1,100 research outputs found

    On Advanced Mobility Concepts for Intelligent Planetary Surface Exploration

    Get PDF
    Surface exploration by wheeled rovers on Earth's Moon (the two Lunokhods) and Mars (Nasa's Sojourner and the two MERs) have been followed since many years already very suc-cessfully, specifically concerning operations over long time. However, despite of this success, the explored surface area was very small, having in mind a total driving distance of about 8 km (Spirit) and 21 km (Opportunity) over 6 years of operation. Moreover, ESA will send its ExoMars rover in 2018 to Mars, and NASA its MSL rover probably this year. However, all these rovers are lacking sufficient on-board intelligence in order to overcome longer dis-tances, driving much faster and deciding autonomously on path planning for the best trajec-tory to follow. In order to increase the scientific output of a rover mission it seems very nec-essary to explore much larger surface areas reliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to develop an intelligent mo-bile wheeled rover with four or six wheels, and having specific kinematics and locomotion suspension depending on the operational terrain of the rover to operate. DLR's Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of light-weight motion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and in increasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailed modeling, optimization, and simula-tion tasks. We have developed efficient software tools to simulate the rover driveability per-formance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on inclined planes, where wheel and grouser geometry plays a dominant role. Moreover, rover optimization is performed to support the best engineering intuitions, that will optimize structural and geometric parameters, compare various kinematics suspension concepts, and make use of realistic cost functions like mass and consumed energy minimization, static sta-bility, and more. For self-localization and safe navigation through unknown terrain we make use of fast 3D stereo algorithms that were successfully used e.g. in unmanned air vehicle ap-plications and on terrestrial mobile systems. The advanced rover design approach is applica-ble for lunar as well as Martian surface exploration purposes. A first mobility concept ap-proach for a lunar vehicle will be presented

    The MITy micro-rover: Sensing, control, and operation

    Get PDF
    The sensory, control, and operation systems of the 'MITy' Mars micro-rover are discussed. It is shown that the customized sun tracker and laser rangefinder provide internal, autonomous dead reckoning and hazard detection in unstructured environments. The micro-rover consists of three articulated platforms with sensing, processing and payload subsystems connected by a dual spring suspension system. A reactive obstacle avoidance routine makes intelligent use of robot-centered laser information to maneuver through cluttered environments. The hazard sensors include a rangefinder, inclinometers, proximity sensors and collision sensors. A 486/66 laptop computer runs the graphical user interface and programming environment. A graphical window displays robot telemetry in real time and a small TV/VCR is used for real time supervisory control. Guidance, navigation, and control routines work in conjunction with the mapping and obstacle avoidance functions to provide heading and speed commands that maneuver the robot around obstacles and towards the target

    A design strategy for autonomous systems

    Get PDF
    Some solutions to crucial issues regarding the competent performance of an autonomously operating robot are identified; namely, that of handling multiple and variable data sources containing overlapping information and maintaining coherent operation while responding adequately to changes in the environment. Support for the ideas developed for the construction of such behavior are extracted from speculations in the study of cognitive psychology, an understanding of the behavior of controlled mechanisms, and the development of behavior-based robots in a few robot research laboratories. The validity of these ideas is supported by some simple simulation experiments in the field of mobile robot navigation and guidance

    High Speed Lunar Navigation for Crewed and Remotely Piloted Vehicles

    Get PDF
    Increased navigation speed is desirable for lunar rovers, whether autonomous, crewed or remotely operated, but is hampered by the low gravity, high contrast lighting and rough terrain. We describe lidar based navigation system deployed on NASA's K10 autonomous rover and to increase the terrain hazard situational awareness of the Lunar Electric Rover crew

    Hazard avoidance for high-speed rough-terrain unmanned ground vehicles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005."June 2005."Includes bibliographical references (p. 111-116).High-speed unmanned ground vehicles have important applications in rough-terrain. In these applications unexpected and dangerous situations can occur that require rapid hazard avoidance maneuvers. At high speeds, there is limited time to perform navigation and hazard avoidance calculations based on detailed vehicle and terrain models. Furthermore, detailed models often do not accurately predict the robot's performance due to model parameter and sensor uncertainty. This thesis presents the development and analysis of a novel method for high speed navigation and hazard avoidance. The method is based on the two dimensional "trajectory space," which is a compact model-based representation of a robot's dynamic performance limits on natural terrain. This method allows a vehicle to perform dynamically feasible hazard avoidance maneuvers in a computationally efficient manner. This thesis also presents a novel method for trajectory replanning, based on a "curvature matching" technique. This method quickly generates a path connects the end of the path generated by a hazard avoidance maneuver to the nominal desired path. Simulation and experimental results with a small gasoline-powered high-speed unmanned ground vehicle verify the effectiveness of these algorithms. The experimental results demonstrate the ability of the algorithm to account for multiple hazards, varying terrain inclination, and terrain roughness. The experimental vehicle attained speeds of 8 m/s (18 mph) on flat and sloped terrain and 7 m/s (16 mph) on rough terrain.by Matthew J. Spenko.Ph.D

    Path Planning of Mobile Agents using AI Technique

    Get PDF
    In this paper, we study coordinated motion in a swarm robotic system, called a swarm-bot. A swarm-bot is a self-assembling and self-organizing. Artifact composed of a swarm of s-bots, mobile robots with the ability to connect to and is connect from each other. The swarm-bot concept is particularly suited for tasks that require all-terrain navigation abilities, such as space exploration or rescue in collapsed buildings. As a first step toward the development of more complex control strategies, we investigate the case in which a swarm-bot has to explore an arena while avoiding falling into holes. In such a scenario, individual s-bots have sensory–motor limitations that prevent them navigating efficiently. These limitations can be overcome if the s-bots are made to cooperate. In particular, we exploit the s-bots’ ability to physically connect to each other. In order to synthesize the s-bots’ controller, we rely on artificial evolution, which we show to be a powerful tool for the production of simple and effective solutions to the hole avoidance task

    GANav: Group-wise Attention Network for Classifying Navigable Regions in Unstructured Outdoor Environments

    Full text link
    We present a new learning-based method for identifying safe and navigable regions in off-road terrains and unstructured environments from RGB images. Our approach consists of classifying groups of terrain classes based on their navigability levels using coarse-grained semantic segmentation. We propose a bottleneck transformer-based deep neural network architecture that uses a novel group-wise attention mechanism to distinguish between navigability levels of different terrains.Our group-wise attention heads enable the network to explicitly focus on the different groups and improve the accuracy. In addition, we propose a dynamic weighted cross entropy loss function to handle the long-tailed nature of the dataset. We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves the accuracy of visual perception in off-road terrains for navigation. We compare our approach with prior work on these datasets and achieve an improvement over the state-of-the-art mIoU by 6.74-39.1% on RUGD and 3.82-10.64% on RELLIS-3D

    Evolutionary swarm robotics: a theoretical and methodological itinerary from individual neuro-controllers to collective behaviours

    Get PDF
    In the last decade, swarm robotics gathered much attention in the research community. By drawing inspiration from social insects and other self-organizing systems, it focuses on large robot groups featuring distributed control, adaptation, high robustness, and flexibility. Various reasons lay behind this interest in similar multi-robot systems. Above all, inspiration comes from the observation of social activities, which are based on concepts like division of labor, cooperation, and communication. If societies are organized in such a way in order to be more efficient, then robotic groups also could benefit from similar paradigms
    corecore