  Further, if the crew is outside the habitat when a medium or 
large leak occurs, they are already suited up and just go to the escape craft. These 
complications, if treated using traditional methods, would require complicated conditional 
calculations and convolution approaches.  We will, instead, demonstrate the approach using 
simulation. 
 
A simulation model was created representing this scenario. Hypothetical events in the scenario 
are: 
 

1. The scheduling of missions outside the habitat 
2. The availability of a repairman based on the external mission 
3. The initiating event of a leak caused by MMD 
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4. The detection of the leak 
5. The repair of the leak 
6. Evacuation from the lunar base (if necessary) 

 
States and events were modeled along with frequencies that those states and events have 
taken place.  The simulation objects for the new model are now MMD Events, Containment, 
Leak Detector, Maintenance, Mission, and Escape Craft. 
 

 
Figure E-8. Lunar Base Atmospheric Leak Objects with External Missions 

 
There are multiple outcomes of the leak initiators now because we have the possibility of the 
crew being out of the habitat and suited up. To handle these multiple (conditional) outcomes a 
leak event or MMD Event generator block diagram was created external to the Containment 
diagram with the outcomes SmallLeak, MediumLeak, and LargeLeak generated for use in the 
Containment and LeakDetector blocks.  StartMMD is initiated when the simulation starts and 
generates leaks in GenerateMMD based on the frequencies assigned for small, medium and 
large leaks.  Small leaks return to the scenario to see if the leak can be fixed in time. Medium 
and large leaks are associated with the termination of the simulation. 
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Figure E-9. MMD Event Generator 

 
The Containment diagram is modified from the original model by adding the blocks (states) 
necessary to account for the external missions.  The MissionPlanning state was added which 
generates a mission based on availability of the crew. The crew is available if they are not 
tending to a small leak. 
 
Once a mission is generated it places the lunar base in an Unoccupied state where it stays 
throughout the mission time until Returns places the model back in the Occupied state. If a leak 
happens while in the Unoccupied state, the AbortNoted is generated through the Mission block 
diagram and the state is returned to Occupied via the AbortNoted path rather than the Returns 
one.  In this way the en route time is added on to the repair time which increases the possibility 
of a second leak event causing a loss of mission.  Medium and Large leaks while on a mission 
are handled in the Mission block diagram where an evacuation attempt is made without 
occupying the habitat again (the base is abandoned). 
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Figure E-10. Containment Objects Block Diagram with External Work 

 
The Leak Detector diagram and function are the same as the original model. 
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Figure E-11. Leak Detector Block Diagram for External Work Model 
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A state of RequestRepair was added to the Maintenance diagram to allow the repair to start 
based on the availability of the crew. 
 

 
Figure E-12. Maintenance Block Diagram used with External Work 
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The Mission diagram is new to this model and sits in a Pending state until GoOnMission is 
generated in the Containment diagram.  Once GoOnMission is generated the state changes to 
Working for the duration of the mission.  Barring a leak, the state returns to Pending and 
notification of completion is generated with the Returns action.  If there is a small leak while the 
mission is in progress, SmallLeak is generated from the MMDEvents diagram and changes the 
state to SmLeakEmergency which notifies to the external crew to return to the habitat to repair 
the leak.  This is modeled by the AbortMission action, with the time delay for returning to the 
habitat in the SmLeakEmergency state.  AbortMission acts within the Containment diagram as 
noted above to set the state in that diagram to Occupied and to start a repair action. 
 

 
Figure E-13. Mission Block Diagram for External Work 
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The Escape Craft diagram has not changed from the original model. 
 

 
Figure E-14. Escape Craft Block Diagram used with External Work 

 
The variates used for the advanced model are listed in the table below.  Note that the repair 
time of a small leak has been changed from the original model.  It has been lowered from 4 
days to 0.5 day. 
 

Table E-13. Lunar Base with External Mission Variates List 
Variable Description Distribution Parameters  

(unit default  = days) 
SmLeakMTF Small Leak MTF Exponential mu = 240 
MdLeakMTF Medium Leak MTF Exponential mu = 5.50E+04 
LgLeakMTF Large Leak MTF Exponential mu = 2.70E+04 
MissionMT Mean time of an external 

mission 
Normal mu = 2.50E-01 

sigma = 2.50E-02 
RepairReturnTime Time required to return to 

habitat 
Exponential mu = 1.25E-01 

HumanMistake Human error in repair 
causes Large Leak 

Constant 
probability 

0.001 

EscapeMT Escape time Exponential mu = 2.00E+00 
RepairMT Time required to repair a 

Small Leak 
Exponential mu = 0.500 
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The same number of iterations were used as in the original simulation model.  The results are 
presented in Figure E.15. The output of the simulation is a cumulative total versus time based 
upon 1000 iterations.   
 
 

 
Figure E-15. Results of Lunar Base Atmospheric leak with External Missions added 

 
 
E.3  Conclusions 

 

Advantages to modeling via simulation: 

 Provides a powerful modeling method able to represent highly-time dependent or unique 
situations 

 Intermediate results (e.g., scenarios that are “close” to undesired outcomes) are readily 
available 

 Adding large degree of complexity to the model may only slightly increase analysis time 

Limitations to modeling via simulation: 
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 Uncertainty quantification and “importance-type” measures may be time consuming to 
model due to need to repeat the calculations 

 Representing rare events may be difficult when using “naïve” discrete event simulation 

 Modeling tool sets are not widely in use nor accepted 
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