54 research outputs found

    Score-Informed Source Separation for Music Signals

    Get PDF
    In recent years, the processing of audio recordings by exploiting additional musical knowledge has turned out to be a promising research direction. In particular, additional note information as specified by a musical score or a MIDI file has been employed to support various audio processing tasks such as source separation, audio parameterization, performance analysis, or instrument equalization. In this contribution, we provide an overview of approaches for score-informed source separation and illustrate their potential by discussing innovative applications and interfaces. Additionally, to illustrate some basic principles behind these approaches, we demonstrate how score information can be integrated into the well-known non-negative matrix factorization (NMF) framework. Finally, we compare this approach to advanced methods based on parametric models

    Multiple-F0 estimation of piano sounds exploiting spectral structure and temporal evolution

    Get PDF
    This paper proposes a system for multiple fundamental frequency estimation of piano sounds using pitch candidate selection rules which employ spectral structure and temporal evolution. As a time-frequency representation, the Resonator Time-Frequency Image of the input signal is employed, a noise suppression model is used, and a spectral whitening procedure is performed. In addition, a spectral flux-based onset detector is employed in order to select the steady-state region of the produced sound. In the multiple-F0 estimation stage, tuning and inharmonicity parameters are extracted and a pitch salience function is proposed. Pitch presence tests are performed utilizing information from the spectral structure of pitch candidates, aiming to suppress errors occurring at multiples and sub-multiples of the true pitches. A novel feature for the estimation of harmonically related pitches is proposed, based on the common amplitude modulation assumption. Experiments are performed on the MAPS database using 8784 piano samples of classical, jazz, and random chords with polyphony levels between 1 and 6. The proposed system is computationally inexpensive, being able to perform multiple-F0 estimation experiments in realtime. Experimental results indicate that the proposed system outperforms state-of-the-art approaches for the aforementioned task in a statistically significant manner. Index Terms: multiple-F0 estimation, resonator timefrequency image, common amplitude modulatio

    Automatic transcription of polyphonic music exploiting temporal evolution

    Get PDF
    PhDAutomatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving transcription performance. Subsequent approaches propose transcription models based on shift-invariant probabilistic latent component analysis (SI-PLCA), modeling the temporal evolution of notes in a multiple-instrument case and supporting frequency modulations in produced notes. Datasets and annotations for transcription research have also been created during this work. Proposed systems have been privately as well as publicly evaluated within the Music Information Retrieval Evaluation eXchange (MIREX) framework. Proposed systems have been shown to outperform several state-of-the-art transcription approaches. Developed techniques have also been employed for other tasks related to music technology, such as for key modulation detection, temperament estimation, and automatic piano tutoring. Finally, proposed music transcription models have also been utilized in a wider context, namely for modeling acoustic scenes

    Non-Negative Group Sparsity with Subspace Note Modelling for Polyphonic Transcription

    Get PDF
    This work was supported by EPSRC Platform Grant EPSRC EP/K009559/1, EPSRC Grant EP/L027119/1, and EPSRC Grant EP/J010375/1

    Transcribing Multi-Instrument Polyphonic Music With Hierarchical Eigeninstruments

    Get PDF
    This paper presents a general probabilistic model for transcribing single-channel music recordings containing multiple polyphonic instrument sources. The system requires no prior knowledge of the instruments present in the mixture (other than the number), although it can benefit from information about instrument type if available. In contrast to many existing polyphonic transcription systems, our approach explicitly models the individual instruments and is thereby able to assign detected notes to their respective sources. We use training instruments to learn a set of linear manifolds in model parameter space which are then used during transcription to constrain the properties of models fit to the target mixture. This leads to a hierarchical mixture-of-subspaces design which makes it possible to supply the system with prior knowledge at different levels of abstraction. The proposed technique is evaluated on both recorded and synthesized mixtures containing two, three, four, and five instruments each. We compare our approach in terms of transcription with (i.e., detected pitches must be associated with the correct instrument) and without source-assignment to another multi-instrument transcription system as well as a baseline non-negative matrix factorization (NMF) algorithm. For two-instrument mixtures evaluated with source-assignment, we obtain average frame-level F-measures of up to 0.52 in the completely blind transcription setting (i.e., no prior knowledge of the instruments in the mixture) and up to 0.67 if we assume knowledge of the basic instrument types. For transcription without source assignment, these numbers rise to 0.76 and 0.83, respectively

    Score-Informed Source Separation for Musical Audio Recordings [An overview]

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Applying source separation to music

    Get PDF
    International audienceSeparation of existing audio into remixable elements is very useful to repurpose music audio. Applications include upmixing video soundtracks to surround sound (e.g. home theater 5.1 systems), facilitating music transcriptions, allowing better mashups and remixes for disk jockeys, and rebalancing sound levels on multiple instruments or voices recorded simultaneously to a single track. In this chapter, we provide an overview of the algorithms and approaches designed to address the challenges and opportunities in music. Where applicable, we also introduce commonalities and links to source separation for video soundtracks, since many musical scenarios involve video soundtracks (e.g. YouTube recordings of live concerts, movie sound tracks). While space prohibits describing every method in detail, we include detail on representative music‐specific algorithms and approaches not covered in other chapters. The intent is to give the reader a high‐level understanding of the workings of key exemplars of the source separation approaches applied in this domain
    corecore