VolumeEVM: A New Surface/volume integrated
model

Jorge Rodriguez*, Dolors Ayala,
jrodri@lsi.upc.es, dolorsa@lsi.upc.es

Abstract

Volume visualization is a very active research area in the field of scien-
tific visualization. The Extreme Vertices Model (EVM) has proven to be
a complete intermediate model to visualize and manipulate volume data
using a surface rendering approach. However, the ability to integrate the
advantages of surface rendering approach with the superiority in visual ex-
ploration of the volume rendering would actually produce a very complete
visualization and edition system for volume data. Therefore, we decided
to define an enhanced EVM-based model which incorporates the volumet-
ric information required to achieved a nearly direct volume visualization
technique. Thus, VolumeEVM was designed maintaining the same EVM-
based data structure plus a sorted list of density values corresponding to
the EVM-based Vol’s interior voxels. A function which relates interior
voxels of the EVM with the set of densities was mandatory to be defined.
This report presents the definition of this new surface/volume integrated
model based on the well known EVM encoding and propose implemen-
tations of the main software-based direct volume rendering techniques
through the proposed model. keywords:

1 Introduction

Direct volume rendering techniques (DVR), also called voxel-based rendering
by [3], create images of the VoI, directly from the volume data, without any
intermediate surface representations, so any mapping strategy is required. The
first algorithm based on this approach from gray level volumes was presented
by Lenz et al. in [9]. In this approach, the volume is considered as translucent
gel material and the image is obtained assigning color and opacity to sampled
values and applying a model to determine how the volume reflects, scatters or
occludes light passing through it.

Compared to surface rendering techniques, the major advantage is that all
gray level information which has originally been acquired is kept during the

*This author has been supported by a grant from FONACIT (Venezuelan Council of Re-
search in Science and Technology)

rendering process, becoming in an ideal tool for interactive data exploration
[6]. Threshold values and other parameters which are not clear from the be-
ginning can be changed interactively. Furthermore, DVR allows a combined
display of different aspects such as opaque and semitransparent surfaces, cuts
and maximum intensity projections.

A current drawback of DVR techniques is that large amount of data which
has to be handled does not allow real time applications for visualization. Also,
manipulating and analysis processes demand polygonal representation of the
object to perform these tasks in an intuitive and friendly way. Futhermore, a
complete framework for visualization and manipulation of volume data demands
the integration in the system of some non-volumetric objects, such as virtual
tools commonly designed by CAD.

In order to profit the superiority in visualization of the DVR techniques and
the versatility for interaction and manipulation tasks of the surface rendering
approach, a surface/volume integrated model must be defined. Thus, in order to
profit the potential of the EVM as an intermediate model for surface rendering,
an enhanced version has been created, incorporating the volumetric information
required to achieve a cogent direct volume visualization. This report present
this integrated model and discuss the implementation of the three main direct
volume visualization strategies, i.e. splatting, shear-warp factorization and ray
casting, using the proposed EVM-based integrated model.

2 Background

This section gives the reader a brief state of the art in the area of direct volume
rendering and integrated model for volume visualization.

2.1 Common Optical Model

The optical model to describe the behavior of the light passing through the
volume data is typically defined by the low-albedo volume rendering integral
[1], [5], [7], [11], which analitically computes I)(z,r), the amount of light of
wavelength A coming from ray direction r that is received at location x on the
image plane:

L
D) = [Cuoue)e s 1)
0

Where, L is the length of the ray r. If we think of the volume as being
composed of particles with certain densities u, then these particles receive light
from p all surrounding light sources and reflects this light towards the observer
according to their specular and diffuse material properties. In addition, the
particles may also emit light on their own. Thus, in Eq. 1, C) is the light
of wavelength A reflected and/or emitted at location s in the direction of r.
To account for the higher reflectance of particles with larger densities, we must
weigh the reflected color by the particles density. The light scattered at s is then

attempted by the densities of the particles between s and the eye according to
the exponential attenuation function.

At least, in general case, the Low-Albedo integral cannot be computed ana-
lytically [11]. Hence, practical volume rendering algorithms discretize the inte-
gral into a series os sequential intervals ¢ of width As:

L/As i1
Ix(z,7) = Z Cx(si)p(si)As - H e(—1(s;)As) 2)
=0 =0

Using a Taylor series approximation of the exponential term and dropping
all but the first two terms, we get the familiar compositing equation [10].

L/As i
L) = 3 Cilsals) - [](1 - als)) 3)
=0

7=0

|
-

This expression is denoted as discretized volume rendering integral [13],
where opacity o = 0 means transparency. Expression 3 represents a common
theoretical framework for all volume rendering algorithms.

In practice, this computation is done for R, GG, B separately. As it is a sum
of intensities of individual samples, each intensity is attenuated by the prod-
uct of transparencies accumulated as the light passes from sample to observer.
The computation can be done recursively by processing one sample at a time,
accumulating color and opacity separately:

Cout = Czn + (1 - ain)aici (4)

Qoyt = Qi + (1 - ain)aici (5)

This is a front-to-back ordering (FTB), which can be reversed to work back-
to-front (BTF), in which case only the color needs to be accumulated:

Cout = Ciai + Ctn(l - ai) (6)

We want to point out that compositing steps are associative, thus group of
samples can be composited and then composite the groups, as long as the order
is maintained. However, the compositing is not commutative which means that
the order of compositing is important.

2.2 Direct volume rendering approaches

A wide variety of DVR implementations have been reported in the literature.
Regardless all these variations, four approaches can be identified. The classical
approaches for DVR can be classified into two categories: The image-order
approach, also called backward rendering, such as Raycasting and the object-
order approach, also called forward rendering, such as splatting. Alternatively,
other two different approaches have been proposed, in order to accelerate the

performance of the visualization process, which can not be exactly classified in
any of the previous categories: The shear-warp factorization and 3D texture-
mapping hardware. A brief description of these four strategies will be presented
in the following:

e Image-order approach:

Image-order algorithms operate by casting rays from each image pixel and
and resampling it along the casted ray at the sampled points, hence the
name of Raycasting for the excellence technique of this approach [10] (see
figure 1) . The composition of colors and opacities along the ray can be
performed BTF or FTB order. This approach has as main drawback that
the spatial data structure must be traversed once for every ray, resulting
in redundant computation because the ray caster spend more time calcu-
lating the location of sample points and performing arithmetic than other
classes of volume rendering algorithms.

- volume data
image plane

S

Figure 1: image-order approach

Acceleration techniques

A commonly used acceleration technique for ray casters is early ray ter-
mination by neglecting those objects whose reflected light does not reach
the viewer, but it only can be used if FTB composition order is per-
formed. Other authors prefer the space leaping. This strategy is based
on the physical fact that reflection occurs only where material parame-
ters change, so homogeneous regions have zero gradients and not reflect
any light. Therefore, they can be skipped during rendering. Space leaping
can be performed by several methods, distance coding or proximity clouds
[20], [16], spatial data structures exploiting data coherence such as octrees
[12] and bounding boxes. Several acceleration strategies by parallelization
have also been reported.

e Object-order approach:

Object-order algorithms operate by splatting voxels into the image, hence
the name of Splatting [19] for the most known algorithm in this approach
(see figure 2). Instead the previous approach, these algorithms access
the volume volume data in storage order, so each voxel is visited only

once avoiding redundant computation. The splatters operate by iterating
over the voxels computing, for each one, its contribution to the image
by convolving the voxel with a filter that distributes the voxel’s value
to a neighborhood of pixels. Unfortunately, computing accurately the
resampling filter that calculates the contribution of a given voxel to the
image is expensive, because it is highly view dependant. The method can
be adapted for either fast execution or high image quality, but not both
simultaneously, and it is difficult to achieve a fast software implementation
that does not compromise too much on image quality. In counterpart,
the object oriented approach permits efficient usage of volume memory
(efficient cache usage).

L AL
splatted m”A’I
LT

image plane

volume data

Figure 2: object-order approach

Cell projection algorithms is another object-order technique, but in this
case the projection is performed by using polygon scan conversion. These
techniques are often used for irregular volume data, so it is out of the
scope of this thesis.

Acceleration techniques

Object-order approach approach permits gains of speed by taking advan-
tage of coherence in the volume. This is typically achieved by using spatial
data structures that encode the location of high-opacity voxels. Structures
used for this purpose include octrees and pyramids. Also, run-length en-
coding can be profited instead the previous approach where the usage of
this encoding is prohibitive.

Shear-Warp factorization:

This algorithm, proposed by [8], tends to combine the advantages of image-
order and object-order approaches. The method is based on a factorization
of the viewing matrix into a 3D shear parallel to the slices of the volume
data, a projection to form a distorted intermediate image, and finally a
2D warp to produce the final image (see figure 3). This simple factoriza-
tion allows to construct an object-order algorithm with the same kind of
advantages as an image-order algorithm. In fact, it has been recognized
as the fastest software renderer to date.

What makes it possible is transforming the volume to an intermediate
coordinate system for which there is a very simple mapping from the object

viewing rays

\ \ volume
) project
slices
> warp
Image
plane

Figure 3: Shear-warp factorization

coordinate system and which allows efficient projection to 2D image. This
intermediate coordinate system is also called sheared object space.

The factorization of the view transformation matrix, M, ;e.,, can be written
as follows:

Myiew = warp2D * Mshearsp - P (7)

where P is a permutation matrix which transposes the coordinate sys-
tem in order to make the z-axis the principal viewing axis. MgpearspD
transforms the object into sheared object space, and Myarp2p transforms
sheared object coordinates into image coordinates. For a general parallel
projection Mpeqr3p has the form of a shear perpendicular to the z-axis:

1 0 S5, O 1 0 S, t,

o1 S8, 0 o1 S5, t
Mshear3D = 0 0 1y 0 or MshearSD = 0 0 1y g

0 0 0 1 00 0 1

(8)
Where s, and Sy, (as well as ¢, and t,)) can be computed from the elements
of My;ew. The final term of the factorization is a matrix which warps
sheared object space into image space:

Mwa'r‘pQD = Mview ' P71 : Ms_hleargD (9)

The projection in sheared object space has several geometric properties
that simplify the compositing step of the algorithm:

— Scanlines of pixels in the intermediate image are parallel to scanlines
of voxels in the volume data.

— All voxels in a given voxel slice are scaled by the same factor (inter-
esting for perspective projection which is not covered here)

— Every voxel slice has the same scale factor when projected into the
intermediate image, and this factor can be chosen arbitrarily. In
particular, a unity scale factor can be chosen so that for a given
voxel scanline there is a one-to-one mapping between voxels and
intermediate-image pixels.

A useful implication of these properties is that every voxel in a given slice
of volume has the same resampling weights. Each slice voxels is simply
translated, so one set of resampling weights can be precomputed and then
reused for every voxel. This fact eliminates the problems associated with
efficient resampling in object-order volume rendering algorithms. One of
the aims is to maximize the benefit of both spatial data structures and
early ray termination.

Acceleration techniques

This algorithm is an acceleration technique by itself. However, special list-
based data structures based on run-length encoding can further improve
the performance of the algorithm. The idea is to skip transparent voxels
in object space (space leaping) and non-visible lines in the pixel scanlines
(early ray termination). Besides of the run-length encoding that allows
to skip empty regions (vozel transparency encoding), a list-based encoding
has been chosen for runs of opaque pixels of the intermediate images (pizel
opaqueness encoding). A pixel is called opaque if the intensity of the
corresponding viewing ray is below an user-defined threshold. For each
opaque pixel a pointer is given that directs to the next non-opaque pixel.
Both data structures are used in combination to implement space leaping
and early ray termination.

Run-length encoding forces the algorithm to proceed along predefined
lines in the voxel volume. This processing fits ideally into the shear-warp
paradigm since it traverse the slices of the volume in a front-to-rear order
relative to the viewer position. Moreover it processes each slice scanline
by scanline. However, a problem occurs if the viewing direction changes
so that a different face of the data set cube is used for shear-warp. In
this case, a second run-length encoded data set must be available. In to-
tal there are three such compressed data sets, one for each main viewing
direction (x,y, z). As acknowledged, this requires threefold overhead.

Initially, the intermediate projection plane is defined from the viewing di-
rection, i.e by selecting the most parallel face of the data set cube. This
determines the corresponding run-length encoded data set. Next, the algo-
rithm processes the voxel transparency and data run-length encoded and
image on two voxel lines in parallel. It first jumps to the non-transparent
voxels. If the corresponding pixel is opaque it continues to jump over
empty voxels and opaques pixels until non-transparent voxels and non-
opaque pixels are found. See figure 4

o 3D texture-mapping hardware:

non-transparent voxels transparent voxels

voxel transparency

encoding
. non-opaque pixels opaque pixels
pixel paque p pague pl
opaqueness I ‘
encoding — =
skip render | skip i render skip

Figure 4: Integration of space leaping and early ray termination in
shear-warp algorithm

The 3D texture-mapping approach, popularized by [2], is a direct volume
visualization technique, using 3D textured data slices, combined using a
blending operator. Unlike ray casting, where each image pixel is built
up ray by ray, this approach takes advantage of spatial coherence. The
3D texture is used as a voxel cache, processing all rays simultaneously,
one 2D layer at a time. Texture mapping and compositing operations
are performed by hardware very quickly. Therefore, the rendering time is
negligible if compared to other software-based approaches.

In this approach, the technique for visualizing volume data is composed of
two steps. First the volume data set, represented by the three-dimensional
texture block, is loaded in the texture buffer of the graphics subsytem.
Then, texture data is sampled with planes parallel to the image plane and
stacked along the direction of view. These planes are rendered as polygons,
clipped to the limits of the texture volume. These clipped polygons are
textured with the volume data, and the resulting images are blended to-
gether, from back to front, towards the viewing position. As each polygon
is rendered, its pixel values are blended into the frame buffer to provide
the appropriate transparency effect. Commonly, the representation of an
unit of volume information in texture memory is called a tezel (texture
element).

There a number of common blending functions used in volume visualiza-
tion:

— The over operator [15] is the most common way to blend for volume
visualization. Volumes blended with the over operator approximate
the flow of light through a colored, translucent material. The translu-
cency of each point in the material is determined by the value of the
texel’s alpha channel. Texels with higher alpha values tend to ob-
scure texels behind them, and stand out through the obscuring texels
in front of them.

— The attenuate operator simulates an X-ray of the material. With at-
tenuate, the texel’s alpha appears to attenuate light shining through
the material along the view direction towards the viewer. The texel
alpha channel models material density. The final brightness at each

pixel is attenuated by the total texel density along the direction of
view

— The MIP operator, by Maximum Intensity Projection, is used in med-
ical imaging to visualize blood flow. MIP finds the brightest texel
alpha from all the texture slices at each pixel location. MIP is a con-
trast enhancing operator; structures with higher alpha values tend
to stand out against the surrounding data.

— The under operator permits FTB rendering of volume slices giving
the same result as the over operator blending slices from back to
front.

Acceleration techniques

3D texture-mapping hardware approach is the fastest among all the vol-
ume visualization processes. The incorporation of the graphics hardware
capabilities can be considered as an acceleration technique by itself. How-
ever, as in the previous approaches, data complexity can be controlled
by the using of hierarchical data structures, such as octree [17], [18], in
order to skip empty regions of the volume or to ensure that only non-void
regions will be loaded in texture memory.

2.3 Surface and Volume data integration

As we have pointed out above both surface and direct volume rendering are
widely used in the field of volume visualization and according to the partic-
ular requirement each one has advantages respect to the other. Also, a com-
plete framework for visualization and manipulation of volume data demands
the integration in the system of some non-volumetric objects, such virtual tools
commonly designed by CAD.

In order to profit the superiority in visualization of the DVR techniques and
the versatility for interaction and manipulation tasks of the surface rendering
approach, a surface/volume integrated model must be defined.

Two approaches of integrated models can be identified [14]: Data conversion
approach and independent representation approach.

2.3.1 Data conversion approach

This approach is based on converting polygonal model and volume data into a
common codification scheme, so data conversion techniques have to be applied
to reduce either surface to volume data through scan-conversion techniques or
volume data to surface representation through a mapping strategy to extract
the isosurface fitted into the volume (see figure 5).

Data conversion has the advantage that specialized rendering algorithms are
not required because all the data is reduced to a well known representation
(surface- or volume-based). However, to avoid sacrificing one of the rendering
approaches both surface and volume representation must be maintained and the

conversion techniques have to allow passing from each representation model to
the another one, so the model will be expensive in storage and speed.

sampled geometric
data model
3D recopstruction surface recgnstruction
Y - \ A
fitting -
volume > surface
representation |« — representation
voxelization
A \ A
volume rendering surface rendering
frame
buffer

Figure 5: Surface/voume integrated model by data conversion approach

2.3.2 Independent representation approach

This approach preserves surface and volume data in their respective represen-
tation schemes. Data rendering is performed independently by two separated
rendering processes. One executes a conventional volume rendering technique
from the volume data set and the other performs a conventional surface ren-
dering technique on the geometric model. Obviously, the combination of both
approaches is achieved only in the final image (see 6).

Independent representation has the drawback of the visual integration of the
objects in the final image demands hybrids algorithms to resolve transparencies
and intersections between objects from different models.

3 A new surface/volume integrated model

This section defines a new surface/volume integrated model based on the EVM.
For this purpose, a particular variation of the data conversion approach (see
section 2.3) has been designed using an EVM-based hybrid model as a common
codification scheme (see fig 7).

According to the proposed framework, the VolumeEVM is defined as the
EVM-based hybrid model and two rendering algorithms from this model have
to be created: The EVM-based volume renderingand the EVM-based surface

sampled geometric

data model
3D recopstruction surface recgnstruction
Y \d
volume surface
representation representation
Y \d

volume rendering | | surface rendering

‘i hybrid algorithm |‘

Y

frame
buffer

Figure 6: Surface/voume integrated model by independent represen-
tation approach

rendering. Thus, the input sampled data is directly formatted to a standard
volume representation, but the input geometric model must be voxelized in
order to obtain its binary volume representation before any processing. Once
the input data has been converted to the standard volume representation, the
VolumeEVM for each input data set is computed. When the VolumeEVM of the
Vol has been built one of the two rendering strategies is performed depending
on whether the Vol comes from binary or grey-level volume representation.

3.1 VolumeEVM: a new hybrid model

As a common codification scheme to unify the representation of inputs co-
ming from both sampled data and geometric models, we have defined the Vol-
umeE VM, a particular hybrid model based on the EVM encoding which incor-
porates the information about the interior voxels of the extracted Vol for a given
segmentation threshold. When the input data is depicted by a geometric model
a binary voxelization is performed, so the interior information is irrelevant and
all this voxels are set as a maximum value of grey-level. Typically, this objects
would be rendered by the EVM-based surface rendering algorithm, though the
EVM-based volume rendering process may be achieved with any inconvenient.

To define the VolumeEVM model, the original EVM data structure, reported
in previous work [4] for surface rendering, has been complemented with two new
elements: a densities table (DT) and a relation (v) which assigns to each interior
voxel of the EVM its corresponding density value from the table. The densities
table contains the grey-level value for all the voxels which lie in the interior

Sampled Geometric
data model

Forrékti‘ng \?Jization

Volume
representation

A 4

EVM extraction

h |

EVM-based
hybrid model

» N

EVM-based EVM-based
volume rendering surface rendering
\ Frame /
buffer

Figure 7: Dataflow of the our surface/volume integrated approach

of the orthogonal polyhedron corresponding to the Vol computed for a certain
given threshold. The relation v : EVM — Z, was defined as the axis-ordered
voxelization of the EVM’s interior (see figure 8), so each discrete unit in the
interior of EVM is numbered through v.

v(x,y,2)=k, DT[k]=d

It is interesting to note that only the relevant voxels for visualization are
stored, the volumetric information of the voxels discarded for the VolI’s thresh-
old is not encoded in the VolumeEVM. A densities table and the correspond-
ing voxelization relationship encode the volumetric information of the EVM-
represented Vol in only one traverse direction, let’s say XY Z traversal order.
However, object-order visualization algorithms typically require to traverse the
voxelized object in all possible axes order, so seven tables more (for a total of
eight) must be stored, according to the eight octants where the viewpoint can
be located. Actually, these eight tables are resumed in just four, because the
other ones can be obtained as the complementary cases by traversing each table
in reverse sense. Obviously, we are storing redundant densities but in general
this redundancy produces less values than the total density values of the com-

[
[

Original EVM XYZ EVM-based voxelization

Densities table in XYZ order

65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | .. |112

Figure 8: VolumeEVM data structure. Original EVM with colored
slices. Densities table is the bag of all density values of the dis-
cretized interior of the Vol. The relation v : EVM — DT permits
to assign a cell of DT per voxel of the Vol’s interior respect to certain
traverse sorting. At the figure, a XYZ-table has been built.

plete volume data set. Furthermore, in other compressed alternative schemes
for direct volume rendering, such as run-length encoding of volume data, this
redundancy is mandatory.

Filling densities tables is carried out during the EVM extraction process.
Along of marching process over the voxels set to identify and collect the extreme
vertices, the densities which hold the given threshold are collected too. Marching
has to be repeated three times more, one per axis direction of traversal, in order
to achieve the four sorted tables of densities.

Once defined the EVM-based hybrid model as the unified representation of
the objects, the rendering technique from this new model has to be defined.
VolumeEVM is actually a dual representation scheme. When the interior of the
Vol is assumed as homogeneous, this information is obviated and the model
becomes exactly the EVM-based surface rendering algorithm [4]. On the other
hand, when the interior of the Vol is relevant for the visualization, a direct
volume rendering technique has to be used, taking into account all the den-
sity information contained in the model. In that case, an EVM-based volume
rendering technique must be applied.

In the following, the main direct volume rendering techniques explained in

section 2.2, will be discussed and adapted using the VolumeEVM encoding to
define a EVM-based volume rendering technique per DVR approach.

3.2 Splatting using VolumeEVM

Implementation of splatting is straightforward using VolumeEVM because this
DVR object-order approach performs the visualization by marching over the
voxels computing, for each one, its contribution to the image. As VolumeEVM
encodes the densities values in a coordinate axis-based sorting, accessing to the
densities table can be achieved linearly while the interior voxels are being visited.
Thus, VolumeEVM guarantees the direct access of densities values during the
splatting process. As the proper composition order depends on the octant where
the viewpoint is located, a sorted table of densities is required per viewpoint
location, eight in total resumed in four tables. If the order among the axes is
considered 48 different tables must be built. In our implementation the axes
order is ignored.

3.2.1 Advantages

The EVM-based splatting has the advantage that only interior voxels are con-
sidered. It would not be an exaggeration to say that the space leaping is encoded
implicitly in the EVM encoding, so any extra auxiliary data structure or addi-
tional storage overhead is required to skip all the irrelevant voxels. In addition,
as well as the conventional splatting, early ray termination can be implemented
when the contributions to a certain pixel on the image plane is negligible, com-
posing only for the non-saturated pixels.

3.3 Shear-warp factorization using VolumeEVM

Shear-warp factorization using VolumeEVM is a bit more interesting problem.
As it has been said in section 2, this method perform the visualization process
in two steps: shearing + warping. Once the sheared objects has been projected,
the work in 3D has finished. Thus, the VolumeEVM has a relevant paper only
during the shearing because the warping is performed over a 2D image and is
always the same.

3.3.1 Shearing the EVM

In this case, a sheared EVM must be obtained from the original one through the
shear operation. The shearing works by displacing set of voxels slice by slice,
so the EVM structure must be filleted according to the voxelization destructing
the original EVM. Therefore, sheared EVM can not be the result of any direct
transformation from the original one. Nevertheless, as the sheared EVM is
obtained slicing, by orthogonal planes, the region between two adjacent planes
of vertices (also called slice in the EVM notation), each fillet produces a one
voxel-width EVM which is completely defined by the corresponding section (see
the figure 9).

Original EVM

voxel-based Z-filleted
EVM

Figure 9: Original EVM with sections. Decomposition of EVM in
multiples one voxel-width EVM along Z-axis.

Once the EVM has been filleted and multiples EVMs have been created, the
corresponding displacements take place. Each one voxel-width EVM is displaced
independently according to the shearing transformation parameters. The shear-
ing operations will be completed when the union among all the displaced EVMs
has been finished, so a sheared EVM has been created. Nevertheless, it will be
interesting to see what happens with the densities table, because to complete
the shearing of the VolumeEVM the corresponding shearing of the table must
be guaranteed. Fortunately, 3D shearing performs displacements only respect
two coordinate axes, so one coordinate axis remains unchanged (Z-axis in figure
10). Thus, ZXY- and ZY X-table have encoded the densities values by slicing
the object respect to the Z-axis, so a Z-based shearing does not affect the order
of the densities on the table. In summary, choosing the proper densities table
the sheared EVM will have just the same table that the original one.

iy

L L

Original EVM voxel-based Z-filleted Sheared EVM

Y

Figure 10: Original EVM . EVM filleted along Z-axis. Y-Sheared
EVM. Original EVM and the sheared one have the same densities
table.

3.3.2 Projection and warping

Once the sheared EVM and the corresponding table has been created, the pro-
jection is as easy as to perform an axis-aligned splatting of the sheared EVM.
That means, to traverse the object by Z-slices and splats the voxels against
the image plane computing the corresponding composition on the overlapped
pixels. After the projection has concluded, a visualization of the sheared object
(a distorted image of the original one) has been achieved, so a 2D warping is
required to bring the correct appearance back. The last pass is a 2D operation
performed directly over the image.

3.3.3 Advantages

Again, like in the previous method, an EVM-based implicit space leaping scheme
is profited and only interior voxels are considered. The empty (or irrelevant)
voxels are ignored during the shearing and projection processes saving unneces-
sary processing time. Also, the shearing is achieved by moving only the extreme
vertices of the sections, it does not use a voxel-based approach for displacements
as the conventional shearing, so to move a chain of many voxels, only the first
and final elements are considered.

3.4 Ray casting using VolumeEVM

Now, we are going to discuss the VolumeEVM-based ray casting which has
proven to be the less efficient EVM-based DVR. Regardless the poor efficiency
achieved, it is interesting to point out that the visualization using this approach
is possible. Furthermore, the EVM would be an very useful auxiliary structure
to control de skips along the ray traversal.

The main drawback is the accessing to the densities values. While in an
object-order approach a sorting of the table coinciding with the marching order
is always possible, in the ray casting method each ray demands an specific order
depending on its traversal, so direct accessing is not possible and navigation
along the EVM is required to find the index of the corresponding density value
per visited voxel along the ray traversal (see figure 11).

Searching can be accelerated using the geometry knowledge of the EVM.
Partitioning the object by sections or by boxes (OUoDB) and storing the den-
sities according to this partitioning, a linear search on the table is required only
when the corresponding region of the voxels has been reached, so the searching
space has been reduced dramatically. However, even in that case, a navigation
along the structure is required per voxel and it is a very time consuming process
in comparison with the conventional approach where the complete voxelization
is always loaded in memory and direct access is guaranteed.

The conclusion to which this analysis leads is that EVM would be an ex-
cellent auxiliary structure to skip irrelevant information when the complete
voxelization is maintained. Therefore, the EVM encoding would be a better
acceleration technique for ray casting than distance transform, because the pre-

— T index=32

Figure 11: Ray casting approach. The marked voxels are the visited
ones by the ray. Finding the corresponding density value requires to
determine the position of the voxel in the interior of the EVM. At
the figure, index=32 for a ZXY-order.

processing to build the auxiliary information is less expensive and the memory
requirements are dramatically smaller.

4 Conclusions

VolumeEVM, a new surface/volume integrated model has been proposed using
the EVM encoding. In recent reports, the EVM has proved to be an excellent
intermediate model to perform surface rendering and manipulation of volume
data. Now, we have incorporated volumetric information to the EVM data
structure in order to achieve direct volume visualization from the EVM-based
model maintaining the ability to carry out surface visualization and manipu-
lation of volume data. The object-order methods, such as splatting and even
shear-warp factorization, can be performed efficiently using the VolumeEVM.
Furthermore, some advantages are introduced respect the conventional imple-
mentations, due to the implicit space leaping scheme of the EVM encoding.
In contrast, the image-order method (ray casting) has resulted in a very time
consuming process. However, using it as an acceleration technique of conven-
tional ray casting becomes in an excellent auxiliary encoding, because both the
pre-process to build it and the memory requirements are dramatically more less
than other strategies such as distance transform technique.

References

[1] J.F. Blinn. Light reflection functions for simulation of clouds and dusty
surfaces. In SIGGRAPH’82, pages 21-29, 1982.

[2] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and to-
mographic reconstruction using texture mapping hardware. In ACM Sym-
posium on Volume Visualization, Washington, D.C., pages 91-98, 1994.

[3]

[4]

[7]

K.H. Hohne and A. Pommert. Mrain Mapping: The methods. Academic
Press, Inc., 1996.

J.Rodrguez, D.Ayala, and A.Aguilera. Representation and boundary ex-
traction of a 3D digital image using the evmm model. Technical Report
LSI-00-67-R, Universitat Politecnica de Catalunya, 2000.

J.T. Kajiya and B.P. Von Herzen. Ray tracing volume densities. In Proc.
SIGGRAPH’8/, pages 165—174, 1984.

A. Pommert M. Reimer U. Tiede K.H. Hohne, M. Bomans and
G. Wiebecke. 3D visualization of tomographic volume data using the gen-
eralized voxel-method. Visual Computing, 6:28-36, 1990.

W. krueger. The application of transport theory to the visualization of 3d
scalar fields. Computer in Physics, 5:397-406, 1991.

P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp fac-
torization. Proceedings SIGGRAPH’9/, pages 451 — 457, 1994.

R. Lenz, P.E. Danielson, S. Cronstron, and G. Gudmundsson. Presentation
and perception of 3D images. Pictorial Information Systems in Medicine,
pages 459468, 1986. NATO ASI Series F19, Springer-Verlag, Berlin.

M. Levoy. Display of surfaces from volume data. IEEE Computer graphics
and applications, 8(3):29 — 37, 1988.

N. Max. Optical models for direct volume rendering. IEEFE Trans. Vis.
and Comp. Graph., 1(2):99-108, 1995.

D. Meagher. Geometric modeling using octree encoding. Computer Graph-
ics and Image Processing, 19:129-147, 1982.

M. Meifiner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A practical
evaluation of popular volume rendering algorithms. In Volume Visualiza-
tion 2000, pages 81-90, 2000.

I. Boada Oliveras. Towards Multiresolution Integrated Surface and Volume
Data Representations. PhD thesis, Universitat Politecnica de Catalunya,
2001.

T. Porter and T. Duff. Compositing digital images. In Hank Christiansen,
editor, Computer Graphics (SIGGRAPH 8 Proceedings), volume 18, July
1984.

Milos Sramek. Fast ray-tracing of rectilinear volume data. In Virtual
Environments and Scientific Visualization ’96. Furographics Workshops,
pages 201-210, 1996.

[17]

R. Srinivasan, S. Fang, and Su Huang. Volume rendering by template-based
octree projection. In Visualization in Scientific Computing '97. Eurograph-
ics Workshops., 1997.

X. Tong, W. Wang, W. Tsang, and Z. Tang. FEfficiently rendering large
volume data using texture mapping hardware. In Data Visualization’99,

1999.

L. Westover. Footprint evaluation for volume rendering. In SIGGRAPH’90,
pages 367-376, 1990.

K.J. Zuiderveld, A.H. Konong, and M.A. Viergever. Acceleration of ray-
casting using 3-D distance transforms. In VBC’92 SPIE Conf., volume
1808, pages 336-346, 1992.

