326 research outputs found

    Hardware Trojan Detection and Invalidation Methods

    Get PDF
    早大学位記番号:新8123早稲田大

    Hardware security, vulnerabilities, and attacks: a comprehensive taxonomy

    Get PDF
    Information Systems, increasingly present in a world that goes towards complete digitalization, can be seen as complex systems at the base of which is the hardware. When dealing with the security of these systems to stop possible intrusions and malicious uses, the analysis must necessarily include the possible vulnerabilities that can be found at the hardware level, since their exploitation can make all defenses implemented at web or software level ineffective. In this paper, we propose a meaningful and comprehensive taxonomy for the vulnerabilities affecting the hardware and the attacks that exploit them to compromise the system, also giving a definition of Hardware Security, in order to clarify a concept often confused with other domains, even in the literature

    Reversing Stealthy Dopant-Level Circuits

    Get PDF
    A successful detection of the stealthy dopant-level circuit (trojan), proposed by Becker et al. at CHES 2013, is reported. Contrary to an assumption made by Becker et al., dopant types in active region are visible with either scanning electron microscopy (SEM) or focused ion beam (FIB) imaging. The successful measurement is explained by an LSI failure analysis technique called the passive voltage contrast. The experiments are conducted by measuring a dedicated chip. The chip uses the diffusion programmable device: an anti-reverse-engineering technique by the same principle as the stealthy dopant-level trojan. The chip is delayered down to the contact layer, and images are taken with (1) an optical microscope, (2) SEM, and (3) FIB. As a result, the four possible dopant-well combinations, namely (i) p+/n-well, (ii) p+/p-well, (iii) n+/n-well and (iv) n+/p-well are distinguishable in the SEM images. Partial but sufficient detection is also achieved with FIB. Although the stealthy dopant-level circuits are visible, however, they potentially make a detection harder. That is because the contact layer should be measured. We show that imaging the contact layer is at most 16-times expensive than that of a metal layer in terms of the number of image

    3D Integration: Another Dimension Toward Hardware Security

    Full text link
    We review threats and selected schemes concerning hardware security at design and manufacturing time as well as at runtime. We find that 3D integration can serve well to enhance the resilience of different hardware security schemes, but it also requires thoughtful use of the options provided by the umbrella term of 3D integration. Toward enforcing security at runtime, we envision secure 2.5D system-level integration of untrusted chips and "all around" shielding for 3D ICs.Comment: IEEE IOLTS 201

    Detecting denial-of-service hardware Trojans in DRAM-based memory systems

    Get PDF

    Introduction to Electromagnetic Information Security

    Get PDF

    A Comprehensive Study of the Hardware Trojan and Side-Channel Attacks in Three-Dimensional (3D) Integrated Circuits (ICs)

    Get PDF
    Three-dimensional (3D) integration is emerging as promising techniques for high-performance and low-power integrated circuit (IC, a.k.a. chip) design. As 3D chips require more manufacturing phases than conventional planar ICs, more fabrication foundries are involved in the supply chain of 3D ICs. Due to the globalized semiconductor business model, the extended IC supply chain could incur more security challenges on maintaining the integrity, confidentiality, and reliability of integrated circuits and systems. In this work, we analyze the potential security threats induced by the integration techniques for 3D ICs and propose effective attack detection and mitigation methods. More specifically, we first propose a comprehensive characterization for 3D hardware Trojans in the 3D stacking structure. Practical experiment based quantitative analyses have been performed to assess the impact of 3D Trojans on computing systems. Our analysis shows that advanced attackers could exploit the limitation of the most recent 3D IC testing standard IEEE Standard 1838 to bypass the tier-level testing and successfully implement a powerful TSV-Trojan in 3D chips. We propose an enhancement for IEEE Standard 1838 to facilitate the Trojan detection on two neighboring tiers simultaneously. Next, we develop two 3D Trojan detection methods. The proposed frequency-based Trojan-activity identification (FTAI) method can differentiate the frequency changes induced by Trojans from those caused by process variation noise, outperforming the existing time-domain Trojan detection approaches by 38% in Trojan detection rate. Our invariance checking based Trojan detection method leverages the invariance among the 3D communication infrastructure, 3D network-on-chips (NoCs), to tackle the cross-tier 3D hardware Trojans, achieving a Trojan detection rate of over 94%. Furthermore, this work investigates another type of common security threat, side-channel attacks. We first propose to group the supply voltages of different 3D tiers temporally to drive the crypto unit implemented in 3D ICs such that the noise in power distribution network (PDN) can be induced to obfuscate the original power traces and thus mitigates correlation power analysis (CPA) attacks. Furthermore, we study the side-channel attack on the logic locking mechanism in monolithic 3D ICs and propose a logic-cone conjunction (LCC) method and a configuration guideline for the transistor-level logic locking to strengthen its resilience against CPA attacks
    corecore