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ABSTRACT

A Comprehensive Study of the Hardware Trojan and Side-Channel Attacks in

Three-Dimensional (3D) Integrated Circuits (ICs)

by

Zhiming Zhang

University of New Hampshire, September, 2021

Three-dimensional (3D) integration is emerging as promising techniques for high-performance

and low-power integrated circuit (IC, a.k.a. chip) design. As 3D chips require more man-

ufacturing phases than conventional planar ICs, more fabrication foundries are involved in

the supply chain of 3D ICs. Due to the globalized semiconductor business model, the ex-

tended IC supply chain could incur more security challenges on maintaining the integrity,

confidentiality, and reliability of integrated circuits and systems. In this work, we analyze

the potential security threats induced by the integration techniques for 3D ICs and propose

effective attack detection and mitigation methods. More specifically, we first propose a com-

prehensive characterization for 3D hardware Trojans in the 3D stacking structure. Practical

experiment based quantitative analyses have been performed to assess the impact of 3D

Trojans on computing systems. Our analysis shows that advanced attackers could exploit

the limitation of the most recent 3D IC testing standard IEEE Standard 1838 to bypass

the tier-level testing and successfully implement a powerful TSV-Trojan in 3D chips. We

propose an enhancement for IEEE Standard 1838 to facilitate the Trojan detection on two

xviii



neighboring tiers simultaneously. Next, we develop two 3D Trojan detection methods. The

proposed frequency-based Trojan-activity identification (FTAI) method can differentiate the

frequency changes induced by Trojans from those caused by process variation noise, outper-

forming the existing time-domain Trojan detection approaches by 38% in Trojan detection

rate. Our invariance checking based Trojan detection method leverages the invariance among

the 3D communication infrastructure, 3D network-on-chips (NoCs), to tackle the cross-tier

3D hardware Trojans, achieving a Trojan detection rate of over 94%. Furthermore, this work

investigates another type of common security threat, side-channel attacks. We first propose

to group the supply voltages of different 3D tiers temporally to drive the crypto unit imple-

mented in 3D ICs such that the noise in power distribution network (PDN) can be induced

to obfuscate the original power traces and thus mitigates correlation power analysis (CPA)

attacks. Furthermore, we study the side-channel attack on the logic locking mechanism in

monolithic 3D ICs and propose a logic-cone conjunction (LCC) method and a configura-

tion guideline for the transistor-level logic locking to strengthen its resilience against CPA

attacks.
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CHAPTER 1

Introduction

1.1 Three-Dimensional (3D) Integration Circuit (IC) Is The Solution of Future

Integration

As the semiconductor manufacturing process is approaching the physical limit of silicon,

it is difficult to continue the Moore’s Law [4]. Innovative integration is one of the ways to

achieve “More than Moore” [5]. Three-dimensional (3D) integration emerges as a strong can-

didate [6], which vertically integrates multiple independently fabricated integrated circuits

(ICs) as 3D tiers [7]. The stacked 3D structure can effectively increase the device density.

Furthermore, the utilization of through-silicon vias (TSVs) as inter-tier connections reduces

the global wire length, thus improving system performance and saving power consumption

on global interconnect.

1.2 Security Threats of 3D ICs

However, 3D ICs may bring in unique and new security vulnerabilities [8]. The outsourcing

fabrication of individual 3D tiers of the stacked 3D ICs provides malicious foundries a chance

to perform malicious hardware modifications, such as hardware Trojan attacks. Moreover,

side-channel attacks are a group of big threat to the security and integrity of 3D ICs, too.

1.2.1 Security Threats from Hardware Trojan

Besides the vulnerabilities in the fabrication process of stacked 3D ICs, the special stacking

structure leaves attackers more exploration space to build new types of hardware Trojans [9].
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Hardware Trojan can be defined as the malicious modifications to the original circuit or

the malicious extra logic added to the circuit. It usually aims at either altering the logic

function of the circuit or leaking important information. Those new types of hardware Tro-

jans built in 3D ICs are the 3D Trojans that have never been explored so very dangerous.

Split manufacturing techniques have been used as a protection mechanism against hard-

ware Trojan attacks which separate a complete design into incomplete portions for multiple

foundries, thus thwarting reverse engineering attacks and bringing difficulties to Trojan in-

sertion. Unfortunately, the heuristics of electronic design automation tools could nullify the

split manufacturing effort regarding the mitigation of either reverse engineering or hardware

Trojan [10,11].

1.2.2 Security Threats from Side-Channel Attacks

Side-channel attack (SCA) retrieves the secret key applied in a crypographic device by ana-

lyzing the side-channel signals (e.g., power, delay, and electromagnetic leakage) gained from

the physical implementation of that device. Among various power-based SCAs, correlation

power analysis (CPA) attack outperforms simple power analysis (SPA) attack and differen-

tial power analysis (DPA) attack [12], receiving more attentions [13,14]. Existing efforts on

CPA attacks and their counteracting techniques are primarily limited in the context of hard-

ware implemented with two-dimensional (2D) ICs. Unfortunately, studies of CPA attack in

context of the 3D ICs have not been widely explored yet. Although some surveys [15, 16]

envision that SCA in 3D ICs may be more challenging than in 2D ICs, but neither physical

experiment nor quantitative analysis is available. Moreover, SCA also becomes an emerging

attack to logic locking [17], which can be used in monolithic 3D (M3D) ICs [3] to mitigate

intellectual property (IP) piracy attacks, aiming at retrieving the locking key.

2



1.3 The Main Contributions of This Dissertation

In this dissertation, we present our works on securing 3D ICs from hardware Trojan attacks

and side-channel attacks. More specifically, the main contributions of this dissertation are

summarized as follows.

1. We propose a high-level 3D hardware Trojan characterization including four represen-

tative 3D Trojan models.

2. We implement the proposed cross-tier 3D Trojan model to create a TSV-based Trojan

and propose a two-tier activation (T2A) testing enhancement method for the most

recent 3D IC testing standard to detect this new 3D Trojan.

3. A frequency-based Trojan-activity identification method (FTAI) is further proposed to

detect the 3D Trojans designed based on our Trojan models.

4. An invariance checking based method, which leverages 3D network-on-chips (NoCs) to

tackle 3D Trojans, is further introduced.

5. A temporally varied supply voltage (TVSV) method is proposed which utilizes the

internal noise of 3D IC’s power distribution network (PDN) to mitigate the CPA attacks

in 3D ICs

6. A logic-cone conjunction (LCC) method and a configuration guideline is proposed for

the logic locking mechanism used in M3D ICs to improve their CPA resilience.

The rest of the dissertation is organized as follows. Chapter 2 presents the proposed 3D

Trojan characterization. The practical example for each Trojan case is provided. Chapter 3

introduces the proposed TSV-based 3D Trojan and the proposed T2A testing scheme. Chap-

ter 4 introduces the proposed FTAI method to detect 3D Trojans. Chapter 5 demonstrates

the proposed invariance checking based 3D Trojan detection method. Chapter 6 introduces

the TVSV CPA mitigation method for 3D ICs. Chapter 7 presents the proposed methods
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for improving the CPA resilience of M3D IC’s logic locking mechanisms. This dissertation

is concluded in Chapter 8.
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CHAPTER 2

Comprehensive Analysis on Hardware Trojans in 3D ICs: Characterization and

Experimental Impact Assessment

2.1 Introduction

Since 2007, hardware Trojans inserted in 2D ICs have been well studied in the literature [18–

22]. To facilitate Trojan detection, researchers categorize hardware Trojans based on their

distribution, structure, size, and logic type. Depending on the activation mechanism, a

hardware Trojan can be classified as internally or externally triggered. Based on how often

hardware Trojans are triggered, the work [23] presents three types of Trojans: always-on,

combinational condition triggered, and sequential condition triggered. Once the Trojan

trigger condition arrives, the Trojan payload will execute the defined malicious operations,

such as transmitting confidential information, modifying function, degrading performance,

and consuming extra power.

Thanks to the mature models for 2D Trojans, various functional testing and side-channel

analysis approaches have been proposed to detect different kinds of hardware Trojans in 2D

ICs [19, 24–26]. However, Trojan detection methods for 3D Trojans have not been widely

explored yet. One important reason for that is the lack of a well-established 3D Trojan

model. Due to the vertical integration of multiple tiers, 3D Trojans appear with different

characteristics than 2D Trojans [9]. Thus, the commonly used Trojan detection methods for

2D Trojans may not be effective to protect chips from 3D Trojans.

In this chapter, we introduce four 3D hardware Trojan models. Furthermore, we highlight

the difference between 2D and 3D Trojans using architectural comparison and quantitative
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assessment with practical implementations. More specifically, the main contributions are

summarized as follows.

1. We made the first thorough survey on hardware Trojans in 3D ICs. Security threats and

hardware Trojan models reported in existing literature are compared in this chapter.

2. Four representable high-level 3D hardware Trojan cases are characterized. Practical

examples for each Trojan model are provided for quantitative analysis. The difference

between 2D and 3D Trojans are highlighted in our study.

3. As the thermal issue is prominent in 3D ICs, we designed a thermal-induced 3D hard-

ware Trojan and examined its triggering speed and resilience against Trojan detection

in a 3D environment for a pass-code authentication.

4. Multiple FPGA boards were utilized to emulate the multi-tier collaborative hardware

Trojans, through which attackers can manipulate the function of the target tier without

direct tampering on the victim circuit.

5. We examined the success rate of an existing 2D hardware Trojan detection method in

the context of 3D ICs. Our simulation results show that the 2D approach operated in

3D chips is not as effective as it works in the 2D scenario.

The rest of this chapter is organized as follows: Section 2.2 summarizes the security

threats and hardware Trojan models for 3D ICs discussed in the existing literature. Section

2.3 proposes comprehensive characterization models for 3D Trojans and their practical im-

plementations. Simulation and emulation results for the 3D Trojans are presented in Section

2.3, too. The effectiveness of a 2D hardware Trojan detection method applied in the scenario

of 3D IC is examined in section 2.4. This chapter is concluded in Section 2.5.
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Table 2.1: Existing Work on Hardware Trojan in 3D ICs
Existing
Work

Threat Model Trojan Model
Threat source Attackers’ access Trigger Payload Location

[27] Untrusted die foundries GDSII files
Thermal effect caused
transition glitches

No special requirement Any tiers in 3D ICs

[28] Untrusted die foundries GDSII files
Thermal effect caused
transition glitches

No special requirement Middle tier in 3D ICs

[8]
Untrusted interconnect foundries
Untrusted single die manufacturers

GDSII files
Thermal effect,
Aging effect

Voids leading to DoS
Partially filled TSVs

Interposer
TSV

[29]
Untrusted interconnect foundries
Untrusted single die manufacturers
Untrusted unified foundries

GDSII files
Remote circuits,
Distributed circuits

Impacts on target’s power
Impacts on target’s delay

TSV
Multiple tiers

[30] Untrusted single die manufacturers Least critical die Low-activity nets
Leak key from
encryption unit

Trojan in different tiers
with encryption unit

[31] Untrusted assemblers No legitimate dies No special requirement
Interrupt normal function,
Leak information

Extra Trojan die
in 3D ICs stack

[32] Final bounding foundries Entire layers Internal nets No special requirement Any tiers in 3D ICs
[33] Untrusted single die manufacturers GDSII files No special requirement No special requirement Any tiers in 3D ICs

2.2 Our Survey on Existing Hardware Trojans in 3D Integrated Circuits and

Systems

The increased number of dies in 3D ICs and vertical-dimension integration potentially leave

more attack surfaces open for adversaries to implement hardware Trojans. As multiple dies

are vertically integrated into 3D systems, additional manufacturing steps are needed in 3D

IC fabrication flow than in their 2D counterparts. Multiple foundries for dies and vertical

interconnects will be involved in the 3D integration. In the current semiconductor business

model, more and more chip designs are outsourced for fabrication. As a result, neither all

single die fabrication foundries nor vertical interconnect manufacturers are trusted [8,27–30,

33]. The die-to-die bonding may be performed in an untrusted foundry, too. In Fig. 2.1,

we label the possible attack surfaces for 3D Trojan insertion. Trojans can be placed by

the single-die manufacturing foundries, independently or cooperatively. Since the bonding

foundries have access to all the single dies, they have a more likely-hood to implement a

Trojan involving multiple dies.

Based on the existing literature, we categorize the 3D Trojans in Table 2.1, where we

highlight the threat model with special emphasis on threat source and attack target. In

addition to Trojan trigger and payload mechanisms, we also identify Trojan locations in 3D

ICs. From Table 2.1 we can see, the nature of the 3D IC structure creates new opportunities

for hardware Trojan design, for instance, thermal-based Trojans and cross-tier Trojans. In
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Figure 2.1: 3D hardware Trojan insertion in untrusted foundries.

the next three subsections, we discuss the existing literature listed in Table 2.1 according to

their special trigger mechanisms and Trojan locations.

2.2.1 Thermal-triggered 3D Trojans

The fact of poor heat dissipation in a stacked 3D IC can be exploited to develop Trojan trig-

gers. Although the techniques such as heat sink, liquid cooling, thermal-driven floorplanning

and routing, and thermal TSV insertion [34] could address the thermal issue in 3D ICs at

certain degree, the heat dissipation along a path could harm the tiers and degrade the chip

performance [35]. The heat generated and accumulated in the chip will change the electrical

parameters of transistors and the switching speed of logic gates. Thus, the system may have

new (and unspecified) transition states. The unexpected transition glitches can be employed

to design Trojan triggers.

As indicated in [27, 28], thermal-triggered Trojans can be inserted by any malicious

foundries with access to the layout of designs. Those Trojans likely congregate near the

middle tier, where heat dissipation is harder than in other tiers [28]. The work [8] demon-

strates that a thermal triggered Trojan may be hidden in 3D interposers. Thermal Trojans

can speed up circuit component aging and consequently lead to a Denial-of-Service (DoS)

attack [8].
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2.2.2 Cross-Tier 3D Trojans

The multiple-die structure of 3D ICs allows attackers to spread the circuit for a Trojan

to multiple tiers. This type of Trojans could be inserted by untrusted die manufacturers,

interconnect foundries, and unified foundries. The cross-tier concept means that either the

trigger and payload circuits of cross-tier Trojans are separated into different tiers, or the

trigger circuit split in multiple tiers is activated jointly to enable the payload [29]. The

cross-tier Trojans may not be detected by functional testing performed on each individual

die since the Trojan trigger condition is extremely rare. The work [30] demonstrates a Trojan

located in a different tier than the encryption unit facilitates to leak the secret key. Even if

the untrusted foundry only has partial knowledge of the 3D chip, they can launch cross-tier

Trojan attacks.

2.2.3 Trojans Exploiting Other 3D Features

The work [31] envisions a new hardware Trojan in stacked 3D ICs: a malicious die is placed

between other tiers in the 3D stack. That malicious die, carrying Trojan circuits, may

interrupt normal operations in other 3D tiers or store secret information passing through

the Trojan tier. Due to the prominent process variation in 3D chips, it is not easy to

differentiate the extra delay induced by the 3D hardware Trojan. This type of Trojan can

be inserted by untrusted die assemblers. For instance, the work [32] describes that attackers

from the bonding foundry could leverage outsourced dies to implement 3D Trojans. In [33],

the adversary is an untrusted die manufacturing foundry with access to GDSII files.

2.3 Proposed Comprehensive Characterization of 3D Hardware Trojans

The existing literature mentioned in Table 2.1 showcases diverse 3D Trojans, but they neither

have a thorough discussion on the exact Trojan models nor provide quantitative impact

assessment. We provide a solution by characterizing four representable 3D hardware Trojan
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Figure 2.2: Proposed characterization of 3D hardware Trojans.

cases and quantitatively analyzing their practical examples in the following sections.

The major difference between 2D and 3D hardware Trojans is whether or not the Trojan

trigger and payload circuits are located in the same tier where the target circuit resides. In

2D chips, the Trojan circuit co-exists with the victim in the same tier. One could perform

testing or side-channel analysis to detect the presence of 2D Trojans. In contrast, conven-

tional testing on 3D chips is typically done in a separate fashion. The die for each tier is

tested individually before 3D integration. Once the good dies are stacked vertically, limited

testing will be performed to detect the defects between die-to-die connections, rather than
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extensively examining the correctness of the 3D system’s behavior [36].

Based on our survey in Section 2.2, we characterize the 3D hardware Trojan with four

cases shown in Fig. 2.2. To the best of our knowledge, this work is the first efforts that in-

troduce comprehensive characterization for 3D hardware Trojans. The following subsections

present four 3D Trojan cases in detail.

2.3.1 CASE 1: Cross-Tier Trojan Trigger

Characteristics

In case 1, the trigger circuit of the 3D Trojan is placed in tier 1 while the payload circuit

is located near the Trojan target. This type of 3D Trojan is similar to the 2D Trojans

that are triggered by an external signal [37], but it is more difficult to mitigate compared

to the 2D Trojan. In 2D chips, the passive attack from the external trigger signals can be

alleviated by adding shielding material or using unit isolation. In contrast, in 3D ICs, the

external attack may be originated from the adjacent tiers, which are not removable after

the 3D chip fabrication is completed. As heterogeneous 3D integration emerges, varieties of

external trigger mechanisms could be implemented in the other 3D tiers, thus challenging

the prevention of 3D Trojans. Moreover, since the payload circuit may never or rarely be

enabled without the valid cross-tier trigger signal, the symptom of Trojan attacks will not

be observed in typical functional testing. Thus, this type of Trojan is stealthy.

We illustrate the case 1 Trojan with an example shown in Fig. 2.3. The trigger circuit

is a heat generator in the top tier. The payload circuit is a temperature-sensitive resistor,

which is built in the authentication unit in the middle tier. When the heat from the top tier

propagates to the middle tier, the temperature-sensitive resistor could alter the delay of the

critical path or cause timing violations, thus resulting in a malfunction of the authentication

unit. As reported in [28], the heat from the middle tier of a 3D vertical stacking structure

is accumulated easily due to the relatively long dissipation path to the heat sink. Hence, the

thermal triggered Trojans will be more likely deployed in 3D integrated circuits and systems
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Figure 2.3: Thermal triggered cross-tier Trojan.

than its 2D counterpart.

We performed a transistor-level simulation in Cadence Virtuoso to demonstrate the im-

pact of middle-tier heat dissipation on neighboring tiers. We collected the transient current

of the nodes for load connection in the middle tier of our 3D power distribution network

(PDN) model [38] to evaluate the thermal effect. Our target module for the thermal effect

investigation is an 8-bit S-box module of AES. In the middle tier, we had 30 load nodes

arranged as 5 rows by 6 columns and then captured the current of each node for 10 ns. The

current collected in the 8th ns is shown in the contour graphs Fig. 2.4. Generally, the 3D

PDN carries greater currents than the 2D PDN. Although the highest current for both 2D

and 3D cases appears in the bottom left area where the S-box is located, the current distri-

bution near the S-box is different in the 3D PDN compared to the 2D PDN. We highlight

the difference with red dashed rectangles in Figs. 2.4(a) and (b). Those observations make

sense because any single tier in the 3D chip is not isolated but impacted by its neighboring

tiers. Since the thermal dissipation of a circuit is proportional to its current, it is reasonable

to believe that the temperature surrounding our target is influenced by its neighboring tiers.

To perform quantitative analysis for the cross-tier 3D hardware Trojan, we conducted a

case study on a platform composed of Xilinx Nexys3 Spartan-6 FPGA, TI MSP430FR6989
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Figure 2.4: Current contour maps of (a) 2D and (b) 3D PDNs.

LaunchPad board, IRF540 MOSFET transistor, and an NTC thermistor. The purpose of

this case study is to verify the implementation feasibility of the thermal Trojan (similar to

the one shown in Fig. 2.3) and compare its activation efficiency between the scenarios of

2D and 3D ICs. The overview of our experimental setup is depicted in Fig. 2.5. The main

component of the heat generator circuit is a MOSFET driven by the FPGA board. The

MOSFET could burn when its gate voltage exceeds a voltage threshold and the MOSFET

temperature can be as high as 175°C. The sensor circuit composed of an NTC thermistor

and multiple resistors in series is powered by the TI microcontroller. When the thermistor
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Figure 2.5: Experimental setup for the emulation of thermal-triggered hardware Trojan in
3D ICs.

senses an increase in the temperature in the surrounding air, its resistance starts to drop.

This leads to a reduction in the voltage across the thermistor. To emulate the 2D scenario

for comparison, we added a heat sink for the heat generator circuit, to provide a better heat

dissipation which is commonly available in 2D ICs.

An authentication system is programmed in the microcontroller to examine the password

provided externally. The microcontroller also detects the voltage level of the thermistor. A

Trojan trigger logic is programmed in the FPGA to monitor the two input signals controlled

by the two switches on the FPGA board. The triggered Trojan turns on the MOSFET (thus

it starts to burn) to heat the temperature in the surrounding area. Once the thermistor

senses the increased temperature, the microcontroller detects the change on voltage and

then drives the authentication system to jump to the password reset status, which is usually

only available to legal users. We successfully mimicked a 3D thermal-triggered hardware

Trojan and overwrote the authentication password in our hardware demo [39].

Next, we compared the activation speed of the thermal-triggered Trojans for 2D and 3D
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Table 2.2: Trojan Activation Efficiency.
Emulation scenarios Time to trigger the Trojan (min)
2D 11:12
3D 6:52

Figure 2.6: Resistance dropping of the thermistor used in Fig. 2.5.

scenarios. We used the microcontroller to implement a threshold comparator to examine

the voltage level of the thermistor. If the voltage of a thermistor exceeds the threshold, the

Trojan payload will reset the authentication password. We warmed the air surrounding the

thermistor with and without the heat sink to mimic 2D and 3D scenarios, respectively. A

timer is used to measure the time that the thermistor takes to drop the voltage below the

threshold for each case. The results shown in Table 2.2 indicate that the Trojan activation

time in the 2D scenario is almost twice compared to the 3D case. This means it is easier

to implement thermal-triggered Trojans in 3D ICs than in 2D chips. We also measured the

speed of temperature changing, which is reflected in the resistance of the thermistor. The

dropping trend of the resistance in Fig. 2.6 implies that the NTC thermistor’s resistance for

the 3D case drops faster than the 2D. This fact further confirms that heat can be better

accumulated in 3D than 2D. Thus, 3D ICs will provide a better environment to facilitate

the implementation of thermal-based Trojans than 2D ICs.
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2.3.2 CASE 2: Cross-Tier Trojan Payload

Characteristics

In the Trojan described in case 2, the payload is located in the top tier (tier 1), from where

it is relatively easy to probe and measure side-channel signals than from the middle tier.

The motivation of this type of 3D Trojan is to steal confidential information from the victim

unit. Essentially, the stacked structure of 3D ICs provides a reliable medium for attackers

to collect information from the middle and bottom tiers. In addition, as the payload resides

in another tier, the effect of this kind of Trojans will not be observable while testing on the

individual tiers. Here, we assume that the trigger circuit is small enough to hide its area,

delay, and power overhead. This assumption is as reasonable as what we usually have in 2D

ICs.

The cross-tier Trojan can facilitate the development of a covert channel to leak infor-

mation. The victim unit could be an encryption engine, such as the one shown in Fig. 2.7.

The crypto key is loaded from the volatile memory in the top tier. To prevent the leaked

key from being visible during the middle tier testing, the pilfered key is first transformed

into another format (i.e., obfuscated key), and then the Trojan passes the obfuscated key to

the rarely used main memory in the top tier. When we test the top tier, the main memory

functions normally. The separated testing on the middle tier will not reveal the presence of

the 3D Trojan because the key is obfuscated. However, the key will be leaked by the covert

channel built by the cross-tier 3D Trojan since the attacker knows how to de-obfuscate the

key.

Example Analysis

In this subsection, we use a combination of transistor-level simulation and FPGA emulation

to demonstrate the feasibility of leaking the AES secret key via cross-tier Trojans. We

implemented the cross-tier hardware Trojan and the 3D system shown in Fig. 2.8 in Cadence
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Figure 2.7: An example of key leaking via the covert channel formed by a hardware Trojan
in a stacked 3D IC.

Virtuoso with a 45nm NCSU FreePDK technology [40]. The PDN in each tier of the stacked

3D structure is mainly composed of a global power grid and a virtual grid. TSVs connect

the global power grids in nearby tiers. The parameters for the TSV and wire model are

listed in Table 2.3. The parameters are verified by [40, 41]. Our transistor-level 3D circuit

nearly matches the practical 3D IC. The crypto unit adopted here is a transistor-level AES

S-box. To ensure the unipolarity of the channel between key and TSV, a buffer is located

in the middle of the channel (not shown in the diagram) so that we can prevent the power

data from being transmitted back to the S-box to hinder normal operation. The hardware

Trojan shown in Fig. 2.8 stealthily passes the secret key to a nearby 3D tier. The main

component of the Trojan is a capacitor connected with the PDN. Each key is assigned to

one Trojan capacitor. The Trojan capacitors are charged or discharged based on the key bits

transmitted through TSVs. The charges stored in the Trojan capacitor CT will facilitate the

side-channel analysis for the crypto key retrieval. The capacitor CT acts like a decoupling

capacitor, which can keep the supply power stable. In this way, the normal function of

the nearby tier will not be affected so that the stealthiness of the inserted Trojan can be
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Table 2.3: Parameters for TSV and Wire Model
TSV Model (per TSV) [42]

Diameter Height Pitch Resistance Inductance Capacitance

10 µm 60 µm 20 µm 20 mΩ 34.94 pH 283 fF

RC Model for Local Wire Interconnect (per mm) [41]

Resistance Capacitance

3.31 kΩ 170.59 fF

Figure 2.8: Experimental setup of key leaking via a cross-tier Trojan.

achieved.

In our experiment, we set the key bits to “11111111”, and varied CT from 10fF, 1132fF,

to 11320fF. The power consumption of the S-box without Trojan or with different Trojan

loads was measured and compared. As shown in Fig. 2.9(a), a smaller Trojan capacitor

leads to a smaller power change, but the power difference induced by the Trojan is still less

than 2.5% even though we increase CT to 11320fF. However, the power profiles for different

Trojan capacitors are consistent. The slight but consistent variation on the power profile is an

important quality to ensure the stealthiness of the cross-tier Trojan. We kept the capacitance

of the Trojan as 11320fF but changed the key bits from “11111111”, “00000000”, “01010101”,

to “01001011”. The power consumption for these four cases is shown in Fig. 2.9(b). It can

be observed that the power consumption for each key is unique. Thus, we can correlate the

new power profile with the key used in the crypto unit.

Next, we used a SAKURA-G FPGA assessment kit to conduct a side-channel analysis
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Figure 2.9: Impact of cross-tier Trojans on the power consumption of an AES S-box. (a)
Power differences caused by the Trojans implemented with different Trojan capacitors, and
(b) unique power profiles induced by the same Trojan that snoops the AES S-box with
different keys.

on an AES affected by the cross-tier Trojan. The Trojan model AES-T1000 published on

Trust-hub was modified to mimic the 3D Trojan described in Fig. 2.8. The main difference
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(a)

(b)

Figure 2.10: Correlation power analysis for the AES (a) without Trojan and (b) with Trojan.

is, we used FPGA pins to mimic the Trojan capacitors. Each key bit additionally drives

eight FPGA pins. Due to the capacitor induced by the Trojan, the total power consumption

of the AES module is slightly changed. However, the power difference due to the Trojan

accelerates the correlation power analysis (CPA) attack. The key retrieval processes for cases

of without Trojan and with Trojan are shown in Fig. 2.10. The red lines represent the 16 key

bytes of AES. As the number of analyzed traces increases, the red lines are getting out of

the green zone, which means the key bytes are being retrieved. As a result, the CPA attack

on the AES with Trojan is able to retrieve all the key bytes within the use of 6000 power
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traces. Given the same amount of power traces, the CPA attack without Trojan retrieves

only 14 key bytes out of 16 since two lines are still buried in the green zone. This indicates

that the Trojan implemented in this example could ease the CPA attack.

2.3.3 CASE 3: Multi-Tier Collaborative Trojan

Characteristics

There may emerge another kind of 3D Trojan, multi-tier collaborative Trojan, which is more

sophisticated than the cross-tier Trojan trigger and payload. The multi-tier Trojan in case

3 shown in Fig. 2.2 is activated by the two trigger circuits from tiers 1 and 2, respectively.

Compared to hardware Trojans in 2D ICs, the multi-tier Trojan trigger has significantly

lower Trojan triggering probability due to a larger pool of trigger signals. Moreover, the

collaborative Trojan trigger could be a combination of different trigger mechanisms (e.g.,

temperature, voltage level, and electromagnetic flux). Multi-tier collaborative Trojans rep-

resent the scenario that attackers exploit the security weaknesses of other tiers in the 3D

system to breach the target tier with strong security mechanisms, instead of compromising

the target tier directly. In terms of cost and effectiveness, multi-tier Trojans are more likely

to appear in 3D chips than a single-tier Trojan.

We implemented an example of a multi-tier collaborative Trojan in a 3D system with

4 tiers. Two FPGA boards, each including two FPGA chips, were utilized to emulate

the 3D system. The schematic diagram and FPGA setup are shown in Figs. 2.11(a) and

(b), respectively. Tiers 1 and 2 are weak in the sense of resistance against hardware Trojan

insertion. Thus, two hardware Trojan triggers were placed in those two tiers. The 3D Trojan

manipulates the signals passing images from tiers 1 and 2 to tier 3. Due to their low trigger

probability, sequential hardware Trojan (SHT) triggers were applied in this example. When

the SHT trigger is active, the vertical data communication is compromised such that the valid

indication signals vda and vdb will allow improper operands a and b to propagate to tier 3.

Consequently, the compromised inputs ṽda and ṽdb lead the Trojan target circuit to behave
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differently (g̃) than the normal specification (g). Once the valid signals are compromised by

the 3D Trojans, the integrity of the images received by tier 3 will be sabotaged. As a result,

image-based authentication will fail.

Example Analysis

In the FPGA platform, we connected those FPGA chips with external wires so that the tier-

to-tier communication can be manipulated and observed via the oscilloscope. Figure 2.11(c)

illustrates that the square-wave signal from tier 1 (the yellow line on the top) is not passed

to tier 3 (as the blue signal on the bottom is flat). When the Trojan is triggered, a portion

of the yellow line is copied to the blue signal as shown in Fig. 2.11(d). This indicates that

the multi-tier collaborative Trojan manipulates the signal filter, which is controlled by the

valid signal, and transfers invalid or even malicious data to the target tier. Assume tier 3

in the 3D system examines whether the images from the top two tiers are highly correlated

and then enables the critical mission programmed in tier 3. If the valid signals vda and vdb

are tampered by the multi-tier collaborative Trojan, dummy image rows will be dumped

to tier 3. Five images shown in Fig. 2.12 are adopted for correlation analysis in the 3D

system mentioned above. Clearly, Figs. 2.12(b)-(e) are different than Fig. 2.12(a), thus the

image correlation cannot get close to 0.9. However, when the valid signals for enabling image

transfer between tiers are compromised, the image correlation could approach to 0.9 if the

hardware Trojan is able to manipulate vda and vdb for a time period long enough to dump

100 dummy image rows.

2.3.4 CASE 4: Multi-Tier Synergic Trojan Payload

Characteristics

When an IC is expended from planar to vertical dimension, the corresponding Trojan pay-

load will be distributed to multiple tiers as well. In case 4 shown in Fig. 2.2, the Trojan

circuit snoops the data (or even the side-channel signal) available in tier 2. As a result, the
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(a)

(b)

(c) (d)

Figure 2.11: Multi-tier collaborative hardware Trojan. (a) Conceptual diagram, (b) multi-
FPGAs experimental setup, (c) normal output, and (d) Trojan affected output.
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Figure 2.12: Impact of multi-tier collaborative hardware Trojans in an image authentication
application. (a) Image generated in tier 1, (b)-(e) Images for comparison provided by tier 2,
and (f) correlation analysis results obtained from tier 3.
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Figure 2.13: Multi-tier synergic hardware Trojan payload causing malfunction, communica-
tion livelock, and information leaking.

confidential information is leaked from tier 2 to other tiers. Often time, both the Trojan

trigger and payload are located in the different tiers than the target one. Alternatively, a

thin Trojan tier can be integrated into the 3D stack structure to provide flexible and precise

control on the snooped information without incurring noticeable delay overhead [31]. We

further envision that a 3D Trojan payload could achieve a synergic attack effect in multiple

tiers, rather than influencing each tier independently. In summary, a multi-tier synergic

Trojan has the potential to impact a bigger area than a 2D Trojan. It will be challenging

for module-level testing for a subsystem to identify the underlying security threat in the 3D

system. The symptom of a synergic Trojan may seem benign from the viewpoint of a small

local area. More importantly, the increased impact area of the synergic Trojan payload will

make the technique of isolating malicious hardware ineffective or unrealistic since multiple

tiers are involved.

Example Analysis

3D network-on-chip (NoC) [43, 44] has been demonstrated as a promising infrastructure to

integrate increasing transistors in multiple tiers. 3D NoC eliminates the need for long global
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interconnects and reduces the voltage droop and power consumption on long wires. A rogue

2D NoC leads to information leaking and bandwidth depletion [45]. If NoC-based 3D ICs

have a synergic Trojan placed in some IP cores or 3D switches, that Trojan leads to a similar

consequence, as shown in Fig. 2.13. The rogue IP core sends an NoC instruction packet to

the rogue switch. Next, the rogue switch passes that malicious packet to the victim IP

core in the bottom tier. As a result, the multi-tier synergic Trojan eventually causes the

victim IP core to have malfunctions. Or, the rogue switch in the middle tier could trigger

a livelock between the middle and bottom tiers. The proposed multi-tier synergic Trojan is

stealthy because the hardware of the rogue IP core and switch has high similarity with the

normal ones and the ‘rogue’ feature is only visible at the arrival time of special NoC packets.

Figure 2.13 illustrates another practical example of the case 4 Trojan model. The rogue

switch and IP core tampered by a hardware Trojan monitor the special packet transferring

through the middle tier and the packet of interest in the rogue IP core is stored for future

use and analysis. In the case of passing malicious packets in NoCs, the rogue IP core is

the Trojan trigger to initialize the attack by issuing the malicious instructions. The rogue

3D switch is the payload, which causes malfunction by delivering malicious instructions to

the victim IP cores. The trigger and payload are from different tiers but none of them is

in the same tier where the victim locates. In the case of information leaking, the payload

formed by a rogue 3D switch is responsible for leaking NoC packets. Although the trigger

and payload for this case are in the same tier, they remotely control the victims in other

tiers. The Trojan type proposed in this subsection is non-invasive. Moreover, the snooping

attack is hidden in the normal data transmission of the middle tier. Side-channel analysis

of the entire system may not be able to detect the presence of such hardware Trojans.

2.4 Examination of A 2D Trojan Detection Approach in 3D IC

The existing Trojan detection methods are mainly designed for the Trojans in 2D ICs. Due

to the unique characteristics of 3D Trojans, as analyzed in Section 2.3, they may not work

26



well in 3D scenarios. Split manufacturing may impact the hardware Trojan insertion in 3D

ICs at some level. However, the adversaries in untrusted foundries with partial design details

might be able to reverse engineer the whole design. Once the design is recovered, attackers

can continue to insert Trojans. On the other hand, split manufacturing is not for securing

the stacked 3D ICs in which every single tier is complete. This type of 3D IC is addressed

in this work. New countermeasures specifically for 3D Trojans are needed.

In this section, we applied an existing approach [19], originally designed for 2D Trojans,

to a 3D system and compared the effectiveness of Trojan detection in 2D and 3D ICs. As 3D

chips have severe internal noise, we suspect that Trojan detection using side-channel signals

will lose its detection accuracy. Thus, we chose a current based Trojan detection method.

2.4.1 Description of Trojan Detection Method for 2D ICs

The Trojan detection method we examined is Temporal Self-Referencing (TeSR) [19]. In

TeSR, a special test vector generator offers the input sequence to ensure the system go

through the identical state transitions in a period of time. A Trojan free system should

obtain identical current signatures in two consecutive time windows when it goes through

the same state transitions. Any mismatch between the two current signatures will indicate

the presence of a hardware Trojan. This method may not work well in 3D scenarios because

of the greater internal noise in 3D ICs.

2.4.2 Targeted Hardware Trojan

In the following experiment, we inserted the same MOLES Trojan mentioned in [46] to the

2D and 3D circuits. The MOLES Trojan is composed of a set of registers as a ring generator

to generate a series of random numbers, which will be XORed with the key information.

The XOR outputs will drive a set of capacitors. Attackers who know the implementation

details of the ring generator can decode the obfuscated key information via power analysis.

However, the power consumed in the load capacitors seems like noise if the random sequence
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Table 2.4: Trojan Detection Confidence for Different Victim Sizes.

1 S-box 2 S-boxes 4 S-boxes 6 S-boxes 8 S-boxes
2D +31.07% +11.84% +12.80% +80.06% +48.00%
3D -21.99% +12.61% -61.30% -24.32% -28.74%

is unknown. In the 2D case, MOLES was implemented as an external circuit on the same

tier of the target circuit. In the 3D scenario, MOLES and the victim circuit were placed in

two different tiers.

2.4.3 Efficiency of TeSR Trojan Detection Method in 2D and 3D ICs

We adopt the metric point-wise Euclidean distance (PWED) between the two current signa-

tures to assess Trojan detection efficiency, following the similar process used in the work [19].

The PWED for the Trojan free case (i.e. TrojanFree) is considered as the noise threshold. If

the PWED measured from the Trojan injected case (i.e., PWED
TrojanIn

) is higher than that

measured from the Trojan free case (i.e., PWED
TrojanFree

), the hardware Trojan is detected.

We implemented the TeSR Trojan detection method in the transistor-level 3D IC model

built with a 45nm NCSU FreePDK technology [40]. The detailed setting is as same as what

described in Section 2.3.2). One, two, four, six, and eight S-boxes were applied for the

purpose of sweeping the size of the victim circuit. The number of registers in the MOLES

ring generator was varied to observe the impact of Trojan size on Trojan detection efficiency.

Our simulation results shown in Fig. 2.14 confirm that the TeSR Trojan detection method

is generally less effective in the 3D scenarios than in the 2D cases. The inserted MOLES

Trojan can be successfully detected in the 2D environment for all victim sizes tested in

the experiment. In contrast, the Trojan in the 3D scenario is not detected in most of

the cases because the 3D PWED
TrojanIn

is lower than PWED
TrojanFree

. We further zoom

in the PWEDs for different test cases and define the confidence level of Trojan detection

ConfidenceHTD as the expression shown in Eq. (2.1).

ConfidenceHTD =
PWED

TrojanIn
− PWED

TrojanFree

PWED
TrojanFree

(2.1)
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(a)

(b)

Figure 2.14: Trojan detection results achieved by the TeSR approach applied in (a) 2D and
(b) 3D ICs with different sizes of victim circuits.

Table 2.4 shows ConfidenceHTD for all the test cases reported in Fig. 2.14. A positive

percentage means that the Trojan is detected. A higher percentage stands for better confi-

dence in the detection result. If the positive percentage is too small, our detection conclusion

may be changed by the interruption from some internal noise or process variations. Although

TeSR achieves a positive confidence value in the 3D TrojanIn with 2 S-boxes case, the per-
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Figure 2.15: Trojan detection efficiency of TeSR against 3D MOLES Trojans with different
sizes.

Table 2.5: Trojan Detection Confidence for Different Trojan Sizes.

3D TrojanIn
20 regs

3D TrojanIn
30 regs

3D TrojanIn
40 regs

3D TrojanIn
80 regs

-21.99% -46.34% -16.94% -33.15%

centage of 12.61% is not as high as that in most of the 2D cases. A negative percentage

in Table 2.4 indicates that the TeSR fails to capture the Trojan. To conclude, the MOLES

Trojans in most of the 3D scenarios are not recognized by the TeSR approach.

Next, we swept the size of the MOLES Trojans from 20 to 80 registers and obtained the

corresponding PWED shown in Fig. 2.15. As can be seen, the PWED for all 3D TrojanIn

cases is less than the TrojanFree case. This indicates that the TeSR approach fails to detect

the MOLES Trojans inserted in the 3D circuits even if the Trojan size increases. Another

observation we had from our case study is, the PWED does not monotonically increase or

decrease with the Trojan size. This is summarized in Table 2.5.

2.5 Conclusion

Three-dimensional integration techniques for integrated circuits leverage vertical-dimension

space to increase the chip density and provide better performance than two-dimensional
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chips. However, the increased number of transistors in a small footprint leaves more explo-

ration space for attackers to insert stealthy hardware Trojans. Trojans in planar integrated

circuits are well modeled and understood, but there is limited work available to investigate

hardware Trojans specifically in 3D ICs. This chapter summarizes the existing effort on 3D

hardware Trojans. To improve the awareness of potential attacks that could succeed in 3D

ICs, this chapter characterizes four representable 3D hardware Trojan cases and provides

practical simulation/emulation examples for each model. To the best of our knowledge, this

is the first comprehensive work that analyzes the 3D Trojan models, especially for cross-tier

and multi-tier Trojans, and demonstrates their impact with the quantitative assessment.

Our experimental results show that 3D Trojans are feasible to be implemented in 3D in-

tegrated circuits and systems. We advocate the research community to investigate unique

Trojan detection methods for 3D hardware Trojans.
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CHAPTER 3

Two-Tier Activation (T2A) Testing Scheme for 3D ICs to Detect TSV-Based

Hardware Trojans

3.1 Introduction

Three-dimensional integrated circuits (3D ICs) offers higher device density, better chip per-

formance and lower power consumption than planar chips. However, the vertical communi-

cation channels, through-silicon vias (TSVs), in 3D chips bring in new concerns of reliability

and security issues. For example, the heat expansion of TSVs induces serious stress to 3D

ICs under the condition of the poor heat dissipation, which may cause damage to the de-

vice layer of each die [47]. Moreover, the coupling effect between TSVs may impact the

integrity of inter-tier communications and could even be used to form a crosstalk-based at-

tack [48,49]. The recent literature reveals that TSVs could be exploited by attackers to build

new hardware Trojans, which are more difficult to detect than the ones inserted in planar

chips [9, 50].

The testing for 3D ICs is more complicated than that for traditional 2D ICs. The multi-

tier structure in 3D ICs requires to perform multiple phase testing, including pre-bond,

mid-bond and post-bond testings [6]. The pre-bond and mid/post-bond testing check the

circuitry of individual dies and the TSV defects, respectively. To survive from the tier-level

testing, the attackers from the bonding foundry could implant the Trojans in the interface

of tier-to-tier connection. That type of Trojan will not modify the circuitry of any tiers or

tamper with any TSVs, but only alter the signals transmitted through TSVs when the Trojan

is activated. Due to the press of time-to-market, the limited functional testing performed
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after the 3D IC is packaged does not provide sufficient test coverage to detect the 3D hardware

Trojans.

The most recent 3D IC testing standard IEEE Std 1838 [51,52] provides a comprehensive

tier-level testing mechanism after the chip is packaged. Similar to the testing of multi-core

systems in 2D ICs, each die in a 3D stack is wrapped using die wrapper registers (DWRs).

The test data inputs and DWRs will control the bypass registers of dies to directly test

any single die’s logic while bypass the uninterested dies. However, the standard does not

provide a detailed testing scheme for the logic outside of DWRs but still in the die. Such

logic is known as shore logic, which are extremely important to the integrity and security

of 3D ICs because they are the interface to the TSVs. Any malicious modifications on the

TSV signals could lead to the corruption of important instructions from neighboring tiers

and cause system malfunction consequently.

In this chapter, we investigate the potential hardware Trojan insertion in the shore logic

to manipulate TSV signals. More specifically, the main contributions of this chapter are as

follows.

• We propose a TSV-based hardware Trojan that is inserted to the shore logic of 3D tiers.

More specifically, the Trojan spreads its trigger and payload logic to two neighboring

tiers and induces an extra Trojan TSV to transmit the trigger signal.

• We analysis and compare the Trojan detection probability for the proposed TSV-Trojan

with the case of conventional hardware Trojans under the testing guided by IEEE Std

1838.

• Furthermore, we propose a two-tier activation (T2A) enhancement method for IEEE

Std 1838 to examine two neighboring tiers at a time in the testing and thus facilitates

the detection of TSV-based Trojans.
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3.2 Attack Model

IEEE Std 1838 normalizes the testing on the logic function of each die of a 3D stack. As

shown in Fig 3.1, the die logic of 3D tiers is fully wrapped by DWRs which are controlled

by bypass registers. Each tier can be tested individually by setting its bypass register value.

However, the standard does not give a detailed testing approach for the shore logic. Hardware

Trojans (HTs) may be inserted to those logic to exploit the relatively weak testing feature.

Moreover, we found that IEEE Std 1838 only supports the testing mode, in which only

one tier is tested at a time. A Trojan may bypass this tier-level testing if it has Trojan

components spread among multiple tiers. The Trojan is not complete in the testing such

that the tier will not have any abnormal functions.

In our attack model, we assume that attackers have the access of the fabrication of two

neighboring tiers of a 3D IC. They can perform a hardware Trojan attack by inserting the

Trojan trigger and payload to the tiers separately. The inter-tier communication between

the Trojan components can be conducted using an extra induced TSV, labeled with Trojan

TSV in Fig. 3.1. Once the Trojan is triggered, it will corrupt the TSV signals transmitting

between the two tiers.

3.3 Proposed TSV-Based 3D Trojan

3.3.1 Description of Proposed Trojan

We assume that some attackers will exploit the fact that the IEEE Std 1838 is not capable

of testing two neighboring tiers to design a hardware Trojan, which will not be triggered in

the single-tier testing. For simplicity, we zoom in a TSV-based 3D Trojan across two tiers

as shown in Fig. 3.2. Locating in the shore logic, the Trojan trigger and payload have direct

interaction with some TSVs between two 3D tiers. The trigger circuit monitors the incoming

TSV signals to Tier 2 and generates a trigger signal for the payload when a specific input

pattern arrives. The trigger signal is propagated to the payload circuit via an extra Trojan
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Figure 3.1: Diagram of testing structure for 3D ICs.

TSV, labeled with HT TSV in Fig. 3.2. The payload will, for example, flip the incoming

TSV signals from Tier 2 if the trigger signal is logic high.

If an advanced attacker can manipulate the bypass registers, s/he could implement a

pre-activation scheme to further increase the complicity of the TSV-based hardware Trojan.

In this type of Trojan, the trigger and payload will make use of the bypass register value

to survive from the conventional single-tier testing. The stars in Fig. 3.2 highlight the

data paths that are associated with the pre-activation scheme. The trigger and payload

will stay dormant without the proper pre-activation signals. More specifically, the trigger

circuit does not generate an active trigger signal until the bypass register of Tier 2 is logic 0,

regardless of the input pattern designed for Trojan triggering has arrived or not. Likewise,

the payload circuit cannot perform any modifications if the bypass register in Tier 1 is logic

high, no matter the trigger signal from Tier 2 is active or not. In summary, the pre-activation

condition is mandatory to enable the trigger and payload circuit to function properly. For

instance, both the trigger and payload are pre-activated only if the 3D tier they are located

in are not bypassed in the testing.

We name the TSV-based Trojans without the access to the bypass register as TSV-
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Figure 3.2: TSV-based 3D hardware Trojan attack in 3D tiers.

woBR and the more advanced Trojans that can monitor the bypass register as TSV-wBR.

In the next section, we will analyze the stealthiness of the TSV-based Trojans by deriving

the probability of successfully detecting TSV-woBR and TSV-wBR Trojans achieved by

performing the single- and two-tier testing.

3.3.2 Theoretical Probability of Successful Trojan Detection

We use the probability of successful Trojan detection (PSTD) as a metric to compare the

efficiency of different testing schemes. We assume the 3D IC in our following discussions have

N tiers and the triggering probability for the Trojan is P for a given set of input stimuli.

PSTD Obtained by Single-Tier Testing

If the single-tier testing is performed through the frame defined by the IEEE Std 1838, it

is less likely to successfully detect a TSV-based 3D Trojan than a conventional 2D Trojan.

Without loss of generality, we assume a conventional Trojan is inserted in Tier i of a 3D IC

and a TSV-based 3D Trojan involves Tiers i and i + 1. As shown in shown in Fig. 3.3(a),

the single-tier testing on Tier i can facilitate the conventional Trojan detection as long as

the Trojan is triggered by the test input and the corrupted test output is observable from

the bottom tier. In contrast, the single-tier testing on Tier i will not be able to activate the

trigger circuit of the TSV-based Trojan on Tier i+1 (since the test input will not reach Tier
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(a) (b) (c)

Figure 3.3: Single-tier testing based (a) conventional Trojan, (b) TSV-woBR Trojan and (c)
TSV-wBR Trojan detection.

Table 3.1: Comparison of probability for successful Trojan detection.

Target Trojan Test frame location
Detection output PSTD

Single-tier
testing

Two-tier
testing

Single-tier
testing

Two-tier
testing

TSV-woBR HT
Before Tier i 7 7

N−i
N
P N−i

N−1
PAt Tier i 7 3

After Tier i 3 3

TSV-wBR HT
Before Tier i 7 7

0 1
N−1

PAt Tier i 7 3

After Tier i 7 7

Conventional HT
Before Tier i 7 —

N−i+1
N

P —At Tier i 3 —
After Tier i 3 —

i+ 1) and thus the Trojan effect will not affect the normal test output collected through the

bottom tier, as shown in Figs. 3.3(b) and (c).

As the Trojan payload is located on Tier i, we examine whether the conventional 2D

and TSV-based 3D Trojans can be detected by the single-tier testing performed before, at

and after Tier i. As compared in the column 3 of Table 3.1, the single-tier testing cannot

detect most of the TSV-based Trojan and can successful identify the conventional Trojan

if the testing tier is at or after Tier i. We further derive the PSTD for each category. To

visualize our theoretical derivation of PSTD, we set N to 4 and swept the location of the
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Figure 3.4: Normalized Trojan detection probability comparison between conventional and
TSV-based Trojans.

conventional and TSV-based Trojans in the 3D structure. We assume the set of input stimuli

in each testing is the same. After normalizing the factor P , we plot the PSTD for each case

in Fig. 3.4. As can be seen, the normalized PSTD for the proposed TSV-based Trojan is

always lower than that for the conventional Trojan. This theoretical analysis result confirms

that TSV-woBR and TSV-wBR HTs are more difficult to detect if we execute the single-tier

testing.

PSTD Obtained by Two-Tier Testing

To address the limitation of the single-tier testing on the TSV-based Trojan detection, we

analyze the Trojan detection efficiency of two-tier testing, which activate two 3D tiers si-

multaneously during testing. As shown in Fig. 3.5(a), a test target frame (denoted by the

orange dash line) covering Tiers i and i + 1 can detect the TSV-based Trojan across Tiers

i and i + 1. When we set the test target frame at a higher tier location i + 1 and i + 2,

the two-tier testing detects the TSV-woBR Trojan, as shown in Fig. 3.5(b). However, for

the TSV-wBR Trojan in Fig. 3.5(c), setting the test target frame higher will fail the Trojan
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(a) (b) (c)

Figure 3.5: Two-tier testing on TSV-based Trojans. (a) Setting test target at Tiers i and
i + 1 detects TSV-based Trojan. Setting test target at Tiers i + 1 and i + 2 (b) detects
TSV-woBR Trojan but (c) fails in detecting TSV-wBR Trojan.

detection because the payload cannot be activated. The conceptual comparison shown in

Fig. 3.5 indicates that TSV-wBR Trojan is more difficult to detect than TSV-woBR Trojan

in two-tier testing.

We summarize the detection outputs for different test target frame locations in the column

4 of Table 3.1. The corresponding PSTD for each Trojan type is listed in the column 6. Since

conventional Trojans are not our focus in this paper, we do not omit the detection output or

PSTD for the conventional Trojan case. We vary the number of tiers N from 2 to 10 and plot

the theoretical PSTD improvement achieved by the two-tier testing in Fig. 3.6. As shown,

the improved PSTD for TSV-woBR Trojan will drop when N increases. This indicates that

the advantage of two-tier testing in TSV-woBR Trojan detection may be more obvious for

the 3D chips that have relatively fewer tiers. However, because the single tier testing cannot

detect TSV-wBR Trojans, the improved PSTD for TSV-wBR Trojan will always be 100%.

We further investigate the impact of Trojan insertion location on PSTD. We assume a

3D IC has 6 tiers, the PSTD results for all the possible Trojan insertion locations are listed

in Table 3.2. We assumed three scenarios where attackers insert Trojans differently. In

39



Figure 3.6: Improved Trojan detection probability by two-tier activation scheme.

Table 3.2: Comparison of PSTD Achieved by Single- and Two-tier Testing.

Trojan type Testing i=1 i=2 i=3 i=4 i=5
Overall

Even Linear Normal

TSV-woBR
Single-tier testing 0.83P 0.67P 0.5P 0.33P 0.17P 0.5P 0.42P 0.59P
Two-tier testing P 0.8P 0.6P 0.4P 0.2P 0.6P 0.5P 0.71P

TSV-wBR
Single-tier testing 0 0 0 0 0 0 0 0
Two-tier testing 0.2P 0.2P 0.2P 0.2P 0.2P 0.2P 0.2P 0.2P

the scenario of Even, we assume attackers randomly choose a Trojan insertion location. In

Linear, attackers prefer to insert a Trojan in the higher tiers. In Normal, attackers prefer to

place a Trojan in the middle tiers. In different scenarios, the probabilities of inserting the

Trojan in each location (i=1, 2, 3, 4, and 5) are different. As shown in Fig. 3.7, the two-tier

testing improves the PSTD in all scenarios. In summary, our analysis confirms that two-tier

testing is superior to single-tier testing in the sense of TSV-based Trojan detection, if the

same test input stimuli is applied in the testing.

3.4 Proposed Two-Tier Activation (T2A) Testing Enhancement Method

The theoretical analysis in Section 3.3.2 indicates that activating two neighboring tiers si-

multaneously in the testing can significantly improve the probability of successfully detecting
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Figure 3.7: Improved Trojan detection probability by two-tier activation scheme.

TSV-based Trojans. Thus, we propose a two-tier activation (T2A) testing architecture to

enable the detection of both TSV-woBR and TSV-wBR hardware Trojans.

3.4.1 Overview of T2A Method

As shown in Fig. 3.8, the testing frame for our Trojan detection method is an enhancement

over what IEEE Std 1838 uses (as shown in Fig. 3.1). In T2A, we add a position deter-

mination module (PDM) to each tier. It takes the bypass register values from its current

tier and its previous tier as inputs and reports the current tier’s position in the test frame.

We further induce an extra TSV, BR-TSV, between every two neighboring tiers to transmit

bypass register values. Based on the different positions determined by PDMs, the tiers will

have different data paths during a test. In this way, PDM takes over the role of the bypass

register in IEEE Std 1838 to decide which tiers are bypassed or activated in the ongoing

testing. More specifically, the data flow inside test frame ensures the test input is given to

the top-half tier (Tier 2 in Fig. 3.8) in the frame and the test output is from the top-half tier

as well. This is because the payload in the bottom-half tier (Tier 1 in Fig. 3.8) will flip the

incoming TSV signals from Tier 2, once the test input given to Tier 2 satisfies the triggering
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Figure 3.8: Proposed T2A method in detecting TSV-based Trojans.

condition of the trigger logic there. The corrupted test output from Tier 2 will be passed

to I/O ports and the Trojan is detected. There is no need to test the logic function of the

bottom-half tier even though it is in the test frame.

Figure 3.8 demonstrates an example of the proposed T2A method successfully detecting

the TSV-based Trojan. The test frame currently includes the bottom two tiers of a 3D IC.

When a test begins, the PDM in each tier of the 3D IC reads in the bypass register values

and determines the tier’s position. Note, the PDM in bottom tier only needs the bypass

register value from its current to determine the position. The test input coming into the

test frame will bypass Tier 1 and directly reach Tier 2, the top-half tier of test frame. The

logic of Tier 2 will be tested and the test output is then passed back to Tier 1. During this

process, the Trojan trigger in Tier 2 will be activated by the test input and the triggered

payload in Tier 1 will flip the text output from Tier 2. The corrupted test output then can

be observed in I/O ports. The data flow in the test described above follows the order labeled

in Fig. 3.8.

3.4.2 Place Determination Module (PDM)

The logic defined in the PDM can derive which tier is being tested. A PDM works as a look

up table (LUT) which takes the bypass register values from the current tier (BR Pre) and

the previous tier (BR Curr) as inputs and controls the DWRs to conduct different data
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Table 3.3: The Number of Clock Cycles Needed in TSV-woBR Trojan detection.
Trojan1 Trojan2 Trojan3 Trojan4 Trojan5 Average Reduced detection time

2 tiers
IEEE Std 1838 56 34 41 43 55 45.8

68%
T2A 25 3 10 12 24 14.8

3 tiers
IEEE Std 1838

Trojan in tiers 1 and 2 56 34 41 43 55
61.3

51%
Trojan in tiers 2 and 3 87 65 72 74 86

T2A
Trojan in tiers 1 and 2 25 3 10 12 24

30.3
Trojan in tiers 2 and 3 56 34 41 43 55

4 tiers

IEEE Std 1838
Trojan in tiers 1 and 2 56 34 41 43 55

76.8

40%

Trojan in tiers 2 and 3 87 65 72 74 86
Trojan in tiers 3 and 4 118 96 103 105 117

T2A
Trojan in tiers 1 and 2 25 3 10 12 24

45.8Trojan in tiers 2 and 3 56 34 41 43 55
Trojan in tiers 3 and 4 87 65 72 74 86

Table 3.4: The Number of Clock Cycles Needed in TSV-wBR Trojan Detection.
Trojan 1 Trojan 2 Trojan 3 Trojan 4 Trojan 5 Average

c17
IEEE Std 1838 n/a n/a n/a n/a n/a n/a

T2A 25 3 10 12 24 14.8

c432
IEEE Std 1838 n/a n/a n/a n/a n/a n/a

T2A 122 16 61 158 195 110.4

c880
IEEE Std 1838 n/a n/a n/a n/a n/a n/a

T2A 31 43 116 28 30 49.6

paths based on its output. If we assume the bypass register value of a tier is zero if the tier

is under test currently. The key logic of the PDM is specified in Table 3.5. If the a tier

is determined as the top-half tier of test frame, the DWRs of it will direct the test input

to the logic core and send the test output from the logic core to the bottom-half tier. If a

tier is determined as the bottom-half tier, its DWRs will directly relay the test input to the

top-half tier instead of letting it entering the logic core. The DWRs will also pass the test

output from top-half tier to their next neighboring tier. For the tiers that are outside of the

test frame, they only play a role of relaying test input and output data.

3.5 Experimental Results

3.5.1 Experimental Setup

We implemented the proposed T2A method and use a Xilinx Spartan-6 FPGA platform to

emulate the 3D structure. We assume each tier of the 3D ICs tested in our experiments has

the same circuitry. ISCAS’85 circuits c17, c432 and c880 are used as benchmarks to configure
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the 3D tiers. For example, one emulated 3D IC in our experiments has 3 tiers and each one

is configured using a benchmark circuit. Two levels of TSV-based Trojans are inserted to the

3D ICs. Because our TSV-based Trojan focuses on modifying the behavior-level function of

3D ICs, it is not necessary to create a device-level 3D IC for the emulation. In this way, we

create a logic module for each 3D tier and map them all in one FPGA device. The modules

are connected using wires to simulate TSVs. The Trojans are inserted to two of the modules

and an extra wire is induced to simulate the Trojan TSV. The effectiveness and efficiency

of the proposed T2A method is examined and compared with the baseline version of IEEE

Std 1838. Furthermore, the area and delay overhead induced by T2A method is evaluated

in the Xilinx ISE and PlanAhead software, respectively.

3.5.2 Trojan Detection Speed

TSV-woBR Trojans

As discussed in Section 3.3.2, the improvement on the PSTD for TSV-woBR Trojans depends

on the number of tiers in the 3D IC, we examine the number of clock cycles needed to detect

the Trojan that is inserted in one of the 2-tier, 3-tier, and 4-tier stacked 3D ICs. The original

IEEE Std 1838 and the proposed T2A method were adopted in the testing. For the cases

where the 3D ICs have 3 or 4 tiers, the Trojan could be inserted to different locations within

a 3D stack. We considered all possible Trojan locations and ran the Trojan detection on each

case with 5 trials. Each trial represents a unique triggering condition, which will consume a

unique period of time for Trojan triggering. As shown in Table 3.3, our T2A method reduces

the time spent on the TSV-woBR Trojan detection by 68%, 51%, and 40% for the 2-tier,

3-tier, and 4-tier 3D cases, respectively, compared to IEEE Std 1838. The improvement will

be slightly degraded with the increase of the number of tiers, which is consistent with the

predicted improvement on the Trojan detection probability shown in Fig. 3.6. If we increase

the number of tiers in the test frame, this limitation can be addressed.
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Table 3.5: Logic Table Defined in PDM
BR Pre BR Curr Location in two-tier testing unit

0 0 Top-half
0 1 Out of frame
1 0 Bottom-half
1 1 Out of frame

TSV-wBR Trojans

Our proposed T2A method outperforms the original IEEE Std 1838 as T2A can successfully

detect TSV-wBR Trojans. In the experiments presented in this subsection, we fixed the

Trojan insertion location and varied the benchmark circuit (c17, c432, and c880) in our

testing. The time consumed by different Trojan detection methods is shown in Table 3.4.

As the original IEEE Std 1838 fails in detecting any Trojans inserted in the experiments, the

execution time is denoted as ‘n/a’ in Table 3.4. In contrast, the proposed method succeeds

in all the test cases, and the number of clock cycles needed for Trojan detection depends on

the size of the benchmark circuit deployed in the 3D tiers.

3.5.3 Overhead Evaluation

The proposed T2A method modifies the original testing algorithm defined in the IEEE Std

1838. Instead of performing the testing on each tier, our method is able to activate two

neighboring tiers per testing. More specifically, the method always returns the test output

from the tier that is located at the top-half of the test frame. This means the bottom tier of a

3D stack will never need to be checked for test output. Comparing to the original IEEE Std

1838, the proposed T2A is expected to induce less overhead. The overhead on hardware cost

is evaluated in Xilinx ISE. As shown in Fig. 3.9, T2A indeed consumes less FPGA resources

than IEEE Std 1838. The delay overhead is measured by Xilinx PlanAhead software and

compared in Fig. 3.10. As we can see, our method reduces the delay overhead by 12.03%,

10.8%, and 7.94% in the case of using benchmark circuit c17, c432, and c880, respectively.
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(a)

(b)

Figure 3.9: Hardware cost comparison in (a) utilized slice LUTs and (b) occupied slices in
FPGA.

3.6 Conclusion

Due to the unique structure and complicated testing environment of 3D ICs, it is more

complicated and difficult to detect 3D hardware Trojans than the conventional Trojans in

2D chips. This chapter proposes TSV-based hardware Trojans in 3D ICs. We perform

theoretical analysis on the probability of successful Trojan detection under the testing frame
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Figure 3.10: Delay overhead comparison.

defined by IEEE Std 1838, and reveal the limitation of single-tier testing on 3D Trojan

detection. Furthermore, we further propose a T2A enhancement method to improve the test

frame of the IEEE Std 1838, thus achieving better 3D Trojan detection rate and consuming

less Trojan detection time. Our experimental results show that the proposed method can

successfully detect the TSV-based Trojans and reduce up to 68% of detection time compared

to the original IEEE Std 1838.
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CHAPTER 4

FTAI: Frequency-based Trojan-Activity Identification Method for 3D

Integrated Circuits

4.1 Introduction

Existing Trojan-detection methods are mostly proposed for conventional 2D ICs. Their de-

tection effect might be degraded in a 3D environment. For example, functional-verification

based methods may not work well in 3D scenarios. First, the larger number of transistors in-

tegrated into the 3D package makes the exhaustive functional verification more sophisticated

and time-consuming. Moreover, the limited probing capabilities do not allow us to simul-

taneously access all die-to-die vertical communication channels for thorough testing neither.

Side-channel based Trojan detection is commonly used in securing 2D ICs. However, be-

cause 3D ICs usually have more internal noise than 2D ICs, the signal-to-noise ratio (SNR)

of the side-channel signals for detection will be reduced noticeably. Larger variations on

the process, voltage, and temperature in 3D ICs further lead to a higher false-positive rate.

Thus, it is more challenging to precisely extract Trojan’s impact on side-channel indicators

or/and functional behaviors in the 3D scenarios [6].

To facilitate side-channel based Trojan detection in 3D ICs, it is imperative to develop

a new method to tolerate the interference from 3D noise. In this chapter, we propose a

Frequency-based Trojan-Activity Identification (FTAI) to detect 3D Trojans. Our FTAI

method tolerates 3D noise and achieves a high Trojan detection rate. Comparing to the

existing frequency-based detection methods, such as [53], FTAI takes process variation into

consideration and provides a new way of threshold generation without using a fabricated
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golden chip. Our theoretical analyses verify that the Trojan effect is more differentiable

in the frequency spectrum than in timing waveform, no matter it acts as an additive or

multiplicative noise. The experimental results further show that FTAI increases the Trojan

detection rate by 38.1% compared to the time-domain detection method.

4.2 Trojan Model

3D hardware Trojans are characterized in Chapter 2 and the recent work [9]. In this chapter,

we aim to detect the cross-tier hardware Trojan in 3D ICs. The goal of the 3D Trojan is to

leak the secret key of a crypto unit implemented in the middle tier. The trigger is located

in the same tier as the crypto unit while the payload is in the top tier. The trigger and

payload circuits are inserted in two different single-die fabrication phases. According to the

cross-tier hardware Trojan model in Chapter 2 and [9], the Trojan is not functioning during

the single-tier testing stage but will be triggered after all 3D tiers are assembled.

We extend the MOLES Trojan [46], which is modeled for 2D ICs, to a 3D version. MOLES

is composed of a set of registers as a ring generator to produce a series of random numbers,

which will be XORed with the crypto key. The XOR outputs drive a set of capacitors as the

Trojan payload. Attackers who know the implementation details of the ring generator can

decode the obfuscated key information via power analysis. However, the power consumed in

the load capacitors seems like noise if the random sequence is unknown. To form a cross-tier

Trojan, the trigger and the ring generator of MOLES are inserted in the middle tier of our

transistor-level 3D chip. The crypto unit, an AES Sbox, is located in the middle tier as well.

The crypto key for AES will be leaked with eight capacitors. More details are available in

Section 4.5.1.

4.3 Limitation of Time-domain Analysis based Trojan Detection

Time-domain analysis on the transient current of the circuit under Trojan attacks could

reveal the presence of hardware Trojans, which contribute to more/less current. The effi-
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(a) (b)

Figure 4.1: Time-domain analysis for Trojan detection. (a) Transient currents for three
test cases, (b) Success/Failure of Trojan detection.

ciency of time-domain analysis heavily depends on the difference between the Trojan-induced

current change and pre-existing inherent noise. A smaller difference leads to a higher false-

positive/negative detection rate. Figure 4.1(a) shows the timing waveform for the transient

current measured from our transistor-level 3D chip. The current was collected from the

power-supply pin of the chip. The TrojanFree line in the graph represents a basic 3D chip.

The TrojanIn line indicates the current after the injected Trojan is triggered. We further

introduced process variation to the TrojanFree case to create noise margins, which are high-

lighted by the yellow area. As shown in Fig. 4.1(a), the impact of Trojans on the transient

current does not exceed the boundaries defined by the noise for most of the time. If we

consider the cases in which the TrojanIn line goes beyond the noise margin as the success of

Trojan detection, the detection output is shown in Fig. 4.1(b). A very small portion of the

line reaches True (i.e., detected) and the overall success detection rate is only 16.98%.
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4.4 Proposed Frequency-based Trojan-activity Identification (FTAI) for 3D Hard-

ware Trojans

4.4.1 Overview of Proposed FTAI Method

As 3D integration techniques bring in new security threats to ICs, it is imperative to develop

effective Trojan detection methods for 3D chips. Since time-domain Trojan analysis methods

suffer from noise interference, we explore new methods performed in the frequency domain.

In this chapter, we propose a frequency-based Trojan-activity identification (FTAI) method,

which exploits the frequency spectrum of the transient current of a 3D chip under Trojan

attacks to detect hardware Trojans. We follow the footprint of the work [53] but specifi-

cally tailor the detection method for 3D ICs, which are known to have more variation on

process/voltage/temperature and internal noise. Different than the work [53], our method

waives the assumption on the frequency band of potential Trojans and the independence

between primary circuits and Trojans. Furthermore, we propose a new threshold generation

algorithm to achieve a high Trojan detection rate and reduce the false-positive rate over the

existing work.

4.4.2 Theoretical Analysis

First, we assume that IPrime and IHT represent for the transient current contributed by the

primary circuit and hardware Trojan, respectively. If the Trojan is an extra circuit that is

independent of the primary circuit (i.e., victim module), we can model the total current for

the circuit suffering from the Trojan attack with the expression shown in Eq. (4.1).

Itot = IPrime + IHT + n(t)

= APrimesin(2πfPrimet) + AHT sin(2πfHT t) + n(t)

(4.1)

In which, APrime and fPrime represent the amplitude and frequency for IPrime. Similarly,

AHT and fHT are the amplitude and frequency of the Trojan current IHT . We use sinusoidal
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Figure 4.2: Frequency spectrum of (a)Itot and (b) Itotmul
.

functions to model the current components since most kinds of signals in nature can be

modeled with a format of sinusoids [54]. The term n(t) is white noise.

After Fourier Transformation, we will observe that the frequency spectrum F(Itot) in-

cludes three kinds of frequency components as shown in Eq. (4.2). Because the frequency

response of the white noise is a constant value approximately, we use C to substitute F(n(t)).

The corresponding spectrum for F(Itot) is shown in Fig. 4.2(a). Different than the frequency

response of noise, which is flat at the bottom of the entire spectrum, the Trojan activity will

result in unique and substantial frequency response.

F(Itot) ≈
APrime

2i
[δ(f − fPrime) + δ(f + fPrime)]+

AHT
2i

[δ(f − fHT ) + δ(f + fHT )] + C

(4.2)

In addition to the additive influence on the total current, the current contribution from

the hardware Trojan can be modeled as a multiplicative component if the Trojan is inserted

by performing malicious modifications to the primary circuit. We formulate the total current

Itotmul
in Eq. (4.3). After performing the Fourier transformation on Itotmul

, we can obtain the

frequency-domain expression for the total current F(Itotmul
), which is expressed in Eq. (4.4).

52



Itotmul
= (IPrime × IHT ) + n(t) (4.3)

F(Itotmul
) ≈ APrimeAHT

−4
{δ[f − (fPrime + fHT )]+

δ[f − (fPrime − fHT )] + δ[f − (−fPrime + fHT )]+

δ[f − (−fPrime − fHT )]}+ C

(4.4)

Because multiplication in the time domain is transformed to convolution in the frequency

domain, the frequency of the primary current will have an offset induced by the Trojan. Fig-

ure 4.2(b) shows the spectra of F(Itotmul
) and primary signal together. We can see the

frequency of the primary signal is shifted by the Trojan. In conclusion, our theoretical

analysis indicates that the impact of Trojans on the frequency spectrum can be easily differ-

entiated from white noise. This motivates us to propose a frequency-based detection method

for 3D Trojans.

4.4.3 Detection Flow

The detection flow for the proposed FTAI method is composed of three phases: preliminary

Trojan inspection, reference threshold generation, and final scrutinization. Figure 4.3 depicts

the detailed detection flow.

In the phase of the preliminary Trojan inspection, one needs to collect the total transient

current of the 3D chip from the power-supply pin. Then, Fourier transformation is utilized

to convert the time-domain current trace to its frequency-domain representation Freal. Next,

the same process is repeated on the transistor-level 3D model for the same 3D chip to obtain

Fsim. The two frequency spectra Freal and Fsim are compared to identify the suspicious

frequency band FHT , in which the Trojan may be located. This process will minimize

the noise interference on Trojan detection, as discussed in Section 4.4.2. We performed a

simulation to compare the frequency spectra for the current trace of the golden model (i.e.,
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Figure 4.3: Trojan detection flow proposed in our FTAI method.

clean without noise and Trojan), noisy model (i.e., noise induced by process variation is

considered), and Trojan-infected model (i.e., the triggered Trojan leaks information). As

shown in Fig. 4.4, the Trojan results in a new frequency peak on the lower frequency band

than the primary signal. The zoom-in view of that frequency peak indicates that the Trojan

introduces a more substantial magnitude difference than the process variation noise. To

facilitate Trojan scrutinization in the following phases, we define a metric, named peak

distance (PD), to quantify the difference in frequency magnitude between the first frequency

peak induced by the Trojan and the corresponding response from the reference model.

After the preliminary Trojan inspection, a reference threshold will be applied to further

examine the suspicious frequency band. As golden chips are often unavailable in practical

situations, the reference threshold is provided based on simulations [55]. In this work, we

apply different process variations to our transistor-level reference and obtain the correspond-

ing frequency spectra. In each spectrum, we measure the peak distance against Fsim in the
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Figure 4.4: Comparison of frequency spectra for baseline, noisy, and Trojan impacted cases.

frequency band FHT . We denote the group of the peak-distance values for all the cases as

PDnoise. It is used to evaluate the magnitude changes induced by noise on FHT . To achieve

a high confidence, we apply the 3σ value of the signal PDnoise as the threshold PDth to our

Trojan detection method. The closed-form expression for PDth is available in Eq. (5), where

µ and σ are the mean and the standard deviation of PDnoise.

PDth = µ+ 3σ = Mean(PDnoise) + 3Std(PDnoise) (4.5)

In the phase of final scrutinization, the peak distance of the chip under examination is

compared with the threshold generated in the previous phase. If the peak distance exceeds

the given threshold, we conclude that there is a Trojan inserted in the chip.
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4.5 Experimental Results

4.5.1 Experimental Setup

We evaluated the proposed method by using transistor-level simulations. A stacked 3D IC

with three tiers is implemented in a 45nm NCSU FreePDK technology [56]. The PDN in each

tier is mainly composed of a global power grid and a virtual grid. The local load circuits

in each tier are multiple inverters. In our experiments, the target of the MOLES Trojan

(described in Section 4.2) is an AES Sbox implemented at transistor level. We provided the

input vectors satisfying the triggering condition of 3D MOLES Trojans to leak the crypto

key during our experiments. We collected the transient current trace for a period of 80ns

from the power-supply pin of the transistor-level 3D chip and converted the time-domain

current traces to frequency spectra. We repeated the same procedure for the models of

Trojan-free (i.e., reference), Trojan-free but considering different process variation noise (i.e.,

noise), Trojan-injected at the nominal process variation (i.e. Trojan), and Trojan-injected

in different process variation cases.

4.5.2 Impact of Trojan size on Trojan Detection

All the experiments in this subsection were based on the nominal process variation. We

first compared the proposed detection metric peak distance in the frequency domain, with

Euclidean distance in the time domain. We performed the proposed spectrum analysis and

identified the Trojan-related frequency peak in 75MHz. Peak distance for three Trojan sizes

(MOLES20, MOLES40, and MOLES80) was measured. MOLES20 means that there are 20

registers in the MOLES ring generator. As shown in Table 4.1, the proposed peak distance

is always 30× higher than Euclidean distance. This means the proposed frequency-domain

analysis method can better tolerate the measurement errors and noise interference than the

time-domain Trojan detection. We applied the seven process corners to the reference chip

and collected their corresponding peak distance to form the group PDnoise. After following
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Table 4.1: Trojan detection metrics used in frequency-domain and time-domain analysis
methods.

Metrics w.r.t Trojan size MOLES20 MOLES40 MOLES80
Euclidean distance 0.0899 0.1831 0.6049

Proposed peak distance 2.986 7.367 24.007
Improved distance 33.2× 40.2× 39.7×

the procedure introduced in Section 4.4.3, we obtained its 3σ value of 1.578 for our frequency-

domain Trojan analysis. As all measured peak distance values are greater than 1.578, our

method can detect all three Trojans. In contrast, the 3σ value for the time-domain Trojan

analysis is 0.1521, which is higher than the Euclidean distance for MOLES20. Thus, the

time-domain Trojan detection fails in the MOLES20 case.

4.5.3 Impact of Process Variation on Trojan Detection

We further evaluated the impact of process variation on the Trojan detection success rate of

our method. We conducted different test cases by applying seven process variation configu-

rations to our 3D structure. The seven corners are sss (the slowest), ss, ns, nom, nf, ff, and

fff (the fastest). The sss (fff ) case doubles the progress variation from nom to ss (ff ). The

ns (nf ) case is the half variation step from nom to ss (ff ). The main variations include the

long channel threshold voltage, gate oxide thickness, channel length offset, first-order body

effect coefficient, and low-field mobility. As shown in Fig. 4.5(a), the peak distance of the

3D circuit tampered by Trojans with different sizes is consistently larger than the threshold,

which means all the Trojans can be detected and the Trojan detection rate achieved by our

method is 100%. The results shown in Fig. 4.5(b) represent the Euclidean distance obtained

by the time-domain analysis method. As can be seen, the Euclidean distance for the case of

MOLES20 is always below the threshold (except the fff corner). The time-domain analysis

based Trojan detection also fails to detect MOLES40 in the sss and ss cases. We calculated

that the time-domain method yields a 61.9% of Trojan detection rate. Thus, our proposed

FTAI increases the Trojan detection rate by 38.1%.
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Figure 4.5: Trojan detection effectiveness comparison between (a) frequency-domain method
and (b) time-domain method at different noise levels.

4.6 Conclusion

3D IC is considered as a promising solution for future integration. However, the stacking

structure and complicated fabrication process give adversaries a chance to perform malicious
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attacks. Unexplored 3D Hardware Trojans can be inserted in the supply chain. Very limited

works about 3D Trojan’s detection and mitigation can be found in the current literature.

We proposed an FTAI, which can better tolerate 3D noise than the time-domain detection

method to provide a better detection rate on 3D hardware Trojans. The experimental results

show that FTAI achieved a 100% detection rate on the 3D-version of MOLES. Comparing

to the time-domain method, FTAI improved the detection rate by 38.1%.
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CHAPTER 5

Invariance Checking based Trojan Detection Method for Three-Dimensional

Integrated Circuits

5.1 Introduction

In this chapter, we propose a run-time Trojan detection and mitigation method to com-

plement the existing countermeasures against 2D and 3D hardware Trojans. Our main

contributions are as follows: (1) our method proposes to leverage the 3D communication

infrastructure, 3D-Network-on-chips (3D-NoCs), to tackle the cross-tier hardware Trojans

in stacked multi-tier chips, and (2) an invariance checking method is proposed to detect

Trojans, which introduce malicious NoC packets or facilitate information leak among 3D

tiers.

The rest of this chapter is organized as below. Section 5.2 presents the attack model

interested in this work. Section 5.3 proposes a novel invariance checking method to thwart

3D Trojan insertion attacks. Simulation and synthesis results are provided in Section 5.4.

This work is concluded in Section 5.5.

5.2 Attack Model

The models for representable 3D hardware Trojans are introduced in Chapter 2 and the recent

work [9]. The most significant difference between 3D hardware Trojans and conventional 2D

hardware Trojans is that the trigger and payload circuits of 3D Trojans are not located in

the same 3D tier. Figure 5.1(a) shows examples of Cross-Tier Trojans. In the left case,

the trigger circuits are distributed in the top and middle tiers, and they jointly trigger the
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(a)

(b)

Figure 5.1: Attack scenarios considered in this work. (a) Characterization of 3D hardware
Trojans, and (b) an example of the activated 3D Trojan effect [1].

payload in the bottom tier. This triggering mechanism can have a much lower triggering

probability than the Trojan trigger in a single tier. In the right case, neither the trigger nor

the payload circuit is located in the same tier where the victim remains; the data transmission

between victims is leaked due to the Trojan in the middle tier. This type of Trojans does

not interrupt normal data communication. If 3D hardware Trojans described in Fig. 5.1(a)

are placed in a 3D-NoC system shown in Fig. 5.1(b), that system may suffer from livelock

and information leak [1]. In this chapter, we analyze the characteristics of these two types
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of 3D Trojans and propose a mitigation method accordingly.

Our 3D Trojan detection and mitigation method is based on the following assumptions:

(1) each tier is a completed die (rather than a die appeared in the middle of split manufac-

turing), (2) the communication between tiers is at IP core level, rather than functional block

level, and (3) the routing rule used in 3D routers is public to attackers.

5.3 Proposed Invariance Checking Based 3D Hardware Trojan Detection and

Mitigation

5.3.1 Proposed Hardened Router Architecture for 3D-NoCs

Cross-tier hardware Trojans (or multi-tier collaborative Trojans) emerge as a new hardware

Trojan model for 3D ICs. Due to 3D hardware Trojans’ unique threat characterizations,

it is a pressing need to investigate new detection and mitigation methods specifically for

3D hardware Trojans. Moreover, the countermeasures against 3D hardware Trojans are

expected to be compatible with the architecture of 3D systems. The defense mechanism

should be integrated into the system specification, rather than an add-on component patched

afterwards.

We propose to tackle cross-tier Trojans with a router-hardened 3D-NoC, which is the

communication backbone for 3D integrated circuits and systems. The proposed security

mechanism complements to the investigation on other 3D-NoC aspects (thermal issue [57],

architecture [58], and usage in computationally intensive applications [59]). As 3D IC testing

is not as thorough as 2D IC verification, there will be residual hardware Trojans, especially

cross-tier Trojans, harming 3D systems after testing [9]. To address this issue, we propose a

run-time Trojan detection and mitigation method against cross-tier hardware Trojans.

Figure 5.2(a) shows the architecture of proposed 3D router, in which the five ports

PTNORTH , PTSOUTH , PTWEST , PTEAST and PTLOCAL are used for the intra-tier communi-

cation, and PTU and PTD are responsible for transferring data to the upper and lower tiers,

respectively. To detect and mitigate potential 3D Trojan intrusion, we propose a RWall,
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(a)

(b)

Figure 5.2: Proposed cross-tier Trojan detection. (a) Proposed router architecture for 3D-
NoC, and (b) block diagram of vertical port PTU/D protected with invariance checking based
hardware firewall.

an invariance checking based hardware firewall, to thwart unauthorized access to the other

router ports and prevent 3D-NoCs from sniffing attacks. The zoom-in view for the proposed

RWall is illustrated in Fig. 5.2(b). The RWall 1○ examines whether a NoC flit (i.e., a basic

flow unit in NoCs [45]) is tampered during its propagation from other tiers. Such tampering

could be induced due to malicious through-silicon-vias (TSVs) or compromised input FIFOs.

The RWall 2○ terminates the requests from PTU/D to use other ports. The RWall 3○ moni-

tors the duplication of malicious NoC packets among multiple output ports. The combined

effect of 2○ and 3○ blocks the illegal information leak and prevents the 3D communication

infrastructure from being tampered at the router level.
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Figure 5.3: Proposed invariance checking in NoC router.

5.3.2 Proposed Invariance Checking within NoC Router

Invariance checking is a cost-effective method for fault tolerance within NoC [60]. Following

that footprint, we propose to leverage the invariance within 3D-NoCs to tackle cross-tier

hardware Trojans. In this subsection, we first examine the suitable invariance at the flit,

port, and router levels and then develop a practical implementation algorithm. Figure 5.3

provides the detailed view of a hardened NoC router. A typical router for 2D-NoCs consists of

five bi-directional routing ports, each of which is composed of input/output FIFOs, a routing

computation, a crossbar (XBar), and an arbiter. For 3D-NoCs, up-stream and down-stream

ports (PTU/D) are added to access other 3D tiers. Global invariance checking examines any

violation of port access among seven bi-directional NoC router ports. As our defense target

is cross-tier Trojans, we pay extra attention to PTU/D by adding local invariance checking.

The complete Trojan detection and mitigation algorithm is shown in Algorithm 2. More

precisely, the proposed algorithm is implemented at the flit, port, and router levels.

At flit level, tampered flits (router inputs) will be detected by the Units for Integrity

Check (UIC). Error control coding (ECC) is a common low-cost approach for data integrity

detection. We propose to use two-level ECC based integrity check as expressed in Equa-

tions (5.1) and (5.2). In addition to encode/decode the entire flit, limited configurations of
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critical flit fields will be encoded for another level integrity check.

UICalert1 = DecFun1(Flit) (5.1)

In which, Flit is a tuple of {flit type, flit source, flit destination, hopping path, routing

priority, parity check}.

UICalert2 = DecFun2(flittype, fieldsel, parity2nd) (5.2)

Where, flittype indicates whether the flit is a header or payload, fieldsel is several selected

fields for second-level integrity check (e.g., flit source and destination), parity2nd is the second

level coding algorithm for integrity check. The two alert signals UICalert1 and UICalert2 from

UIC will stop the malicious flit from entering or leaving the suspicious router port.

At port level, the invariance for Trojan detection includes illegal port requests and mis-

matched control-data flows. Only a header flit can request to reserve port-to-port connection.

Any port-requests issued from other flits indicate Trojan intrusion. Since port-to-port com-

munication is exclusive, each output port can accept one and only one request from all other

input ports in the same router. Likewise, an input port cannot simultaneously issue multiple

requests to access more than two output ports. Another invariance is originated from the

routing history. The incoming and outgoing port request (RCreq) should match to packet

source (SRID), destination (DRID) and the current router IDs (CRID). The routing

inverse function expressed in Eq.(5.3) facilitates the detection of tampered routing history.

Localinvar = RInverse(SRID,DRID,CRID,RCreq) (5.3)

As the information regarding the complete routing path varies with different NoC applica-

tions, the hardware Trojans inserted in 3D-NoC design time is not able to bypass all of the

routing consistency check. Moreover, the invariance rules mentioned above are not mutable
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Algorithm 1: Proposed multi-level invariance check.

Data: Packets through a 3D-NoC router
Result: Alert for 3D Trojan intrusion

1 UICalert1 (Input flits);
2 UICalert2 (Selective flit breakdown fields);
3 while Cross-tier packets being transferred do
4 //Local invariance checking;

5 if Σ
(
RCreq from PTU/D

)
> 1 then

6 Information leak detected;
7 else
8 if Σ

(
PTU/D 
 PortFIFOs

)
> 1 then

9 Intrusion attack detected;
10 Terminate cross-tier communication;

11 else
12 //Global invariance checking;
13 if RInverse outputs mismatch RCreq then
14 Intrusion attack detected;
15 Drop malicious flits;

16 else
17 Pass local invariance check;
18 end

19 end

20 end
21 Use encryption key to unlock arbiter tables;

22 end

once the router is power up. Thus, our invariance checking does not only detect malfunctions

but also monitors illegal behaviors triggered by 3D hardware Trojans.

At router level, our method examines the invariance available among arbiters. In the

baseline, the arbiter grants one of the port requests based on even opportunity (i.e., round

robin rule). Updating on the round-robin register tables has to satisfy the priority rule.

Any interrupts appeared in the middle of packet transmission indicates the occurrence of an

attack. Logic encryption [61] is adopted to harden the round-robin tables. In our case study,

we use a 7-bit key to unlock the updating logic for arbiters in 3D routers. The incorrect

encryption key will terminate the arbiter’s normal function.
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Table 5.1: Comparison of Area, Delay and Power
Metric under comparison Baseline [8] Proposed Overhead
Area (µm2) 19731 21005 6.46%
Delay (ns) 0.86 0.94 9.30%
Dynamic power (mW) 13.0733 13.5646 3.76%
Leakage power (µW) 108.0194 115.6355 7.05%

5.4 Experimental Results

5.4.1 Area, Power, and Delay

We implemented the proposed 3D NoC router in Verilog HDL and synthesized the HDL code

in Synopsys Design Compiler with a 45nm NCSU openPDK technology. The flit width for

the NoC is 32 bits. The input and output FIFOs are 32-bit single-depth buffers. Round-robin

arbitration was used in the router arbiter. We set the clock frequency to 1 GHz. The area,

delay and power consumption for the baseline [8] and our method are compared in Table 5.1.

As shown, our method is a lightweight countermeasure. The area is only increased by 6.49%.

The overhead on dynamic power and leakage power are 3.76% and 7.05%, respectively. As

we add invariance checking in the cross-bar unit, the worst-case delay of our router is 9.3%

higher than that of the baseline.

5.4.2 Trojan Detection Rate

The proposed invariance checking examines the consistency between the port requests and

the routing history to detect 3D hardware Trojans. We randomly altered the port request to

access upper and lower tiers (i.e., attack on router port requests) or the destination router ID

carried in the NoC header flit (i.e. attack on destination router ID). Each Trojan detection

rate was obtained from 10,000 simulations. As shown in Fig. 5.4, the Trojan detection rate

of our method is above 94%, no matter the Trojan attack is on the port request signals or

the destination router ID.
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Figure 5.4: Trojan detection rate of proposed method.

5.4.3 Impact of Cross-tier Trojan Mitigation on Image Authentication in a 3D system

In our case study, we used a 3D-NoC to perform image based authentication. The experimen-

tal setup is shown in Fig. 5.5(a). Through the 3D NoC routers, tier 1 and tier 2 transmit two

images to tier 3 for image authentication. Pearson correlation coefficient (PCC) is adopted

as the metric to indicate whether the two images from tiers 1 and 2 depict the same person.

Hardware Trojan insertion happens in the 3D router located in tier 2 or the TSVs connecting

tiers 2 and 3. The activated Trojan tampers the header flits or payload flits of the image

packets. The proposed method filters out the tampered flits. If a header flit is altered by a

3D hardware Trojan, the entire targeted packet is replaced by a malicious packet (baseline)

or dropped with notifications (proposed). If a payload flit is sabotaged by a 3D hardware

Trojan, only that flit is substituted by a dummy flit (baseline) or deleted (proposed) and

the rest flits in that packet remain the same. The PCC between images from tiers 1 and

2 are computed in the victim unit (i.e., Corr in Fig. 5.5(a)). As shown in Fig. 5.5(b) and

5.5(c), our scheme removes malicious flits significantly and thus reduces the correlation co-

efficient. This means that the tampered images are less likely to pass the authentication.

For instance, the proposed method can reduce the PCC from 0.6755 to 0.3122. As each
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Figure 5.5: Impact of Trojans on the application of 3D image authentication. (a) attack
scenario, (b) impact of attacking header flit on correlation coefficient, and (c) impact of
attacking payload flits on correlation coefficient.

NoC packet is composed of one header flit and multiple payload flits, the baseline scheme

is more sensitive to Trojan attacks aiming at header flits than at payload flits. In contrast,

our Trojan mitigation overcomes that sensitivity.

We examined the Trojan mitigation effect with six images shown in Fig. 5.5(a). Images

B, C, D, E, and F are correlated with image A (after Trojan detection and mitigation). As

shown in Fig. 5.6(a), the proposed method can reduce the PCC by 31%. As the percent

of tampered packets increases, our mitigation method will further reduce the correlation

coefficient. The exact amount of reduction on correlation coefficient varies with the images

used in authentication.
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Figure 5.6: Reduction on correlation coefficient achieved by Trojan mitigation.

5.5 Conclusion

The emerging 3D integration techniques potentially bring in attack surfaces for new type of

hardware Trojans, cross-tier 3D Trojans. Given the 3D Trojan models published in recent

literature, this chapter proposes to leverage 3D-NoC architecture to detect and mitigate

the newly characterized hardware Trojans. Invariance on port access and routing history is

exploited in this work to perform run-time Trojan detection. Simulation results show that

the proposed method achieves a high Trojan detection rate at minor cost on area and power

consumption.
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CHAPTER 6

Improving Power Analysis Attack Resistance using Intrinsic Noise in 3D ICs

6.1 Introduction

In this chapter, we extend our groups’s early work [2] by providing the second practical

implementation method to alter the power supply of complete AES crypto module in FPGA

and validate the correlation power analysis (CPA) attack resilience of our method. We

propose to group the supply voltages from different 3D tiers temporally to drive the cypto

module. In this way, the noise from 3D power distribution network (PDN) is induced to the

crypto module to blur the correlation exploited by CPA attacks. We name this new method

temporally varied supply voltage (TVSV).

6.2 Preliminary

6.2.1 Early Work of Using 3D PDN Noise to Mitigate CPA Attacks

In the work [2], the intrinsic noise within a 3D PDN has been proved to be additive noise.

Furthermore, a countermeasure which utilizes the PDN noise to mitigate CPA attacks is

introduced. As shown in Fig. 6.1, the original crypto unit is divided into multiple submod-

ules. The supply voltages, VDDs, from different 3D tiers are used to drive the submodules

individually. In this way, the noise from different tiers are induced to the crypto unit and

thus blur the power traces collected for CPA attacks.
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Figure 6.1: Countermeasure introduced in [2]

6.2.2 CPA Attack

CPA is an advanced power analysis attack for the crypto key retrieval from the hardware

implementation of encryption systems. It leverages the correlation between the crypto key

and the switching activities of the crypto hardware module to significantly shorten the time

spent on the key guessing via brute force attempts. In a CPA attack, attackers will calculate

the outputs of the encryption system and adopt Hamming distance/Hamming weight model

to generate hypothetical power consumption [13]. Then the Pearson correlation coefficient

(PCC) [62] is utilized to retrieve the secret key.

6.3 Proposed TVSV against CPA Attacks

6.3.1 Theoretical Foundation of TVSV

As introduced in [2], a circuit’s power consumption can be modeled with Eq. (6.1).

Porig = αfCLV
2
DD (6.1)
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In which, α, f , CL, and VDD are switching activity factor, system clock frequency, load

capacitance, and supply voltage, respectively. If we vary the supply voltage temporally,

which means we change the supply voltage along with the time. The new power consumption

can be formed as in Eq. (6.2).

Pnew =
∑N

i=1 (αfCLV
2
DDi )

N

=
∑N

i=1 αfCL (VDD+∆Vi )2

N

≈ Porig + 2αfCL ·
∑N

i=1 (VDD·∆Vi )

N

(6.2)

In which, N is the number of different supply voltages changed during the time period of

interest. VDDi represents each different supply voltage. We can alter VDDi in a completely

or periodically random fashion. The latter one requires less number of diverse VDDis, but

it is less effective than the former method in regard to the resilience against CPA attacks.

Figure 6.2 shows the application of periodically random noise that helps to reduce the cor-

relation coefficient over the constant nominal supply voltage. The application of completely

random noise leads to an approximately flat PCC even though the variance of multiple noises

is in wide range.

6.3.2 Implementation of TVSV

We multiplex multiple voltage sources to power up the entire crypto unit, rather than mul-

tiple sub-units as what is proposed in [2]. As shown in Fig. 6.3, the four VDDs from nearby

planes are fed to a multiplexer MUX. At each period of time, only one of these VDDs will be

selected to drive the crypto unit. A dynamic rotator is used to control the multiplexer. The

role of multiplexer is to assign varied supply voltages to the crypto unit at different time

slots in a complete process of running the cryptographic algorithm. Figure 6.4 demonstrates

the AES power consumption at three time periods. The values of sampling power are distin-
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Figure 6.2: Impact of the combination of multiple additive noises on correlation coefficient.

Figure 6.3: Proposed countermeasure multiplexing multiple voltage sources for the entire
crypto unit.

guished from each other. This indicates the power traces captured through CPA attacks are

altered by the voltage noise. Modification on the power consumption will impact the CPA

efficiency.
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Figure 6.4: AES power profiles measured at three different operation periods.

6.4 Experimental Results

6.4.1 Experimental Setup

We evaluated the proposed method by using FPGA emulation. We used a SAKURA-G

FPGA board. That board contains two Spartan-6 FPGAs: one (LX75 FPGA) for a crypto-

graphic implementation and the other (LX9 FPGA) for power traces capturing. The bitsream

asociated with the Verilog-HDL code for AES-128 was downloaded to the SAKURA-G board.

A Python-based ChipWhisperer [13] software was used to perform power trace capturing and

analysis. The other setup for the CPA attacks can be found in our prior work [14].

6.4.2 Improved Resilience against CPA Attacks

For AES-128, there are 16 key bytes in total. The main FPGA Spartan-6 XC6SLX75 is

powered by a supply voltage from the V CCINT pin. As the FPGA does not support

multiple supply voltages, we adjusted the value of VCCINT through a trimmer V R1 to

generate different supply voltages for the proposed TVSV implementation. The supply

voltage for AES was monitored by a multimeter through the on-board pin J1. We first

collected a set of AES power traces for each supply voltage at separate intervals and then

75



Figure 6.5: Reduction on the number of retrieved key bytes achieved by the proposed method.

combined the multiple sets of the collected power traces in the ChipWhisperer Capture and

Analyzer tool during the process of CPA attack. In our emulation, we selected four voltage

levels: 1.1V, 1.15V, 1.2V and 1.25V (the standard value of VCCINT is 1.2V).

Key retrieval speed: The ChipWhisperer Analyzer retrieves the correct key for the

AES-128 by validating the crypto key byte by byte. Given a fixed number of power traces, the

less number of retrieved key bytes means a better resilience achieved by the countermeasure

against CPA attacks. At each voltage level, we generated eight ChipWhisperer projects,

each including 250 power traces. Then, we combined all power traces for different supply

voltages and different ChipWhisperer projects to form a complete power profile set for the

CPA attack on AES-128. As shown in Fig. 6.5, the proposed countermeasure effectively

thwarts the CPA attack. For the given 8000 power traces, the CPA attack is not able to

retrieve all 16 key bytes for the AES-128 protected with proposed method. In contrast, the

baseline leaks the crypto key with a rapider speed than our method. On average, our method

leaks 4.25 less key bytes than the baseline. Note, the AES-128 only has 16 key bytes and

hence 4.25 is a large portion of the total cryto key vector. The CPA attack on the baseline

was based on the 8000 power traces collected from the AES-128 operating at the supply

voltage of 1.2V.

The power traces for the experiment in Fig. 6.5 are evenly contributed by four different
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(a) (b)

Figure 6.6: Comparison of CPA key retrieval speed. (a) Power trace configuration and (b)
Number of retrieved key bytes for different number of power traces.

supply voltages. We further examined whether other combinations of the power traces

collected from different supply voltage scenarios will lead to a different key retrieval speed.

In addition to the baseline (all traces with 1.2V), we assembled the power traces with the

percentage shown in Fig. 6.6(a). For instance, in the configuration 1 (i.e. Config. 1 for

TVSV), the dominate power traces are contributed by the case running the supply voltage

of 1.25V. As shown in Fig. 6.6(b), no matter which configuration is used, our countermeasure

reveals less number of key bytes than the baseline. In addition, none of our configuration

allows the CPA attacks to retrieve all 16 key bytes within 8000 power traces. This further

confirms the proposed countermeasure indeed impacts the key retrieval efficiency of CPA

attacks.

Partial guessing entropy: To find out the reason behind the observation in Fig. 6.6(b),

we studied the partial guessing entropy (PGE) for each key byte. A smaller PGE means

less number of guessing is needed to identify the correct key byte. The accumulated PGE

(APGE) represents the total number of guesses that may take to retrieve the entire crypto

key. We examined the impact of different supply voltages on APGE. Figures 6.7(a) and (b)

show the APGEs for 16 AES key bytes based on the analysis of 4000 and 5000 power traces,

respectively. After comparing these two cases, we conclude that the general trend of APGE

for each supply voltage decreases when more power traces are analyzed. However, there is
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Figure 6.7: APGE obtained in CPA attacks based on (a) 4000 and (b) 5000 power traces.
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Figure 6.8: TVLA comparison between basic and our secured AES.

no obvious clue that indicates which voltage offers a better resilience against CPA attacks.

That explains why it is not clear which configurations used in the experiment for Fig. 6.6(b)

is the best in terms of resilience against CPA attacks.

Test vector leakage assessment: Leakage detection is important to validate the phys-

ical security of cryptographic devices. Test vector leakage assessment (TVLA) [63] approach

is one of the popular technique to detect the leakage. In this method, a set of preselected

test vectors is selected and then a statistical tests are performed on collected power mea-

surement. The test results into a confidence score using which a fail/pass decision can be
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made for the crypto under test.

We conducted the TVLA on the basic and proposed TVSV secured AES. Our goal is

to evaluate to what extent the data-dependency of the AES power traces can be mitigated

by our method. Each power trace collected by ChipWhisperer Capture consists of 396 time

instants, representing 396 sampling points. Based on all the 8000 power traces, collected

for the results shown in Fig. 6.5, we calculated the TVLA value for each time instant and

plotted in Fig. 6.8. R1 to R10 represents the AES first to 10th round. As shown in Fig. 6.8,

the TVLA absolute values for TVSV secured AES are generally lower than those for the

baseline AES for 10 AES rounds (roughly from 80 to 320). A smaller TVLA absolute value

means higher confidence to accept the null hypothesis [64]. We evaluate this confidence level

with a probability Prcon as expressed in Eq. 6.3.

Prcon = 2

∫ ∞
TV LAlr

pdf(t, v)dt (6.3)

In which, pdf(t, v) is the probability density function of the Student’s t distribution with

the degrees of freedom of v. t is the t-test statistic and we simply use 16000 (8000 traces +

8000 traces) for v.

Because the previous results shown in Fig. 6.5 are obtained from the AES last round

attack performed in ChipWhisperer Analyzer, we zoom in the TVLA values for the time

instants observed in the AES last round. Those TVLA absolute values (roughly from 310

to 320) were averaged and saved in TV LAlr. The corresponding Prcon was also adopted to

quantify the mitigation ability against CPA attack. The values of TV LAlr and Prcon are

listed in table 6.1. The TV LAlr for basic AES is 4.9477, which is greater than 4.5. Note, 4.5

is defined as a threshold to determine whether the traces carry sensitive information [65].

The TV LAlr of our proposed method is below the threshold of 4.5. This result indicates

that our approach is less data dependent and leaks less sensitive information (i.e. key) than

the baseline. Our method also improves Prcon over 201× over the baseline.
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Table 6.1: TV LAlr and PrCon for basic and our secured AES.

AES
versions

Result
categories

TV LAlr PrCon

Baseline 4.9477 7.58×10−7 (100%)
Proposed method 3.7894 1.52×10−4 (201%)

6.4.3 Overhead on Power

The entire AES was implemented in the SAKURA-G FPGA board and the ChipWhisperer

tool captured 8000 power traces for each supply voltage (i.e. 1.1V, 1.15V, 1.2V, and 1.25V),

respectively. The average power consumption for each power trace was calculated in MAT-

LAB. The baseline power is the one using 1.2V. Four configurations shown in Fig. 6.6(a) were

adopted. We analyzed the power traces and balanced the power trace at the module level

and round level. Module level power balancing is achievable by using differential CMOS logic

(such as the method in [66]), which make each module consume the same power regardless

of which input pattern is applied. We used the AES round consuming the highest power to

replace the power profile for the remaining AES rounds, and calculated the average power

for the module level power balancing. Round level power balancing can be realized by the

current equalizer (such as the method in [67]). We assume the current equalizer technique

compensates the fluctuation on the AES current throughout the entire AES round operation

such that the AES power remains as high as the highest dynamic power observed in different

AES rounds. We compared the proposed method with the baseline, module level and round

level power balancing approaches and show the power reduction achieved by our method in

Fig. 6.9. As our method does not introduce additional noise to flatten the power, our method

can significantly reduce the power over the power balancing techniques. Depending on the

TVSV configuration pattern, the power reduction achieved by our method is in the range of
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Figure 6.9: Power reduction comparison.

14.4% to 19.7% at the module level, and in the range of 79.9% and 81.1% at the round level.

Since the TSV noise could lead the supply voltage exceed the nominal voltage, our method

consume more power by 1.3% than the baseline in the scenario of configuration 1 (that is

why power reduction is negative). For other three configurations, our method reduces the

power by 1.8%∼4.9%.

As different detailed settings used in different approaches [66–68], we could not repeat the

exact same experiment in our FPGA platform. We cited their reported power overhead and

compared those numbers with ours in Table 6.2. As shown, the algorithmic approach [68]

leads to 4.0× overhead on power, SABL consumes 1.9× power on AES, and the switched

capacitor current equalizer brings in 33% more power consumption. Instead of relying on

artificially induced noise, our method exploits the inherently existing noise to reduce the

power correlation. Thus, we can effectively reduce the power consumption of the crypto

module. Our case study shows that the proposed method leads to a power overhead no more

than 1.25% over the baseline.
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Table 6.2: Comparison of Power Overhead.

Methods
QuadSeal
[68]

SABL
[66]

Current
Equalizer
[67]

Proposed

Power overhead +4.0× +1.9× +33% -81.1%∼+1.25%

6.5 Conclusion

We extended our group’s previous work of utilizing 3D PDN noise to mitigate CPA attack.

We proposed a TVSV method in this chapter to induce the noise to the victim crypto module

by combining the supply voltages from different 3D tiers temporally to drive the cypto

module. Emulation on an FPGA platform prove that the proposed implementation method

consumes significantly less power than the existing power balancing techniques. Our method

reduces the power overhead by up to 81.1% over the round-level power balancing technique.

The TVLA indicates proposed method reduces the risk of leaking sensitive information

through power traces and that shows the improvement on CPA resilience.
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CHAPTER 7

Towards Enhancing the IP Security of ICs and 3D ICs: Addressing the

Resilience Against Power Analysis Attacks on Logic Locking

7.1 Introduction

To reduce the time-to-market and manufacturing cost, IPs are commonly used in IC design-

ing. However, the fact that the modern IC manufacturing is often outsourced brings security

threats (e.g. IP piracy) to the supply chain [69]. The untrusted IC designers or foundries

in the supply chain have access to the IPs and they can overuse them for their own profit.

Moreover, with the access to the GDSII file of the IPs, adversaries can even reverse engineer

it to retrieve the original design.

To mitigate the impact caused by IP piracy, split-manufacturing and logic locking based

countermeasures are presented in the existing literature [10, 69, 70]. Split-manufacturing

proposes to split the layout of a design into the Front End Of Line (FEOL) and Back

End Of Line (BEOL), each of which is sent to different foundries to fabricate [10]. Thus,

each individual foundry only has partial knowledge of the design and they cannot make a

counterfeit product even if they hold the IPs. However, split-manufacturing will not help

on protecting M3D IPs because all the components of a M3D IC are fabricated by the same

foundry. To protect the IP security of M3D ICs, logic locking could be a better defense

mechanism which proposes to encrypt the netlist of the original IC and the encrypted chip

will only be activated with the locking key after the fabrication. In this way, malicious

foundries can not fully extract the logic function of the chip even with the access of its

GDSII design details. In another word, even attackers might successfully reverse engineer
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the chip to make counterfeits, the counterfeits cannot obtain the original function of the chip

and that can effectively thwart IP piracy attacks. Logic locking techniques usually insert

key-controlled logic gates or transistors to the netlist [3, 71] and will maintain or alter the

logic of the locked chip depending on the key inputs. They can protect M3D IPs but it is

critical to protect the key information from eavesdropping attacks, such as power analysis

attacks.

Logic locking based encryption algorithm is considered as having natural defense against

power analysis attacks [71]. This is because the locking keys are inserted in different places

through out the entire chip under protection and contribute to the dynamic power consump-

tion at different instants, which makes the sampling and alignment of the power traces diffi-

cult. However, there is limited work evaluating this resilience quantitatively. The work [71]

proposed the first algorithm of performing differential power analysis (DPA) attacks to logic

locking. According to the results reported, the DPA attack is able to retrieve part of the

locking keys. With the increase of the number of keys, however, the computing complexity

of the attack becomes higher while the key retrieving can be harder. This shows that logic

locking is indeed resilient to the DPA attack. In this chapter, we evaluate the resilience

of logic locking against a more powerful and more efficient power analysis attack, correla-

tion power analysis (CPA) attack. Furthermore, we propose a logic-cone conjunction (LLC)

based method and a key insertion guideline for the transistor-level logic locking to improve

its CPA resilience.

7.2 Preliminary

7.2.1 M3D IC

Different from the stacked 3D IC, a M3D IC only has one silicon substrate and the compo-

nents of all the M3D layers, including transistors, poly-silicon and metal, are fabricated on

the substrate sequentially. The inter-lay connection uses monolithic inter-tier vias (MIVs)

instead of TSVs. Compared to TSVs, MIVs’ fabrication involves similar materials and pro-

84



cesses. However, MIVs are usually smaller in size which facilitate M3D ICs having even

better performance than TSV-based stacked 3D ICs. On the other hand, M3D layers are

fabricated on one single wafer in one foundry. In this case, the split manufacturing strategy

cannot be applied to protect M3D ICs from IP piracy attacks. To solve this security problem,

logic locking-based methods have been investigated by researchers.

Logic locking is an encryption technology for securing the original logic function of digital

circuits from IP piracy attacks.

7.2.2 Conventional Gate-Level Logic Locking

Conventionally, logic locking [17] inserts key-controlled gates to the original design that needs

to be protected, as know as the gate-level logic locking. The specific implementation of gate-

level logic locking varies with the locking goal, such as obtaining higher output corruptibility

or better resilience against key-retrieval attacks. For example, the fault analysis-based logic

locking (FLL) inserts the key-controlled gates to the locations, which have the highest fault

impacts on achieving the maximum output corruptibility [72]. A strong inference-based logic

locking (SLL) is proposed in [73] to thwart the key sensitization attack. The work [74] uses

multiplexers, instead of XOR/XNOR gates, to expand the logic cone size and thus improve

the defense capability against cone-based brute-force attacks.

7.2.3 Transistor-Level Camouflaged Logic Locking

In contrast, the transistor-level logic locking internally modifies the existing logic gates of

the original circuit by injecting key-controlled transistors. Comparing to the gate-level logic

locking, the transistor-level logic locking usually incurs much less overhead that is caused

by the extra logic gates. For example, the transistor-level camouflaged logic locking method

introduced in [3] protects the IP security of M3D ICs by inserting parallel or serial locking

transistors and camouflaged contacts in M3D tiers. Fig. 7.1 shows two styles of this locking

scheme: serial locking shown in Fig. 7.1(a) and parallel locking shown in Fig. 7.1(b). More
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(a) (b)

Figure 7.1: The transistor-level camouflaged logic locking in (a) serial locking and (b) parallel
locking styles [3].

specifically, the locking scheme has four specific configurations including PMOS serial lock-

ing (PSL), NMOS serial locking (NSL), PMOS parallel locking (PPL), and NMOS parallel

locking (NPL). The locked network only functions normally when the correct locking key is

provided otherwise, will generate a floating or constant output.

Because our research focuses on evaluating and improving the attack resilience of the logic

locking techniques in M3D ICs, this transistor-level camouflaged logic locking method will be

investigated further in the chapter. We simplify the two styles to create a follow-up version

of the transistor-level logic locking and an example of a NAND gate locked in the simplified

version is shown in Fig. 7.2. The simplified version also has two styles: PMOS serial locking

plus NMOS parallel locking (PSLNPL) and PMOS parallel locking plus NMOS serial locking

(PPLNSL). The wrong key in the PSLNPL style will lead the NAND gate output to be a

constant 0. Likewise in the configuration of PPLNSL, the wrong key will yield a constant 1

at the output of NAND.

7.2.4 DPA and CPA Attacks

CPA attack has been introduced in Chapter 6. Besides CPA, differential power analysis

(DPA) attack is anther strong power analysis attack. It was first proposed in Paul Kocher’s
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(a) (b)

Figure 7.2: A NAND gate locked with the transistor-level logic locking in (a) PSLNPL and
(b) PPLNSL configurations.

paper [75] in 1999 and has drawn great attention over the last two decades. Similar with

CPA, DPA also exploits the fact that the power consumption of a chip is correlated to

its internal data being processed to retrieve the secret key applied in the crypto hardware

module. Attackers need to collect the power traces from their target chips that run the

encryption algorithm with an unknown secret key and a set of known input patterns. The

same input patterns will be used to calculate the outputs of encryption with a guessing key.

Based on the collected power traces and the calculated outputs for different guessing keys,

a statistical metric differential trace can be generated to guide attackers to determine which

guessing key is the correct one applied in the hardware crypto module.

Theoretical Difference Between DPA and CPA

Assume that the target encryption process is E(p, k), in which E stands for the encryption

algorithm and it is usually also defined as a selection function. The variables p and k represent

the plaintext and the encryption key, respectively. For a given plaintext, the corresponding

ciphertext c equals to E(p, k). Attackers will randomly guess a key, kguess, and then calculate

a set of ciphertexts, C, with regards to a group of plaintexts P . The same process is repeated

for different kguess while the set of P remains the same. The same plaintexts P will also be
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applied to the real chip to produce the corresponding power traces T . Thus, each guessing

key kguess will have a pair of the ciphertext set C and the power trace set T .

In DPA attacks, depending on each element c in the set C equal to 0 or 1, each single

power trace t in T is first classified to one of the two sets T0 and T1. Next, the DoM defined

in Eq. 7.1 is calculated for each guessing key kguess. The differential trace is also known as

difference of means (DoM).

DoM = |T0− T1| (7.1)

In which, T0 and T1 are the averages of T0 and T1, respectively. The kguess that yields the

highest DoM is considered as the correct key by the DPA attack.

In CPA attacks, a hypothetical power consumption Thyp is estimated based on the set

C for each kguess and the power estimation model, Hamming distance or Hamming weight

model [13]. Equation 7.2 describes how the PCC between Thyp and T is calculated.

PCC =
E[Thyp · T ]− E[Thyp] · E[T ]√

E[T 2
hyp]− (E[Thyp])2 ·

√
E[T 2]− (E[T ])2

(7.2)

Each guessing key kguess will have a corresponding PCC. The kguess that has the highest

PCC will be considered as the correct key by the CPA attack.

According to the experimental results from [76], the incorrect key guesses may gener-

ate spikes on the differential trace for DPA, known as ”harmonics” [12], which will lead

to the unsuccess of key retrieval. However, the impact of harmonics on CPA is minimum.

Furthermore, the comparative analysis in [77] indicates that the noise from semiconductor

integration process also has less impact to CPA than DPA. Other literature [13] also shows

that CPA outperforms DPA in both efficiency and robustness because CPA can better tol-

erate noise than DPA. As a result, CPA is a better choice when the target of attack is in a

complicated noise environment, such as 3D ICs.
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Figure 7.3: Hardware setup of power analysis attacks

Practical Implementation Comparison

The advantages of CPA attack over DPA attack are originated from its statistical metric but

not practical implementation. In fact, DPA and CPA attacks have the identical experimental

setups, as shown in Fig. 7.3. They both drive the target chip that implements crypto modules

with a set of plaintexts. The plaintexts could be generated in and exported from a personal

computer (PC). The power measurement is obtained through a resistor (R) that is connected

in series with the chip. The resister could be inserted in between the chip and power supply

(VDD), or in between the chip and ground [78]. The oscilloscope measures the voltage (V )

across the resistor and the transient current (I) can be calculated as V/R. The power

consumption (P ) of the chip can be obtained as P = (V/R) · VDD (note that R is usually

very small so that its power consumption can be ignored). The only difference between the

two attacks is the statistical metrics used are different. The metric of PCC outperforms the

metric of differential trace in tolerating noise and reducing computing complexity so that

CPA attack is usually considered to be more powerful than DPA attack.

DPA and CPA Attacks in Logic Locking

There is limited work discussing the DPA and CPA attack resilience of logic locking tech-

niques. In the existing literature, only DPA attacks are performed on gate-level logic lock-
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Figure 7.4: The proposed flow for the CPA attack on a general circuit protected by logic
locking.

ing [71] but CPA attacks have not been examined in the context of logic locking techniques.

To fill this gap, this chapter will propose a CPA attack to logic locking and further compre-

hensively evaluate the DPA and CPA resilience of the transistor-level logic locking comparing

to the conventional gate-level logic locking.

7.3 Proposed Attack Flow for CPA Attacks on Locked Circuits

CPA is more powerful than DPA in key retrieval and it is necessary to evaluate the re-

silience of transistor-level logic locking against CPA attacks. In this chapter, inspired by

the divide-and-conquer strategy of [71], we modify the conventional CPA attack flow for

cryptosystems and propose a feasible general power estimation procedure. Our CPA attack

on the transistor-level logic locking includes four steps.
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Algorithm 2: Proposed logic cone extraction.

Data: Locked netlist
Result: Logic function of each logic cone

1 PrimaryOut[]← Find primary outputs;
2 PrimaryIn[]← Find primary inputs;
3 Key[]← Find key inputs;
4 i = 1;
5 while i ≤ length(PrimaryOut[]) do
6 Target← PrimaryOut[i];
7 while Target /∈ PrimaryIn[] && Target /∈ Key[] do
8 SelFunc← Target;
9 Search logic gate G(Input, Target);

10 Substitute G(Input, Target) into SelFunc;
11 Target← Input;

12 end
13 return SelFunc;
14 i = i+ 1;

15 end

Step 1: logic cone extraction. The flow of estimated power generation is depicted

in Fig. 7.4. First, the logic cones of the locked netlist are extracted based on the primary

outputs. To facilitate the logic cone extraction, we develop a Python script and Algorithm 2

shows the its pseudo-code. The script returns the logic function of each logic cone, which

will be used as the selection function (SelFunc) in the CPA attack. Given a locked netlist,

Algorithm 2 searches for the logic gate (G) that generates each primary output of the netlist.

The inputs of G will be the target of the next search until all the new targets are either the

primary inputs or the key inputs of the netlist. The located G during this process will form

the final SelFunc for the primary out. This process is repeated for each primary output

until all logic cones are completed.

Step 2: divide-and-conquer-based power estimation. The CPA attack starts from

the smallest logic cone, which includes the least number of locking key bits. This ascending

order is adopted for two main reasons. First, the ratio of the number of keys to the number

of primary inputs (#Keys/#Primary Inputs) of a smaller cone is smaller, too. As a result,

retrieving the keys in a smaller cone is easier than in a larger one [71]. Second, some keys
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may appear in multiple cones and the keys that have been previously retrieved in the smaller

cones can be used in the attack of the current cone. In this case, the attack will be more

likely to succeed since the number of unresolved keys is reduced. Next, a set of input patterns

with a random key guess are fed to the extracted selection function (SelFunc in Step 1) of

the cone and the estimated outputs for the key guess are calculated. We utilize a Hamming

distance model to generate the estimated power. The same process will be repeated for all

key guesses and all logic cones.

Step 3: power trace collection. Similarly, the real power trace collection starts from

the smallest logic cone and follows the ascending order. For each cone, the same set of

the input patterns used in the power estimation are applied to the chip under attack and

the physical power consumption is collected. Since only the inputs of the cone currently

under attack will be fed with the input patterns, the switching activities of other cones

will be minimized and thus there is limited interference from other cones. In parallel with

the power consumption measuring, the output patterns of the same cone under attack are

recorded from the chip to verify the retrieved key values.

Step 4: correlation analysis. We calculate the PCC between the estimated power

and the real power consumption to retrieve the keys of each logic cone. The key guess which

yields the highest PCC is considered as the correct key retrieved by the CPA attack.

7.4 Resilience Assessment of Logic Locking Against Power Analysis Attacks

With the proposed CPA attack, we are able to perform a comprehensive evaluation of the

attack resilience of logic locking against power analysis attacks, including both DPA and

CPA attacks. In this section, we discuss our evaluation from two perspectives which are the

comparison between the DPA and CPA resilience and the comparison between the gate-level

and the transistor-level logic locking techniques.
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(a) (b)

Figure 7.5: c17 protected with (a) XOR-based gate-level and (b) transistor-level logic locking.

7.4.1 Perspective 1: Comparison of the DPA and CPA Resilience of Logic Locking

Resilience against DPA Attack

We performed the DPA attack on an ISCAS’85 benchmark circuit, c17. As the circuit c17

has two output ports N22 and N23, there are two logic cones highlighted by the two dash-line

boxes shown in Fig 7.5. The c17 locked by XOR-based gate locking is shown in Fig. 7.5(a).

We also applied PSLNPL and PPLNSL to the NAND and OR-AND-INVERT (OAI) logic

gates in c17, as shown in Fig. 7.5(b). The detailed experimental setup is described in

Section 7.4.2.

The DoM measured by the DPA attack on c17 protected with three logic locking methods

are reported in Figs. 7.6, 7.7 and 7.8. For the N22 cone, Fig. 7.6(a) shows that the DoM line

for the correct key is above that for the wrong key, which indicates that the locking key bit

applied in the N22 cone can be retrieved by the DPA attack. For the N23 cone, as shown in

Fig. 7.6(b), the DoM lines for the correct and wrong keys are overlapped, which means that

the DPA attack does not find the correct key. Overall, Fig. 7.6 confirms that gate-level logic

locking has 50% resilience against the DPA attack. Based on the measured DoM metrics for

PSLNPL and PPLNSL transistor-level locking shown in Figs. 7.7 and 7.8, we conclude that

the DPA attack fails to retrieve the locking key bits in 75% of the test cases.

According to the introduction in Section 7.2.3, the wrong locking key at the transistor-

level locking will lead to a constant output. This characteristic could form a natural defense
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Figure 7.6: DoM for (a) N22 cone and (b) N23 cone in c17 locked with XOR-based gate-level
locking.
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Figure 7.7: DoM for (a) N22 cone and (b) N23 cone in c17 locked with PSLNPL.

line to thwart the DPA attack. When the constant output induced by the wrong key is

fed to another logic gate as a controlling bit (e.g., constant 1 to OR gate), the output of

the subsequent gate will be constant, too. If more key bits are inserted in the circuit, the

probability of propagating the constant output to the primary output is likely to increase.

Since the wrong key guess leads the primary output to be a constant 1 (0), all the power

traces will be grouped into the power set T1 (T0). Consequently, the wrong key guess will

yield a higher DoM than the correct key, and thus the DPA attack will conclude a wrong

key. In summary, once the wrong key causes the primary output of the locked netlist to be
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Figure 7.8: DoM for (a) N22 cone and (b) N23 cone in c17 locked with PPLNSL.

Figure 7.9: The impact of transistor-level locking on the output.

constant, the DoM metric will mislead the DPA key retrieval.

We studied the three DPA failed cases shown in Figs. 7.7(a) and (b) and Fig. 7.8(b) and

observed that the primary outputs in those cases are indeed constant regardless of what

primary inputs were provided. For example, if the guessed Key0 is wrong in the PSLNPL

configuration, the output of the locked NAND in Fig. 7.5(b) will be constant 0, which further

causes N22 to be constant 1, as shown in Fig. 7.9. In this case, the locking key obtained by

the DPA attack is wrong because all the power traces are grouped to T1. Due to the same

reason (but different constant outputs of the locked gates), the other two cases represented

by Figs. 7.7(b) and 7.8(b) also fail to retrieve the correct locking keys.
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Resilience against CPA Attack

The CPA attack was executed on the same c17 circuit for both the XOR-based gate-level

locking and the transistor-level locking. The metric PCC was utilized to differentiate the

correct key from the wrong ones. As shown in Fig. 7.10, for the N22 cone, the PCC of the

correct key case is much higher than the PCC of the wrong key; while for the N23 cone, the

correct and incorrect key guesses lead to comparable PCCs after the initial vibration stage.

This observation means, in the case of XOR-based locking, the CPA attack can successfully

retrieve the key bit in the N22 cone but cannot retrieve the key bit in the N23 cone. In

the case of the c17 locked with the transistor-level locking, the PCC for the correct key

guess is higher than that for the wrong key guess after 40 power traces. This observation

holds true for both N22 and N23 logic cones, as shown in Figs. 7.11 and 7.12. This means

that the locking key bits in both cones can be successfully identified by the CPA attack.

In the case of the N23 cone locked with the PPLNSL configuration, the estimated power

consumption has no correlation with the real power traces. This is because the wrong Key1

shown in Fig. 7.5(b) leads to a constant 0 on the output of the N23 logic cone. Based on the

Hamming distance/Hamming weight model, the estimated power consumption is constant 0,

too. According to Eq. (7.2), no valid PCC can be calculated. In summary, the CPA attack

can retrieve all the locking key bits in the transistor-level locking cases but the DPA attack

only partially recovers the key.

The experimental results above indicate that the PCC metric used in CPA attacks is

not affected by the constant output caused by the wrong key guess at the transistor-level

locking. Instead, the constant output facilities the CPA attack to succeed. This is because

the estimated power consumption Thyp will be constant once the estimated output C is

constant due to the wrong key guess. Based on the definition of PCC, a constant sequence

will have no correlation with the real power consumption T . As a result, the wrong key

guess can be easily excluded by the CPA attack.

On the other hand, the CPA attack can be mitigated by the gate-level logic locking,
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Figure 7.10: PCC for (a) N22 cone and (b) N23 cone in c17 locked with XOR-based gate-level
locking.
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Figure 7.11: PCC for (a) N22 cone and (b) N23 cone in c17 locked with PSLNPL.

as shown in Fig. 7.10(b). The XOR-based gate-level locking will lead the locked gate to

produce a flipped output if a wrong key is applied. Once the wrong output is propagated to

the primary output of the logic cone, the PCCs for the wrong and correct key cases will be

the same, no matter which power model is employed in power estimation. If the Hamming

distance model is used, Thyp for the wrong key guess will be identical with the one for the

correct key and so is PCC. For example, the original output sequence is [10010] and the

flipped sequence is [01101]. Then, the Thyp based on the Hamming distance model is [1011]

for both sequences. If the Hamming weight model is adopted, Thyp for the wrong key guess
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Figure 7.12: PCC for (a) N22 cone and (b) N23 cone in c17 locked with PPLNSL.

will toggle oppositely to the one for the correct key guess. Although this flipped Thyp for

the wrong key results in a reversed PCC, the |PCC| is still the same with the one for the

correct key guess. Consequently, the CPA attack cannot differentiate the wrong key from

the correct key for either case. We zoomed in the failed CPA case in the c17 locked with

the XOR-based locking and found that its primary output was indeed flipped when a wrong

key was given. However, it is not always possible to propagate the constant output in bigger

circuits. The CPA resilience provided by the gate-level locking only happens in rare cases.

In summary, our case study indicates that the proposed CPA attack outperforms the

DPA attack in the scenario of transistor-level logic locking. We will zoom in on the CPA

resilience of transistor-level logic locking and further compare it with the gate-level logic

locking from different perspectives using more benchmarks in the following section.

7.4.2 Perspective 2: Comparison of CPA Resilience between the Transistor-Level and Gate-

level Logic Locking Techniques

We performed various experiments to evaluate the CPA resilience of the PSLNPL and

PPLNSL based transistor-level locking and the XOR-based gate-level techniques using the

following setup. The three logic locking methods were applied to the ISCAS’85 benchmark

circuits, including c432, c880, c2670 and c3540. The HOPE simulator [79] was adopted to
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execute the FLL strategy [72] for key bit insertion. The CPA attack was performed by FPGA

emulations and transistor-level simulations in Cadence Virtuoso. In the FPGA emulation,

the locked circuits were mapped to the SAKURA-G FPGA board and the power traces were

collected through ChipWhisperer. In the transistor-level simulation, the locked circuits were

implemented with the NCSU FreePDK45 technology.

The key recovery rate (KRR) [71] defined in Eq. (7.3) is used to assess the efficiency of

CPA attacks on the benchmark circuits protected with XOR-based gate-level logic locking

and the transistor-level PSLNPL and PPLNSL logic locking. In this subsection, we examine

the impact of locking level, key insertion location, number of key bits, and other factors on

the attack resilience.

KRR =
No.RetrievedKey Bits

No. InsertedKey Bits
(7.3)

Impact of Locking Level on Attack Resilience

The key insertion locations for the XOR-based gate-level locking were determined by the FLL

strategy recommended by the HOPE simulator. The key bits for the transistor-level locking

were inserted to the same locations recognized by FLL. Due to the different numbers of logic

gates in c432 and c2670, 8 and 16 key bits were used in the encryption, respectively. As

shown in Table 7.1, the PPLNSL transistor-level locking achieves better CPA resilience than

the XOR-based gate-level locking in the case of c432; however, as the circuit scale increases,

the XOR-based locking on c2670 outperforms both PSLNPL and PPLNSL, reducing the

KRR by 66%. We further analyzed the guessing entropy to compare the key retrieval speed.

As shown in Fig. 7.13, the guessing entropy of the CPA attack on c2670 protected with XOR-

based locking is always higher than that for the same circuit encrypted by the transistor-level

locking. Both KRR and guessing entropy indicates that PSLNPL and PPLNSL transistor-

level locking is more vulnerable to the CPA attack than XOR-based gate-level locking.

Due to the different circuit scale, 7 and 11 key bits were applied to c432 and c880,
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Table 7.1: KRR results for CPA attacks on two locked benchmark circuits.
circuit \ locking configuration XOR PSLNPL PPLNSL

c432 100% 100% 50%
c2670 18.75% 56.25% 56.25%

Figure 7.13: Guessing entropy comparison for the case of c2670.

(a) (b)

Figure 7.14: KRR results for (a) c432 (b) c880.

respectively. The KRR of the CPA attack on c432 and c880 is shown in Fig. 7.14. With

4000 power traces, our CPA attack retrieved all the key bits for c432 no matter which locking

configuration was used; for the bigger circuit c880, the CPA attack also achieved a 100%

KRR in the PPLNSL configuration.
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Figure 7.15: Impact of the number of key bits per cone on KRR.

Impact of Number of Key Bits on Attack Resilience

We swept the number of key bits inserted in c432 from 1 key bit per cone to 3 key bits per

cone for both the gate-level and transistor-level logic locking techniques. As indicated in

Fig. 7.15, given 800 power traces, all three locking methods achieve the KRR of 0% as the

number of key bits increases. Our case study indicates that increasing the key space will

improve the resilience against the CPA attack. This motivates us to develop a mitigation

method to enlarge the key space and the logic cone size interested in the CPA attack.

Impact of Different Key Locations on Attack Resilience

We randomly selected the key locations for the c432 locked with both the XOR-based locking

and the transistor-level locking. The KRR results shown in Fig. 7.16 imply that the KRR

has strong dependency on the locking location, no matter at gate level or transistor level.

This motivates us to propose a key insertion location guideline to find the best key locations

for the transistor-level logic locking to achieve the highest CPA resilience.
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Figure 7.16: The impact of random key insertion locations on KRR.

7.5 Proposed Logic-Cone Conjunction (LCC) Method against CPA Attacks

The CPA attack in Section 7.3 follows the divide-and-conquer strategy to break the locked

circuit cone by cone. To thwart the cone-based brute force attack, the work [74] uses MUX-

based key gates to connect logic cones so that the key space and the cone size for one single

cone is expanded. Inspired by that work, we propose a logic-cone conjunction (LCC) method

to mitigate the CPA attack on transistor-level logic locking circuits. The MUX-based attack

mitigation method uses multiplexers to create a small overlap area between two logic cones.

However, there will always be some keys out of the overlap area. Those keys will not help in

expanding the key space unless the two nets connected by the multiplexers are both primary

outputs. In contrast, our LCC method embeds one entire logic cone into another one such

that the key space can be enlarged significantly. Typically, increasing the number of key bits

is a common practice to raise the difficulty of CPA attacks. The proposed LCC method does

not induce additional key bit insertion; instead, our method makes full use of the existing

locking keys in a locked circuit to maximize the key space of each logic cone. The key space

means the number of all possible distinct key combinations.

The proposed LCC inserts a key-controlled dummy connection dmcij between two inde-

pendent logic cones Ci and Cj to extend the size of each logic cone. To maximize the key
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space after our logic-cone conjunction, the selected independent logic cones Ci and Cj should

use the exclusive key vectors,
−→
Ki, and

−→
Kj, respectively. The LCC method will increase the

key space for the logic cone Ci from 2Ki to 2Ki+Kj . In the best case, Ki + Kj will be equal

to the number of all key bits inserted in the locked circuit.

Figures 7.17 (a) and (b) illustrate how the proposed LCC method is applied to the

PSLNPL and PPLNSL transistor-level locking circuits. Cone1 and Cone2 are dependent due

to the original connection ogc12. In contrast, Cone1 and Cone3 are originally independent

since there is no logic overlap between them.

For the configuration of PSLNPL shown in Fig. 7.17(a), designers can insert one key bit,

Key1, to the NAND gate in Cone2. The correct key value for Key1 should be logic 0 since

Cone1 and Cone2 are originally connected and Cone2 needs signal ogc12 to switch normally.

Note that inserting Key1 is an important step in LCC. In Cone 3, a dummy NAND locked

by the PSLNPL configuration with the key bit Key2 is added. This NAND gate is driven

by the output signal dmc13 from Cone1 and the net N2, which is any existing net in Cone3.

The correct key value for Key2 should be logic 1, which forces the output of the NAND to be

constant 0. As the constant 0 will be given to an input of an OR gate, the dummy connection

dmc13 will not interrupt the original Cone3 operation. Because 0 is the non-controlling bit

of an OR gate, its output will be determined by the original net N3. The output of the

Cone3 dmc31 is brought back to Cone1 to form a cyclic structure between Cone1 and Cone3

using a similar dummy connection. The dummy conjunction between Cone1 and Cone3

will increase the key space for both cones. In this case, the key space for Cone1 (Cone3)

is increased from 2K1 (2K3) to 2K1+K3 . Furthermore, no matter which cone is attacked, the

cyclic logic structure makes the other cones also switch, thus inducing noise to the power

traces collected for CPA attacks. The power noise blurs the correlation between the locking

key and the power traces.

The LCC for PPLNSL configuration can be implemented in a similar way. As shown in

Fig. 7.17(b), we replace the OR gate with an AND gate and the correct Key2 is logic 0. This
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(a) (b)

Figure 7.17: LCC diagram for (a) PSLNPL and (b) PPLNSL configurations.

is because applying a logic 0 to the NAND gate locked with PPLNSL will lead to a constant

1, which is the non-controlling bit for the AND gate. The logic gates used in Fig. 7.17 can

be substituted with other gates as long as the normal operations of the revised cones can

be maintained when the correct key is provided. To achieve the maximum key space, there

could be more than two cones in the conjunction.

The proposed LCC significantly improves the CPA resilience of the transistor-level logic

locking for two reasons. First, it significantly enlarges the key space for every single cone to

mitigate the cone-based CPA attack. Second, as the LCC method forms the connected cones

as a cyclic structure, no matter which cone in the structure is attacked, all other cones will

switch. The increased switching activities lead to some power noise, which interferes with

the power trace measurement for CPA attacks.
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7.6 Proposed Key Insertion Guideline for Transistor-Level Logic Locking to

Improve CPA Resilience

In this section, we propose a new strategy that facilitates to search for better key insertion

locations for defending CPA attacks.

The work [71] evaluates the DPA resilience of gate-level logic locking techniques. That

work also provides two suggestions to harden the locking circuit against DPA attacks: (1)

increase the ratio of key bits to the number of primary inputs of the logic cone, and (2)

insert key bits in a way that the locked circuit functions closely to the original circuit even

when a wrong key is given. However, to the best of our knowledge, there is no prior work

available discussing how to enhance the transistor-level logic locking with respect to the CPA

attack resilience. To fill this gap, we propose a new guideline (composed of three rules) for

the optimal key insertion locations in PSLNPL and PPLNSL based transistor-level locking

configuration.

• Rule 1: Avoid inserting a key bit to a gate, whose wrong constant output can be

propagated to the primary outputs of the locked circuits.

• Rule 2: Use the PSLNPL configuration to lock the gates that have logic 0 as their

majority output (e.g., AND and NOR gates).

• Rule 3: Use the PPLNSL configuration to lock the gates that have logic 1 as their

majority output (e.g., OR and NAND gates).

As we observed in Section 7.4.1, the wrong key induced constant primary output will

result in an invalid PCC in the CPA algorithm and thus those wrong key guesses can be easily

eliminated from the attack process. The proposed rule 1 defers the quick key elimination.

In some cases, the primary output may be reversely constant (e.g., logic 1 at the primary

output but logic 0 at the gate output), which should be avoided, too.

105



Output corruptibility is a classic metric evaluating the ability of logic locking techniques

in altering the original logic function when wrong keys are given. Usually, a higher output

corruptibility will provide a better defense to IP piracy attacks or counterfeiting. However,

a lower output corruptibility is more favorable in the sense of thwarting the CPA attack.

We denote the difference between the PCC values for a wrong key and a correct key as

DIFFPCC . As the CPA attack retrieves the correct key by searching for the key yielding

the highest PCC, we suggest exploring countermeasures against the CPA attack that can

minimize DIFFPCC . A method that lowers the output corruptibility helps to achieve a

smaller DIFFPCC and obtain a better CPA attack resilience.

Inspired on the relation between the output corruptibility and the CPA resilience, the

proposed rules 2 and 3 will enable the transistor-level logic locking to reduce the output

corruptibility. We use an NAND gate as an example to explain the utilization of the proposed

rules 2 and 3. The majority of the NAND output is logic 1. When a wrong key is given,

PSLNPL (PPLNSL) will force the output of the locked gate to be a constant 0(1). In

this case, the wrong key of a PPLNSL locked NAND gate may not change the original

logic output of the locked circuit as much as that of the PSLNPL configuration. This

is because the NAND gate outputs logic 1 for most time (if its input 0/1 is uniformly

distributed). It is reasonable to infer that the PCC for the wrong key in PPLNSL is closer

to that for the correct key compared to the scenario of PSLNPL. As a result, we conclude

that DIFFPCC(PPLNSL) / DIFFPCC(PSLNPL). Thus, it is more difficult for CPA to

differentiate the correct key from the wrong keys in the PPLNSL configuration than in the

case of PSLNPL configuration.
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7.7 Experimental Results for The Proposed CPA Resilience Enhancement Meth-

ods

7.7.1 Experimental Setup

We performed the experimental verification and evaluation for the proposed LCC and the key

insertion guideline through FPGA emulations. Both PSLNPL and PPLNSL configurations,

with and without LCC, using and not using the proposed key insertion guideline were applied

to the ISCAS benchmark circuits and implemented in a SAKURA-G FPGA board. The

power traces were collected using ChipWhisperer software. The CPA algorithm was realized

in MATLAB and the Xilinx Vivado design suite. The hardware overhead of LCC was assessed

in the Xilinx PlanAhead and XPower Analyzer software.

7.7.2 Experimental Results for LCC

Seven key bits were inserted to c432 for both PSLNPL and PPLNSL configurations following

the fault analysis-based logic locking (FLL) [72] to achieve the maximum output corrupt-

ibility. c432 has seven logic cones for the primary outputs N223, N329, N370, N421, N430,

N431, and N432. N223 is also an input for the logic cone of N329. Furthermore, N329 is

fed to the logic cone of N370. Finally, N370 drives the logic cones for N421, N430, N431,

and N432. Based on the locked netlist, we found that connecting the output of N421 cone

to N223 cone can help to maximize the key space and induce the largest amount of noise to

the power traces. In the following experiments, we assume that there is an extra key beside

the seven keys to lock the dummy connection logic between N421 and N223 cones and this

extra key is known to the CPA attacker for a fair comparison with the baseline.

Improved Resilience against CPA Attack

We collected 4000 power traces for the assessment of KRR. As shown in Fig. 7.18, the CPA

attack successfully retrieves all the 7 keys (100% KRR) of the baseline c432 for both locking
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Figure 7.18: KRR comparison for (a) PSLNPL and (b) PPLNSL configurations.

Figure 7.19: Guessing entropy comparison.

configurations. In contrast, the KRR of the c432 protected with LCC decreases from 100%

to 0% for both PSLNPL and PPLNSL locking configurations. We also zoom in the guessing

entropy for the baseline and the LCC-protected c432. As shown in Fig. 7.19, the guessing

entropy of the baseline is close to 0 while the proposed LCC improves the entropy to a much

higher level. Both KRR and guessing entropy indicate that the LCC method successfully

enhances the locking circuit’s resilience against the CPA attack.

The improved attack resilience is originated from the cyclic structure generated by LCC.
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Table 7.2: Comparison of Cone Interference (CI).

cones
PSLNPL PPLNSL

Baseline LCC Baseline LCC
N432 81.44% 82.37% 81.86% 81.45%
N431 81.30% 81.75% 81.45% 82.11%
N430 82.13% 82.05% 82.19% 81.13%
N421 90.32% 90.02% 90.62% 90.59%
N370 83.42% 82.53% 82.81% 83.25%
N329 27.96% 86.72% 26.84% 86.60%
N223 0% 95% 0% 94.87%

Because of the cyclic logic loop, the uninterested cones will have logic switching when the

target cone is under attack. Consequently, LCC yields some power noise and thus undermines

the CPA attack. We use a metric Cone Interference(CI) expressed in Eq. (7.4) to evaluate

the noise induced by LCC.

CI =
Switching Events of Uninterested Cones

Switching Events of Entire Circuit
(7.4)

In which Switching Events of Uninterested Cones is the total number of bit flips on the

primary outputs of the logic cones that the attacker is not interested in. Switching Events

of Entire Circuit is the total number of bit flips on all the primary outputs of the circuit.

Based on the results shown in Table 7.2, LCC significantly improves the cone interference

in the attacks to N223 and N329 cones. This is because LCC forces all 7 cones of c432 to

switch no matter which one is under attack. Because cones N223 and N329 are the smallest

cones that are included in any other cone of c432, interfering with the power traces of these

two cones is extremely important to securing the entire circuit. The cone interference for

the LCC protected c432 and the baseline are comparably high after N329. Since all the

remaining cones are driven by all the primary inputs of c432, all 7 cones of c432 will switch

when any of the logic cones N370, N421, N430, N431, and N432 is under attack.
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Figure 7.20: Delay overhead.

Overhead on Delay and Power

As the proposed LCC makes full use of the existing locking keys to expand the key space

without inducing new key insertions, the hardware cost for our method is minor. The critical-

path delay was measured via the Xilinx PlanAhead software. As shown in Fig. 7.20, the

proposed LCC only increases the delay by 1.72% and 2.62% for the PSLNPL and PPLNSL

configurations, respectively.

The power overhead was measured via the Xilinx XPower Analyzer. Based on the results

shown in Fig. 7.21, for the PSLNPL based logic locking, LCC consumes 1% and 1.54% more

power when the correct keys and the wrong keys are applied, respectively. For the PPLNSL

configuration, LCC leads to 1.34% and 1.88% more power consumption for the scenarios

that the correct and wrong keys were applied, respectively.

7.7.3 Experimental Results for Key Insertion Guideline

Improved Resilience against CPA Attack

Next, we followed the proposed three rules for optimal key locations to lock c2670. Based

on the comparison in Table 7.3, our method reduces the KRR of the transistor-level locking

to be the same with the KRR that the XOR-based gate-level locking obtains. As shown

in Table 7.4, the selected logic gates for the PSLNPL key insertion have a relatively high
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Figure 7.21: Power overhead for (a) PSLNPL and (b) PPLNSL configurations.

Table 7.3: Impact of FLL and proposed key location selection strategy on KRR.
Key insertion strategy Locking configuration KRR

FLL
XOR 18.75%

PSLNPL 56.25%
PPLNSL 56.25%

Proposed Strategy
PSLNPL 18.75%
PPLNSL 18.75%

Table 7.4: Key locations following the proposed strategy.
Locking configuration Key insertion

PSLNPL 7 AND5, 8 AND4, 1 AND3
PPLNSL 2 OR5, 12 OR4, 2 OR3

probability to have logic 0 as outputs. Likewise, the selected key gates for the PPLNSL

configuration have a high probability to output logic 1. The FLL strategy for the XOR-

based locking is not an option for the transistor-level locking. The constant gate outputs

caused by wrong keys could be propagated to the primary outputs, which facilitate the CPA

attack.

Furthermore, the guessing entropy for the transistor-level locking configured following

the FLL and the proposed key location is compared in Fig. 7.22. NEWLOC PSLNPL and

NEWLOC PPLNSL represent the PSLNPL and PPLNSL locking configured with our pro-

posed locking locations. As can be seen, our method improves the guessing entropy by

25.36× and 26.04× for PSLNPL and PPLNSL, respectively, based on the 4000 power traces.

The output corruptibility of the XOR-based gate-level locking and transistor-level locking
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Figure 7.22: Guessing entropy comparison for (a) PSLNPL and (b) PPLNSL configurations.

Table 7.5: Comparison of output corruptibility.
Key inserting

strategy
Locking

configuration
1 bit

wrong
5 bits
wrong

All bits
wrong

FLL
XOR 1.90% 6.99% 10.24%

PSLNPL 0.98% 4.23% 8.00%
PPLNSL 0.93% 3.95% 7.89%

Proposed
strategy

PSLNPL 0.11% 0.32% 0.62%
PPLNSL 0.48% 1.58% 3.35%

is compared in Table 7.5. We measured the output corruptibility for the cases of 1 bit, 5

bits and all bits wrong. For the cases of 1 bit wrong, we swept the wrong key bit for all 16

locations and reported the averaged output corruptibility. For the cases of 5 bits wrong, we

randomly selected the wrong key bit locations four times and presented the averaged result

of the four corresponding output corruptibility. As shown in Table 7.5, if the FLL strategy is

applied, the transistor-level locking has the comparable output corruptibility with the XOR-

based locking in each test case. However, the proposed new locking location strategy can

significantly reduce the output corruptibility, which is consistent with the guessing entropy

trend shown in Fig. 7.22.

Key Retrieval Rate and Speed in Large Circuit

We also evaluated the CPA resilience for the locking configurations in a larger benchmark

circuit, c3540. We used FLL to configure the XOR-based locking and the proposed strategy
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Table 7.6: Cone-based CPA attack effort and its KRR.
FLL XOR NEWLOC PSLNPL NEWLOC PPLNSL

KRR 6.25% 0% 0%
Iteration 1300 1032 6667

Execution time 0.36 hours 0.29 hours 1.85 hours

to configure the PSLNPL and PPLNSL locking. 32 key bits were inserted for each locking.

We define 1 day as the time limit so that the logic cone in which the CPA attack takes

more than 24 hours is considered as no key bit will be retrieved. The KRR results based

on 4000 power traces are shown in Table 7.6. The CPA attack obtains a KRR of 6.25%

for the case of XOR-based locking. However, the CPA attack cannot retrieve any key bit

in the cases of PSLNPL and PPLNSL locking. Based on the fact that one iteration takes

around 1 second in our CPA algorithm ran on a computer at 1.8GHz and with 8GB memory,

we estimate the averaged execution time that the CPA attack will take on one logic cone.

The comparison of the averaged execution time is listed in Table 7.6. Interestingly, a lower

KRR does not necessarily represent a higher attack effort, as the NEWLOC PSLNPL case

actually consumes less iterations and execution time than the FLL XOR case.

7.8 Conclusion

The nature of M3D tiers being fabricated by one single foundry makes the split manufacturing

strategy not applicable for securing M3D ICs from IP piracy attacks. The transistor-level

logic locking technique has been proposed to encrypt the original function of the M3D ICs

under protection. However, limited works evaluate the strength of transistor-level logic

locking on resisting power analysis attacks. This chapter proposes a CPA attack flow that

is applicable to the transistor-level logic locking. Our analysis and experimental results

indicate that the proposed CPA attack outperforms the DPA attack in transistor-level logic

locking and achieves a 100% KRR in the locked c432 with 4000 power traces. Furthermore,

we propose two methods to improve the CPA resilience of transistor-level logic locking.
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First, a logic-cone conjunction (LCC) method is introduced to enlarge the key space. Our

case study on c432 shows that our method can successfully reduce the KRR to zero with

negligible overhead on delay and power. Furthermore, we propose three rules as a guideline

for the key insertion of transistor-level locking. Our experimental results show that our

method improves the guessing entropy by 25.36× and 26.04× for PSLNPL and PPLNSL,

respectively, over the FLL based key insertion location, and successfully mitigates the CPA

attack.
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CHAPTER 8

Conclusion

This dissertation investigates the security of an emerging technology, 3D IC, and provides

solutions for the potential security attacks to it. We first reveal a security threat of hard-

ware Trojans to 3D ICs and further provide novel countermeasures to fill the gap in the

existing literature of missing effective protection schemes. Our research also protects the

confidential information in 3D ICs from side-channel leakage using more effective and less

costly methods comparing to existing protection mechanisms. This dissertation makes an

important contribution not only to the hardware security community but also to building

a reliable and trusted 3D world in the future. To continue this study, more works can be

done in combining the existing Trojan detection methods with the proposed 3D IC testing

framework and extending the proposed key insertion guideline to be compatible with various

specific logic locking techniques.
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