
University of New Mexico
UNM Digital Repository

Electrical and Computer Engineering ETDs Engineering ETDs

Summer 7-13-2018

Intelligent Computational Transportation
Yuming Zhang

Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds

Part of the Electrical and Computer Engineering Commons, and the Other Computer
Engineering Commons

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
disc@unm.edu.

Recommended Citation
Zhang, Yuming. "Intelligent Computational Transportation." (2018). https://digitalrepository.unm.edu/ece_etds/424

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_etds%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds?utm_source=digitalrepository.unm.edu%2Fece_etds%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalrepository.unm.edu%2Fece_etds%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalrepository.unm.edu%2Fece_etds%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalrepository.unm.edu%2Fece_etds%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_etds/424?utm_source=digitalrepository.unm.edu%2Fece_etds%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

Intelligent Computational Transportation

by

Yuming Zhang

DISSERTATION

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Engineering

The University of New Mexico

Albuquerque, New Mexico

July, 2018

ii

Acknowledgments

I give my deepest love and unbounded gratitude to my family, Yunyun, Sherry, Leo,
Albert, and my parents. They are my motivation to keep going forward firmly and
fearlessly. I would like to thank my coworkers, Steven Garcia, Ran Luo, Qiong Wu,
Cong Chen, for their open discussion and help on the projects. I would also like to
thank the committees, Dr. Rafael Fierro, Dr. Marios Pattichis, Dr. Wei Shu, and
Dr. Guohui Zhang, for their kindly suggestions and professional comments. Many
thanks are also given to my advisor, Dr. Yin Yang. This dissertation would not
happen without his help and support.

iii

Intelligent Computational Transportation

by

Yuming Zhang

Ph.D., Computer Engineering, University of New Mexico, 2018

Abstract

Transportation is commonplace around our world. Numerous researchers dedicate

great efforts to vast transportation research topics. The purpose of this dissertation

is to investigate and address a couple of transportation problems with respect to

geographic discretization, pavement surface automatic examination, and traffic flow

simulation, using advanced computational technologies.

Many applications require a discretized 2D geographic map such that local in-

formation can be accessed efficiently. For example, map matching, which aligns a

sequence of observed positions to a real-world road network, needs to find all the

nearby road segments to the individual positions. To this end, the map is discretized

by cells and each cell retains a list of road segments coincident with this cell. An

efficient method is proposed to form such lists for the cells without costly overlap-

ping tests. Furthermore, the method can be easily extended to 3D scenarios for fast

triangle mesh voxelization.

Pavement surface distress conditions are critical inputs for quantifying roadway

infrastructure serviceability. Existing computer-aided automatic examination tech-

niques are mainly based on 2D image analysis or 3D georeferenced data set. The

disadvantage of information losses or extremely high costs impedes their effectiveness

iv

and applicability. In this study, a cost-effective Kinect-based approach is proposed

for 3D pavement surface reconstruction and cracking recognition. Various cracking

measurements such as alligator cracking, traverse cracking, longitudinal cracking,

etc., are identified and recognized for their severity examinations based on associ-

ated geometrical features.

Smart transportation is one of the core components in modern urbanization

processes. Under this context, the Connected Autonomous Vehicle (CAV) sys-

tem presents a promising solution towards the enhanced traffic safety and mobil-

ity through state-of-the-art wireless communications and autonomous driving tech-

niques. Due to the different nature between the CAVs and the conventional Human-

Driven-Vehicles (HDVs), it is believed that CAV-enabled transportation systems

will revolutionize the existing understanding of network-wide traffic operations and

re-establish traffic flow theory. This study presents a new continuum dynamics

model for the future CAV-enabled traffic system, realized by encapsulating mutually-

coupled vehicle interactions using virtual internal and external forces. A Smoothed

Particle Hydrodynamics (SPH)-based numerical simulation and an interactive traffic

visualization framework are also developed.

v

Contents

List of Figures ix

List of Tables xii

1 Introduction 1

2 Efficient Discretization 6

2.1 Introduction . 6

2.2 Related Work . 8

2.3 Terminology Review . 11

2.4 Scanline-based Voxelization . 12

2.4.1 Line Voxelization . 13

2.4.2 Triangle Voxelization . 15

2.5 Performance Analysis . 23

2.6 Experiments and Results . 27

2.7 Conclusions . 34

vi

Contents

3 Autonomous Pavement Surface Recognition 36

3.1 Introduction . 36

3.2 Previous Work . 39

3.3 Kinect-based Data Collection . 42

3.4 Research Methodology . 45

3.4.1 An Overview of System Framework 45

3.4.2 Depth Retrieval and Surface Reconstruction 46

3.4.3 Feature Extraction . 46

3.4.4 Crack Analysis . 49

3.5 Experimental Tests and Discussions 53

3.5.1 Surface Reconstruction . 53

3.5.2 Accuracy Experiment . 54

3.5.3 Test Results for Various Cracking Detection 56

3.5.4 Limitations . 60

3.6 Conclusions . 61

4 Computational Future Traffic Flow Simulation 63

4.1 Introduction . 63

4.2 Related Work . 65

4.3 Methodology . 69

4.3.1 Virtual Forces Driven Traffic Flow Model 69

vii

Contents

4.3.2 Discretization and SPH . 72

4.3.3 Numerical Simulation and Smoothing Kernels 73

4.3.4 Incorporating Existing Traffic Flow Models 75

4.4 System Implementation . 77

4.4.1 System Overview . 78

4.4.2 Roadway Geometries . 79

4.4.3 Simulation in Roadway Networks 81

4.4.4 Fast Neighbor Search . 82

4.4.5 Collision Detection and Handling 83

4.5 Experimental Results . 84

4.5.1 Model Validation . 84

4.5.2 CAV-enabled Traffic Simulation 87

4.6 Conclusions . 91

5 Discussion 94

5.1 Summary . 94

5.2 Future Work . 95

A Derivation of Eq. 2.7 97

References 98

viii

List of Figures

1.1 The map matching example . 2

2.1 The voxelization result of a tree model 7

2.2 Three steps of voxelization . 12

2.3 The comparison of RLV, SLV and ILV 15

2.4 Parallel scanlines used to cover the interior of Ti 17

2.5 The resulting triangle voxelizations using different scanline intervals 19

2.6 The next most distant voxel with respect to the current scanline . . 20

2.7 The comparison of a näıve and the proposed scanline strategy 21

2.8 Detailed voxelization results of RLV and ILV 23

2.9 Downgraded to 18- or 6-tunnel-free methods 24

2.10 Voxelization of a rotating equilateral triangle 26

2.11 The performance of voxelizing a rotating triangle 29

2.12 The performance of a triangle voxelization under various resolutions 30

2.14 The iOS implementation of our voxelization method 31

ix

List of Figures

2.13 The voxelizations of various 3D models 32

2.15 The difference in voxelizations of a 3D dragon model 33

2.16 Applications of our voxelization method 34

3.1 Kinect sensor and the data collection setup 42

3.2 The expert evaluation based on photograph 44

3.3 An overview of the proposal framework of crack analysis 45

3.4 Typical vertex normal distributions 47

3.5 DGM of a vertex . 48

3.6 Crack region determination . 50

3.7 Width measurement . 52

3.8 A WebGL based database . 54

3.9 The accuracy study results . 55

3.10 More crack analysis results . 60

4.1 Three kernels in the SPH simulation 73

4.2 The flow chart of the traffic flow simulation framework 77

4.3 The graphical user interface of the system 80

4.4 Linear combination of two traffic flow pieces. 82

4.5 The detailed traffic visualization and animation 83

4.6 The real-world traffic data . 85

x

List of Figures

4.7 The fundamental diagram result of the downgraded model 87

4.8 The simulation result under an artificial accident scenario by the

downgraded model . 88

4.9 Testing the fundamental diagram and traffic dynamic characteristics

in the CAV-enabled traffic . 89

4.10 The responses to the imposed density/velocity change 90

4.11 The results of the congestion simulation in the CAV-enabled traffic . 92

xi

List of Tables

2.1 Comparative statistics of complexity 28

2.2 The time performance of GPU/CPU and iOS implementations . . . 31

2.3 Comparative statistics of resulting voxel numbers 33

3.1 Transverse cracking severity detection results. 57

3.2 Longitudinal cracking severity detection results. 57

3.3 Alligator cracking severity detection results. 57

4.1 Parameters for the traffic flow simulation 86

xii

Chapter 1

Introduction

The development of modern transportation takes great advantage of emerging com-

putational technologies. A huge amount of traffic data can be collected from vari-

ous advanced sensing technologies, inductance loop detectors, surveillance cameras,

Global Positioning System (GPS) modules, etc. The data provides detailed instant

traffic states and facilitates traffic control and prediction. In the infrastructure main-

tenance area, autonomous road analyzers, such as a vehicle equipped with a laser-

based scanning system, are widely used to help transportation agencies monitor and

evaluate the road surface distress conditions and determine the infrastructure ser-

viceability. Recent Connected Autonomous Vehicle (CAV) technologies evolve very

quickly and present an attractive solution to augmented traffic safety and mobility.

On the other hand, the deployment of advanced computational technologies brings

new challenges to transportation. To fully dig out the huge information in the big

traffic data, people might have to dedicate great effort and develop new analysis

methods. Current autonomous road analyzers are highly expensive and consume a

considerable part of the annual transportation budget. As the urban road network

keeps expanding, low-cost road analyzers need to be developed. Equipped with ad-

vanced communication technologies, CAVs are mutually-coupled which makes them

1

Chapter 1. Introduction

Figure 1.1: The map matching algorithm (a) needs to efficiently find all the nearby
road segments to the given positions (b).

different from conventional Human Driven Vehicles (HDVs). Consequently, current

traffic flow models might not be suitable for simulating CAV-enable traffic systems.

New traffic flow theory for CAV-enable traffic needs to be established. The purpose

of this dissertation is to investigate and address a couple of transportation problems

using advanced computational technologies.

Discretization is essential to computer-related technologies, because computers

deal with digital quantities. For instance, a real-world curved road is represented by

a sequence of line segments, or road segments, in Geographic Information System

(GIS) data. Many applications in transportation need a discretized map such that

local geographic information can be accessed efficiently. Map matching [LZZ+09], an

algorithm that aligns a sequence of position, or a trajectory, to a road network, is

one of those application (Fig. 1.1 (a)). One key step of the algorithm is to efficiently

find all the nearby road segments to a given position. The solution is easy since

one can discretize the map by cells and let each cell retain a list that contains all

road segments coincident with this cell (Fig. 1.1 (b)). Therefore, once a position is

2

Chapter 1. Introduction

given, the cell is determined immediately and so as the list. To generate the list, it is

conventional to apply overlapping tests between the cells and the road segments. In

Chapter 2, we propose an efficient discretization method avoiding the costly overlap-

ping tests. Furthermore, the method can be extended to 3D scenarios for the surface

voxelization of geometrically complex models [ZGX+17]. Unlike recent techniques

relying on triangle-voxel intersection tests, our algorithm exploits the conventional

parallel-scanline strategy. Observing that there does not exist an optimal scanline

interval in general 3D cases if one wants to use parallel voxelized scanlines to cover

the interior of a triangle, we subdivide a triangle into multiple axis-aligned slices and

carry out the scanning within each polygonal slice. The theoretical optimal scanline

interval can be obtained to maximize the efficiency of the algorithm without miss-

ing any voxels on the triangle. Once the collection of scanlines are determined and

voxelized, we obtain the surface voxelization. We fine tune the algorithm so that it

only involves a few operations of integer additions and comparisons for each voxel

generated. Finally, we comprehensively compare our method with the state-of-the-

art method in terms of theoretical complexity, runtime performance and the quality

of the voxelization on both CPU and GPU of a regular desktop PC, as well as on a

mobile device. The results show that our method outperforms the existing method,

especially when the resolution of the voxelization is high.

Pavement surface distress conditions are critical inputs for quantifying roadway

infrastructure serviceability. Numerous computer-aided automatic examination tech-

niques have been deployed for pavement distress condition assessments, such as dig-

ital image processing methods. However, their effectiveness and applicability are

impeded due to information losses in 2D image combination processes or extremely

high costs in 3D geo-referenced data set. In Chapter 3, a cost-effective Kinect-based

approach is presented for 3D pavement surface reconstruction and cracking recog-

nition. We propose a comprehensive computational solution for the detection and

recognition of pavement distress feature identification [ZCW+18]. Various cracking

3

Chapter 1. Introduction

measurements such as alligator cracking, traverse cracking, longitudinal cracking,

etc. are identified and recognized for their severity examinations based on associated

geometrical features. The experimental results indicate that this method is effective

in reducing data collection costs and extracting analytical information on pavement

cracking measurements. The research findings confirm that the proposed approach

provides a viable, applicable solution to an automatic pavement surface condition

detection and evaluation. The proposed methodology is transferable for pavement

surface reconstruction and distress condition detection based on the other 3D cloud

point data. It provide an alternative inexpensive complement to existing pavement

examination methodologies.

Recent technology advances significantly push forward the development and the

deployment of the concept of smart, such as smart community and smart city. Smart

transportation is one of the core components in modern urbanization processes. Un-

der this context, the CAV system presents a promising solution towards the enhanced

traffic safety and mobility through state-of-the-art wireless communications and au-

tonomous driving techniques. Being capable of collecting and transmitting real-time

vehicle-specific, location-specific, and area-wide traffic information, it is believed that

CAV-enabled transportation systems will revolutionize the existing understanding of

network-wide traffic operations and re-establish traffic flow theory. In Chapter 4, we

develops a new continuum dynamics model for the future CAV-enabled traffic system,

realized by encapsulating mutually-coupled vehicle interactions using virtual inter-

nal and external forces [ZZFY18]. Leveraging the Newton’s second law of motion,

our model naturally preserves the traffic volume and automatically handles both the

longitudinal and lateral traffic operations due to its two-dimensional nature, which

sets us apart from the existing macroscopic traffic flow models. Our model can also

be rolled back to handle the conventional traffic of human drivers, and the experi-

ment shows that the model describes the real-world traffic behavior well. Therefore,

we consider the proposed model a complement and generalization of the existing

4

Chapter 1. Introduction

traffic theory. We also develop a Smoothed Particle Hydrodynamics (SPH)-based

numerical simulation and an interactive traffic visualization framework. By posing

user-specified external constraints, our system allows users to visually understand

the impact of different traffic operations interactively.

5

Chapter 2

Efficient Discretization

2.1 Introduction

Real world geometries have a diverse range of forms and shapes, usually consist-

ing of various kinds of primitives like lines, triangles, polygons, curved surfaces,

etc. In order to visualize, animate, render and analyze such geometries with dig-

ital computers, a discrete representation is essential. Voxelization, as one of the

most widely used discretizing approaches, converts a continuous geometry into a

set of volumetric pixels or voxels which best approximates the original shape. Vox-

elization plays a fundamental role in computer graphics, and it often stands as an

important geometric pre-processing step in many applications, such as virtual real-

ity [KJ+01], medical imaging/visualization [KK99], global rendering [LHLW10], col-

lision detection [Ber97, HK97, NSSL13], computer animation or simulation [ZCK98,

JBT04,LFWK05,ZD17,DKB+16], and other interesting areas [ZSMS14]. A surface

voxelization of a 3D model produces a set of boxes/voxels that encapsulates its geo-

metric boundary, which is often represented as a triangle mesh in computer graphics.

We evaluate voxelization algorithms by their efficiency, accuracy, separability and

6

Chapter 2. Efficient Discretization

Figure 2.1: The results of the voxelization of a tree model (842K triangles) using the
proposed method under the resolutions of 256, 512 and 1024 respectively.

minimality, following the framework of Cohen-Or and Kaufman [COK95]. Many

existing voxelization algorithms [SS10] [Pan11] are based on overlap tests, wherein

every potential voxel candidate undergoes a sequence of tests to determine whether

it intersects a triangle. These methods produce super covers of input models (see

Sec. 2.3 for a quick terminology review). A drawback of the methods is that the

triangle-voxel intersection test could be relatively expensive, compared to the scan-

conversion algorithms [Kau87,Kau88,KS87]. The 3D scan-conversion algorithms are

extensions of their 2D counterparts (i.e. the famous Bresenham’s algorithm [Bre65]

and very efficient. However, due to the complication of 3D scenarios, the resulting

7

Chapter 2. Efficient Discretization

voxelization produced by these algorithms is only a subset of the cover of the original

model.

In this chapter, we propose a new algorithm that can produce a cover using

parallel scanlines. A cover is N-tunnel-free, which is an important feature of a high-

quality surface voxelization. The biggest challenge in our method is to determine

an appropriate set of parallel scanlines. The scanlines should not miss any voxel

on the cover, and the distance between two consecutive scanlines or the scanline

interval (SI) should be optimal in order to achieve high efficiency. We will show

that there does not exist a “gold standard” allowing us to set a constant SI in a

general 3D case. Instead, our method subdivides an input triangle into multiple axis-

aligned slices. The voxelization of each slice degenerates to a 2D case. We derive

a theoretically optimal SI for setting up the scanlines for each slice (see detailed

explanation in Sec. 2.4.2). We further derive an integer-only version of the algorithm

with minor accuracy compromise, and an enhanced version for generating the super

cover. We test our algorithm on various 3D models with both CPU and GPU with

a desktop computer, as well as the mobile platform of IOS device (an Apple iPhone

6). Experiments, for example, voxelization of a tree model (Fig. 2.1), show that

the proposed method presents a good performance, especially for a high-resolution

voxelization. To the best of our knowledge, our method is the first one to generate

a N-tunnel-free cover or the super cover using the scanline strategy.

2.2 Related Work

The separating axis theorem (SAT) [GLM96,AMHH08] provides a general guideline

for an overlap test between two convex polygons: the triangle-box overlap test is

simply a base case in the SAT [Ebe01]. Akenine-Möller [AM05] adopted a standard

triangle-box overlap test following the SAT, which consists of 13 sub-tests: three

8

Chapter 2. Efficient Discretization

for the box against the minimal box of the triangle, one for overlap test between

the box and the plane determined by the triangle, and nine for the projections of

the triangle against the box. The triangle intersects the box if it passes all the

tests. In a recent contribution, Schwarz and Seidel [SS10] provided the sufficient and

necessary condition of the box-triangle intersection tests: 1) the box intersects the

triangle’s plane; and 2) the projections of the box and the triangle overlap on all of

the three coordinate planes. They use nine edge functions to evaluate the second

condition, which essentially correspond to the nine sub-tests in [AM05]. They also

improved the algorithm by reducing the number of candidate voxels and skipping

unnecessary tests based on the observation that a triangle is of at most three-voxel

thickness in its dominant axis direction of the triangle’s normal. Based on their

method, Pantaleoni [Pan11] further reduced the number of candidate voxels in the

inner loop of the 2D projection overlap test by computing a tighter bound. Crassin

and Green [CG12] presented a simple voxelization pipeline basically following the

work in [SS10, Pan11]. The resulting voxelization is not a correct 6-tunnel-free one,

because only the coverage of the center of each voxel is tested against the triangles

to generate fragments. They employed the idea in [HAMO05] to fix the problem.

However, the method can not generate super covers because the voxels captured at

the triangle edges could be redundant.

Overlap tests form the basis of many existing rasterization algorithm. McCool

and colleagues [MWM01] examined four corners of a pixel tile against each edge

of a triangle by evaluating the signs of its three edge functions: a point is inside

a triangle if and only if all of the three edge functions at the point are positive.

A conservative 2D rasterization algorithm was presented in [Pin88, AMA05], which

modified the triangle setup and selected a different evaluation point to reduce the

computation. Haines and Wallace [HW94] observed that the overlap test between a

box and a plane can be done by projecting the box to the diagonal that best aligns

with the plane normal, and only two corresponding corners would be involved in the

9

Chapter 2. Efficient Discretization

test. It is suggested that if the entire box is in either the positive or the negative

half-plane, only one of the box corners needs to be tested.

Instead of using overlap tests, Huang and colleagues [HYFK98] voxelized a surface

by evaluating a distance threshold. If the distance from voxel center to the triangle

is smaller than a certain threshold value, an overlap is determined. Varadhan and

colleagues [VKK+03] presented an algorithm computing the max-norm distance be-

tween voxels and other geometric primitives, which was formulated as an optimiza-

tion problem. Brimkov and Barneva [BB02] presented a nice surface voxelization

namely the graceful plane, which is 6-tunnel-free and jump free. Graceful planes

are the thinnest possible discrete voxelizations in which any geometry primitives are

connected sets of voxels. Fei and colleagues [FWC12] proposed a point-tessellated

voxelization method. Taking advantage of the powerful tessellator in GPU hardware,

the method efficiently generates watertight voxelizations. The resulting voxelizations

approximate the ground truth (i.e. super covers) well and are suitable for applica-

tions where accuracy is not the major concern, such as video games and virtual

realities. Chao and colleagues [CWDY15] set up a set of sampling points of the

input triangle. The voxelization of the triangle is simply the union of all the point

voxelization. The method also produces an approximation and does not guarantee

to generate a cover.

The 3D/2D line voxelization algorithms lie in the most inner loop of our algorithm

and must be efficent. Liu and Chen [LC02] extended 2D Bresenham’s algorithm for

3D line segments. Au and Woo [AW11] investigated the 3D Bresenham’s algorithm

using the Voronoi diagram. Our method borrows the ideas in these 3D line rasteri-

zation techniques, which generate the line voxelization by incrementally evaluating

stepping parameters along the straight line segment to determine the corresponding

voxel sequence [AW+87, COK97, HCTS10]. We improve this algorithm so that only

integer operations are involved, which could further speed up the computation with

10

Chapter 2. Efficient Discretization

the support of dedicated hardware [SBV91,LM00].

As a fundamental algorithm, voxelization has been extensively implemented and

tested on modern GPUs architectures. Dong and colleagues [DCB+04] proposed a

fast voxelization algorithm on the GPU for complex polygon models, which achieved

a real-time frame rate. GPU-accelerated algorithm [ED08, IDC09] as well as GPU-

oriented data structures [ZHWG08, ZGHG11] have been researched in order to op-

timally utilize the hardware resources. Our method is parallelizable and has been

implemented using nVidia CUDA in our experiments.

2.3 Terminology Review

We briefly review some useful terminologies [COK95,SS10,COK97,ZCEP07] regard-

ing the properties and quality of a voxelization. The generated voxel is assumed to

have a unit size in all of its x, y and z directions, and we use Z3 to denote the set

consisting of all the integer coordinates or grid points corresponding to the centers of

all the voxels. Hereinafter, we use bold lowercase letters, e.g. p(px, py, pz) to denote

a point defined in R3 with real coordinates px, py and pz, and bold uppercase letters

like P(Px, Py, Pz) to denote a grid point or a voxel with integer indices of Px, Py and

Pz in Z3.

Two neighboring voxels are 26-adjacent if they share a face, an edge or a corner.

Similarly, two voxels are 18-adjacent if they are connected by a face or an edge,

or 6-adjacent if connected by just a face. An N -path is a voxel sequence in which

any two consecutive voxels are N -adjacent, for N ∈ {6, 18, 26}. By connecting the

centers of every two adjacent voxels along an N -path, we obtain its polygon arc. Let

S be a continuous surface patch and V be its voxelization. We say that an N -path

penetrates V if its polygon arc passes through S. If there does not exist an N -path

in Z3 \ V penetrating V , V is called N-tunnel-free. If S is completely encapsulated

11

Chapter 2. Efficient Discretization

by V , and every voxel in V is intersecting S, V is called a cover of S. Intuitively, a

cover with N -tunnel-free property is a good voxelization of the surface. 1

Figure 2.2: The voxelization of vertices, edges and the interior area of a triangle.

2.4 Scanline-based Voxelization

As shown in Fig. 2.2, our algorithm consists of three steps, namely the voxelization

of triangles’ vertices, edges, and the interior. Our voxelization is 26-tunnel-free, and

it can be downgraded to 18- or 6-tunnel-free to generate thinner voxelizations if

necessary. The first step of vertex or point voxelization is trivial. Given a point

p0(x0, y0, z0), its corresponding voxel indices can be easily obtained as P0(bx0 +

1/2c, by0 + 1/2c, bz0 + 1/2c). Next, we will detail the second and the third step of

how to voxelize the edges and the interior of an input triangle.

1Strictly speaking, there are small differences between concepts of cover, super cover
and minimum cover as discussed in existing literature [COK95]. Think of a simple 3D
point coinciding with a voxel’s corner. A super cover will be all the eight voxels incident
to the point. Any one of these eight voxels is a minimum cover, and any subset of these
eight voxels is a cover. For a closed triangularized manifold, however it is not practically
necessary to differentiate these minor differences.

12

Chapter 2. Efficient Discretization

2.4.1 Line Voxelization

Our line voxelization is based upon the work of Amanatides and Woo [AW+87], which

efficiently generates a 6-path line voxelization. We further generalize this method to

an integer-only version so that only integer operations are needed.

RLV: regular line voxelization Assume that two ends of the line segment, given

by p0(x0, y0, z0) and p1(x1, y1, z1), are contained by the voxels P0(X0, Y0, Z0) and

P1(X1, Y1, Z1) respectively. Let v = [vx, vy, vz]
> be a unit vector directing from p0

to p1. If we cast a ray from p0 to p1, this ray will first intersect a facet of P0,

and the voxel adjacent to this intersected facet will be marked as part of the final

voxelization. As the ray moves forward, it will intersect |X1−X0| yz facets, |Y1−Y0|

xz facets, and |Z1 − Z0| xy facets before it reaches p1. We define the x−direction

distance function lx(i) as the distance along the ray from p0 to the ith yz facet, where

0 ≤ i ≤ |X1 −X0|. The projection of lx(i) on the x axis is lx(i) · |vx|. Recalling that

the dimension of a voxel h equals to 1, we have lx(i) · |vx| = dx0 + i or:

lx(i) =
dx0
|vx|

+
i

|vx|
, (2.1)

where dx0 is the distance (along x axis) between p0 and its first intersecting yz facet,

which can be evaluated as:

dx0 =

 X0 − x0 + 1
2

if vx > 0

1
2
− (X0 − x0) if vx < 0

. (2.2)

If vx = 0, we have lx(i)→∞ which means the ray will never hit a yz facet and the

line voxelization degenerates to 2D.

In each iteration, we track the step distances, denoted by lx, ly, and lz, from the

current voxel to the next yz, xz, and xy facet. Let mx = 1/|vx|, my = 1/|vy|, and

mz = 1/|vz| denote the slopes of three distance functions. Assume that at certain

step j, lx = lmin , min{lx, ly, lz}, indicating that the ray will intersect a yz facet

13

Chapter 2. Efficient Discretization

and P′(Xj + ∆X, Yj, Zj) will be marked next. Three step distance variables for the

next step can be updated incrementally as: lx ← lx− lmin+mx = mx, ly ← ly− lmin,

and lz ← lz − lmin. This process stops when the ray reaches p1, where the last voxel

generated will be P1(X1, Y1, Z1).

The minimum step distances are not unique if the line segment intersects a voxel

at one of its edges or corners, which is referred to as a singular point. We can either

pick an arbitrary voxel candidate with minimum step distance or pick all the voxels

incident to the singular point. In the latter case, the corresponding line voxelization

forms a super cover and we call this modified method super-cover line voxelization

(SLV). Fig. 2.3 (a) and (b) show the results of RLV and SLV.

ILV: integer-only line voxelization The integer-only line voxelization eliminates

runtime floating-point arithmetics in RLV. To do so, we use the grid points of P0

and P1 to approximate p0 and p1, and dx0 , dy0, d
z
0 in Eq. (2.2) equal to 1/2. Let v be

[X1 −X0, Y1 − Y0, Z1 − Z0]
>, and the distance functions are re-written as:

lx(i) =
1

|X1 −X0|
i+

1

2|X1 −X0|

ly(i) =
1

|Y1 − Y0|
i+

1

2|Y1 − Y0|

lz(i) =
1

|Z1 − Z0|
i+

1

2|Z1 − Z0|

. (2.3)

It is noteworthy that true values of distance functions are of less interest, as we only

need the relative order among lx, ly, and lz to determine the next voxel. Therefore, we

multiply both sides of Eq. (2.3) by a scaling factor s = 2|X1 −X0||Y1 − Y0||Z1 −Z0|

resulting in three integer-valued distance functions denoted by Lx(i) = s · lx(i),

Ly(i) = s · ly(i), and Lz(i) = s · lz(i) such that:
Lx(i) = 2Mxi+Mx

Ly(i) = 2Myi+My

Lz(i) = 2M zi+M z

, (2.4)

14

Chapter 2. Efficient Discretization

where Mx = |Y1−Y0||Z1−Z0|, My = |X1−X0||Z1−Z0| and M z = |X1−X0||Y1−Y0|

are all integers. Then, we can utilize three integers Lx = s·lx, Ly = s·ly and Lz = s·lz

as the integer-counterparts of lx, ly and lz to determine the voxels to be generated

along the ray. ILV is an approximation of RLV as it forces the ends of a line segments

to be at the grid points.

Figure 2.3: (a) RLV and SLV generate identical voxelization for a general line segment
without singular points. (b) SLV captures more voxles than RLV to form a super
cover if the line segment contains a singular point. (c) Small variations of the voxels
generated by ILV and RLV due to the voxel center approximation.

2.4.2 Triangle Voxelization

Triangle voxelization targets the interior of an input triangle T , and outputs a 26-

tunnel-free set of voxels V that completely encapsulates T . Unlike SAT-based meth-

ods, we do not perform excessive overlap tests for voxels residing in the bounding

box of T . Instead, we carefully form a set of scanline segments: the voxelization of

each scanline can be obtained with RLV/ILV, and the superset of all the scanline

voxelizations will be the final output of this procedure. While the intuition could

lead one to select a set of parallel scanline segments to cover the triangle, it turns

out that there does not exist an optimal scanline interval (SI) for the general 3D

case that guarantees not missing any voxels on the cover. Thus, the performance

of a 3D scanline method is often unsatisfying and slower than SAT-based methods.

15

Chapter 2. Efficient Discretization

In this section, we show that such technical challenge can be resolved by projecting

T onto axis-aligned slices. We show that an optimal scanline interval is available

within a 2D slice, which guides us to set the most aggressive scan strategy slice by

slice. Finally, we give an integer version of this method, with minor compromises of

the scanning optimality using integer-based scanline intervals.

V

Scanline interval in 3D Let V be a voxel inter-

secting T as shown on right. We use I to denote

the intersecting region on T such that I = T
⋂
V .

Clearly, a 26-tunnel-free voxelization of T must in-

clude V . We can also learn from the line voxeliza-

tion procedure that the voxelization of a scanline L

includes V only if L
⋂
V 6= ∅. As the scanline is also on the triangle i.e. L ⊂ T ,

L
⋂
I is also non-empty:

T
⋂
V = I

L
⋂
V 6= ∅

L ⊂ T

⇒ L
⋂
I 6= ∅.

In other words, the scanline L must intersect I as well, in order to produce voxel

V . As the intersecting region I could approach to an infinitesimally small area, any

finite scanline interval will miss I in the resulting voxelization. Therefore, we say

there does NOT exist an optimal SI in 3D, and one has to resort to the 2D projection

to solve this problem.

Triangle splicing We first determine T ’s dominant direction – the coordinate axis

that best aligns with the triangle’s normal. Without loss of generality, assume that

z axis is its dominant direction, and we re-order T ’s three vertices p0(x0, y0, z0),

p1(x1, y1, z1) and p2(x2, y2, z2) such that z0 ≤ z1 ≤ z2. Their voxelizations are

16

Chapter 2. Efficient Discretization

denoted with P0(X0, Y0, Z0), P1(X1, Y1, Z1) and P2(X2, Y2, Z2) respectively. After-

wards, T is sliced into a set of polygons {T1, T2, ..., TZ2−Z0+1} along the z axis by a

series of xy planes {S0,S1, ...,SZ2−Z0+1}. Ti must be convex, and it could be either

triangle

trapezoid

pentagon
base edge

side edge

a trapezoid, a triangle or a pentagon as

shown here. Regardless of its geometric

variations, we can always group Ti’s edges

into side edges and base edges. The side

edges are the ones coincide with the orig-

inal edges of T , while the base edges, are

the intersections between Ti and Si. The

Z index of the ith plane Si is Z0 + i + 1/2. It is clear that each sliced polygon Ti is

restricted to within one-voxel-thickness along the z axis. Therefore, the voxelization

of Ti degenerates to a 2D case with a fixed Z index.

Figure 2.4: A set of parallel scanline is formed to cover the interior of Ti. The scanline
interval is set to be d̂.

Optimized parallel scanline For a given Ti, our scan starts with one of its base

edges as shown in Fig. 2.4. As discussed, we seek an as-sparse-as-possible scan if the

resulting voxelization remains 26-tunnel-free. Hereby, we provide an upper bound of

the distance between two consecutive scanlines in 2D.

Theorem 2.4.1. In 2D, there does not exist a voxel between a pair of parallel lines

that does not intersect either of them if the distance d between the lines satisfies the

17

Chapter 2. Efficient Discretization

following scanning condition:

d ≤ d̂, d̂ = h · (sin θ + cos θ), (2.5)

where h is the dimension of the voxel (h = 1 in our case) and θ is the smallest angle

between the lines and the voxel’s edges.

1

1
′

2

Proof Let L1 and L2 be the parallel

lines and assume their distance satisfies

Eq. (2.5): d ≤ d̂. Assume that there ex-

ists a voxel between L1 and L2 intersect-

ing neither of them as shown on the left.

We can move the voxel along the x axis

toward L2 for a finite amount of distance

until it hits L2 at one of its corners a. Then, there must exist another line L′1 parallel

to both L1 and L2 passing through corner b of the voxel, which is diagonal to a. The

distance d′ between L′1 and L2 is: d′ =
√

2h · sin(θ + π/4) = h · (sin θ + cos θ) = d̂.

Since L′1 lies between L1 and L2, we have d > d′, which contradicts our assumption.

�

Theorem 2.4.1 suggests that as long as the scanning condition is satisfied, no

missing voxels will be produced, and the resulting voxelization is guaranteed to be

a cover of Ti. On the other hand, if the scanline interval exceeds d̂, the resulting

voxelization Vi is no longer 26-tunnel-free, and we can clearly see voxels missed as

shown in Fig. 2.5. The voxelization of the entire triangle V , is the union of the

voxelization of each Ti: V =
⋃
Vi. Because Ti and Ti+1 always share a base edge,

Vi overlaps Vi+1 at voxels corresponding to this shared edge. Thus, Vi
⋃
Vi+1 is also

26-tunnel-free and so is V .

Integer scanline While the parallel scanline method is theoretically optimal, it

needs to compute its intersections between the side edges of Ti for each scanline in

18

Chapter 2. Efficient Discretization

Figure 2.5: From left to right: the resulting voxelization of a triangle with scanline
intervals of d̂, 1.05d̂, 1.1d̂ and 1.2d̂.

order to determine the starting and ending locations of the scanline voxelization. The

previous voxelization of T ’s edges is completely disregarded. In addition, floating

number arithmetic is unavoidable as the optimal interval d̂ itself is a floating number.

Similar to ILV, we further tweak the parallel scanline algorithm and provide its

integer-only counterpart, which requires only an incremental integer arithmetic at

each step.

Let VA and VB be the voxelizations of two side edges eA and eB of Ti, which

contain two sets of ordered voxels along eA and eB respectively2. We restrict the

starting and ending points, referred as end A and end B, of a scanline to be the grid

points in VA and VB. Such constraint frees us from expensive calculations for finding

the exact intersections between a scanline and side edges – we only need to identify

the best scanline ends from sets VA and VB.

Undoubtedly, the first scanline connects the first entries in VA and VB, say

PA(XA, YA) ∈ VA and PB(XB, YB) ∈ VB as shown in Fig. 2.6. According to Eq. (2.5),

we re-write the best SI as:

d̂ = h · (sin θ + cos θ) =
|∆XAB|+ |∆YAB|√

∆X2
AB + ∆Y 2

AB

, (2.6)

where ∆XAB = XA − XB and ∆YAB = YA − YB. The line equation of the current

2There will be three side edges if Ti is a pentagon. In this case, we simply combine the
two connected side edges into one single side edge.

19

Chapter 2. Efficient Discretization

Figure 2.6: We find the next voxel P′A ∈ VA as the one that is most distant from the
current scanline while the scanning condition is still satisfied.

scanline can be written in the form of ax+ by+ c = 0, where a = ∆YAB, b = ∆XAB,

c = ∆XABYA−∆YABXA. It is known that the distance between a point (x0, y0) and

ax+by+c = 0 is |ax0+by0+c|/
√
a2 + b2. Thus, dA, between a voxel P′A(X ′A, Y

′
A) ∈ VA

and the current scanline can be computed as:

dA =
1√

∆X2
AB + ∆Y 2

AB

∣∣∣∆YAB(X ′A −XA)−∆XAB(Y ′A − YA)
∣∣∣. (2.7)

Enforcing dA ≤ d̂ leads to
∣∣∣∆YAB(X ′A−XA)−∆XAB(Y ′A−YA)

∣∣∣ ≤ |∆XAB|+ |∆YAB|

or equivalently:

C1 ≤ ∆YABX
′
A −∆XABY

′
A ≤ C2. (2.8)

Here, C1 = ∆YABXA−∆XABYA−|∆XAB|−|∆YAB| and C2 = ∆YABXA−∆XABYA+

|∆XAB|+ |∆YAB|. Every time we update P′A with its next entry in VA, either its X

or Y indices will be changed by ±1, meaning Eq. (2.8) can actually be incrementally

evaluated:

C1 ≤ C0 + ∆C ≤ C2, C0 = ∆YABXA −∆XABYA, (2.9)

where ∆C could be either ±∆YAB or ±∆XAB, depending on the orientation of eA.

Note that C0, C1 and C2 are all integer constants depending on the current scan-

line configuration, and we can tell whether P′A violates the scan condition with only

20

Chapter 2. Efficient Discretization

Figure 2.7: Compared to the näıve scanline strategy (a), the proposed method skips
most redundant voxel generation (b).

four integer operations: three comparisons (one for determining the value of ∆C)

and one addition. As soon as the scan condition does not hold, we rollback to the

previous entry in VA and choose it as the end A for the next scanline. Otherwise,

current P′A may still be conservative and we forward to the next entry in VA. Simi-

larly, we can locate the best end B in VB, and voxelize the resulting scanline using

ILV. Fig. 2.7 shows an illustrative example of the proposed scanline method, as well

as the näıve scanline strategy, in which scanlines are generated for every voxel pair

in VA and VB. Experiments show that our method is significantly faster than the

näıve scanline since most of the redundant voxel generation is omitted. The complete

triangle voxelization procedure is summarized in Alg. 1.

A′P

B′P

A′P

B′P

Boundary treatment It is noteworthy that the numbers of

voxels in VA and VB may differ significantly and it is possible

that, for example as shown on the right, P′A reaches the last

entry in VA before P′B does. Such boundary inconsistency is

handled seperately based on the geometry of Ti. If Ti is a trian-

gle, the scanline terminates as soon as P′A (or P′B) reaches the

end because the entire triangle interior has been voxelized (the

shadowed region). Otherwise, the corresponding base edge will

21

Chapter 2. Efficient Discretization

Algorithm 1 Triangle Voxelization
1: function VoxelizeTriangle(v0,v1,v2,n)

2: {P0,P1,P2} ← GetVoxel(v0,v1,v2)

3: i← DominantAxisIndex(n)

4: SortOnAxis(P0,P1,P2, i)

5: MarkLineILV(P0,P1,Q0)

6: MarkLineILV(P1,P2,Q1)

7: MarkLineILV(P0,P2,Q2)

8: Q1 ← Q0 ∪Q1

9: FillInterior(Q1,Q2,P0,P2, i)

10:

11: function MarkLineILV(P0,P1,Q)

12: ∆P[0]← Sign(P1[0]−P0[0])

13: ∆P[1]← Sign(P1[1]−P0[1])

14: ∆P[2]← Sign(P1[2]−P0[2])

15: L[0]←M[0]← |P1[1]−P0[1]||P1[2]−P0[2]|

16: L[1]←M[1]← |P1[0]−P0[0]||P1[2]−P0[2]|

17: L[2]←M[2]← |P1[0]−P0[0]||P1[1]−P0[1]|

18: Pcurrent ← P0

19: while Pcurrent 6= P1 do

20: 〈Lmin, Lindex〉 ←Min(L[0],L[1],L[2])

21: Pcurrent[Lindex]← Pcurrent[Lindex] + ∆P[Lindex]

22: L← L− Lmin

23: L[Lindex]← 2M[Lindex]

24: MarkVoxel(Pcurrent)

25: Q.PushBack(Pcurrent)

26:

27: function FillInterior(Q1,Q2,P0,P2, axis)

28: for i = 0 to P2[axis]−P0[axis] do

29: slice← P0[axis] + i + 1/2

30: Q1sub ← GetSubSequence(Q1, slice)

31: Q2sub ← GetSubSequence(Q2, slice)

32: while Q1sub 6= ∅ORQ2sub 6= ∅ do

33: Pstart ← GetNextInSlice(Q1sub)

34: Pstop ← GetNextInSlice(Q2sub)

35: MarkLineILV(Pstart,Pstop)

22

Chapter 2. Efficient Discretization

become the new side edge, and the remaining un-voxelized region becomes a triangle.

2.5 Performance Analysis

In this section, we discuss the performance of the proposed voxelization algorithm.

We also elaborate the detailed algorithmic difference between our method and exist-

ing SAT-based techniques.

Cover property The cover property of our resulting surface voxelization is de-

termined by which line voxelization algorithm, SLV, RLV or ILV, is used. It is not

difficult to see that using SLV can form the super cover of the input model as the

state-of-the-art does. When using RLV, the proposed method forms a 26-tunnel-free

cover. As discussed previously, if the input model does not contain singular points,

both RLV and SLV generate the super cover. ILV produces 26-tunnel-free surface

voxelization which is a close approximation of a cover. The error induced by ILV

is related to many factors, such as the voxel dimensions, the orientation of the line

segment and the relative spatial position between the grid points and the line end

points. Fig. 2.8 shows three typical cases where we use RLV and ILV to voxelize

some line segments. We can see that the voxelizations vary a lot in the extreme

cases (a) and (b), but in (c), which is like the average case, no error occurred.

Figure 2.8: Voxelizing the line segments (blue) by RLV and the approximation (red)
by ILV could result either different voxelizations in (a) and (b), or identical voxeliza-
tions in (c). The grey voxels are captured by both RLV and ILV, while the blue
voxels and the red voxels are captured only by RLV or ILV respectively.

23

Chapter 2. Efficient Discretization

Optionally, our method can be downgraded to generate thinner 18- or 6-tunnel-

free voxelizations by removing some base edge voxelizations (Fig. 2.9). Recall that

the base edges are shared by two consecutive polygons and voxelized in both of the

corresponding two slices. This feature is necessary to make the final voxliezation

26-tunnel-free. If we eliminate the voxelization of the base edge in either of the two

slices, 26- or 18-paths form, and the voxelization can only be 6-tunnel-free and is not

a cover anymore. The downgrading method makes thinner voxelizations as preferred

in some applications.

Figure 2.9: Our method (a) can be downgraded to 18- or 6-tunnel-free methods (b)
or (c) by eliminating some base edge voxelizations. The resulting voxelizations are
thinner and 6-tunnel-free.

Algorithmic complexity Schwarz and Seidel [SS10] proposed the state-of-the-art

voxelization algorithm. They firstly determine the dominate axis of the triangle, say,

z axis, then project the triangle to the xy plane. A set of voxels are determined by

a 2D overlap test. Each voxel further determines a voxel array along z axis which

contains a number of voxel candidates (up to three) intersecting the triangle. All

the voxel candidates are subject to two remaining 2D overlap tests. The complexity

of the method is therefore O(N ×M), where N and M are the numbers of voxels

along x and y axis of the bounding box respectively. We define a triangle-voxel

overlap test as an atomic operation, which contains 9 sub-tests. Each sub-test has

2 multiplications, 2 additions and 1 comparisons. All of the N ×M voxels should

undergo the atomic operation, but most of them do not have to take all the sub-tests.

24

Chapter 2. Efficient Discretization

There are two reasons. One is that a failed sub-test will imply no overlap and the

rest sub-tests are not necessary. The other is that voxels in the same voxel array

can share the xy plane test result. Therefore, based on the observation that the

thickness of the voxelization is at most three voxels along z axis, the lower bound of

the number of sub-tests for an overlapping voxel is 7, which yields 14 multiplications,

14 additions and 7 comparisons. Pantaleoni [Pan11] further improved the previous

method when determining the voxel candidates in the xy plane. This method takes

one coordinate as a constant and computes the range of the other coordinate through

the edge functions. The voxels in the range are immediately taken as candidates

without performing overlap tests. The rest steps are the same as the ones in the

previous method: the z coordinate range is computed per voxel array, and voxels in

the range are subjected to the remaining two 2D projection overlap tests. We can see

that the complexity of this method is O(W), where W is the number of the voxles

overlapping the triangle. For an overlapping voxel, 6 sub-tests are needed, which

contains 12 multiplications, 12 additions and 6 comparisons.

In our method, we determine the dominant axis, followed by voxlelizing the three

edges of the triangle. The rest work is to find the voxels overlapping the triangle

interior. To this end, we further divide the triangle slice by slice. In each slice,

we use 2D scanlines to find the overlapping voxels. We can see that the method

actually compute indices of the overlapping voxels only. Therefore, the complexity

of our method is also O(W). However, the atomic operation of our method is simply

to extend one voxel along a 2D scanline, which only involves 2 additions plus 1

comparison. This is the major reason why our method is faster than the existing

SAT-based method.

Parallelization Both aforementioned SAT-based methods and our method can

be parallelized and accelerated using multi-threading or GPU. However, it can be

clearly seen that our method is parallelized for each triangle, while the SAT-based

25

Chapter 2. Efficient Discretization

(a)

(b)

Figure 2.10: Voxelizing an equilateral triangle under the resolution of 323. (a) The
triangle rotate around y axis. (b) The triangle rotates around z axis.

methods can be trivially parallelized for each voxel candidate. As a result, one

may speculate that with the increased resolution of the vocalization, SAT-based

26

Chapter 2. Efficient Discretization

method will eventually outperform our method. Interestingly, the fact is opposite

– our method often demonstrates a better performance in practice. The reasons

are two-fold. First of all, while scanning the interior of an individual triangle is

sequential, parallelization at triangles utilizes modern GPU platform already. For

instance, the latest nVidia GTX 1080 GPU equips with 2, 560 cores, while most

meshes we are dealing with nowadays have much more than 2, 560 triangles in general.

More importantly, our method has a much simpler atomic operation than SAT-

based methods (e.g. in [SS10, Pan11]). Therefore, a higher voxelization resolution

will further exaggerate such difference (see Tab. 2.2). On the other hand, if the

dimension of a voxel is comparable to a triangle patch, our method becomes less

efficient. This is because interior voxels may be already generated during the line

voxelization or even point voxelization stage and computing the SI based on Eq. (2.8)

is less profitable to reduce the redundant voxelization. Furthermore, if the triangle

numbers are very small (e.g. only one triangle), the SAT-based methods will beat

our method easily by parallelization. Based on such analysis, one can clearly see

that our method is alternative to and complements existing SAT-based methods: it

is suitable for high-density voxelization (e.g. for accurate numerical integrations).

Our experiment results confirm this conclusion.

2.6 Experiments and Results

Our method is tested on a desktop PC (with both CPU and GPU), and an Apple

iPhone 6. For comparison, we also implemented the state-of-the-art SAT-based meth-

ods as in [SS10] and [Pan11]. The desktop PC equips an Intel R© i7-2600 CPU@3.4

GHz (4 physical cores), 12G RAM, and a NVIDIA GTX 970 video card. The mo-

bile platform is an Apple iPhone 6 with Dual-core Typhoon CPU@1.4 GHz (ARM

v8-based). Our CPU implementation is both single- and multi-thread using C++ and

our GPU implementation utilizes NVIDIA CUDA 7.5. Our IOS implementation is

27

Chapter 2. Efficient Discretization

Comparisons # Additions
y SS10 Pan11 Ours SS10 Pan11 Ours
0◦ 2,483 0 838 4,966 0 1,111
15◦ 6,356 3,806 863 12,712 7,612 1,236
30◦ 8,177 5,343 1,061 16,354 10,686 1,687
45◦ 7,835 5,523 1,027 15,666 11,046 1,744
60◦ 8,151 5,246 1,068 16,302 10,492 1,701
75◦ 6,357 3,786 863 12,750 7,572 1,236
90◦ 2,483 0 839 4,966 0 1,113
z SS10 Pan11 Ours SS10 Pan11 Ours
0◦ 2,483 0 838 4,966 0 1,111
15◦ 5,899 3,490 863 11,798 6,980 1,236
30◦ 6,204 3,940 1,061 12,408 7,880 1,687
45◦ 8,162 5,358 1,027 16,324 10,716 1,744
60◦ 6,204 3,988 1,068 12,408 7,976 1,701
75◦ 5,899 3,502 863 11,798 7,004 1,236
90◦ 2,483 0 839 4,966 0 1,113

Table 2.1: Comparative statistics of complexity of SAT-based methods ([SS10]
and [Pan11]) and our method showing the total numbers of comparisons and addi-
tions during the voxelization. When the triangle is parallel to the coordinate plane,
no atomic operation is needed in [Pan11].

written in Object-C with Xcode.

Implementation In [SS10] and [Pan11], triangles can be preprocessed and clas-

sified to 1D, 2D or 3D cases. In 1D cases, the triangle is slim and enclosed in one

voxel array aligned to a coordinate axis. All the voxels in the array are marked as

overlapping. In 2D cases, each voxel in the bounding box undergoes a 2D projection

overlap test. Voxels passing the test are marked immediately [SS10]. More efficiently,

Pantaleoni [Pan11] finds those overlapping voxels by fixing one coordinate and com-

puting the range of the other coordinate. In more general 3D cases, as described

previously, one projects the triangle to determine the set of voxel arrays, computes

the range of the voxel candidates and processes the two remaining 2D projection

overlap tests.

28

Chapter 2. Efficient Discretization

In our CUDA implementation we process all triangles in parallel, with each thread

voxelizing a single triangle. Each voxel in our global grid is represented as a bit

in a 32-bit integer array and each thread that is processing a triangle must update

this array when a voxel is labeled. To accomplish this we take advantage of atomic

functions from CUDA. Atomic memory operations alleviate the complexity involved

in updating shared memory during a parallel computation. Specifically, we utilize

the atomic OR function which ensures that all voxel array updates issued concurrently

are performed without interruption with respect to other threads.

0 15 30 45 60 75 90 0 15 30 45 60 75 90
0

200

400

600

800

1000

48
6

48
6

62
8

62
8

87
8

84
8 89

4
89

4

87
8

87
8

62
8

62
8

48
6

48
6

48
6

48
6

58
0

58
0

65
0

65
0

88
6

66
8

65
0

65
0

58
0

58
0

48
6

48
6

SS10 & Pan11
Ours

0 15 30 45 60 75 90 0 15 30 45 60 75 90

0

10

20

30

40

50

60

SS10
Pan11
Ours

Figure 2.11: The numbers of voxels (bar plots) as well as the time performance (line
plots) of [SS10] [Pan11] and our method.

Voxelization of a single triangle We voxelize an equilateral triangle under the

resolution of 323 using the SAT-based methods and our method. The triangle is ini-

tially aligned with the yz plane, and we rotate it around y and z axes gradually by

15◦ each time up to 90◦. We use the single-thread implementation in this experiment.

The resulting voxelizations are shown in Fig. 2.10. The corresponding computation

costs are reported in Tab. 2.1, where we can see that our method invests much less

computation in the general 3D scenarios. Note that we don’t compare the multipli-

29

Chapter 2. Efficient Discretization

32 64 128 256 512 1024 32 64 128 256 512 1024 32 64 128 256 512 1024

101

102

103

104

105

SS10
Pan11
Ours

Figure 2.12: The time performance of triangle voxelization under various resolutions:
a) the triangle is aligned in the yz plane initially; b) the triangle is rotated around
y axis by 45◦; and c) the triangle is rotated around z axis by 45◦.

cations because the atomic operation in our method does not involve multiplications.

We also notice that the computation costs of the SAT-based method largely

depend on the orientation of the triangle, while our method is much more consistent

with respect to different orientations. This observation is also verified in the time

benchmark shown in Fig. 2.11, where we pick three typical poses of the rotating

triangle, which are the initial one, the one rotated around y axis by 45◦, and the one

rotated around z axis by 45◦, to test the time performance under various resolutions

from 323 to 10243 as shown in Fig. 2.12. In Fig. 2.12 a), the triangle is essentially in

2D and [Pan11] performs best. However, in more general 3D cases (Fig. 2.12 b) and

c)) our method is faster. Note that the vertical axis is in logarithmic.

More results on 3D models The voxelization results of more 3D models are

shown in Fig. 2.13. The resolutions of the voxelization increases from 2563 to 40963.

Tab. 2.2 reports the comparative time performance using a single- and multi-thread

CPU, CUDA and iOS implementations (i.e. Fig. 2.14) of both the SAT-based methods

and our method. Due to the limited memory, voxelization either at 20483 on the

30

Chapter 2. Efficient Discretization

Model Reso.
CPUs (ms) CPUm (ms) GPU (ms) iOS (ms)

Pan11 Ours Acc Pan11 Ours Acc Pan11 Ours Acc Pan11 Ours Acc

Spider
(3,341 tris)

2563 3.7 2.7 37% 1.8 1.6 13% 0.30 0.20 50% 8.5 7.4 15%
5123 8.8 4.6 91% 3.1 2.5 24% 0.85 0.45 88% 20.1 10.9 84%
10243 24.8 9.7 156% 8.8 4.7 87% 2.6 1.1 132% 83.3 29.0 187%
20483 87.9 29.9 194% 37.0 17.8 107% 20.7 8.6 139% – – –
40963 492.3 187.7 162% 148.8 62.8 137% – – – – – –

Demon
(8,822 tris)

2563 11.1 8.2 35% 5.3 3.9 36% 0.82 0.63 30% 21.5 16.7 29%
5123 30.5 14.5 110% 13.2 5.6 136% 1.8 1.5 20% 83.6 36.0 132%
10243 99.2 33.3 198% 29.7 12.1 145% 6.8 4.2 62% 284.2 99.2 186%
20483 476.1 117.0 307% 144.6 48.3 199% 33.1 19.5 70% – – –
40963 2255 759.8 197% 699.4 241.8 189% – – – – – –

Elephant
(10,150 tris)

2563 11.0 7.9 39% 4.8 4.2 14% 1.9 1.8 6% 21.9 16.2 35%
5123 28.4 14.1 101% 9.0 6.9 30% 4.1 2.3 78% 79.9 36.0 122%
10243 86.0 31.3 175% 26.7 14.8 80% 15.4 4.6 234% 380.5 95.2 300%
20483 325.2 103.9 213% 132.3 53.2 148% 85.4 22.7 276% – – –
40963 2066 711.3 190% 594.6 216.6 175% – – – – – –

Sailboat
(70,476 tris)

2563 23.4 19.2 22% 14.8 13.7 8% 10.6 4.3 66% 62.0 32.8 89%
5123 49.0 29.1 69% 25.7 18.0 43% 17.9 9.7 85% 197.4 56.9 247%
10243 133.9 50.9 163% 58.8 27.9 111% 48.8 22.9 113% 491.5 110.2 346%
20483 483.4 104.9 361% 173.4 49.3 252% 160.8 42.1 281% – – –
40963 1168 333.9 250% 394.5 121.3 225% – – – – – –

Dragon
(100,000 tris)

2563 59.3 61.1 −3% 35.1 38.2 −8% 1.3 1.4 −6% 72.3 80.1 11%
5123 99.4 85.9 16% 48.7 47.2 3% 1.7 1.6 6% 191.2 143.4 33%
10243 197.6 128.3 54% 83.3 62.5 33% 6.5 5.2 13% 618.0 302.4 104%
20483 591.8 253.0 134% 191.5 103.9 84% 22.8 17.5 30% – – –
40963 2507 1007 149% 629.5 309.7 103% – – – – – –

Table 2.2: The running time for GPU/CPU and iOS implementations of [Pan11]
(Pan11) and our method. The accelerations (Acc) are also highlighted. CPUs and
CPUm are for the single- and multi-thread implementations. The number of threads
that we use in the latter is four.

Figure 2.14: Snapshots of our iOS

implementation.

iPhone or at 40963 on GPU is not available. As

Tab. 2.2 exhibits, the performance gap between

the SAT and our method is getting larger with the

increased voxel resolutions. Such result is consis-

tent with our performance analysis as discussed

in Sec. 2.5. The performance reported in Tab. 2.2

is based on the integer version of our algorithm.

We find that the acceleration of using integer ver-

sion algorithm over the floating number version is

very minor (∼ 3%). However, further acceleration

31

Chapter 2. Efficient Discretization

Figure 2.13: Voxelizing several 3D models under the voxelizations of 1283, 2563, 5123

and 10243.

of using integer version algorithm may be possible

if dedicated hardware is adopted [LM00].

To justify the voxelization error, we voxelize the 3D models by different meth-

ods and compare the voxel numbers of the resulting voxelizations. The results are

reported in Tab. 2.3. We can see that, as expected, our floating number version

(SLV/RLV) generates the same number of voxels as the SAT-based method does,

and the relative error induced by our integer version is small (less than 2.5%). We

highlight the difference of two voxelizations generated by the SAT-based method and

32

Chapter 2. Efficient Discretization

3D Model Spider Demon Elephant Sailboat Dragon
Resolution 2563 5123 10243 2563 5123 10243 2563 5123 10243 2563 5123 10243 2563 5123 10243

SS10/Pan11 38.9 161 658 173 691 2.77 125 506 2.05 65.6 276 1.18 168 673 2.70
SLV/RLV 38.9 161 658 173 691 2.77 125 506 2.05 65.6 276 1.18 168 673 2.70

ILV 39.8 164 674 175 701 2.80 128 516 2.08 67.2 281 1.20 171 687 2.75
ILV error 2.3% 1.9% 2.4% 1.2% 1.4% 0.7% 2.4% 2.0% 1.5% 2.4% 1.8% 1.7% 1.8% 2.1% 1.9%

Table 2.3: Comparative statistics of the voxel numbers of the resulting 3D model
voxelizations under different resolutions and using different methods. The data in
blue color are in million voxels, while others are in kilo voxels. Our floating number
version (SLV/RLV) generates the same number of voxels as the SAT-based method
does. The relative error induced by our integer version method (ILV) is less than
2.5%.

our integer version method respectively in Fig. 2.15 (under the 643 resolution).

Figure 2.15: Voxelizations of the 3D dragon model by the SAT-based method (a)
and our integer version method (b) under the 643 resolution are presented. The
difference is highlighted in (c).

Applications As mentioned, the voxelization plays an essential role in many graph-

ics applications. The proposed high-performance voxelization algorithm can be di-

rectly used in physics-based animations – both for mesh generation and collision

culling. It is also important for global illumination (Fig. 2.16).

33

Chapter 2. Efficient Discretization

Figure 2.16: Our methods are used in mesh generation and collision culling (a) and
global radiosity (b).

2.7 Conclusions

We present a high-performance algorithm for the voxelization of complex 3D models.

Our method avoids (relatively) expensive triangle-voxel intersection tests and vox-

elizes the surface geometry based on an efficient line voxelization algorithm. Since

there is no optimal 3D scanline interval, we project a 3D triangle into axis-aligned

slices and give the theoretically optimal scanline strategy. On top of it, we further

avoid floating number arithmetic during the voxelization. We provide a comprehen-

sive analysis and comparative experiments between the proposed method and the

state-of-the-art SAT-based methods. The time performance on CPU, GPU as well

as mobile devices shows that our method is efficient, especially for high-resolution

voxelizations when the encapsulating a triangle requires more interior voxels.

Since the voxelization is a discrete representation of the original object, many ap-

plications require that voxels store more information rather than the binary overlap

flag, such as density, normal vector, material properties, etc. For instance, surface

normal vector at the voxel’s location should be well estimated for alias-free render-

34

Chapter 2. Efficient Discretization

ing [WK93, SK99]; evaluating the occupancy functions (filtered techniques) [SK98]

or distance functions (distance field techniques) [BW01,JBS06,PF01,NDS10] at the

voxels is essential to reconstruct the original object surface. Our method is basically

designed for binary voxelization and can not directly support the non-binary appli-

cation. As a potential solution, one can first voxelize the object using our method,

then compute and store the associated quantities for each overlapping voxel using

other related algorithms.

35

Chapter 3

Autonomous Pavement Surface

Recognition

3.1 Introduction

High quality pavement serviceability is critical to maintain safe and effective traffic

operations. As an indispensable component of the Pavement Management Systems

(PMS), the pavement condition evaluation is an essential procedure to provide com-

prehensive information for its serviceability quantification and maintenance schedul-

ing [CZZ+14]. It is generally composed of two major procedures: the pavement

distress evaluation, which is conducted to calculate the Distress Rate (DR), and

the pavement roughness assessment, which is performed to retrieve the International

Roughness Index (IRI). State transportation agencies are responsible for examining

pavement conditions within their jurisdiction on a regular basis and performing the

road-way maintenance and rehabilitation accordingly. Generally, pavement condition

information is collected through manual evaluations or automatic techniques. In a

manual evaluation procedure, an inspector walking along roads visually evaluates the

36

Chapter 3. Autonomous Pavement Surface Recognition

severity and extent of pavement distresses based on pre-specified criteria [BHM+12].

However, manual evaluation is labor-intensive and time-consuming, and the inspector

is often at high risk of being in an accident even with preventive safety measurements.

With these disadvantages in mind, automatic pavement detection techniques have

been developed and gained increasing popularity among state transportation agen-

cies. Automated pavement condition data are generally collected with automated

and dedicated devices, such as pavement scan vans or aerial photo cameras. How-

ever, regardless of the data collection procedures, the quality of the data collected is

always compromised to some extent due to the individual subjectivity in evaluating

the severity and extent of pavement distresses [D+14,BMC10,UKCL10]. Therefore,

computer-aided pavement distress detection and surface reconstruction methods are

needed to minimize the impacts of human subjectivity in pavement condition distress

assessments.

Considerable research has been conducted to assist pavement condition evaluation

in using computer-aided techniques. For example, Tremblais and Augereau [TA04]

proposed a fast multi-scale edge detection algorithm to detect pavement cracks. Bray

et al. [BVLH06] proposed a neural network-based technique for an automatic clas-

sification of pavement cracks. Among all the existing computer-aided techniques,

digital image processing is a mature method that has been increasingly utilized in

pavement distress detection and road surface re-construction. Numerous studies have

been conducted to improve the applicability and performance of image processing

techniques for pavement surface evaluation. For instance, Mahler et al. [MKWS91]

demonstrated the feasibility of using image processing techniques to detect cracks.

Georgopoulos et al. [GLF95] developed an image processing techniques to automati-

cally determine the type, extent, and severity of surface cracks for flexible road pave-

ments. Although a wide range of algorithms have been developed to improve the

performance of image processing techniques in pavement distress evaluation, most of

these are based on 2D image information. Distress depth is not able to be measured

37

Chapter 3. Autonomous Pavement Surface Recognition

directly but only inferred from overlapping 2D images. Therefore, estimation errors

would be inevitably introduced and evaluation accuracy would be degraded. Ideally,

width and length, are two measurements to evaluate pavement distress severity and

extent, and depth is generally used to determine pavement maintenance and rehabili-

tation [LMG02]. Recent developments of 3D reconstruction approach enable a direct

collection of 3D pavement distress information including not only width and but also

the depth. 3D reconstruction relies on 3D point clouds (via inversely projecting the

depth image pixels) collected by laser scanners or by stereo-vision algorithms-based

video cameras [KB11]. In the past decades, significant efforts have been taken to

investigate the applicability of 3D reconstruction techniques in pavement condition

evaluation [LTD97,BBH+01,YSK+07]. For instance, Laurent et al. [LTD97] used an

auto-synchronized laser scanning system to detect road rutting and cracking in high

precision 3D environments. Other studies were also proposed to improve the perfor-

mance 3D reconstruction techniques [LGG01,HTB03,HH09]. These studies provided

comprehensive and in-depth understandings of pavement condition evaluations and

pavement surface in 2D and 3D reconstructions. However, these techniques are either

not maturely developed or too costly in practical applications, which impede their

wider implementations.

Microsoft Kinect is an infrared-based sensory device enabling human-computer

interaction without the assistance of any physical controllers. It operates by cap-

turing user gestures. Kinect is able to produce real-time 3D surface data and has

been widely applied in many fields, such as physical re-habilitation, education, car-

tography, etc. Tölgyessy and Hubinský [TH11] applied Kinect to robotics education,

including data fusion, obstacle avoidance, collision detection, object recognition, ges-

ture control, localization, and navigation. Compared to other aforementioned 3D

reconstruction techniques, Kinect was originally developed for home entertainment

and is very affordable at less than $ 150 per unit. With its cost-effective and multi-

disciplinary implementations, there is great potential to apply Kinect devices in

38

Chapter 3. Autonomous Pavement Surface Recognition

pavement condition evaluations. This study is proposed to develop a cost-effective

Kinect-based approach for 3D pavement surface reconstruction and cracking detec-

tion. Kinect fusion, point cloud conversion, mesh triangulation, and sharp feature

examination modules are developed successively for crack recognition and severity

identification. Human expert evaluation results are used as ground-truth data for

comparison analyses. The results indicate that the proposed approach is able to re-

construct 3D surfaces, detect crack width, length, and depth information, and further

identify distress severity levels based on the given protocols.

The rest of the paper is organized as follows: a comprehensive literature review

is provided in Section 3.2. Section 3.3 introduces the Kinect fusion mechanism and

the data collection procedure, followed by Section 3.4 which details the methodology

we adopted. Section 3.5 discusses the experiment results and research limitations,

and this research is concluded with Section 3.6.

3.2 Previous Work

Pavement surface distress information is essential in the pavement management pro-

gram. Various levels of pavement maintenance activities and rehabilitation decisions

are supported by pavement condition information [HHZ94]. Federal and State De-

partments of Transportation (DOTs) in the U.S. surveyed different types and num-

bers of distresses, and applied various pavement assessment approaches and pave-

ment condition indices in their pavement evaluation procedures [FM09,BMC10,Gra,

McG04]. For example at the federal level, the National Cooperative Highway Re-

search Program (NCHRP) summarized existing data collection and processing tech-

niques [McG04], as well as the data quality management issues and solutions [FM09]

in automated pavement distress collection procedures. Meanwhile, at the state level,

the Alabama Department of Transportation (ALDOT) utilizes manual evaluation

39

Chapter 3. Autonomous Pavement Surface Recognition

methods in their pavement evaluation procedures. While manual surveys are still

used among several states, the automated approaches have come into progressively

more use. New Mexico Department of Transportation (NMDOT) applies both man-

ual evaluation and automatic detection for pavement evaluations and uses a Pave-

ment Serviceability Index (PSI) to measure pavement deteriorations. Oregon De-

partment of Transportation (ODOT) applies automated data collection equipment

for pavement evaluations. Considerable studies have also been performed to explore

advanced techniques for pavement distress detection and pavement condition evalu-

ations. For example, acoustic or laser sensors have been used to capture pavement

cracking, aiming to relate cracking to abrupt variations in pavement texture [Gra].

Analog approach refers to the process wherein images are physically imposed on

film or another median, like photographic and video [SFP96, WS11, GH93, MLP08].

The data captured by digital imaging approachs can be read electronically and pro-

cessed or reproduced. Pavement surface reconstruction is a major procedure in au-

tomatic pavement evaluation analysis. Zhang and Elaksher [ZE12] developed image

processing-based algorithms to quantify 3D details of pavement distresses using un-

manned aerial vehicle (UAV) based image data. With a new image segmentation

algorithm, Oh [Oh98] developed an image processing method to automatically ana-

lyze the recorded images and isolate distress features. Pynn et al. [PWL99] applied

several new image processing algorithms to automatically detect the cracks by us-

ing video images collected with a van camera system. Pavement cracking, including

longitudinal cracking, transverse cracking, alligator cracking and edge cracking, is a

dominant category of pavement distress measurement, and the severity and extent

of pavement cracking play significant roles in deteriorating the pavement service-

ability. Therefore, a significant amount of research has been conducted to improve

pavement cracking detection and measurement from different perspectives. Zhou

et al. [ZHC05] proposed a wavelet-based image classification algorithm to detect

cracks in pavement surfaces. Huang and Xu [HX06] presented an image process-

40

Chapter 3. Autonomous Pavement Surface Recognition

ing algorithm customized for high-speed, real-time inspection of pavement cracking.

Mustaffara et al. [MLP08] proposed a photogrammetry-based approach to automat-

ically classify and quantify the pavement cracks. Ma [MZH08] proposed a method to

detect cracks based on a non-subsampled contour transform algorithm. Oliveira and

Correia [OC08] employed entropy and image dynamic thresholds to automatically

segment road cracks. Chambon et al. [CGMN10] proposed to extract road cracks

with adapted filtering and a Markov model-based segmentation. Distress depth in-

formation is an important contributing factor in determining pavement maintenance

and rehabilitation [LMG02]. However, traditional pavement evaluation and surface

reconstruction methods are not able to capture depth information directly and accu-

rately. In the last two decades, along with the advances of 3D surface reconstruction

techniques, distress depth detection, especially crack depth detection, became feasi-

ble. 3D surface reconstruction relies on 3D point clouds collected by laser scanners

or by stereo-vision algorithms using a multiple calibrated cameras [KB11]. Microsoft

Kinect is an infrared-based motion sensor that is able to gather real-time 3D geomet-

ric features, colors, and audio data of the environment [SLPR13]. With the merits

of its mature techniques and affordable expenses, Kinect has been applied in many

fields. Chang et al. [CLZ+12] examined the application of Kinect devices in physical

rehabilitation and found that they can provide competitive motion tracking perfor-

mance in the comparison to other professional motion detection systems. Lange

et al. [LKM+12] investigated the interactive game-based rehabilitation using Kinect

devices and proved their applicability in clinical use. Kitsunezaki et al. [KAMM13]

performed a study of using Kinect for physical rehabilitation. Other research investi-

gated the application of Kinect in education [Hsu11]. Ren et al. [RMY11] investigated

the application of Kinect hand gesture recognition function in human-computer in-

teractions. Kondori et al. [KYL+11] studied the 3D head pose estimation using

Kinect. Khoshelham and Elberink [KE12] studied the application of Kinect’s depth

data in the indoor mapping. Oliver et al. [OKWM12] investigated the application of

41

Chapter 3. Autonomous Pavement Surface Recognition

Figure 3.1: The first generation of Microsoft Kinect sensor (left) and the data col-
lection setup (right).

Kinect as a navigation sensor for mobile robotics. Inspired by the great success of

Kinect applications in these areas, this research proposed an innovative system for

pavement surface reconstruction and cracking recognition.

A technical challenge of involving 3D sensors during pavement condition evalua-

tions lies in the fact that these sensors inevitably induce more information to be pro-

cessed. While there exist a wide range of algorithms for geometric analysis like man-

ifold harmonics [VL08,LPG12,CLB+09] or spherical harmonics [WSCY16,KFR03],

these methods are often global meaning they tend to obtain the most useful infor-

mation based on the entire 3D model. This is clearly not the case of the analysis

of pavement distress. We show that by only examining local sharp features, we can

robustly and accurately extract key parameters associated with pavement cracking.

3.3 Kinect-based Data Collection

The Microsoft Kinect device (the first generation) is employed as the major sensor for

data collection. Kinect was originally designed as a device for home entertainment

since it enables human-computer interaction without additional controllers [SLPR13].

42

Chapter 3. Autonomous Pavement Surface Recognition

The Kinect sensor consists of an infrared (IR) laser emitter, an IR camera, and a

regular RGB color camera as shown in Fig 3.1. Besides the traditional RGB sensing

with the resolution of 640×480 pixels at 30 frames per second, Kinect is also capable

of sensing the depth information by tracking the emitted IR rays. The geometry of

the pavement surface can be further represented by converting the level-set surface

representation [MSV95] into a triangle mesh, consisting of small inter-connected

triangle faces using the marching cube algorithm [LC87].

In this study, the data of pavement cracks on road surfaces were collected at the

University of New Mexico main campus and representative local streets and high-

ways, including the segment of Central Ave. from Washington St. NE to Broadway

Blvd. SE (a 23.1-mile long multi-lane highway, both Eastbound and Westbound di-

rections), the segment of Lomas Blvd. NE from San Mateo Blvd. NE to University

Blvd. NE (a 14.2-mile long multi-lane highway, both Eastbound and Westbound di-

rections), the segment of Girard Blvd. SE from Indian School Rd. NE to Gibson

Blvd. SE (a 22.5-mile long two-lane highways, both Northbound and Southbound

directions) and the segment of Yale Blvd. SE from Central Ave. SE to Gibson

Blvd. SE (a 3.5-mile long two-lane highway, both Northbound and Southbound

directions) in the City of Albuquerque, NM. To facilitate the procedure of data col-

lection, a mobile data collection stand was built for mounting the Kinect during

the pavement data collection on-site as shown in Fig. 3.1. The camera holder fits

the base of the attached Kinect sensor and gets close to the floor, which allows us

to use the near mode of the Kinect fusion [IKH+11] and improves the result. Two

portable power supplies are also equipped on the stand. A Lenovo Thinkpad T430

laptop computer equipped with an Intel i7 CPU and 16G RAM was connected to the

Kinect. Note that slight oscillations of the Kinect sensor during the data collection

do not affect the accuracy or quality of the final reconstruction as the camera’s posi-

tion and orientation can be dynamically tracked during the Kinect fusion [IKH+11].

Due to the hardware limitation, excessive darkness or brightness in the environmen-

43

Chapter 3. Autonomous Pavement Surface Recognition

tal ambient will degenerate the performance of the RGB camera. However, this issue

can be easily fixed by adding artificial illumination when boarded on a moving van.

Three types of pavement cracks were measured: 1) Longitudinal cracking refers

to cracks that are predominantly parallel to the pavement centerline (or traffic direc-

tion) [BHM+12]; 2) Transverse cracking is the ones are predominantly perpendicular

to the pavement centerline; 3) Alligator cracking corresponds to the cracks occur

in areas subjected to repeated traffic loadings, especially along the wheel paths. In

the early development stages, alligator cracking can appear as a series of intercon-

nected seams. Eventually, they morph into many-sided, sharp-angled pieces, usually

less than one foot on the longest side, characterized by a chicken wire/alligator skin

pattern in the later stages. For each type of crack, 339 to 385 sample data were

collected for cracking detection and analysis with a total of crack samples. The

amount of cracking samples for each type on each severity was determined based

Figure 3.2: The expert evaluation is based

on the on-site photograph.

on previous studies and statistical experi-

ences [JJMBG12, VESS13]. Each record

of a single pavement crack sample con-

sists of a 3D mesh based on the cap-

tured Kinect depth streams. An evalu-

ation from human experts was conducted

as the ground truth through dedicated

camera photographs taken for the same

samples (Fig. 3.2). In order to distin-

guish longitudinal cracks from the trans-

verse ones, the axis of a depth frame was

aligned with the traffic direction. Thus, the direction of longitudinal cracks in the

depth frame captured by Kinect is vertical and that of transverse cracks is horizon-

tal. All the pavement data were collected on the dry surface of asphalt concrete

pavement.

44

Chapter 3. Autonomous Pavement Surface Recognition

A cracked
pavement

Kinect
sensing

Point cloud

Triangulation

Triangle mesh

Sharp vertices
Identification

Sharp
vertices

Contour
extraction

Crack
markingDetected

cracking region

• Crack depth
• Crack width
• Cracking area
• Severity level

Crack
analysis

Depth
images

Kinect
fusion

Crack
contour

Figure 3.3: An overview of the proposal framework of crack analysis.

3.4 Research Methodology

3.4.1 An Overview of System Framework

This paper aims to utilize the Microsoft Kinect to reconstruct pavement surfaces

and capture geometric information of pavement cracking, including crack width,

length, and depth. As sketched in Fig. 3.3, we developed a series of algorithms

to facilitate an automatic identification of distress severities of three major types of

pavement cracks to provide necessary information for pavement condition evaluation.

Observing the fact that pavement cracks inevitably undermine the smoothness of

the surface geometry, we devised a local algorithm that automatically screens all

the potential sharp vertices on the mesh, where a salient surface geometry variation

exists. This is accomplished by analyzing the distribution of normals of a small

neighboring region surrounding a mesh vertex being examined. A breadth-first search

(BFS) is used to obtain connected components out of all the sharp vertices. The

cracking region can then be identified as the covered area of the largest connected

vertices. The geometric parameters, such as the width, length, and depth of the

45

Chapter 3. Autonomous Pavement Surface Recognition

cracks, are then calculated. Each step in Fig. 3.3 will be detailed in the following

sub-sections.

3.4.2 Depth Retrieval and Surface Reconstruction

Although the Kinect sensor provides a fast dense depth sampling of its target’s

surface, the raw data could contain a significant amount of high-frequency noises and

missing captures (e.g. holes on the surface). In addition, one Kinect frame is only

able to sense the depth information of a small region, which is far from sufficient to

completely cover an entire cracking site. To resolve this problem, we used a technique

named Kinect fusion [JJMBG12]. Kinect fusion “merges” the depth information

from multiple Kinect frames. Specifically, for an incoming depth frame from Kinect

sensor Kinect fusion first computes the corresponding camera pose, which can be

encoded as a 4 by 4 homogeneous matrix. After unprojecting the depth points into

3D, a multi-resolution iterative closest point (ICP) method [BM92] is used to align

the frame into a global 3D model (which is the pavement surface in our system)

represented using the volumetric truncated signed distance function (TSDF) [CL96].

The constructed pavement mesh contains 3D geometry information of the pavement

surface (we refer readers to related studies [NIH+11, JJMBG12] for more detailed

explanations of algorithmic procedures of Kinect fusion).

3.4.3 Feature Extraction

The concept of k-ring neighbors of a vertex v on the mesh is frequently utilized in

our feature extraction stage. Let M (E ,V) denote the triangle mesh, where E and

V are the sets of edges and vertices on M . The one-ring neighbor N v
1 of vertex

v ∈ V is the set of vertices such that ∀vi ∈ N v
1 , 〈v, vi〉 ∈ E . The one-ring neighbor

of all the vertices on the mesh can be easily found by iterating all the triangles on the

46

Chapter 3. Autonomous Pavement Surface Recognition

Figure 3.4: The normal directions close to a vertex on a smooth pavement surface
are mostly in parallel (left). When it is close to a crack, normals are irregularly
scattered (middle). A non-uniform normal distribution does not necessarily mean a
sharp vertex (right).

mesh once, which is clearly an O(N) operation. Similarly, the k-ring neighbor N v
k

of vertex v is defined as the set of vertices such that they can be reached by traveling

from v through at most k edges. The k-ring face neighbor F v
k is the set of triangles

such that each of them holds at least one element in N v
k . As such neighboring

information of vertices will be used repeatedly, we assign each vertex a linked list

storing N v
k and F v

k immediately after the triangle mesh is reconstructed.

The next step is to identify the locations corresponding to the cracks on the

constructed 3D surface. It is assumed that an intact pavement surface is smooth

indicating that the normal of nearby triangles should be in the similar direction.

On the other hand, the location close to the crack is more likely to have irregular

distribution of normals as shown in Fig. 3.4. To evaluate the smoothness of the

neighbor region of vertex v, a flatness test is performed by computing the area-

weighted average normal n̄ for all the triangles that are close to v, e.g. using the

k-ring face neighbor, such that:

n̄ = [
∑
Fi∈Fv

k

A(Fi) · n(Fi)]/[
∑
Fi∈Fv

k

A(Fi)] (3.1)

Here, n(Fi) ∈ R3 and A(Fi) denote the unit normal vector and the area of the triangle

Fi ∈ F v
k respectively. Afterwards, we computed the “distance” between n(Fi) and

47

Chapter 3. Autonomous Pavement Surface Recognition

n̄ using the angle αi between them:

αi = arccos [n̄ · n(Fi)/|n̄|] (3.2)

Finally, the standard deviations (SD) among all the calculated αi are evaluated. If

the SD is lower than a given threshold, the region determined by F v
k is regarded

as flat and being free of cracks. Otherwise, Fi could potentially be associated with

sharp features (e.g. edges of the crack) and further analysis would be necessary.

We found that the flatness test based on two or three-ring neighbors can effectively

remove most smooth vertices.

The discrete Gauss map (DGM) [DMSB00] is employed for further investigations

of the local geometry feature associated with v that fails the flatness test. In DGM,

a unit sphere centered at v is defined and each Fi ∈ F v
k is mapped to a point pi on

the sphere’s surface by travelling from v along n(Fi) for a unit distance. This can

be computed via:

pi , DGM(Fi, v) = v + n(Fi), Fi ∈ F v
k , (3.3)

where pi,v ∈ R3 are the 3D positions of pi and v. Fig. 3.5 shows an illustrative

Figure 3.5: DGM of a vertex.

example of the DGM for a vertex on the

mesh. We reorganize the mapped points

on the sphere into clusters such that points

within a cluster are closer to each other. It

is clear that if v happens to sit on the in-

tersection of two planes, its neighboring faces

should hold two distinctive normal directions.

Accordingly, its DGM points can be grouped

into two clusters. Similarly, three DGM clus-

ters indicate an intersection by three planes of

different orientations. However, if the number

48

Chapter 3. Autonomous Pavement Surface Recognition

of resulting clusters is larger than four, it is more likely that is on a rough surface

rather than a sharp feature as we rarely have intersections of more than four planes

on the roadway pavement. The major calculation in the DGM clustering is to mea-

sure the “distance” between two DGM points. As each point actually represents a

normal vector of a triangle in F v
k , the regular Euclidean distance is obviously not

a good choice. Alternatively, we use the geodesic distance on the sphere (e.g. the

great-arc length), which equals the minimal angle between the two normal vectors

and can be computed as:

distg (pi, pj) = arccos (n(Fi) · n(Fj)) . (3.4)

At the beginning, each DGM point is assigned to a different cluster. The distance

between two clusters Ci and Cj is defined as the maximum distance between all the

DGM point pairs from each cluster:

dist (Ci,Cj) = max
pn∈Ci,pm∈Cj

distg (pn, pm) , (3.5)

where pn and pm are DGM points from Ci and Cj respectively. As long as dist(Ci,Cj)

is smaller than a sensitivity parameter αt, they will be merged into a new cluster. We

keep merging the clusters until the distance between any pair of the clusters is larger

than αt. If the final number of the clusters is between two and four, v is considered

a sharp vertex.

3.4.4 Crack Analysis

Although our method is able to mark most vertices on cracks as sharp vertices,

some vertices away from cracks may also be mistakenly labeled due to the regional

pavement roughness. Therefore, we need to further extract vertices that truly belong

to the crack. This was achieved by applying a BFS over all the sharp vertices

detected in the previous step based on the assumption that the crack region should

49

Chapter 3. Autonomous Pavement Surface Recognition

(a) (b)

Figure 3.6: (a) The result of BFS on a pavement mesh. The red regions are the large
connected component. Other small components in other colors are discarded. (b)
Crack depth evaluation by grids. At each grid, the deepest sharp vertices are picked
(red spheres) for local depth evaluation.

be the most dominant geometry feature on the pavement segment of interest. BFS

algorithm retrieves all the connected components on the mesh, where a connected

component is a subset of vertices and edges such that any two vertices can be reached

through its edge set. The connected components of small size (e.g. smaller than

1, 000 sharp vertices) are most likely associated with some minor surface dents rather

than cracks. Therefore, they are discarded (as shown in Fig. 3.6 (a)). The triangle

incident to a sharp vertex is labeled as sharp face. Due to the strong connectivity

of the connected component, it is guaranteed that all the triangles associated to

a connected component are also connected and formed a sub-mesh or the cracking

region. The contour of the crack region can be easily extracted by iterating all the

edges: a contour edge is the one shared by two triangles such that one of the triangles

is a sharp feature face while the other one is not. In order to make the framework

directly useful for the pavement evaluation, detailed parameters and statistics, such

as the width, length, and depth of cracks, must be automatically reported out of the

crack region marked. This feature is also supported in our framework.

Crack Depth

It seems that the crack depth could be directly obtained by looking at the values of

the sharp vertices within a crack region. Unfortunately, it is not always the case that

50

Chapter 3. Autonomous Pavement Surface Recognition

the pavement surface perfectly aligns with the plane of the camera coordinate frame

(CCF). In most situations, the pavement of the road formed an arch and the depth of

the crack was actually the distance from the valley of the crack to the tangent plane

of the surface. Based on this observation, we used the least square fitting (LSF)

sphere surface to approximate the pavement arch. The LSF sphere is described by

the standard sphere equation:

x2 + y2 + z2 − Ax−By − Cz +D = 0,

where A, B, C, D are four unknown coefficients to be determined. The quadratic

equation is optimal (best fitting) when the sum of the squared distance from vertices

to sphere surface is minimized:

arg min
A,B,C,D

E, E =
∑(

x2i + y2i + z2i − Axi −Byi − Czi +D
)2
,

where xi, yi and zi are the x, y and z coordinates of a vertex. Because sharp vertices

are located at the valley/edge of the crack far away from the pavement surface,

they should not participate in LSF sphere equation evaluation. Accordingly, the

summation E only takes over all the non-sharp vertices. The unknowns A, B, C and

D can be solved by setting the gradient of E as 0:

∆E =

[
∂E

∂A
,
∂E

∂B
,
∂E

∂C
,
∂E

∂D

]
= 0,

which yields a 4× 4 linear system:
∑
x2i

∑
xiyi

∑
xizi −

∑
xi∑

xiyi
∑
y2i

∑
yizi −

∑
yi∑

xizi
∑
yizi

∑
z2i −

∑
zi

−
∑
xi −

∑
yi −

∑
zi

∑
1

A

B

C

D

 =

∑
xi(x

2
i + y2i + z2i)∑

yi(x
2
i + y2i + z2i)∑

zi(x
2
i + y2i + z2i)

−
∑
xi(x

2
i + y2i + z2i)

 (3.6)

Lastly, the depth of a vertex v on the mesh is defined as the distance to the LSF

sphere surface:

depth(v) = R−
√

(x− xo)2 + (y − yo)2 + (z − zo)2, (3.7)

51

Chapter 3. Autonomous Pavement Surface Recognition

where xo, yo and zo are the coordinates of the sphere center and R is the sphere radius.

The crack depths at different regions could be different. We regularly partitioned

the pavement mesh by grids. The top 5% of the deepest sharp vertices computed via

Eq. (3.7) serve as representative depth samples at each local grid cell. The average

of them is then used for the final crack depth estimation as shown in Fig. 3.6 (b).

Crack Width

Evaluating the average crack width is challenging especially for cracks with

Figure 3.7: Width measurements.

irregular patterns. As shown in

Fig. 3.7, the local deepest sharp ver-

tex (the red dot) within a grid cell is

assumed to be located at the valley of

the crack. The projection of the vec-

tor pointing from the sharp vertex to

its closest surface vertex on the LSF

sphere surface provides us a reason-

able approximation of the half width

of the crack. As a result, the local crack width at the grid was computed as:

width(v) = 2|v′ − v′S|, (3.8)

where v′,v′S ∈ R3 are 3D positions of the deepest sharp vertex and its closest pro-

jected crack boundary vertex. In our implementation, we use the three nearest crack

boundary vertices for a better width approximation.

Crack Length & Area

The area of the crack is just the summation of the area of all the sharp faces projected

to the LSF sphere. The length can be computed by dividing the crack area by its

52

Chapter 3. Autonomous Pavement Surface Recognition

average width. Finally, the severity of the crack can be estimated based on the

evaluated crack parameters.

3.5 Experimental Tests and Discussions

3.5.1 Surface Reconstruction

With the help of Kinect fusion technique, the 3D reconstruction can be made for a

wide pavement surface area. Indeed, we can reconstruct arbitrarily wide and lengthy

pavement as long as there is sufficient hard drive space. After the mesh reconstruction

is completed, the aforementioned feature detection and crack analysis algorithm will

be applied. It is also easy to see that, all the calculation for extracting crack’s

geometry is essentially local, meaning the entire analysis is an O(N) linear algorithm.

The calculated crack parameters (width, length and depth) are used following the

existing flexible pavement evaluation standard in New Mexico [BHM+12] to assess

the severity of each crack sample. Such results are further compared with manual

severity estimation by experts for algorithm performance assessment.

We also created an online database using a WebGL based interface (Fig. 3.8), which

can be assessed by the readers for free to further test our algorithms. The red spots

on the map interface (supported by Google Map API) on the left corresponds to a

crack site and its street view is provided at the bottom left corner. In the middle, the

list of data from this site is provided and users can click on any of them to download

it. Each item consists of a 3D mesh as shown in the rendering panel on the right

and a photo with sample ID.

53

Chapter 3. Autonomous Pavement Surface Recognition

Figure 3.8: A WebGL based database for collected cracking samples, available at
http://ece-research.unm.edu/yyang/pavement/.

3.5.2 Accuracy Experiment

The suggested range of the first generation Kinect sensor is between 0.3 to 3 meters

(i.e. 11.9–118 inches) when the near mode is on. The phantom study tests the

accuracy of the Kinect senor with a simple man-made cracking surface. As shown

in the Fig. 3.9, the phantom was made of a cardboard with a one-inch wide and

one-inch deep artificial dent at its middle. We compare the width/depth information

calculated with the proposed algorithm on the digital reconstruction from the Kinect.

Since the ground truth value is precisely known, this simple phantom study allows a

quantitative understanding of the accuracy of the proposed algorithm. The result is

reported in Fig. 3.9, where we plot the relation between the Kinect-phantom distance

and the relative error between the calculated depth/width and the ground truth. It

can be seen from the figure that the relative error of our algorithm based on the Kinect

54

http://ece-research.unm.edu/yyang/pavement/

Chapter 3. Autonomous Pavement Surface Recognition

Figure 3.9: We test the accuracy of the proposed algorithm using a standard man-
made cracking surface. The accuracy is typically below 5% if the Kinect-phantom
distance is between 10 to 30 inches. The reconstructed surfaces are given in top.

fusion is always less than 5% if the Kinect-phantom distance is between 10 inches

to 30 inches, which is the typical working distance in our data collection. It is not

surprising that if this distance increases, the quality of the resulting reconstruction is

downgraded (as shown in Fig. 3.9 top). Thus the relative error goes up accordingly.

To further illustrate the versatility of our algorithm, we also did a side-by-side

comparison applying the proposed method to 3D surface geometries obtained from

both LIDAR and Kinect. For the LIDAR, a Delaunay triangulation [LS80] was

performed the construct the corresponding mesh. The result shows that the quality

of Kinect data is not as superior as the ones from the professor LIDAR sensor.

However, the cracking region is still correctly detected regardless the resolutions of

the input meshes. The experiment validates the robustness of our algorithm.

55

Chapter 3. Autonomous Pavement Surface Recognition

3.5.3 Test Results for Various Cracking Detection

The proposed system is able to capture the shape information of various cracks. Be-

fore being analyzed by the proposed Kinect fusion and crack detection technique,

all the collected crack sample data were manually examined by trained pavement

inspectors, and their severity evaluation results, after agreeable adjustments, were

used as observed truth data for performance assessment purposes. The data collec-

tion was carried by three Ph.D. students and two professors. All the members went

through a two-day training workshop provided by NMDOT. The geometry measure

of the cracks were all obtained in the field. Table 3.1 reports the performance of the

proposed approach and the confusion matrix for transverse cracking regarding each

severity as well as failure detection. Tables 3.2 and 3.3 demonstrate these summaries

for longitudinal cracking and alligator cracking. In these tables, each row represents

the number of observed instances for each severity level, and each column illustrates

the number of predicted instance for each severity and failure detection. The last

two columns list the true positive rate (TPR) and failure detection rate (FDR) for

each crack severity. TPR measures the proportion of actual positives which are cor-

rectly identified as such (i.e. the proportion of Severity 1 samples that are correctly

identified as Severity 1), and FDR denotes the proportion of records that failed to

identify. The three tables show that the proposed method was able to correctly

identify 78.27% of longitudinal cracking, which is the highest of all the three major

cracking types, and it performs relatively inferiorly on alligator cracking detection,

with the lowest TPR of 55.16%.

In the meantime, the proposed method failed to identify a small amount of col-

lected samples for each cracking type, indicated by the overall FDR. With comparable

sample size for each cracking type, the proposed approach has the highest amount

(42 samples) and FDR (10.91%) for transverse cracking, and close recognition per-

formance on longitudinal cracking (24 samples, 6.69%) and alligator cracking (30

56

Chapter 3. Autonomous Pavement Surface Recognition

Table 3.1: Transverse cracking severity detection results.

Observed Samples
by Severity

Predicted Samples by Severity

Severity 1

(104)

Severity 2

(149)

Severity 3

(90)

FD

(42)
TPR FDR

Severity 1 (160) 101 45 1 13 63.13% 8.13%

Severity 2 (113) 3 81 11 18 71.68% 15.93%

Severity 3 (112) 0 23 78 11 69.64% 9.82%

Total 385 260 (Total correct predictions) 42 67.53% 10.91%

Table 3.2: Longitudinal cracking severity detection results.

Observed Samples
by Severity

Predicted Samples by Severity

Severity 1

(110)

Severity 2

(146)

Severity 3

(79)

FD

(42)
TPR FDR

Severity 1 (144) 109 31 1 3 75.69% 2.08%

Severity 2 (113) 1 99 5 8 87.61% 7.08%

Severity 3 (102) 0 16 73 13 71.57% 12.75%

Total 359 281 (Total correct predictions) 24 78.27% 6.69%

Table 3.3: Alligator cracking severity detection results.

Observed Samples
by Severity

Predicted Samples by Severity

Severity 1

(69)

Severity 2

(142)

Severity 3

(98)

FD

(30)
TPR FDR

Severity 1 (119) 65 31 5 18 54.62% 15.13%

Severity 2 (128) 4 73 44 7 57.03% 5.47%

Severity 3 (92) 0 38 49 5 53.26% 5.43%

Total 339 187 (Total correct predictions) 30 55.16% 8.85%

samples, 8.85%). These results suggest that TPR and FDR are effective indices

measuring the performance from certain aspects and should both be utilized for

pavement cracking detection and evaluation.

The performance of the proposed method also varies for the same type of cracking

with different severities. Taking Table 3.1 as an example, it shows that for trans-

verse cracking, the proposed approach performs best on Severity 2 and is able to

57

Chapter 3. Autonomous Pavement Surface Recognition

correctly classify 71.68% of all Severity 2 samples, followed by a comparable per-

formance on Severity 3 (69.64%). It per-forms worst on Severity 1, with a TPR of

63.13%. This implies that the proposed approach is relatively better able to classify

transverse cracks of higher severities. However, similar to the overall performance, it

was also found that the pro-posed method is unable to recognize some of the cracks

regarding each severity. Overall, the proposed approach is able to identify 89.09%

(FDR=10.91%) of all the transverse crack samples and is capable of correctly classi-

fying 67.53% of all the transverse cracks, indicating an acceptable prediction perfor-

mance. As is shown in Table 3.1, this method fails to identify 8.13% of the Severity

1 transverse cracking, which is the least of all the three severities, followed by failure

detections on Severity 3 (9.82%) and Severity 2 (15.93%). It is suggested that the

proposed approach performs worst on recognizing Severity 2 transverse cracking, but

in the meantime works best after Severity 2 cracking is recognized, as is shown by

the TRP. The crack detection results for longitudinal cracking and alligator cracking

could be interpreted analogously, and therefore are omitted in this discussion.

It is also displayed in Table 3.1 that the proposed method tends to overesti-

mate transverse cracks in Severity 2 and underestimate those in Severities 1 and 3.

Specifically, there are a considerable amount of misclassified instances in each pair

of severities: 45 samples of Severity 1 are misclassified as Severity 2 and 1 sample

of Severity 1 is misclassified as Severity 3; 3 Severity 2 records are misclassified as

Severity 1 and 11 Severity 2 samples are misclassified as Severity 3; 23 Severity 3

records are misclassified as Severity 2. It is also revealed that there is overall only 1

misclassification between Severity 1 and Severity 3, indicating a significant discrep-

ancy between these two severity levels and that the proposed method is effective in

detecting this discrepancy. The misclassifications for longitudinal cracking and alli-

gator cracking, which are illustrated in Table 3.2 and Table 3.3 respectively, could

be analyzed accordingly.

58

Chapter 3. Autonomous Pavement Surface Recognition

According to existing flexible pavement evaluation protocol in New Mexico [BHM+12],

crack width is the major parameter used to define crack severity. Therefore, in this

study, the crack width information is used in the severity classification process. How-

ever, it should be noted that both crack length and width are important parameters

for pavement distress evaluation and therefore are also calculated by the proposed

algorithm. Based on existing flexible pavement evaluation protocol, crack length is

an important measurement to define pavement cracking extent. The cracking extent

is not evaluated in this research, but the length information for each crack sample

is extracted to verify the applicability of the proposed approach. Besides, the most

critical problem affecting the pavement service life is the formation and growth of

tracks due to physical stress and chemical deterioration. Therefore, crack depth is

generally used a factor to determine pavement surface maintenance and rehabilita-

tion [LMG02]. Taking this into account, this study also extracts crack depth infor-

mation, which may provide instructive reference for pavement surface maintenance

schedule optimization.

Fig. 3.10 shows the result of three successful detections of alligator cracking,

longitudinal cracking, and transverse cracking, respectively. We can see that the

crack region is accurately identified and cracking features are explicitly characterized.

It is demonstrated that the Kinect fusion algorithm and crack detection techniques

are able to capture the shape information of various cracks. However, our method

could also underperform in some extreme cases, where the crack is shallow and some

regular surface roughness could present as significant geometry variations as the

crack does. Therefore, high-level noise (fake sharp vertices) could be observed in the

failure example as the bottom row in Fig. 3.10. The crack has less depth and width

magnitude compared to the successful example, indicating that crack depth and

width are significant factors related to successful crack detection. It also indicates

that our system performs better on higher severities than lower severities, which

is reasonable as the high severity crack is usually associated with width, length or

59

Chapter 3. Autonomous Pavement Surface Recognition

Alligator

Longitude

Transverse

Failure

Figure 3.10: More results from our method.

depth of larger magnitude. Overall, the developed Kinect fusion technique and crack

detection algorithms are able to detect three major types of pavement cracks. The

proposed approach provides a viable alternative for pavement crack detection.

3.5.4 Limitations

While our experiment reports promising results, there still exist some limitations in

the current version of our system, which leave us many exciting further directions to

explore. First of all, we were using the first generation of Microsoft Kinect in this

work. By the time of this paper submission, the second generation of Kinect had

just been released, with higher depth resolution and frame rates. We will adapt our

system to the latest Kinect hardware in the near future and a much more detailed

surface reconstruction is expected. Second, our feature detection method works well

for local sharp geometry features. However, lower performance was observed for

60

Chapter 3. Autonomous Pavement Surface Recognition

subtle surface roughness and global shape variation (e.g. on a wide and smoothly

curved surface). It is necessary to investigate new geometric analysis method to

detect the cracks on the re-constructed pavement surface. Using spectral geometry

analysis [HH09] is a promising further direction. Currently, we perform the crack

analysis purely based on the reconstructed 3D mesh surface. We believe that by

combining information from other data resources e.g. the classic RGB video cam-

era [BVLH06], the accuracy of the pavement analysis can be further improved. We

will also explore further possible enhancement of our current algorithm, for instance,

to use extended ICP algorithm [HTB03] to improve the precision of the 3D con-

struction from depth frames. Of course, the algorithm becomes more expensive and

we may need to utilize a parallelization on general-purpose graphics processing unit

(GPGPU) to further accelerate the processing [LGG01]. Moreover, there is still a

limitation regarding Kinect field of view in this study, due to which the examination

of crack extent is not applicable. A possible solution, as was proposed in a previous

study, is to use an array of Kinect to cover larger areas in both longitudinal and

transverse directions. We also plan to install the Kinect to the vehicle to collect

more 3D geometry data of the local streets and highways. In order to do that, we

need to study how to de-blur the depth data when the Kinect sensor undergoes a

fast movement. This may be achieved by fusing information from multiple Kinect

devices.

3.6 Conclusions

This study applies Microsoft Kinect, a consumer-level motion sensing input device to

detect the geometric features, including width, length, and depth of different types of

pavement distress. Research results indicate that Microsoft Kinect produces reliable

geometric information of pavement distress and is able to report distress severity with

61

Chapter 3. Autonomous Pavement Surface Recognition

a promising accuracy. Crack depth and width are significant factors related to suc-

cessful crack detection indicated by the comparison of successful detection and failure

detection examples, which demonstrates that Kinect crack detection algorithms per-

form better on higher severities than lower severities. Research limitations regarding

the hardware constraint, universal application extensions, and data accessibility are

also discussed. The main advantage of the proposed method includes two aspects:

first, compared with the existing automatic pavement evaluation method, the pro-

posed approach captures 3D pavement crack image and extract crack depth infor-

mation, which is an important measurement to define pavement cracking severity.

Besides, compared with recently proposed advanced 3D surface reconstruction tech-

niques, the Kinect fusion technique is consumer-level efficient and practice-ready, and

has shown great potential for mass implementation with further improvement. Due

to the hardware constraints and complicated data processing it is unlikely that the

Kinect could completely replace the current state-of-the-art systems for pavement

condition evaluation. Nevertheless, we believe the proposed system still provides

an applicable complementary solution for automatic pavement evaluation, pavement

surface 3D reconstruction, and distress severity quantification.

62

Chapter 4

Computational Future Traffic Flow

Simulation

4.1 Introduction

The concept of smart transportation has drawn more and more attention while ad-

dressing important challenges and concerns like traffic congestion, fuel consumption,

air pollution and so on. Emerging Connected Vehicle (CV) and Autonomous Vehicle

(AV) technologies can improve network-wide traffic safety, mobility, and operation

efficiency through real-time Dedicated Short Range Communications (DSRC) based

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications [JWZ+13,

HPL15, Nob10]. The research team at the University of Toronto including Alberto

Leon-Garcia, Hans-Arno Jacobsen, Baher Adbulhai, etc. conducted pioneering work

to establish the Connected Vehicles and Smart Transportation (CVST) portal to

share live integrated traffic information in CV environments [LGJA+,LG11,KLG11,

LGK11]. Many other researchers in the university investigated driving challenges

and opportunities in AV-enabled traffic systems [Tic15, Uof]. According to the Re-

63

Chapter 4. Computational Future Traffic Flow Simulation

search and Innovative Technology Administration (RITA) of the U.S. Department

of Transportation (USDOT), 81% of all vehicle-involved crashes can be avoided or

significantly mitigated based on CV techniques annually. Meanwhile, AV is capa-

ble of sensing its environment and self-piloting based on navigation hardware such

as cameras, radar, Lidar, laser rangefinders, and GPS. AVs can much more accu-

rately judge distances and velocities, attentively monitor their surroundings, and

react instantly to emergent situations. By combining CV and AV technologies seam-

lessly, it is believed that Connected Autonomous Vehicle or CAV enabled traffic

systems can revolutionize the existing understanding of vehicle-infrastructure inter-

actions and network-wide traffic system operations. However, the existing traffic

theory becomes awkward when comes to the context of CAV. Existing traffic flow

models [LW55, Ric56, Ros88, PBHS89, MBL84, Zha02, LPMS13, ADR16, WMMJ17]

were developed for Human Driven Vehicle (HDV)-based traffic flow operations based

on one-way coupled vehicle interactions adopted in classic car-following models (a

following vehicle adjusts its operation conditions, such as acceleration/deceleration

only based on its leading vehicle’s position, relative speed difference, etc.). To incor-

porate the lateral traffic flow operations, additional lane-changing models must be

involved. Enabled by CAVs, the two-way communication and collaborative linkages

among CAVs can greatly facilitate us to formulate the mutually-coupled vehicle in-

teractions (not only a following vehicle will be impacted by its leading vehicle, but

also the leading vehicle will be impacted by its following vehicle and its surround-

ing vehicles too) for CAV-enabled traffic flow. This feature implies that CAVs are

expected to move freely along both the longitudinal and lateral direction and a two-

dimensional traffic flow model could be more reasonable. Currently, an aggregated

macroscopic model for CAV-based traffic is still an under-investigated problem.

Motivated by this fact, we present a new traffic flow model for mutually-coupled

vehicles enabled by CAV techniques. Under this scenario, an individual vehicle

spontaneously seeks for its local optimal configurations (Generally speaking, local

64

Chapter 4. Computational Future Traffic Flow Simulation

optimal configurations mean the best position and velocity that a CAV can have in

order to, for example, reach the highest possible traveling speed or have the shortest

traveling time. The objective is to improve the traffic mobility and maximize the

transportation capacity.) based on the real-time information shared/obtained from

the surroundings. Such behavior exaggerates intrinsic physics traits of the system,

making the CAV-enabled traffic resemble other real-world continuum systems like

fluid or molecular systems. We use several virtual internal and external forces to

describe the two-way vehicle-vehicle interaction. By leveraging the Newton’s second

law of motion, our model naturally preserves the traffic volume, which is required as

a macroscopic traffic flow model, and automatically handles both the longitudinal

and lateral traffic operations. While our model is designed for CAV-enabled traffic,

it can be easily rolled back to simulate the regular traffic of human drivers. The

experiment shows that the proposed model describes the real-world traffic behavior

well. Therefore, we consider the proposed model a generalization of the existing

traffic theory. We also develop a Smoothed Particle Hydrodynamics or SPH based

numerical simulation and an interactive traffic visualization framework.

The rest of this chapter is organized as follows: a brief literature review is given

in Section 4.2. Section 4.3 explains our force-driven model and how it can be nu-

merically simulated using SPH. The system implementation details are provided in

Section 4.4, followed by the discussion of experimental results in Section 4.5. This

research effort is concluded with future work in Section 4.6.

4.2 Related Work

CAV technology has been developed and demonstrated great potential to transform

the way people travel through the interconnected network including cars, buses,

trucks, trains, traffic signals, cell phones, and other devices [Tec13]. Litman con-

65

Chapter 4. Computational Future Traffic Flow Simulation

cluded that AVs will consist of about 50% of vehicle fleet, 90% of vehicle sales,

and 65% of all vehicles by 2050 [Lit14], although the true anticipated market share

needs more solid verications and investigations as a research question. As an echo to

such rapid deployment of CAV, many research efforts have been devoted to explore

how CAV technology can improve the existing transportation system. Ni and col-

leagues proposed a car-following model incorporating the effects of CV technology

and investigated the highway capacity gain [NLAW11]. Acceleration-based connected

cruise control was proposed to increase roadway traffic mobility through wireless

V2V communication [WOJK16, JO14]. An algorithm using CV data was proposed

to minimize the vehicle delay and queue length at intersections [FHKZ15]. Multi-

ple studies have been conducted on applications of CV technology, including traffic

monitoring [DB08], ramp metering [Par08], route guidance [THK16,KTY16], traffic

signal control [LP12, KIH+15, ZZSM16, TZWZ15], vehicle-infrastructure-integration

implementation issues [LTTA11], and public transportation [LLC16]. While most

applications of CV technologies were assumed to be effective based on perfect V2V

and V2I communications, it was pointed out that wireless communications could

also experience packet delays/drops, which might lead to a serious downgrade of CV

applications [DD15, OI15]. In CAV-enabled traffic systems, vehicle interactions are

dramatically changed from one-way to all-directional neighborhood-wide information

dissemination, which calls for a new macroscopic traffic flow formulation [MBSEF14].

Traditional continuum traffic flow models were pioneered by Lighthill and Whitham [LW55]

and Richards [Ric56] to mathematically describe macroscopic traffic flow opera-

tions (known as the LWR model) based on a nonlinear conservation law. Many re-

searchers introduced other high-order traffic flow models [MBL84, Ros88, PBHS89].

In recent work, Cheng and colleagues [CGW17] proposed a new continuum traf-

fic flow model incorporating the effects of drivers’ timid and aggressive behavior.

Andreianov and Donadello [ADR16] employed point constraints in a second-order

traffic flow model for modeling some traffic conditions, for instance, traffic signals.

66

Chapter 4. Computational Future Traffic Flow Simulation

Wang and colleagues [WMMJ17] used the energy conservation law to develop a two-

regime speed-density formulation for the first-order traffic flow model. Zheng and

colleagues [ZHH17] proposed a flexible traffic stream model connecting four driving

behavior-related parameters to the fundamental diagram (i.e. the fundamental re-

lationships among the flow, speed and density). All those macroscopic models are

one-dimensional and focus on conventional traffic.

On the other hand, microscopic traffic flow models, or agent-based models, de-

scribe the car-following behavior and the lane-changing behavior of individual vehi-

cles. There have been different microscopic models due to their specific assumptions

of the flow behavior [GHP59]. The acceleration of the following vehicle is a func-

tion of a calibration constant, a reaction time, its velocity, and the velocity of the

preceding vehicle relative to it. Recently, Asaithambi and colleagues [AKT16] pro-

vided a review of current microscopic driving behavior models and discussed both the

longitudinal and lateral movements in mixed traffic. Guo and colleagues [GZY+17]

proposed an improved car-following model that incorporates the effects of multi-

ple preceding vehicles’ velocity fluctuation feedback. Li and colleagues [LXXQ17]

introduced a sensitivity factor to the classic car-following model so that the vehi-

cles in traffic are divided into two types as low- and high-sensitivity vehicles and

used the linear stability theory to analyze the stability of the new model. To find

out the relationship between the microscopic and macroscopic traffic flow model,

Garavello and Piccoli [GP17] coupled the car-following model to the LWR model

through suitable boundary conditions, for example, at the location x = 0. Holden

and Risebro [HR17] proved that the car-following model converges to the LWR model

when traffic becomes dense. To calibrate the model parameters, Chiappone and col-

leagues [CGG+16] used a genetic algorithm based on specific fundamental diagrams.

In their method, the calibration is formulated as an optimization problem whose

objective is to minimize the difference between the simulated and real data. Given

the trajectory data collected from CVs, Zhu and colleagues [ZU17] proposed an op-

67

Chapter 4. Computational Future Traffic Flow Simulation

timal estimation approach for calibrating the car-following behavior in a CVs and

regular vehicles mixed traffic environment. Zhong and colleagues [ZFS+16] adopted

two approaches, the Cross-Entropy Method (CEM) and the Probabilistic Sensitivity

Analysis (PSA) algorithm, for the calibration. The former is able to find the opti-

mal set of the parameters, while the latter is applied to identify the most important

parameters in order to reduce the computational burden. To predict the traffic flow,

Zhao and Sun [ZS16] developed a fourth-order Gaussian process dynamical model

(GPDM) which is a unsupervised learning method suitable for modeling dynamic

real-world traffic data. Their experiments showed that the proposed method outper-

formed the existing methods for traffic flow predictions.

The existing traffic simulation packages VISSIM, AIMSUN, Paramics, etc. are

discrete event-driven, agent-based simulation applications to mimic how the traffic

system operates today. Many other outstanding simulation model applications in-

clude [ZMW14,LZK+13,ZW13,ZW11,ZYW09,ZWWY08]. Our developed new model

is completely different from these simulation tools. To the best of our knowledge,

no existing studies have been conducted to systemically investigate the CAV traffic

flow model and simulate mutually-coupled vehicle interactions. Inspired by dynamic

motion patterns of real-world natural continuum systems such as the elastic solid

(e.g. a piece of deformable rubber), the viscous volume (such as honey drops or oily

ointments) and the fluid (like water or smoke), we formulate the mutually-coupled

vehicle interactions using virtual forces. Being free of the individual randomness

in agent-based methods [RNB+07] and/or the limitation of one-way-coupled vehicle

manipulation adopted in classic car-following models, we believe the proposed model

is able to more accurately describe macroscopic traffic flow dynamics in the context

of CAV-enabled traffic systems.

68

Chapter 4. Computational Future Traffic Flow Simulation

4.3 Methodology

In this section, we first explain how to formulate mutually-coupled vehicle interac-

tions by the virtual forces. Based on it, the equation of motion of an elementary

particle on the traffic can be formulated as the force equilibrium. This equation

is aggregated to model the macroscopic traffic behavior. To do so, we have to re-

sort to numerical computations, and we choose to use SPH in our paper. After the

density and velocity at each particle is computed, the complete information of the

CAV-enabled traffic is obtained.

4.3.1 Virtual Forces Driven Traffic Flow Model

We consider the CAV-enabled traffic as a 2D homogeneous dynamic continuum sys-

tem, wherein all CAVs have identical operational characteristics. Sharing a similar

spirit of other continuum traffic models’ development [Zha02, LPMS13], our model

is based on an analytical formulation of several external and internal virtual forces

that allow mutually-coupled vehicle-vehicle and vehicle-environment interactions. In

the remaining part of the paper, we use a bold lower-case letter like v or u to denote

a vector-value quantity, and a regular letter like v or u to denote a scalar quantity.

Virtual external forces We explicitly define an external force that drives the

traffic motion. Analogous to the gravity force, this force induces a constant accelera-

tion field g over the entire traffic heading to the destination. Should the roadway be

curved, the acceleration always aligns with the roadway’s tangent. As to be detailed

in Section 4.4.2, we use the Bézier spline (with parameter p) to describe the road-

way geometry, and the tangent vector can be calculated as [∂x/∂p, ∂y/∂p]> ∈ R2.

Clearly, the traffic speed driven by g would approach an infinity if the roadway is

sufficiently long. While such behavior maximizes the transportation capacity, it is

69

Chapter 4. Computational Future Traffic Flow Simulation

always favored that the traffic velocity be capped by a certain limit. Therefore, we

plug in another damping force fd that penalizes an excessively high-speed traffic. We

use the proportional damping model [Adh06] so that fd is linearly proportional to the

traffic speed, yet along the opposite direction: fd = −cu, where c is the damping fac-

tor. For a given speed limit ū, c can be computed as ‖g‖/‖ū‖ so that fd completely

cancels out g when the speed limit is reached, and no further acceleration will be

obtained. Putting together, the virtual external force at an arbitrary location on the

traffic with density ρ is defined as:

fext = ρ(g − cu). (4.1)

Virtual internal forces The virtual internal forces are devised to model the

between-vehicle interaction in a CAV-enabled traffic based on the assumption that

a CAV is aware of the traffic condition over a wider surrounding neighborhood.

Intuitively, vehicles tend to move from a high density area to a low density area1,

and a pressure force fp is the resultant of such non-uniform density distribution

following the negative direction of the density gradient. To incorporate various fun-

damental diagrams, we formulate this force as:

fp = −∇(kργ), (4.2)

where k and γ are two positive constants related to a desired fundamental diagram.

Similar to fp, the viscosity force fv intends to make the velocity distribution uni-

form, i.e. a vehicle will accelerate when its neighbors are moving faster, or decelerate

when its neighbors have lower velocity. Since velocity is essentially a vector field, we

model fv using the Laplacian defined as the divergence of the velocity gradient:

fv = ∇2(µu), (4.3)

1Here the density is a local concept. For example, a vehicle tends to move from a
congested lane to the adjacent lane with less traveling vehicles. One should not confuse it
with the global traffic distribution in the entire city.

70

Chapter 4. Computational Future Traffic Flow Simulation

where µ is a constant coefficient. We note that fp and fv are two-dimensional vec-

tors. Their components perpendicular to the current traffic direction allow the lane-

changing behavior. If lane A has a lower vehicle density than lane B, vehicles on

lane B are likely to switch to lane A due to the existence of fp. Likewise, if lane A is

a high-speed lane, it is also more attractive to the traffic due to fv.

Lastly, the equation of motion of an elementary volume in the traffic can be

written as the equilibrium of all the external and internal virtual forces:

ρ
Du

Dt
= ρ(g − cu)−∇(kργ) +∇2(µu), (4.4)

where
D

Dt
is the material derivative

∂

∂t
+ u · ∇. Equation (4.4) is essentially a

reiteration of the Newton’s second law of motion. The left hand side of the equation

is the inertial force (i.e. the mass times the acceleration) which should be balanced

by all of the other forces being exerted.

Discussion It can be seen that Equation (4.4) has a similar form of the Navier-

Stokes equation [Tem84]:

∂u

∂t
+ (u · ∇)u︸ ︷︷ ︸

Convection

− ν∇2u︸ ︷︷ ︸
Fluid viscosity

= −∇ω︸ ︷︷ ︸
Thermodynamics

+g. (4.5)

fv in Equation (4.3) is our counterpart of the fluid viscosity and fp = −∇(kργ) is anal-

ogous to −∇ω, the thermodynamic force. To satisfy the traffic volume conservation

law, we employ the equivalent mass conservation constraint:

∂ρ

∂t
+∇ · (ρu) = 0. (4.6)

This constraint can be automatically satisfied in a Lagrangian method such as SPH

(which is discussed in the following section), because all the differential volumes in

the traffic are always tracked and computed.

71

Chapter 4. Computational Future Traffic Flow Simulation

4.3.2 Discretization and SPH

We discretize the continuous traffic flow with a particle system similar to the fluid

simulation in [MCG03]. One should note that a particle represents a small volume

of the traffic flow and is not necessarily equivalent to a real vehicle. A particle

carries many useful quantities such as the positional coordinates, the density, the

acceleration, the velocity, and the id of the road where it is traveling. The state of

the aggregated particles determines the entire traffic flow, i.e. the distribution of the

density and velocity field.

SPH was invented to simulate astrophysical phenomena by Lucy [Luc77] and

Gingold and Monaghan [GM77] in 1977. It is essentially an interpolation method

for a particle system [Mon92, LL10]. Unlike other numerical methods, for instance

the well known finite difference method (FDM), SPH does not need a grid to eval-

uate the spatial derivatives. Instead, SPH uses the differentiation of the interpo-

lation formula directly. This simplifies the computation. Although SPH is less

accurate than FDM, it is general enough and has been adapted into the Com-

puter Graphics community [SF95, MCG03, BEG11] for simulating various physi-

cal phenomena, such as water, lava and deformable soft bodies. To have more

details, we refer the interested readers to a wide-ranging list of the SPH papers

(e.g. [Luc77,GM77,Mon92,LL10,SF95,MCG03,BEG11]).

The key idea in SPH is to use a non-negative smoothing kernel function W such

that

∫
W (r−r0, h)dr = 1 to approximate Dirac delta function δ: lim

h→0
W (r−r0, h) =

δ(r− r0). As a result, the value of an integrable smooth function A(r) at r0 can be

approximated as:

A(r0) =

∫
A(r)δ(r− r0)dr ≈

∫
A(r)W (r− r0, h)dr, (4.7)

where h > 0 is the support radius. When the continuous function domain is dis-

cretized using a particle system, the integral in Equation (4.7) is also discretized as

72

Chapter 4. Computational Future Traffic Flow Simulation

Figure 4.1: We use the 2D poly-6, spiky and viscosity kernel for the SPH simulation.
The spiky kernel is for the gradient evaluation needed for fp. The viscosity kernel is
for the Laplacian evaluation of fv.

a summation:

A(r) ≈
∑
j∈N

Aj
mj

ρj
W (rj − r, h), (4.8)

where N is the set of indices of the neighboring particles. Derivatives of A(r) can

be approximated in a similar way:

∇A(r) ≈
∑
j∈N

Aj
mj

ρj
∇W (rj − r, h). (4.9)

4.3.3 Numerical Simulation and Smoothing Kernels

The Gaussian kernel is a widely-used choice for smoothing kernel function W . How-

ever, the Gaussian kernel does not have a compact support (i.e. the support radius

of the Gaussian is infinite), and it is expensive to evaluate. We follow the suggestions

in [MCG03], and employ three 2D polynomial smoothing kernels namely the poly-6

kernel, the spiky kernel, and the viscosity kernel to numerically compute necessary

73

Chapter 4. Computational Future Traffic Flow Simulation

physical and kinematic quantities as shown in Fig. 4.1:
Wpoly6(r, h) =

4

πh8
(h2 − ‖r‖2)3

Wspiky(r, h) =
10

πh5
(h− ‖r‖)3

Wviscosity(r, h) =
40

πh2

[
− ‖r‖

3

9h3
+
‖r‖2

4h2
− 1

6
ln
(‖r‖
h

)
− 5

36

]
The poly-6 kernel possesses a Gaussian-like bell curve with a compact support,

and it is easy to evaluate. It serves as the default kernel in our model. To evaluate fp

however, the poly-6 kernel is not suitable because its gradient gets to zero as ‖r‖ → 0

(i.e. see Fig. 4.1). This property implies that when particles approach each other,

fp becomes smaller and the particles tend to get clustered. This is not desired in a

traffic flow. As a result, the spiky kernel with a high gradient value as ‖r‖ → 0 is

used for computing fp. For a similar reason, we use the viscosity kernel for fv. The

Laplacian of the viscosity kernel has a cone shape with its maximum at ‖r‖ = 0, and

it is positive within the support area which is required for the computation. All of

these three kernels have vanished values when ‖r‖ > h. Our experiments show that

the three kernels work well in our traffic simulation.

The gradient and Laplacian operators as appeared in Equations (4.2) and (4.3)

for the spiky and viscosity kernels can be evaluated as:
∇Wspiky(r, h) = − 30

πh5
(h− ‖r‖)2 r

‖r‖
∇2Wviscosity(r, h) =

40

πh5
(h− ‖r‖).

(4.10)

Putting all together, ρ, fp, and fv at the ith particle can be computed as:

ρi =
∑
j∈N

mjWpoly6(rj − ri, h)

fpi = −k
∑
j∈N

ργi + ργj
2

mj

ρj
∇Wspiky(rj − ri, h)

fvi = µ
∑
j∈N

(uj − ui)
mj

ρj
∇2Wviscosity(rj − ri, h).

(4.11)

74

Chapter 4. Computational Future Traffic Flow Simulation

Noting that SPH is a Lagrangian-style method, and the convection term in Equa-

tion (4.5) is implicitly incorporated in our model. The unknown density ρ, as well

as the associated virtual forces fp and fv (assuming g is known) are calculated using

Equation (4.11). Finally, the velocities and the new positions for the particles are

computed using numerical time integration, and we are ready to simulate the traffic

condition of the next time instance.

4.3.4 Incorporating Existing Traffic Flow Models

So far, we have discussed a continuum model for CAV-enabled traffic, which uses two-

dimensional internal and external forces for modeling the mutually-coupled CAV

interactions. Most existing macroscopic traffic flow models based on conventional

traffic are one-dimensional and incorporate various fundamental diagrams. A funda-

mental diagram is determined by the relationship between the density and velocity.

For instance, the classic Greenshields model [RC02] presents a linear relationship

between the density and velocity. In this subsection, we show that our model is

versatile, and it can naturally be specialized to the conventional traffic. Therefore,

the proposed traffic model could be considered a generalization of the existing traffic

flow theory.

We downgrade our model to one-dimensional, and Equation (4.4) becomes:

ρ
∂u

∂t
= −k∂(ργ)

∂x
+ µ

∂2u

∂x2
+ ρ(g − cu). (4.12)

If we consider a traffic equilibrium under a uniform velocity u0 (fv becomes zero in

this case), without the external force, Equation (4.12) can be simplified as:

ρ
∂u

∂t
= −kγργ−1 ∂ρ

∂x
. (4.13)

By the traffic volume conservation law (i.e.
∂ρ

∂t
+ u0

∂ρ

∂x
= 0), we have:

∂ρ

∂x
= − 1

u0

∂ρ

∂t
. (4.14)

75

Chapter 4. Computational Future Traffic Flow Simulation

Combining Equations (4.13) and (4.14) yields:

∂u

∂t
= kγργ−2

1

u0

∂ρ

∂t
.

Integrating both sides of the above equation leads to:

u =

k

u0
ln ρ+ C γ = 1

kγ

u0(γ − 1)
ργ−1 + C otherwise,

where C is a constant. As mentioned previously, k and γ are parameters related to

the desired traffic fundamental diagram. When we take γ = 2, we obtain the lin-

ear regression relation u =
2k

u0
ρ+C, which is the classic Greenshields model [RC02].

Other fundamental diagrams, especially in polynomial relationships between the den-

sity and velocity, could be derived similarly by adjusting parameters k and γ.

The SPH-based simulation can also be easily degenerated to 1D, and the 1D

poly-6 kernel is:

Wpoly6(x, h) =
35

32h7
(h2 − x2)3.

Note that this formulation is slightly different from its 2D counterpart. This is

because the partition of unity condition must be satisfied (i.e.

∫
W (r−r0, h)dr = 1).

In the conventional traffic, a vehicle only interacts with its leading vehicle. As a

result, we only use the positive half of the kernel function when computing fp and

fv. That is the summation is only over the particles in front of the current particle.

The gradient and Laplacian of the 1D spiky and viscosity kernel are:

∂Wspiky

∂x
= − 6

h4
(h− x)2

∂2Wviscosity

∂x2
=

12

h4
(h− x).

76

Chapter 4. Computational Future Traffic Flow Simulation

Figure 4.2: A high-level flow chart of the proposed CAV-enabled traffic simulation
framework. Our system has three major modules namely the input module, the
simulation module, and the visualization module. The input module provides an
interface for the user to fully specify the configurations of the traffic to be simulated.
This information is passed to the simulation module, which will choose necessary
boundary conditions and kernel functions (according to user’s specification) and run
a SPH-based simulation. The output will be leveraged in the visualization module
to deliver the final visual representations of the simulated traffic flow.

4.4 System Implementation

Based on the derived traffic model and the SPH simulation, we develop an interac-

tive visual traffic simulation system. Our system is implemented using Microsoft

Visual C++ on a desktop Windows 10 PC with Intel Xeon E5-2670 CPU and 32G

on-board memory. The traffic simulator was developed under Qt software develop-

ment environment with the visualization based on OpenGL. OpenGL is essentially an

application programming interface (API) for computer graphics. It is independent

of the operating system and hardware, providing an easy way to manipulate the

graphics processing unit (GPU) for rendering arbitrary 2D or 3D graphics.

77

Chapter 4. Computational Future Traffic Flow Simulation

4.4.1 System Overview

Our CAV-enabled traffic simulation platform consists of three modules as outlined in

Fig. 4.2. In the input module, the user specifies necessary traffic parameters (such as

the expected traffic volume, traffic flow rates, and speed limits), roadway geometries

and external constraints. External constraints are prescribed configurations of the

traffic. For instance, users can force the velocity of the traffic at a given region to

be zero to study the shockwave propagation, or they can block two out of four lanes

of the roadway to test the resulting traffic congestion. The simulation module sets

up the corresponding boundary conditions and kernel functions. We employ a full-

kernel specification for CAV-enabled traffic simulation and a half-kernel specification

for conventional traffic simulation. The core component of the simulation module is

the SPH simulator. At each time step, the densities and velocities are calculated at

all the particles. The continuous density and velocity field can then be interpolated.

The visualization module uses the interpolated data obtained from the simulation

module to animate and visualize the traffic flow.

Our system provides three levels of detail for the visualization. The user is able

to view the simulated traffic as a discretized particle system. The density/velocity

distribution can also be rendered as a height field in 3D with a customizable color

map. The user can further zoom in the traffic to see animated vehicles. This detailed

microscopic traffic visualization could be important and useful in applications like

virtual reality or gaming. We create a database consisting of various 3D vehicle

models (vans, sedans, trucks, etc.), then randomly pick the models and scatter them

over the simulated traffic flow following the density distribution, so that more vehicles

are rendered and animated at high-density regions. At the starting end of the road,

the vehicles are generated according to the user-specified traffic flow rate (with the

unit of vehicle per hour). The traffic flow rate is also converted to the boundary

condition for generating particles for the SPH simulation (e.g. a vehicle is equivalent

78

Chapter 4. Computational Future Traffic Flow Simulation

to ten particles). In this way, the traffic volume represented by the particles is

consistent with the 3D vehicle models. Based on the position within the traffic at

each animation frame, the ith vehicle will have a velocity ui according to the SPH

simulation, and its position xi for the next frame will be updated as xi ← xi + ∆tui.

Here ∆t denotes the time interval between two consecutive animation frames.

The graphical user interface (GUI) of our implemented system is shown in Fig. 4.3.

It contains a main interface, four tabs, and other simulation controls. Next to the

main visualization panel, there are two sub-windows for the density/velocity field

visualization on the right. The second tab (Fig. 4.3 (b)) reports the density/velocity

plots at positions of interest in the traffic, which can be interactively specified by

the user. The third and fourth tabs provide miscellaneous functions/options for in-

teractive settings, such as roadway geometries, constraints, kernels, forces, rendering

options, and file I/O, as shown in Fig. 4.3 (c) and (d).

4.4.2 Roadway Geometries

To build up a realistic roadway segment, we use a cubic Bézier spline to model the

roadway geometry variation at its center line (known as the neutral axis too). The

Bézier spline is a sequence of piece-wise cubic polynomial curves that are connected

smoothly. We further extend the roadway segment to 2D by specifying the vertical

span of the splines along the normal direction (i.e. the direction perpendicular to

the tangent of the splines or the traffic direction). With this method, we can model

various roadways with arbitrary shapes and widths (see the input module in Fig. 4.2).

A roadway segment is further divided into a few polygons or cells. All cells to-

gether form the simulation domain of the roadway segment (see the simulation mod-

ule in Fig. 4.2). We set the cell to be wider than the roadway segment by two support

79

Chapter 4. Computational Future Traffic Flow Simulation

Figure 4.3: The snapshot of the graphical user interface of the implemented system.
Besides the major 3D visualization window, our system provides multiple mutually-
linked plots, statistics and visualization sub-views. Most of them can be interactively
controlled by the user to provide the descried visual perception of the traffic.

80

Chapter 4. Computational Future Traffic Flow Simulation

radii, so that the particles along the road-

way boundary can have a full support.

This treatment smooths the boundary of

the resulting density/velocity field. The

particles outside of the roadway bound-

ary serve similarly as the so-called ghost

particles, which is a popular method in

SPH simulation for boundary treatment [FAMO99, Fed02, SB12]. We pre-compute

and build a query table, whose entries are indices of the cells. The corresponding

context includes many useful attributes associated with the cell, such as the road id,

positional coordinates, tangent and normal vectors. The cells can also be used for

fast boundary treatment. We employ the explicit project-and-reflect method: the

particle is simply projected to the boundary where it is closest to once it moves out

of the boundary [CR99]. With the cell-based subdivision, the roadway boundary

becomes a piece-wise line segment, and it is trivial to project out-of-road particles

back onto the boundary.

4.4.3 Simulation in Roadway Networks

A roadway network can be described as a collection of roadway segments connected

by intersections. We divide the entire traffic flow in the roadway network into many

small pieces. Each piece is in fact the aggregation of all vehicles with the similar

trajectories. The user-specified trajectory data may come from real-world traffic or

predicted traffic scenarios. The trajectories then determine the simulation domain

associated with each piece which usually consists of a set of connected roadway

segments. The simulation result is the linear combination of the simulation of all

the pieces. Fig. 4.4 illustrates two traffic flow pieces and their associated simulation

domains. In the overlapping domain, the simulation result is the linear combination

81

Chapter 4. Computational Future Traffic Flow Simulation

Figure 4.4: Two traffic flow pieces are simulated in their associated simulation do-
mains (highlighted in the blue and red frame). In the overlapping domain, the
simulation result is the linear combination of these two pieces.

of these two pieces.

In the conventional traffic, the intersection configurations are converted to the

boundary conditions, for example, a red traffic signal phase imposes the zero-velocity

constraint in the area. In the future CAV-enabled traffic, the traffic signals could be

potentially removed. No additional constraints are applied to the intersection, and

the traffic flow becomes uninterrupted in the entire roadway network. Our model

works well in both of these two scenarios.

4.4.4 Fast Neighbor Search

The most expensive computation along the simulation is the summation over the

neighborhood for all the particles (i.e. Equations (4.8) and (4.9)). Because parti-

cles are moving along the simulation, each particle’s neighbors within the support

radius also vary at each time step. A brutal force iteration overall the particles

82

Chapter 4. Computational Future Traffic Flow Simulation

Figure 4.5: The detailed traffic visualization uses animated 3D vehicle models to
provide users an intuitive impression of the traffic. Each vehicle possesses a bounding
box (the purple rectangle), which will be used for collision detection and handling.

leads to a O(N2) calculation which is expensive noting that it is only for a sin-

gle animation frame. To accelerate this procedure, we employ the spatial hashing

method [THM+03] to fast retrieve the information of neighboring particles. There-

fore, the time complexity of the simulation becomes linear with respect to the total

number of particles.

4.4.5 Collision Detection and Handling

In the microscopic zoomed-in traffic visualization, we use animated 3D vehicle models

to represent the traffic detail as shown in Fig. 4.5. Each rendered vehicle follows the

position-dependant velocity obtained from the simulation. Because our force-based

traffic model is an aggregated one, and it does not account for the microscopic vehicle

behavior, it is possible that the animated vehicles collide each other. The collision

detection is achieved by checking the overlapping region between 2D boundary boxes

of the 3D vehicle models. Once a collision is detected, we roll back the simulation and

apply a virtual penalty force to push the colliding vehicles away. It can be understood

as connecting a vehicle with its neighbors by invisible springs, and the spring force

83

Chapter 4. Computational Future Traffic Flow Simulation

will be triggered if a collision is detected and pulling the involved vehicles back.

4.5 Experimental Results

The proposed virtual-force-driven traffic model and the implemented visual simula-

tion system have been extensively tested. Since CAV technique has not yet been

widely deployed, we downgrade our model to the classic Greenshields model (i.e. as

discussed in Section 4.3.4), and then validate the model by calibrating the simulation

result with the real-world traffic data. Afterwards, we simulate the CAV-enable traf-

fic under various scenarios by imposing user-specified external constraints. Please

also refer to the accompanying video for more details.

4.5.1 Model Validation

First, we show that our simulation based on the downgraded model well matches

the real-world traffic observation. The ground-truth data are collected from the 11

inductance loop detector stations along State Route 520 in the greater Seattle

areas in the State of Washington. These loop detector stations are selected be-

cause this roadway segment is one major corridor crossing the Lake of Washington,

and the uninterrupted traffic flow is well characterized to minimize the on-ramp and

off-ramp traffic disruption. Both stationary and dynamic characteristics of the traf-

fic flow are considered. Fig. 4.6 (a) shows the general correlation among the traffic

flow, speed, and density when the traffic becomes stationary (i.e. the fundamental

diagram). Fig. 4.6 (b) plots the dynamic shockwave transmission and dissipation

of the congestion during the morning peak-hour time period form 5:40 to 8:30 AM.

The horizontal axis is the loop station milestone and the vertical axis gives the time

instant stamp.

84

Chapter 4. Computational Future Traffic Flow Simulation

Figure 4.6: The real-world traffic data are collected on State Route 520 in Seattle,
Washington. The correlation between the flow, speed and density is given in (a),
and the speed distribution is shown in (b) wherein the congestion is occurred and
dissipated. The time interval between two rows is 10 minutes. Each column corre-
sponds to a speed sensor. The red color indicates a low speed, while the green color
indicates a relative high speed.

We build a one-mile roadway with 20 data observation locations as s0 through

s19 uniformly distributed. Assuming that an average vehicle length is 20 feet and

the minimum gap between vehicles is 6 feet, the maximum vehicle density is thus

around 203 vpm (vehicles per mile). We employ 2,000 particles (about 10 times

of the vehicles) for simulating the traffic. The traffic flow rate gives the boundary

condition at the starting end of the roadway. From the ground-truth data, we found

that the traffic flow rate ranges from 500 vph (vehicles per hour) to around 2000

85

Chapter 4. Computational Future Traffic Flow Simulation

vph. Therefore, the corresponding rate of generating particles is around 1.4 to 5.6

particles per second in our simulation. We increase the traffic flow rate, and measure

the density and the velocity after the traffic reaches a equilibrium state. The traffic

and simulation parameters are reported in Tab. 4.1. Here, the Greenfield model

is used by setting γ = 2.0 (i.e. see Section 4.3.4). The particle mass is a virtual

quantity related to the traffic volume. We ignore the units of this quantity and other

virtual-force related coefficients as well. We found the time step 0.025s is suitable for

our simulation, considering the stability, efficiency and accuracy of the simulation.

The performance depends on the simulation scale, e.g. it takes about 15 ms for

advancing a step for the SPH simulation with 2,000 particles (with the single core

implementation).
Parameters Values

γ 2.0
time step ∆t 0.025s

support radius h 52ft
particle mass m 40.0

pressure coefficient k 6.0
viscosity coefficient µ 1.0× 104

external acceleration g 60.0
damping factor c 2.0

Table 4.1: Simulation parameters.

The simulation result of the fundamental diagram is reported in Fig. 4.7 (a). We

also compare the congestion formation, transmission, and dissipation processes in

Fig. 4.7 (b). The data at observation locations s5 to s15 are presented. It can be

seen that the simulated traffic appears less noisy and smoother than the real-world

data, nevertheless they match each other well.

We further create an “artificial” crash event after the traffic reaches its equi-

librium state and simulate how is the traffic congestion formed up and how does

shockwave transmit. The traffic velocity at the accident area is constrained to be

zero to mimic the real traffic operations and to form up the bottleneck. The conges-

86

Chapter 4. Computational Future Traffic Flow Simulation

Figure 4.7: The simulation results obtained from our downgraded model (i.e. the
classic Greenshields model) well match the real-world observation.

tion spreads out and the shockwave is transmitted backward from the high-density

area to the low one. Eventually, after the crash is fully cleared up and the capacity

is restored, the density distribution becomes uniform as the same as the initial state.

The results are shown in Fig. 4.8.

4.5.2 CAV-enabled Traffic Simulation

CAV-enabled traffic simulation is conducted using the original two-dimensional model

with the standard full-kernel setting for the SPH simulator. The new fundamental

diagram is shown in Fig. 4.9 (a), where we note that the speed is in fact the magni-

87

Chapter 4. Computational Future Traffic Flow Simulation

Figure 4.8: The simulation results using our downgraded 1D model under an artificial
congestion scenario are presented. We constrain the traffic velocity at the accident
area to be zero. The resulting traffic congestion is visualized. The accident is cleared
after 30 minutes and the traffic capacity is restored eventually.

tude of the velocity vector obtained from the simulation. We can see that the CAV

traffic flow is characterized by a quite different fundamental diagram compared to

the traditional traffic flow model (Fig. 4.7 (a)). Rather than a straight line (one-

to-one matching) characterized by the Greenshields model, the CAV speed-density

relationship shows its over-dispersed distribution with all many-to-many matching

patterns. One single speed may correspond to multiple possible density states due to

the two-way communication and collaborative linkages among CAVs. Similar results

are observed in the flow-speed and flow-density relationships. For example, rather

than a parabolic curve, the relationship between the flow and density tends to spread

out as an area-wide distribution. Additionally, we can see that the traffic capacity

is significantly improved in the CAV-enabled traffic as expected.

Fig. 4.9 (b) reports a distinctive congestion formation and dissipation pattern

for the CAV-enabled traffic. Congestion can quickly spread out and transmit back-

88

Chapter 4. Computational Future Traffic Flow Simulation

Figure 4.9: The simulation results of testing the fundamental diagram and traffic
dynamic characteristics in the CAV-enabled traffic using our model are presented.

ward due to the timely communication among vehicles at much stronger magnitudes.

These unique traffic equilibrium features and dynamic characteristics are different

from these of traditional traffic flow. Further research efforts are needed to fully

investigate their theoretical formulation based on the developed simulation models.

In the following experiments, we examine and visualize the variation of the density

and velocity distribution under three scenarios individually. In the first scenario, all

the forces are turned off except the pressure force fp. The traffic density distribution

is directly specified by the user to be highly nonuniform. Eventually, the distribution

spreads out smoothly as shown in Fig. 4.10 (a). Similarly in the second scenario,

only the viscosity force fv is turned on. One particle is activated and has a constant

89

Chapter 4. Computational Future Traffic Flow Simulation

Figure 4.10: The simulation results show how does the CAV-enabled traffic response
to the imposed density change (a), velocity change (b), and under the traffic con-
gestion (d). The color map (c) is associated with the density and velocity field,
where red represents the highest value and blue the lowest value. Please refer to the
accompanying video for details.

prescribed velocity. All other particles are stationary initially. As expected, the

activated particle finally drives all particles to a certain velocity level as shown in

Fig. 4.10 (b). In the third scenario, the traffic flow in a four-lane roadway is initially

in an equilibrium state. An artificial crash event is created and two lanes (Lane 2

and 3) are blocked (shown in Fig. 4.10 (d)). The velocity within the accident area is

constrained. We can see that the congestion transmits along both the traffic direction

and the normal direction. The congestion can be partially mitigated through the

available capacity from the adjacent lanes. This means that the proposed model not

only can simulate the traffic flow along the traffic direction as existing traffic models

do, but also can automatically handle the lane-changing behavior of the traffic flow

(i.e. vehicles moving along the normal direction), because of its two-dimensional

nature.

In order to better understand the CAV traffic flow characteristics, further exper-

90

Chapter 4. Computational Future Traffic Flow Simulation

imental tests are conducted to quantify the dynamic performance of the developed

model. The simulation results are shown in Fig. 4.11. We can see that although

there is no accident in Lane 0, congestion formed and propagated. Note that we

don’t have an explicit lane-changing mechanism in the simulation, our model auto-

matically handles the lane-changing requirement in this scenario. We also observe an

interesting “speed up” area as highlighted in the figure. That is because the density

in the upstream is high which increases the pressure force to push the downstream.

4.6 Conclusions

In this study, a new force-driven continuum traffic flow model is proposed and SPH-

based numerical solutions are provided. The proposed model amplifies neighborhood-

wide vehicle coupling characterized in CAV-enabled traffic systems, and individual

vehicles spontaneously seek for local optimal configurations based on the real-time

information shared/obtained from the surroundings. Inspired by the similarity be-

tween natural physical particle flow and CAV traffic flow, we formulate and simulate

the mutually-coupled vehicle interactions using internal virtual forces. Our experi-

ment shows that the proposed model can be downgraded to incorporate the existing

macroscopic traffic flow model and accurately describes the real-world traffic. Thus,

there is a reason to believe this model works well in the context of CAV-enabled traffic

systems too. Extensive experiments are conducted to illustrate the new fundamental

diagram under the stationary equilibrium conditions and dynamic congestion for-

mation/dissipation in the CAV-enabled traffic. Various operational scenarios are

designed and tested to further demonstrate CAV traffic flow characteristics.

The developed CAV traffic flow model can advance our understanding of CAV-

enabled traffic flow operations, facilitate near-future CAV-penetrated traffic manage-

ment, quantify existing traffic facility capacity in the context of CAVs, and optimize

91

Chapter 4. Computational Future Traffic Flow Simulation

Figure 4.11: The results of the congestion simulation in the CAV-enabled traffic. An
artificial accident occurs at Lane 2 and 3 and the velocity within the accident area
is constrained to zero. After 15 minutes, the accident is cleared. We can see that
the congestion transmits not only horizontally (backward in Lane 2 and 3) but also
vertically (to the adjacent Lane 0 and 1 where no accidents occurred though) due to
the two-dimensional nature of our model. An interesting “speed-up” area in Lane 0
is also highlighted.

mixed-traffic-to-infrastructure interactions. For example, based on the developed

model, various traffic operation management and control strategies can be tested

theoretically and practically to verify their effectiveness before their implementations

in CAV-enabled traffic flow. The latest share mobility modeling can be enhanced

and smart decision making can be supported further in the interconnected and au-

tomated traffic environment. The theoretical insights extracted from the developed

92

Chapter 4. Computational Future Traffic Flow Simulation

model can greatly facilitate CAV deployment in the entire traffic operation research

domain.

93

Chapter 5

Discussion

5.1 Summary

We investigate and address a couple of transportation problems with respect to

geographic discretization, autonomous pavement surface reconstruction and exami-

nation, and future CAV-enable traffic flow simulation, using advanced computational

technologies. We developed an efficient discretization method that generates a list

of nearby road segments associated to individual cells. More than that, the method

is extended to 3D scenarios to voxelize complex triangle meshes. The proposed

method outperforms the conventional methods especially under the high-resolution

discretization requirements. Based on Kinect technologies, we developed a cost-

effective pavement surface assessment solution which integrates 3D pavement surface

reconstruction and autonomous crack analysis. Experiments show that the solution

provides promising measurement results with a really low system cost compared to

the existing counterparts. To simulate the future CAV-enable traffic flow, we pro-

posed a force-driven macroscopic traffic flow model based on the mutually-coupled

characteristics of CAVs. When downgraded to incorporate the existing conventional

94

Chapter 5. Discussion

model, the proposed model is validated by the real-world traffic data and the simula-

tion result shows great consistency. This gives us a reason to believe that the model

works well in the context of future CAV-enabled traffic systems.

5.2 Future Work

The research in this dissertation leaves us many interesting further directions to

explore. For the efficient discretization, the current version of our method is not

able to produce the voxelization with adaptive resolutions (e.g. like using an octree).

This limitation may be resolved by applying our method at various density levels

incrementally. It is also worthy to further investigate how to utilize the superior

performance of the proposed method – we see runtime collision culling is a promising

application.

Currently our pavement surface recognition and cracking analysis system is purely

based on the reconstructed 3D triangle mesh. We could potentially improve the

measurement accuracy by combining with the 2D RGB surface images. Although

Microsoft officially announced the discontinuation of Kinect on 10/25/2017, its cost-

effective solution for generating depth images is still attractive in numerous research

fields, such as robotics, motion tracking, physical rehabilitation, besides 3D recon-

struction.

The proposed traffic flow model should be tested by real CAV-enabled traffic data

when it is sufficiently available. So far, the proposed virtual forces can only model

the interaction of the CAVs in the same simulation domain or with the same traffic

direction, and the information brought by the CAVs in the opposite direction is

ignored. In order to handle the interaction between CAVs with opposite directions,

we need to develop new types of virtual forces. Similarly, the proposed model is

not sufficient for modeling the traffic with CAVs and HDVs mixed traffic behavior.

95

Chapter 5. Discussion

This kind of interaction is basically asymmetric and might be modeled by some

asymmetric virtual forces.

Note the virtual-force-based parameters are manually tuned, it would be an inter-

esting topic that how we can formulate those parameters to the real-world traffic flow.

We currently use full-kernel and half-kernel support in the CAV-enabled traffic and

the conventional traffic respectively based on their different microscopic behavior. It

is not clear yet how does the kernel function mathematically affect the fundamental

diagram. It is also interesting to use grid-based simulation [Bri15] instead of the

particle-based one to simulate the proposed model. In this case, the convection (as

appeared in Equation (4.5)) must be incorporated. Additionally, our current simu-

lation is running only on CPU. We will further port our algorithm to GPU to fully

leverage the parallelism of the SPH method. We will put more efforts on the related

research in the future.

96

Appendix A

Derivation of Eq. 2.7

Let L1 be the line segment connecting PA(XA, YA) and PB(XB, YB) and ∆XAB =

XA − XB, ∆YAB = YA − YB as defined in Eq. 2.6. The line equation of L1 can be

written in the form of ax+ by + c = 0, where:

a = ∆YAB, b = ∆XAB, c = ∆XABYA −∆YABXA.

It is known that the distance between a point (x0, y0) and ax+ by + c = 0 is |ax0 +

by0 + c|/
√
a2 + b2, which leads to:

dA =
1√

∆X2
AB + ∆Y 2

AB

∣∣∣∆YAB(X ′A −XA)−∆XAB(Y ′A − YA)
∣∣∣.

97

References

[Adh06] Sondipon Adhikari. Damping modelling using generalized proportional
damping. Journal of Sound and Vibration, 293(1):156–170, 2006.

[ADR16] Boris Andreianov, Carlotta Donadello, and Massimiliano Daniele
Rosini. A second-order model for vehicular traffics with local point
constraints on the flow. Mathematical Models and Methods in Applied
Sciences, 26(04):751–802, 2016.

[AKT16] Gowri Asaithambi, Venkatesan Kanagaraj, and Tomer Toledo. Driv-
ing behaviors: Models and challenges for non-lane based mixed traffic.
Transportation in Developing Economies, 2(2):19, 2016.

[AM05] Tomas Akenine-Möller. Fast 3D triangle-box overlap testing. In ACM
SIGGRAPH 2005 Courses, page 8. ACM, 2005.

[AMA05] Tomas Akenine-Möller and Timo Aila. Conservative and tiled rasteri-
zation using a modified triangle set-up. Journal of Graphics, GPU, and
Game Tools, 10(3):1–8, 2005.

[AMHH08] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-time ren-
dering. CRC Press, 2008.

[AW+87] John Amanatides, Andrew Woo, et al. A fast voxel traversal algorithm
for ray tracing. In Eurographics, volume 87, page 10, 1987.

[AW11] Chikit Au and Tony Woo. Three dimensional extension of bresenham’s
algorithm with voronoi diagram. Computer-Aided Design, 43(4):417–
426, 2011.

[BB02] Valentin E Brimkov and Reneta P Barneva. Graceful planes and lines.
Theoretical Computer Science, 283(1):151–170, 2002.

98

References

[BBH+01] Liviu Bursanescu, Mihaela Bursanescu, Maher Hamdi, Alain Lardigue,
and Damien Paiement. Three-dimensional infrared laser vision system
for road surface features analysis. In ROMOPTO 2000: Sixth Con-
ference on Optics, pages 801–808. International Society for Optics and
Photonics, 2001.

[BEG11] J Bender, K Erleben, and E Galin. Sph based shallow water simulation.
2011.

[Ber97] Gino van den Bergen. Efficient collision detection of complex deformable
models using AABB trees. Journal of Graphics Tools, 2(4):1–13, 1997.

[BHM+12] Paola Bandini, Susan Bogus Halter, Kelly R Montoya, Hung V Pham,
and Giovanni C Migliaccio. Improving nmdot’s pavement distress survey
methodology and developing correlations between fhwa’s hpms distress
data and pms data. Technical report, 2012.

[BM92] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In
Robotics-DL tentative, pages 586–606. International Society for Optics
and Photonics, 1992.

[BMC10] Susan Bogus, Giovanni Migliaccio, and Arturo Cordova. Assessment of
data quality for evaluations of manual pavement distress. Transporta-
tion Research Record: Journal of the Transportation Research Board,
(2170):1–8, 2010.

[Bre65] Jack E Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems journal, 4(1):25–30, 1965.

[Bri15] Robert Bridson. Fluid simulation for computer graphics. CRC Press,
2015.

[BVLH06] Justin Bray, Brijesh Verma, Xue Li, and Wade He. A neural network
based technique for automatic classification of road cracks. In The 2006
IEEE International Joint Conference on Neural Network Proceedings,
pages 907–912. IEEE, 2006.

[BW01] David E. Breen and Ross T. Whitaker. A level-set approach for the
metamorphosis of solid models. IEEE Transactions on Visualization
and Computer Graphics, 7(2):173–192, 2001.

[CG12] Cyril Crassin and Simon Green. Octree-based sparse voxelization using
the gpu hardware rasterizer. OpenGL Insights, pages 303–318, 2012.

99

References

[CGG+16] Sandro Chiappone, Orazio Giuffrè, Anna Granà, Raffaele Mauro, and
Antonino Sferlazza. Traffic simulation models calibration using speed–
density relationship: an automated procedure based on genetic algo-
rithm. Expert Systems with Applications, 44:147–155, 2016.

[CGMN10] Sylvie Chambon, Christian Gourraud, Jean Marc Moliard, and Philippe
Nicolle. Road crack extraction with adapted filtering and markov model-
based segmentation: introduction and validation. In International Joint
Conference on Computer Vision Theory and Applications, VISAPP,
page sp, 2010.

[CGW17] Rongjun Cheng, Hongxia Ge, and Jufeng Wang. An extended contin-
uum model accounting for the driver’s timid and aggressive attributions.
Physics Letters A, 381(15):1302–1312, 2017.

[CL96] Brian Curless and Marc Levoy. A volumetric method for building com-
plex models from range images. In Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques, pages 303–312.
ACM, 1996.

[CLB+09] Ming Chuang, Linjie Luo, Benedict J Brown, Szymon Rusinkiewicz,
and Michael Kazhdan. Estimating the laplace-beltrami operator by
restricting 3d functions. In Computer Graphics Forum, volume 28, pages
1475–1484. Wiley Online Library, 2009.

[CLZ+12] Chien-Yen Chang, Belinda Lange, Mi Zhang, Sebastian Koenig, Phil
Requejo, Noom Somboon, Alexander A Sawchuk, and Albert A Rizzo.
Towards pervasive physical rehabilitation using microsoft kinect. In
2012 6th International Conference on Pervasive Computing Technolo-
gies for Healthcare (PervasiveHealth) and Workshops, pages 159–162.
IEEE, 2012.

[COK95] Daniel Cohen-Or and Arie Kaufman. Fundamentals of surface voxeliza-
tion. Graphical models and image processing, 57(6):453–461, 1995.

[COK97] Daniel Cohen-Or and Arie Kaufman. 3D line voxelization and connec-
tivity control. Computer Graphics and Applications, IEEE, 17(6):80–87,
1997.

[CR99] Sharen J Cummins and Murray Rudman. An sph projection method.
Journal of computational physics, 152(2):584–607, 1999.

[CWDY15] Yongjing Chao, Yingmei Wei, Xiaolei Du, and Fang Yuan. Alarm
thresholds of threaten regions based on triangle mesh voxelization. In

100

References

Fuzzy Systems and Knowledge Discovery (FSKD), 2015 12th Interna-
tional Conference on, pages 2475–2479. IEEE, 2015.

[CZZ+14] Cong Chen, Su Zhang, Guohui Zhang, Susan M Bogus, and Vanessa
Valentin. Discovering temporal and spatial patterns and characteristics
of pavement distress condition data on major corridors in new mexico.
Journal of Transport Geography, 38:148–158, 2014.

[D+14] Jerome Daleiden et al. Variability of pavement distress data from man-
ual surveys. In Pavement Evaluation Conference 2014, 2014.

[DB08] Jie Du and Matthew J Barth. Next-generation automated vehicle lo-
cation systems: Positioning at the lane level. IEEE Transactions on
Intelligent Transportation Systems, 9(1):48–57, 2008.

[DCB+04] Zhao Dong, Wei Chen, Hujun Bao, Hongxin Zhang, and Qunsheng
Peng. Real-time voxelization for complex polygonal models. In Com-
puter Graphics and Applications, 2004. PG 2004. Proceedings. 12th Pa-
cific Conference on, pages 43–50. IEEE, 2004.

[DD15] Lili Du and Hoang Dao. Information dissemination delay in vehicle-to-
vehicle communication networks in a traffic stream. IEEE Transactions
on Intelligent Transportation Systems, 16(1):66–80, 2015.

[DKB+16] Bas Dado, Timothy R Kol, Pablo Bauszat, Jean-Marc Thiery, and El-
mar Eisemann. Geometry and attribute compression for voxel scenes.
In Computer Graphics Forum, volume 35, pages 397–407. Wiley Online
Library, 2016.

[DMSB00] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H Barr. Dis-
crete differential-geometry operators in nd. preprint, the Caltech Multi-
Res Modeling Group, 2000.

[Ebe01] David Eberly. Intersection of convex objects: The method of separating
axes. www. magic-software. com, 2001.

[ED08] Elmar Eisemann and Xavier Décoret. Single-pass gpu solid voxelization
for real-time applications. In Proceedings of graphics interface 2008,
pages 73–80. Canadian Information Processing Society, 2008.

[FAMO99] Ronald P Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher.
A non-oscillatory eulerian approach to interfaces in multimaterial flows
(the ghost fluid method). Journal of computational physics, 152(2):457–
492, 1999.

101

References

[Fed02] Ronald P Fedkiw. Coupling an eulerian fluid calculation to a lagrangian
solid calculation with the ghost fluid method. Journal of Computational
Physics, 175(1):200–224, 2002.

[FHKZ15] Yiheng Feng, K Larry Head, Shayan Khoshmagham, and Mehdi Za-
manipour. A real-time adaptive signal control in a connected vehicle
environment. Transportation Research Part C: Emerging Technologies,
55:460–473, 2015.

[FM09] Gerardo W Flintsch and Kevin K McGhee. Quality management of
pavement condition data collection, volume 401. Transportation Re-
search Board, 2009.

[FWC12] Yun Fei, Bin Wang, and Jiating Chen. Point-tessellated voxelization.
In Proceedings of Graphics Interface 2012, pages 9–18. Canadian Infor-
mation Processing Society, 2012.

[GH93] Wade L Gramling and John E Hunt. Photographic pavement dis-
tress record collection and transverse profile analysis. Technical report,
Strategic Highway Research Program, National Research Council, 1993.

[GHP59] Denos C Gazis, Robert Herman, and Renfrey B Potts. Car-following
theory of steady-state traffic flow. Operations research, 7(4):499–505,
1959.

[GLF95] A Georgopoulos, A Loizos, and A Flouda. Digital image processing as
a tool for pavement distress evaluation. ISPRS Journal of Photogram-
metry and Remote Sensing, 50(1):23–33, 1995.

[GLM96] Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. Obbtree: A
hierarchical structure for rapid interference detection. In Proceedings
of the 23rd annual conference on Computer graphics and interactive
techniques, pages 171–180. ACM, 1996.

[GM77] Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrody-
namics: theory and application to non-spherical stars. Monthly notices
of the royal astronomical society, 181(3):375–389, 1977.

[GP17] Mauro Garavello and Benedetto Piccoli. Boundary coupling of micro-
scopic and first order macroscopic traffic models. Nonlinear Differential
Equations and Applications NoDEA, 24(4):43, 2017.

[Gra] W Gramling. Nchrp synthesis of highway practice 203: Current prac-
tices in determining pavement condition. trb, national research council,
washington, d. c., 1994.

102

References

[GZY+17] Lantian Guo, Xiangmo Zhao, Shaowei Yu, Xiuhai Li, and Zhongke Shi.
An improved car-following model with multiple preceding cars velocity
fluctuation feedback. Physica A: Statistical Mechanics and its Applica-
tions, 471:436–444, 2017.

[HAMO05] Jon Hasselgren, Tomas Akenine-Möller, and Lennart Ohlsson. Conser-
vative rasterization. GPU Gems, 2:677–690, 2005.

[HCTS10] Hsien-Hsi Hsieh, Chin-Chen Chang, Wen-Kai Tai, and Han-Wei Shen.
Novel geometrical voxelization approach with application to streamlines.
Journal of Computer Science and Technology, 25(5):895–904, 2010.

[HH09] Jiaxi Hu and Jing Hua. Salient spectral geometric features for shape
matching and retrieval. The visual computer, 25(5-7):667–675, 2009.

[HHZ94] Ralph Haas, W Ronald Hudson, and John P Zaniewski. Modern pave-
ment management. 1994.

[HK97] Taosong He and Arie Kaufman. Collision detection for volumetric ob-
jects. In Proceedings of the 8th conference on Visualization’97, pages
27–ff. IEEE Computer Society Press, 1997.

[HPL15] Jia Hu, Byungkyu Brian Park, and Young-Jae Lee. Coordinated transit
signal priority supporting transit progression under connected vehicle
technology. Transportation Research Part C: Emerging Technologies,
55:393–408, 2015.

[HR17] Helge Holden and Nils Henrik Risebro. Continuum limit of follow-the-
leader models. arXiv preprint arXiv:1702.01718, 2017.

[Hsu11] Hui-mei Justina Hsu. The potential of kinect in education. International
Journal of Information and Education Technology, 1(5):365, 2011.

[HTB03] Dirk Haehnel, Sebastian Thrun, and Wolfram Burgard. An extension
of the icp algorithm for modeling nonrigid objects with mobile robots.
In IJCAI, volume 3, pages 915–920, 2003.

[HW94] Eric A Haines and John R Wallace. Shaft culling for efficient ray-cast
radiosity. In Photorealistic Rendering in Computer Graphics, pages 122–
138. Springer, 1994.

[HX06] Yaxiong Huang and Bugao Xu. Automatic inspection of pavement
cracking distress. Journal of Electronic Imaging, 15(1):013017–013017,
2006.

103

References

[HYFK98] Jian Huang, Roni Yagel, Vassily Filippov, and Yair Kurzion. An accu-
rate method for voxelizing polygon meshes. In Volume Visualization,
IEEE Symposium on, pages 119–126. IEEE, 1998.

[IDC09] Paulo Ivson, Leonardo Duarte, and Waldemar Celes. Gpu-accelerated
uniform grid construction for ray tracing dynamic scenes. Master’s the-
sis, Departamento de Informatica, Pontificia Universidade Catolica, Rio
de Janeiro, 2009.

[IKH+11] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard
Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Free-
man, Andrew Davison, et al. Kinectfusion: real-time 3d reconstruction
and interaction using a moving depth camera. In Proceedings of the
24th annual ACM symposium on User interface software and technol-
ogy, pages 559–568. ACM, 2011.

[JBS06] Mark W Jones, J Andreas Baerentzen, and Milos Sramek. 3d distance
fields: A survey of techniques and applications. IEEE Transactions on
visualization and Computer Graphics, 12(4):581–599, 2006.

[JBT04] Doug L. James, Jernej Barbič, and Christopher D. Twigg. Squash-
ing cubes: Automating deformable model construction for graphics. In
ACM SIGGRAPH 2004 Sketches, SIGGRAPH ’04, page 38, 2004.

[JJMBG12] Mohammad R Jahanshahi, Farrokh Jazizadeh, Sami F Masri, and
Burcin Becerik-Gerber. Unsupervised approach for autonomous
pavement-defect detection and quantification using an inexpensive
depth sensor. Journal of Computing in Civil Engineering, 27(6):743–
754, 2012.

[JO14] I Ge Jin and Gábor Orosz. Dynamics of connected vehicle systems
with delayed acceleration feedback. Transportation Research Part C:
Emerging Technologies, 46:46–64, 2014.

[JWZ+13] Peter J Jin, C Michael Walton, Guohui Zhang, Xiaowen Jiang, and Amit
Singh. Analyzing the impact of false-accident cyber attacks on traffic
flow stability in connected vehicle environment. In Connected Vehicles
and Expo (ICCVE), 2013 International Conference on, pages 616–621.
IEEE, 2013.

[KAMM13] Naofumi Kitsunezaki, Eijiro Adachi, Takashi Masuda, and Jun-ichi
Mizusawa. Kinect applications for the physical rehabilitation. In Med-
ical Measurements and Applications Proceedings (MeMeA), 2013 IEEE
International Symposium on, pages 294–299. IEEE, 2013.

104

References

[Kau87] Arie Kaufman. Efficient algorithms for 3d scan-conversion of parametric
curves, surfaces, and volumes. ACM SIGGRAPH Computer Graphics,
21(4):171–179, 1987.

[Kau88] Arie Kaufman. Efficient algorithms for scan-converting 3d polygons.
Computers & Graphics, 12(2):213–219, 1988.

[KB11] Christian Koch and Ioannis Brilakis. Pothole detection in asphalt pave-
ment images. Advanced Engineering Informatics, 25(3):507–515, 2011.

[KE12] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and reso-
lution of kinect depth data for indoor mapping applications. Sensors,
12(2):1437–1454, 2012.

[KFR03] Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. Ro-
tation invariant spherical harmonic representation of 3 d shape descrip-
tors. In Symposium on geometry processing, volume 6, pages 156–164,
2003.

[KIH+15] Md Abdus Samad Kamal, Jun-ichi Imura, Tomohisa Hayakawa, Akira
Ohata, and Kazuyuki Aihara. A vehicle-intersection coordination
scheme for smooth flows of traffic without using traffic lights. IEEE
Transactions on Intelligent Transportation Systems, 16(3):1136–1147,
2015.

[KJ+01] Andreas Kolb, Lars John, et al. Volumetric model repair for virtual
reality applications. EG, Short-Paper, pages 249–256, 2001.

[KK99] Kevin Kreeger and Arie Kaufman. Mixing translucent polygons with
volumes. In Proceedings of the conference on Visualization’99, pages
191–198, 1999.

[KLG11] Agop Koulakezian and Alberto Leon-Garcia. Cvi: Connected vehicle
infrastructure for its. In Personal Indoor and Mobile Radio Communi-
cations (PIMRC), 2011 IEEE 22nd International Symposium on, pages
750–755. IEEE, 2011.

[KS87] Arie Kaufman and Eyal Shimony. 3d scan-conversion algorithms for
voxel-based graphics. In Proceedings of the 1986 workshop on Interactive
3D graphics, pages 45–75. ACM, 1987.

[KTY16] Md Abdus Samad Kamal, Shun Taguchi, and Takayoshi Yoshimura.
Efficient driving on multilane roads under a connected vehicle envi-
ronment. IEEE Transactions on Intelligent Transportation Systems,
17(9):2541–2551, 2016.

105

References

[KYL+11] Farid Abedan Kondori, Shahrouz Yousefi, Haibo Li, Samuel Sonning,
and Sabina Sonning. 3d head pose estimation using the kinect. In
Wireless Communications and Signal Processing (WCSP), 2011 Inter-
national Conference on, pages 1–4. IEEE, 2011.

[LC87] William E Lorensen and Harvey E Cline. Marching cubes: A high
resolution 3d surface construction algorithm. In ACM siggraph computer
graphics, volume 21, pages 163–169. ACM, 1987.

[LC02] XW Liu and K Cheng. Three-dimensional extension of bresenham’s al-
gorithm and its application in straight-line interpolation. Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, 216(3):459–463, 2002.

[LFWK05] Wei Li, Zhe Fan, Xiaoming Wei, and Arie Kaufman. Flow simulation
with complex boundaries. GPU Gems, 2:747–764, 2005.

[LG11] Alberto Leon-Garcia. Smart infrastructure and applications for con-
nected vehicles. ITS World Congress,Orlando, Fl, 2011.

[LGG01] Christian Langis, Michael Greenspan, and Guy Godin. The parallel
iterative closest point algorithm. In 3-D Digital Imaging and Modeling,
2001. Proceedings. Third International Conference on, pages 195–202.
IEEE, 2001.

[LGJA+] Alberto Leon-Garcia, Hans-Arno Jacobsen, Baher Adbulhai, Marin
Litoiu, and Ali Tizghadam. Connected vehicles and smart trans-
portation (cvst) portal. https://www.utoronto.ca/news/challenge-u-t-
engineering-team-one-eight-selected-develop-self-driving-electric-cars.

[LGK11] Alberto Leon-Garcia and Agop Koulakezian. Participatory sensing for
its. ITS Canada AGCM, Vancouver, 2011.

[LHLW10] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. Freepipe:
a programmable parallel rendering architecture for efficient multi-
fragment effects. In I3D, pages 75–82, 2010.

[Lit14] Todd Litman. Autonomous vehicle implementation predictions. Victo-
ria Transport Policy Institute, 28, 2014.

[LKM+12] Belinda Lange, Sebastian Koenig, Eric McConnell, Chien-Yen Chang,
Rick Juang, Evan Suma, Mark Bolas, and Albert Rizzo. Interactive
game-based rehabilitation using the microsoft kinect. In 2012 IEEE
Virtual Reality Workshops (VRW), pages 171–172. IEEE, 2012.

106

References

[LL10] MB Liu and GR Liu. Smoothed particle hydrodynamics (sph): an
overview and recent developments. Archives of computational methods
in engineering, 17(1):25–76, 2010.

[LLC16] Albert YS Lam, Yiu-Wing Leung, and Xiaowen Chu. Autonomous-
vehicle public transportation system: scheduling and admission control.
IEEE Transactions on Intelligent Transportation Systems, 17(5):1210–
1226, 2016.

[LM00] Zhen Luo and Margaret Martonosi. Accelerating pipelined integer and
floating-point accumulations in configurable hardware with delayed ad-
dition techniques. Computers, IEEE Transactions on, 49(3):208–218,
2000.

[LMG02] Jian John Lu, Xiaoyu Mei, and Manjriker Gunaratne. Development of
an automatic detection system for measuring pavement crack depth on
florida roadways. 2002.

[LP12] Joyoung Lee and Byungkyu Park. Development and evaluation of a
cooperative vehicle intersection control algorithm under the connected
vehicles environment. IEEE Transactions on Intelligent Transportation
Systems, 13(1):81–90, 2012.

[LPG12] Yang Liu, Balakrishnan Prabhakaran, and Xiaohu Guo. Point-based
manifold harmonics. IEEE Transactions on Visualization and Computer
Graphics, 18(10):1693–1703, 2012.

[LPMS13] Joyoung Lee, Byungkyu Brian Park, Kristin Malakorn, and Jaehyun Ja-
son So. Sustainability assessments of cooperative vehicle intersection
control at an urban corridor. Transportation Research Part C: Emerg-
ing Technologies, 32:193–206, 2013.

[LS80] Der-Tsai Lee and Bruce J Schachter. Two algorithms for constructing
a delaunay triangulation. International Journal of Computer & Infor-
mation Sciences, 9(3):219–242, 1980.

[LTD97] John Laurent, Mario Talbot, and Michel Doucet. Road surface inspec-
tion using laser scanners adapted for the high precision 3d measurements
of large flat surfaces. In 3-D Digital Imaging and Modeling, 1997. Pro-
ceedings., International Conference on Recent Advances in, pages 303–
310. IEEE, 1997.

[LTTA11] Panagiotis Lytrivis, George Thomaidis, Manolis Tsogas, and Angelos
Amditis. An advanced cooperative path prediction algorithm for safety

107

References

applications in vehicular networks. IEEE Transactions on Intelligent
Transportation Systems, 12(3):669–679, 2011.

[Luc77] Leon B Lucy. A numerical approach to the testing of the fission hypoth-
esis. The astronomical journal, 82:1013–1024, 1977.

[LW55] Michael J Lighthill and Gerald Beresford Whitham. On kinematic
waves. ii. a theory of traffic flow on long crowded roads. In Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, volume 229, pages 317–345. The Royal Society, 1955.

[LXXQ17] Zhipeng Li, Xun Xu, Shangzhi Xu, and Yeqing Qian. A heterogeneous
traffic flow model consisting of two types of vehicles with different sen-
sitivities. Communications in Nonlinear Science and Numerical Simu-
lation, 42:132–145, 2017.

[LZK+13] Xiaoyue Liu, Guohui Zhang, Carmen Kwan, Yinhai Wang, and Brian
Kemper. Simulation-based, scenario-driven integrated corridor manage-
ment strategy analysis. Transportation Research Record: Journal of the
Transportation Research Board, (2396):38–44, 2013.

[LZZ+09] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan
Huang. Map-matching for low-sampling-rate gps trajectories. In Pro-
ceedings of the 17th ACM SIGSPATIAL international conference on ad-
vances in geographic information systems, pages 352–361. ACM, 2009.

[MBL84] Panos G Michalopoulos, Dimitrios E Beskos, and Jaw-Kuan Lin. Analy-
sis of interrupted traffic flow by finite difference methods. Transportation
Research Part B: Methodological, 18(4):409–421, 1984.

[MBSEF14] Julien Monteil, Romain Billot, Jacques Sau, and Nour-Eddin El Faouzi.
Linear and weakly nonlinear stability analyses of cooperative car-
following models. IEEE Transactions on Intelligent Transportation Sys-
tems, 15(5):2001–2013, 2014.

[MCG03] Matthias Müller, David Charypar, and Markus Gross. Particle-based
fluid simulation for interactive applications. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 154–159. Eurographics Association, 2003.

[McG04] Kenneth H McGhee. Automated pavement distress collection techniques,
volume 334. Transportation Research Board, 2004.

108

References

[MKWS91] David S Mahler, Zuhair B Kharoufa, Edward K Wong, and Leonard G
Shaw. Pavement distress analysis using image processing techniques.
Computer-Aided Civil and Infrastructure Engineering, 6(1):1–14, 1991.

[MLP08] M Mustaffara, TC Lingb, and OC Puanb. Automated pavement imaging
program (apip) for pavement cracks classification and quantification-
a photogrammetric approach. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences,
37(B4):367–372, 2008.

[Mon92] Joe J Monaghan. Smoothed particle hydrodynamics. Annual review of
astronomy and astrophysics, 30(1):543–574, 1992.

[MSV95] Ravi Malladi, James A Sethian, and Baba C Vemuri. Shape modeling
with front propagation: A level set approach. IEEE transactions on
pattern analysis and machine intelligence, 17(2):158–175, 1995.

[MWM01] Michael D McCool, Chris Wales, and Kevin Moule. Incremental and
hierarchical hilbert order edge equation polygon rasterizatione. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware, pages 65–72. ACM, 2001.

[MZH08] Chang-Xia Ma, Chun-Xia Zhao, and Ying-kun Hou. Pavement distress
detection based on nonsubsampled contourlet transform. In Computer
Science and Software Engineering, 2008 International Conference on,
volume 1, pages 28–31. IEEE, 2008.

[NDS10] Pavol Novotny, Leonid I Dimitrov, and Milos Sramek. Enhanced vox-
elization and representation of objects with sharp details in truncated
distance fields. IEEE transactions on visualization and computer graph-
ics, 16(3):484–498, 2010.

[NIH+11] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J Davison, Pushmeet Kohi, Jamie
Shotton, Steve Hodges, and Andrew Fitzgibbon. Kinectfusion: Real-
time dense surface mapping and tracking. In Mixed and augmented
reality (ISMAR), 2011 10th IEEE international symposium on, pages
127–136. IEEE, 2011.

[NLAW11] Daiheng Ni, Jia Li, Steven Andrews, and Haizhong Wang. A method-
ology to estimate capacity impact due to connected vehicle technology.
International Journal of Vehicular Technology, 2012, 2011.

109

References

[Nob10] Tsuguo Nobe. Connected vehicle accelerates green driving. SAE Inter-
national Journal of Passenger Cars-Electronic and Electrical Systems,
3(2010-01-2315):68–75, 2010.

[NSSL13] Matthias Nießner, Christian Siegl, Henry Schäfer, and Charles Loop.
Real-time collision detection for dynamic hardware tessellated objects.
2013.

[OC08] Henrique Oliveira and Paulo Lobato Correia. Identifying and retrieving
distress images from road pavement surveys. In 2008 15th IEEE Inter-
national Conference on Image Processing, pages 57–60. IEEE, 2008.

[Oh98] Hyungkee Oh. Image processing technique in automated pavement eval-
uation system. 1998.

[OI15] Osama A Osman and Sherif Ishak. A network level connectivity ro-
bustness measure for connected vehicle environments. Transportation
Research Part C: Emerging Technologies, 53:48–58, 2015.

[OKWM12] Ayrton Oliver, Steven Kang, Burkhard C Wünsche, and Bruce Mac-
Donald. Using the kinect as a navigation sensor for mobile robotics.
In Proceedings of the 27th Conference on Image and Vision Computing
New Zealand, pages 509–514. ACM, 2012.

[Pan11] Jacopo Pantaleoni. Voxelpipe: a programmable pipeline for 3d vox-
elization. In Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics, pages 99–106. ACM, 2011.

[Par08] Hyungjun Park. Development of ramp metering algorithms using indi-
vidual vehicular data and control under vehicle infrastructure integra-
tion, volume 70. 2008.

[PBHS89] Markos Papageorgiou, Jean-Marc Blosseville, and Habib Hadj-Salem.
Macroscopic modelling of traffic flow on the boulevard périphérique in
paris. Transportation Research Part B: Methodological, 23(1):29–47,
1989.

[PF01] Ronald N Perry and Sarah F Frisken. Kizamu: A system for sculpt-
ing digital characters. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 47–56. ACM, 2001.

[Pin88] Juan Pineda. A parallel algorithm for polygon rasterization. In SIG-
GRAPH, volume 22, pages 17–20, 1988.

110

References

[PWL99] J Pynn, A Wright, and R Lodge. Automatic identification of cracks in
road surfaces. In Image Processing and Its Applications, 1999. Seventh
International Conference on (Conf. Publ. No. 465), volume 2, pages
671–675. IET, 1999.

[RC02] Hesham Rakha and Brent Crowther. Comparison of greenshields, pipes,
and van aerde car-following and traffic stream models. Transporta-
tion Research Record: Journal of the Transportation Research Board,
(1802):248–262, 2002.

[Ric56] Paul I Richards. Shock waves on the highway. Operations research,
4(1):42–51, 1956.

[RMY11] Zhou Ren, Jingjing Meng, and Junsong Yuan. Depth camera based hand
gesture recognition and its applications in human-computer-interaction.
In Information, Communications and Signal Processing (ICICS) 2011
8th International Conference on, pages 1–5. IEEE, 2011.

[RNB+07] Marcel Rieser, Kai Nagel, Ulrike Beuck, Michael Balmer, and Jens
Rümenapp. Agent-oriented coupling of activity-based demand genera-
tion with multiagent traffic simulation. Transportation Research Record:
Journal of the Transportation Research Board, (2021):10–17, 2007.

[Ros88] Paul Ross. Traffic dynamics. Transportation Research Part B: Method-
ological, 22(6):421–435, 1988.

[SB12] Hagit Schechter and Robert Bridson. Ghost sph for animating water.
ACM Transactions on Graphics (TOG), 31(4):61, 2012.

[SBV91] Mark Shand, Patrice Bertin, and Jean Vuillemin. Hardware speedups
in long integer multiplication. ACM SIGARCH Computer Architecture
News, 19(1):106–113, 1991.

[SF95] Jos Stam and Eugene Fiume. Depicting fire and other gaseous phenom-
ena using diffusion processes. In Proceedings of the 22nd annual confer-
ence on Computer graphics and interactive techniques, pages 129–136.
ACM, 1995.

[SFP96] Roger E Smith, Thomas J Freeman, and Olga J Pendleton. Evalua-
tion of automated pavement distress data collection procedures for local
agency pavement management. Research Project GC10470, Washington
State Department of Transportation, Olympia, Washington, 1996.

111

References

[SK98] Milos Sramek and Arie Kaufman. Object voxelization by filtering.
In Volume Visualization, 1998. IEEE Symposium on, pages 111–118.
IEEE, 1998.

[SK99] Milos Sramek and Arie E Kaufman. Alias-free voxelization of geomet-
ric objects. IEEE transactions on visualization and computer graphics,
5(3):251–267, 1999.

[SLPR13] Andrea Sanna, Fabrizio Lamberti, Gianluca Paravati, and Fe-
lipe Domingues Rocha. A kinect-based interface to animate virtual
characters. Journal on Multimodal User Interfaces, 7(4):269–279, 2013.

[SS10] Michael Schwarz and Hans-Peter Seidel. Fast parallel surface and solid
voxelization on gpus. In ACM Transactions on Graphics (TOG), vol-
ume 29, page 179. ACM, 2010.

[TA04] Benoit Tremblais and Bertrand Augereau. A fast multi-scale edge de-
tection algorithm. Pattern Recognition Letters, 25(6):603–618, 2004.

[Tec13] C. V. Technology. Keeping the promise of connected vehicle technology.
pages 3–9, 2013.

[Tem84] Roger Temam. Navier-stokes equations, volume 2. North-Holland Am-
sterdam, 1984.

[TH11] Michal Tölgyessy and Peter Hubinskỳ. The kinect sensor in robotics
education. In Proceedings of 2nd International Conference on Robotics
in Education, pages 143–146, 2011.

[THK16] Mohammed Amine Togou, Abdelhakim Hafid, and Lyes Khoukhi. Scrp:
Stable cds-based routing protocol for urban vehicular ad hoc networks.
IEEE Transactions on Intelligent Transportation Systems, 17(5):1298–
1307, 2016.

[THM+03] Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat
Pomerantes, and Markus H Gross. Optimized spatial hashing for colli-
sion detection of deformable objects. In Vmv, volume 3, pages 47–54,
2003.

[Tic15] David Ticoll. Driving changes: Automated vehicles in Toronto. Munk
School of Global Affairs, University of Toronto, 2015.

[TZWZ15] Kamonthep Tiaprasert, Yunlong Zhang, Xiubin Bruce Wang, and Xi-
aosi Zeng. Queue length estimation using connected vehicle technology

112

References

for adaptive signal control. IEEE Transactions on Intelligent Trans-
portation Systems, 16(4):2129–2140, 2015.

[UKCL10] B Shane Underwood, Y Richard Kim, and J Corley-Lay. Assessment
of use of automated distress survey methods for network-level pave-
ment management. Journal of Performance of Constructed Facilities,
25(3):250–258, 2010.

[Uof] University of toronto is one of eight universities from across north
america chosen to compete in the autodrive challenge, sponsored by
gm and sae international. https://www.utoronto.ca/news/challenge-u-t-
engineering-team-one-eight-selected-develop-self-driving-electric-cars.

[VESS13] William R Vavrik, Lynn D Evans, Joseph A Stefanski, and Shad Sar-
gand. Pcr evaluation–considering transition from manual to semi-
automated pavement distress collection and analysis. 2013.

[VKK+03] Gokul Varadhan, Shankar Krishnan, Young J Kim, Suhas Diggavi, and
Dinesh Manocha. Efficient max-norm distance computation and reliable
voxelization. In SGP, pages 116–126, 2003.

[VL08] Bruno Vallet and Bruno Lévy. Spectral geometry processing with man-
ifold harmonics. In Computer Graphics Forum, volume 27, pages 251–
260. Wiley Online Library, 2008.

[WK93] Sidney W Wang and Arie E Kaufman. Volume sampled voxelization of
geometric primitives. In Visualization, 1993. Visualization’93, Proceed-
ings., IEEE Conference on, pages 78–84. IEEE, 1993.

[WMMJ17] Dianhai Wang, Xiaolong Ma, Dongfang Ma, and Sheng Jin. A novel
speed–density relationship model based on the energy conservation
concept. IEEE Transactions on Intelligent Transportation Systems,
18(5):1179–1189, 2017.

[WOJK16] Celimuge Wu, Satoshi Ohzahata, Yusheng Ji, and Toshihiko Kato.
How to utilize interflow network coding in vanets: A backbone-based
approach. IEEE Transactions on Intelligent Transportation Systems,
17(8):2223–2237, 2016.

[WS11] Kelvin CP Wang and Omar Smadi. Automated imaging technologies
for pavement distress surveys. Transportation Research E-Circular, (E-
C156), 2011.

113

References

[WSCY16] Dingwen Wang, Shilei Sun, Xi Chen, and Zhiwen Yu. A 3d shape de-
scriptor based on spherical harmonics through evolutionary optimiza-
tion. Neurocomputing, 194:183–191, 2016.

[YSK+07] Si-Jie Yu, Sreenivas R Sukumar, Andreas F Koschan, David L Page, and
Mongi A Abidi. 3d reconstruction of road surfaces using an integrated
multi-sensory approach. Optics and Lasers in Engineering, 45(7):808–
818, 2007.

[ZCEP07] Long Zhang, Wei Chen, David S Ebert, and Qunsheng Peng. Conser-
vative voxelization. The Visual Computer, 23(9-11):783–792, 2007.

[ZCK98] Qing-hong Zhu, Yan Chen, and Arie Kaufman. Real-time
biomechanically-based muscle volume deformation using fem. In Com-
puter Graphics Forum, volume 17, pages 275–284. Wiley Online Library,
1998.

[ZCW+18] Yuming Zhang, Cong Chen, Qiong Wu, Qi Lu, Su Zhang, Guohui Zhang,
and Yin Yang. A kinect-based approach for 3d pavement surface recon-
struction and cracking recognition. IEEE Transactions on Intelligent
Transportation Systems, 2018.

[ZD17] Tobias Zirr and Carsten Dachsbacher. Memory-efficient on-the-fly vox-
elization and rendering of particle data. IEEE Transactions on Visual-
ization and Computer Graphics, 2017.

[ZE12] Chunsun Zhang and Ahmed Elaksher. An unmanned aerial vehicle-
based imaging system for 3d measurement of unpaved road surface
distresses1. Computer-Aided Civil and Infrastructure Engineering,
27(2):118–129, 2012.

[ZFS+16] RX Zhong, KY Fu, A Sumalee, D Ngoduy, and WHK Lam. A cross-
entropy method and probabilistic sensitivity analysis framework for cal-
ibrating microscopic traffic models. Transportation Research Part C:
Emerging Technologies, 63:147–169, 2016.

[ZGHG11] Kun Zhou, Minmin Gong, Xin Huang, and Baining Guo. Data-parallel
octrees for surface reconstruction. Visualization and Computer Graph-
ics, IEEE Transactions on, 17(5):669–681, 2011.

[ZGX+17] Yuming Zhang, Steven Garcia, Weiwei Xu, Tianjia Shao, and Yin Yang.
Efficient voxelization using projected optimal scanline. Graphical Mod-
els, 2017.

114

References

[Zha02] H Michael Zhang. A non-equilibrium traffic model devoid of gas-like
behavior. Transportation Research Part B: Methodological, 36(3):275–
290, 2002.

[ZHC05] Jian Zhou, Peisen Huang, and Fu-Pen Chiang. Wavelet-based pavement
distress classification. Transportation Research Record: Journal of the
Transportation Research Board, (1940):89–98, 2005.

[ZHH17] Liang Zheng, Zhengbing He, and Tian He. A flexible traffic stream
model and its three representations of traffic flow. Transportation Re-
search Part C: Emerging Technologies, 75:136–167, 2017.

[ZHWG08] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-tree
construction on graphics hardware. In ACM Transactions on Graphics
(TOG), volume 27, page 126. ACM, 2008.

[ZMW14] Guohui Zhang, Xiaolei Ma, and Yinhai Wang. Self-adaptive tolling
strategy for enhanced high-occupancy toll lane operations. IEEE Trans-
actions on Intelligent Transportation Systems, 15(1):306–317, 2014.

[ZS16] Jing Zhao and Shiliang Sun. High-order gaussian process dynamical
models for traffic flow prediction. IEEE Transactions on Intelligent
Transportation Systems, 17(7):2014–2019, 2016.

[ZSMS14] Yahan Zhou, Shinjiro Sueda, Wojciech Matusik, and Ariel Shamir. Box-
elization: folding 3d objects into boxes. ACM Transactions on Graphics
(TOG), 33(4):71, 2014.

[ZU17] Feng Zhu and Satish V Ukkusuri. An optimal estimation approach for
the calibration of the car-following behavior of connected vehicles in
a mixed traffic environment. IEEE Transactions on Intelligent Trans-
portation Systems, 18(2):282–291, 2017.

[ZW11] Guohui Zhang and Yinhai Wang. Optimizing minimum and maximum
green time settings for traffic actuated control at isolated intersections.
IEEE Transactions on Intelligent Transportation Systems, 12(1):164–
173, 2011.

[ZW13] Guohui Zhang and Yinhai Wang. Optimizing coordinated ramp meter-
ing: a preemptive hierarchical control approach. Computer-Aided Civil
and Infrastructure Engineering, 28(1):22–37, 2013.

115

References

[ZWWY08] Guohui Zhang, Yinhai Wang, Heng Wei, and Ping Yi. A feedback-
based dynamic tolling algorithm for high-occupancy toll lane opera-
tions. Transportation Research Record: Journal of the Transportation
Research Board, (2065):54–63, 2008.

[ZYW09] Guohui Zhang, Shuming Yan, and Yinhai Wang. Simulation-based in-
vestigation on high-occupancy toll lane operations for washington state
route 167. Journal of transportation engineering, 135(10):677–686, 2009.

[ZZFY18] Yuming Zhang, Guohui Zhang, Rafael Fierro, and Yin Yang. Force-
driven traffic simulation for a future connected autonomous vehicle-
enabled smart transportation system. IEEE Transactions on Intelligent
Transportation Systems, 2018.

[ZZSM16] Liteng Zha, Yunlong Zhang, Praprut Songchitruksa, and Danny R Mid-
dleton. An integrated dilemma zone protection system using connected
vehicle technology. IEEE Transactions on Intelligent Transportation
Systems, 17(6):1714–1723, 2016.

116

	University of New Mexico
	UNM Digital Repository
	Summer 7-13-2018

	Intelligent Computational Transportation
	Yuming Zhang
	Recommended Citation

	List of Figures
	List of Tables
	Introduction
	Efficient Discretization
	Introduction
	Related Work
	Terminology Review
	Scanline-based Voxelization
	Line Voxelization
	Triangle Voxelization

	Performance Analysis
	Experiments and Results
	Conclusions

	Autonomous Pavement Surface Recognition
	Introduction
	Previous Work
	Kinect-based Data Collection
	Research Methodology
	An Overview of System Framework
	Depth Retrieval and Surface Reconstruction
	Feature Extraction
	Crack Analysis

	Experimental Tests and Discussions
	Surface Reconstruction
	Accuracy Experiment
	Test Results for Various Cracking Detection
	Limitations

	Conclusions

	Computational Future Traffic Flow Simulation
	Introduction
	Related Work
	Methodology
	Virtual Forces Driven Traffic Flow Model
	Discretization and SPH
	Numerical Simulation and Smoothing Kernels
	Incorporating Existing Traffic Flow Models

	System Implementation
	System Overview
	Roadway Geometries
	Simulation in Roadway Networks
	Fast Neighbor Search
	Collision Detection and Handling

	Experimental Results
	Model Validation
	CAV-enabled Traffic Simulation

	Conclusions

	Discussion
	Summary
	Future Work

	Derivation of Eq. 2.7
	References

