275 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Cloud-Based Benchmarking of Medical Image Analysis

    Get PDF
    Medical imagin

    AI in Medical Imaging Informatics: Current Challenges and Future Directions

    Get PDF
    This paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine

    Leaning Robust Sequence Features via Dynamic Temporal Pattern Discovery

    Get PDF
    As a major type of data, time series possess invaluable latent knowledge for describing the real world and human society. In order to improve the ability of intelligent systems for understanding the world and people, it is critical to design sophisticated machine learning algorithms for extracting robust time series features from such latent knowledge. Motivated by the successful applications of deep learning in computer vision, more and more machine learning researchers put their attentions on the topic of applying deep learning techniques to time series data. However, directly employing current deep models in most time series domains could be problematic. A major reason is that temporal pattern types that current deep models are aiming at are very limited, which cannot meet the requirement of modeling different underlying patterns of data coming from various sources. In this study we address this problem by designing different network structures explicitly based on specific domain knowledge such that we can extract features via most salient temporal patterns. More specifically, we mainly focus on two types of temporal patterns: order patterns and frequency patterns. For order patterns, which are usually related to brain and human activities, we design a hashing-based neural network layer to globally encode the ordinal pattern information into the resultant features. It is further generalized into a specially designed Recurrent Neural Networks (RNN) cell which can learn order patterns in an online fashion. On the other hand, we believe audio-related data such as music and speech can benefit from modeling frequency patterns. Thus, we do so by developing two types of RNN cells. The first type tries to directly learn the long-term dependencies on frequency domain rather than time domain. The second one aims to dynamically filter out the noise frequencies based on temporal contexts. By proposing various deep models based on different domain knowledge and evaluating them on extensive time series tasks, we hope this work can provide inspirations for others and increase the community\u27s interests on the problem of applying deep learning techniques to more time series tasks

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202

    Multi-Magnification Search in Digital Pathology

    Get PDF
    This research study investigates the effect of magnification on content-based image search in digital pathology archives and proposes to use multi-magnification image representation. Image search in large archives of digital pathology slides provides researchers and medical professionals with an opportunity to match records of current and past patients and learn from evidently diagnosed and treated cases. When working with microscopes, pathologists switch between different magnification levels while examining tissue specimens to find and evaluate various morphological features. Inspired by the conventional pathology workflow, this thesis investigates several magnification levels in digital pathology and their combinations to minimize the gap between AI-enabled image search methods and clinical settings. This thesis suggests two approaches for combining magnification levels and compares their performance. The first approach obtains a single-vector deep feature representation for a WSI, whereas the second approach works with a multi-vector deep feature representation. The proposed content-based searching framework does not rely on any pixel-level annotation and potentially applies to millions of unlabelled (raw) WSIs. This thesis proposes using binary masks generated by U-Net as the primary step of patch preparation to locating tissue regions in a WSI. As a part of this thesis, a multi-magnification dataset of histopathology patches is created by applying the proposed patch preparation method on more than 8,000 WSIs of TCGA repository. The performance of both MMS methods is evaluated by investigating the top three most similar WSIs to a query WSI found by the search. The search is considered successful if two out of three matched cases have the same malignancy subtype as the query WSI. Experimental search results across tumors of several anatomical sites at different magnification levels, i.e., 20×, 10×, and 5× magnifications and their combinations, are reported in this thesis. The experiments verify that cell-level information at the highest magnification is essential for searching for diagnostic purposes. In contrast, low-magnification information may improve this assessment depending on the tumor type. Both proposed search methods generally performed more accurately at 20× magnification or the combination of the 20× magnification with 10×, 5×, or both. The multi-magnification searching approach achieved up to 11% increase in F1-score for searching among some tumor types, including the urinary tract and brain tumor subtypes compared to the single-magnification image search
    corecore