365 research outputs found

    Fast Back-Projection for Non-Line of Sight Reconstruction

    Get PDF
    Recent works have demonstrated non-line of sight (NLOS) reconstruction by using the time-resolved signal frommultiply scattered light. These works combine ultrafast imaging systems with computation, which back-projects the recorded space-time signal to build a probabilistic map of the hidden geometry. Unfortunately, this computation is slow, becoming a bottleneck as the imaging technology improves. In this work, we propose a new back-projection technique for NLOS reconstruction, which is up to a thousand times faster than previous work, with almost no quality loss. We base on the observation that the hidden geometry probability map can be built as the intersection of the three-bounce space-time manifolds defined by the light illuminating the hidden geometry and the visible point receiving the scattered light from such hidden geometry. This allows us to pose the reconstruction of the hidden geometry as the voxelization of these space-time manifolds, which has lower theoretic complexity and is easily implementable in the GPU. We demonstrate the efficiency and quality of our technique compared against previous methods in both captured and synthetic dat

    VolumeEVM: A new surface/volume integrated model

    Get PDF
    Volume visualization is a very active research area in the field of scien-tific visualization. The Extreme Vertices Model (EVM) has proven to be a complete intermediate model to visualize and manipulate volume data using a surface rendering approach. However, the ability to integrate the advantages of surface rendering approach with the superiority in visual exploration of the volume rendering would actually produce a very complete visualization and edition system for volume data. Therefore, we decided to define an enhanced EVM-based model which incorporates the volumetric information required to achieved a nearly direct volume visualization technique. Thus, VolumeEVM was designed maintaining the same EVM-based data structure plus a sorted list of density values corresponding to the EVM-based VoIs interior voxels. A function which relates interior voxels of the EVM with the set of densities was mandatory to be defined. This report presents the definition of this new surface/volume integrated model based on the well known EVM encoding and propose implementations of the main software-based direct volume rendering techniques through the proposed model.Postprint (published version

    An exact general remeshing scheme applied to physically conservative voxelization

    Full text link
    We present an exact general remeshing scheme to compute analytic integrals of polynomial functions over the intersections between convex polyhedral cells of old and new meshes. In physics applications this allows one to ensure global mass, momentum, and energy conservation while applying higher-order polynomial interpolation. We elaborate on applications of our algorithm arising in the analysis of cosmological N-body data, computer graphics, and continuum mechanics problems. We focus on the particular case of remeshing tetrahedral cells onto a Cartesian grid such that the volume integral of the polynomial density function given on the input mesh is guaranteed to equal the corresponding integral over the output mesh. We refer to this as "physically conservative voxelization". At the core of our method is an algorithm for intersecting two convex polyhedra by successively clipping one against the faces of the other. This algorithm is an implementation of the ideas presented abstractly by Sugihara (1994), who suggests using the planar graph representations of convex polyhedra to ensure topological consistency of the output. This makes our implementation robust to geometric degeneracy in the input. We employ a simplicial decomposition to calculate moment integrals up to quadratic order over the resulting intersection domain. We also address practical issues arising in a software implementation, including numerical stability in geometric calculations, management of cancellation errors, and extension to two dimensions. In a comparison to recent work, we show substantial performance gains. We provide a C implementation intended to be a fast, accurate, and robust tool for geometric calculations on polyhedral mesh elements.Comment: Code implementation available at https://github.com/devonmpowell/r3

    Automated Digital Machining for Parallel Processors

    Get PDF
    When a process engineer creates a tool path a number of fixed decisions are made that inevitably produce sub-optimal results. This is because it is impossible to process all of the tradeoffs before generating the tool path. The research presents a methodology to support a process engineers attempt to generate optimal tool paths by performing automated digital machining and analysis. This methodology automatically generates and evaluates tool paths based on parallel processing of digital part models and generalized cutting geometry. Digital part models are created by voxelizing STL files and the resulting digital part surfaces are obtained based on casting rays into the part model. Tool paths are generated based on a general path template and updated based on generalized tool geometry and part surface information. The material removed by the generalized cutter as it follows the path is used to obtain path metrics. The paths are evaluated based on the path metrics of material removal rate, machining time, and amount of scallop. This methodology is a parallel processing accelerated framework suitable for generating tool paths in parallel enabling the process engineer to rank and select the best tool path for the job

    Animated rendering of cardiac model simulations

    Get PDF
    Heart disease has been the leading cause of death both in the world and the United States in the past decade. Computational cardiac modeling and simulation, especially patient-specific cardiac modeling has been recognized as one of the best ways to improve diagnosis of heart disease by providing insights in individual disease characteristics that cannot be obtained by other means. However presenting the results of cardiac simulations to cardiologists in an interactive manner can considerably improve the utility of cardiac models in understanding the heart function. In this work, we have developed virtual reality and animated volume rendering techniques to render the results of cardiac simulations. We have developed a GPU accelerated algorithm that produces time varying voxelized representation of the quantities of interest in a cardiac model, which can then be interactively rendered in real time. We voxelize the different time frames of the analysis model and transfer the time-varying data to the GPU memory using a flat data structure. This technique allows us to visualize and interact with animation in real time. As a proof-of-concept, we test our method on interactively rendering the simulation results of cardiac biomechanics simulations. We also present the timing results on post-processing and rendering two different cardiac IGA at different resolutions. We achieve an interactive frame rate of over 50 fps for all test cases

    Intelligent Computational Transportation

    Get PDF
    Transportation is commonplace around our world. Numerous researchers dedicate great efforts to vast transportation research topics. The purpose of this dissertation is to investigate and address a couple of transportation problems with respect to geographic discretization, pavement surface automatic examination, and traffic ow simulation, using advanced computational technologies. Many applications require a discretized 2D geographic map such that local information can be accessed efficiently. For example, map matching, which aligns a sequence of observed positions to a real-world road network, needs to find all the nearby road segments to the individual positions. To this end, the map is discretized by cells and each cell retains a list of road segments coincident with this cell. An efficient method is proposed to form such lists for the cells without costly overlapping tests. Furthermore, the method can be easily extended to 3D scenarios for fast triangle mesh voxelization. Pavement surface distress conditions are critical inputs for quantifying roadway infrastructure serviceability. Existing computer-aided automatic examination techniques are mainly based on 2D image analysis or 3D georeferenced data set. The disadvantage of information losses or extremely high costs impedes their effectiveness iv and applicability. In this study, a cost-effective Kinect-based approach is proposed for 3D pavement surface reconstruction and cracking recognition. Various cracking measurements such as alligator cracking, traverse cracking, longitudinal cracking, etc., are identified and recognized for their severity examinations based on associated geometrical features. Smart transportation is one of the core components in modern urbanization processes. Under this context, the Connected Autonomous Vehicle (CAV) system presents a promising solution towards the enhanced traffic safety and mobility through state-of-the-art wireless communications and autonomous driving techniques. Due to the different nature between the CAVs and the conventional Human- Driven-Vehicles (HDVs), it is believed that CAV-enabled transportation systems will revolutionize the existing understanding of network-wide traffic operations and re-establish traffic ow theory. This study presents a new continuum dynamics model for the future CAV-enabled traffic system, realized by encapsulating mutually-coupled vehicle interactions using virtual internal and external forces. A Smoothed Particle Hydrodynamics (SPH)-based numerical simulation and an interactive traffic visualization framework are also developed
    • …
    corecore