
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detecting denial-of-service hardware Trojans in DRAM-based
memory systems
Citation for published version:
Salem, H & Topham, N 2022, Detecting denial-of-service hardware Trojans in DRAM-based memory
systems. in Proceedings of the 28th IEEE International Conference on Electronics Circuits and Systems
(ICECS 2021). Institute of Electrical and Electronics Engineers (IEEE), 28th IEEE International Conference
on Electronics Circuits and Systems, Dubai, United Arab Emirates, 28/11/21.
https://doi.org/10.1109/ICECS53924.2021.9665634

Digital Object Identifier (DOI):
10.1109/ICECS53924.2021.9665634

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 28th IEEE International Conference on Electronics Circuits and Systems (ICECS 2021)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2022

https://doi.org/10.1109/ICECS53924.2021.9665634
https://doi.org/10.1109/ICECS53924.2021.9665634
https://www.research.ed.ac.uk/en/publications/3ec4b07d-2cb6-43bc-8e48-0dfffbfefa0e


Detecting denial-of-service hardware Trojans in
DRAM-based memory systems

Heba Salem
School of Informatics

The University of Edinburgh
Edinburgh, United Kingdom

s1573838@ed.ac.uk

Nigel Topham
School of Informatics

The University of Edinburgh
Edinburgh, United Kingdom

nigel.topham@ed.ac.uk

Abstract—DRAM latencies are inherently variable, potentially
allowing a denial-of-service hardware Trojan (DoS HT) to
degrade memory performance without becoming immediately
obvious. This paper addresses the challenge of detecting a DoS
HT that may have been inserted into a DRAM-based memory
system, without requiring detailed internal knowledge of the
DRAM device. We present a real-time machine-learning based
DoS HT detection technique based on a low-cost hardware
monitor at the interface to the DRAM controller, coupled with
periodic software based analysis of monitoring output.

Index Terms—DRAM, Hardware security, Hardware Trojans,
Denial of service

I. INTRODUCTION

The ubiquity of DRAM devices, and the influence their
performance has in determining overall system performance,
makes them a potential target for denial of service hardware
Trojan (DoS HT) attacks. A DoS attack may typically extend
the latency of a DRAM access to reduce system performance.
The latency of an uninfected DRAM-based memory system
will itself exhibit significant variability from one access to
another. From the security perspective, this variability could
be seen as an inherent vulnerability in DRAMs as the impact
of a latency-targeting DoS HTs may be subtle and difficult to
identify, allowing the HT to hide in plain sight.

To our knowledge, this is the first work that explores the
challenges of detecting DRAM-based DoS HTs, and the first
to propose a machine-learning based approach for detecting
such HTs. Additionally, our DoS HT detection approach is
based on DRAM characteristics that are observable at the
interface to the DRAM controller, eliminating the requirement
for knowledge about the specific physical and internal charac-
teristics of a given DRAM; an issue associated with many of
the published DRAM latency characterization techniques that
mostly target DRAM performance optimization. Moreover,
DRAM characteristics are increasingly dynamic, requiring a
dynamic approach to DRAM latency analysis. In this paper,
a hypothesis regarding the vulnerability of DRAMs To DoS
HTs is introduced and tested using experimental simulations,
a run-time machine-learning based DRAM latency analysis
technique is then proposed and its feasibility and effectiveness
in detecting such HTs is demonstrated.

Section II motivates the proposed technique, and in sec-
tion III its foundations are explained. The experimental setup is

presented in section IV. The implementation of the technique
in real-life systems and in detecting DoS HTs is presented in
sections Vand VI.

II. MOTIVATION AND RELATED WORK

DRAM-based memory systems have highly variable laten-
cies, resulting from variability in the number of steps needed to
perform each read or write access and by the use of multi-rate
refresh adopted in most DRAMs to account for the variable
retention time (VRT) phenomenon.

The unpredictability of DRAM latency not only affects
performance modeling, but also presents a vulnerability that
could be exploited by security attackers to mask their attacks
on DRAMs. A hardware Trojan generally comprises a set of
malicious modifications to the implementation of a sub-system
with the intention of leaking secret information, degrading the
performance of the system, or causing a denial of service [1].
Several publications have explored the possibility of injecting
HTs into memory systems; in [2] a HT that maliciously
redirect a page addresses in DRAMs and could also bypass
memory protection was introduced. HTs that could be inserted
into the GDS-II files of an SoC by a malicious foundry in
order to leak data or cause faults in DRAMs were proposed
in [3]. HTs that can perform post-deployment data tampering
in SRAMs and that can leak sensitive data out of NVM cells
were introduced in [4] and [5], respectively. However, denial of
service HTs have not been explored extensively in the context
of memories and DRAMs.

Such HTs could degrade system performance by extending
the latency of some or all types of DRAM access. However,
their effects would be masked and made apparently invisible if
the resulting extended latencies nevertheless remained within
the limits of the worst case latency of the DRAM system.
Consequently, any effort to counter and mitigate such HTs
would need to be based on a comprehensive analysis of
the attributes of unpredictability in DRAM latency. Several
publications have attempted to characterize and model the
highly variable latency of DRAMs, albeit for the primary
purpose of reducing latency [6] [7] or for detecting DRAM
errors and failures [8] [9] [10] [11]. None, however, focused
on characterizing DRAM latency for the purpose of detecting
DoS HTs or developed a universal and device-agnostic DRAM



latency characterization and modelling technique that could be
used with all types of DRAMS. Such techniques must be ca-
pable of inferring the presence of DoS HTs by analysing their
impact on the latency of DRAM systems while accounting for
the unpredictability of these systems. The focus of this paper is
in developing a technique that recognizes the effect of DRAM
unpredictability on its latency and is able to detect the presence
of a DoS HT through even quite modest impacts on latency.
In addition to the run-time detection of DoS HTs, the work
presented in this paper could also pave the way to detecting
other types of attacks on DRAMs that have a direct or indirect
effect on its latency, such as environmentally-induced fault
injection attacks.

III. PROPOSAL BACKGROUND

In addition to the VRT phenomenon that led to the de-
velopment of multi-rate refresh, which in turn added addi-
tional variability to DRAM latency, DRAMs have operational
variability that is defined by their state and access patterns.
The three stages of accessing the prevalent DDRx DRAMs
involve activating the requested memory row, precharging and
closing the previously activated row, and finally performing the
requested read/write transaction. These three stages, however,
are not initiated for all transactions; a transaction that is
destined to the same row (in the same bank) as the previous
transaction doesn’t need to spend time activating or precharg-
ing the required row (open-row access), whereas a transaction
that targets a row that is neither precharged nor activated needs
all three stages (conflict-row access). Additionally, the type of
the current transaction and that of the preceding transaction
(i.e. read or write) determine whether the bidirectional DDRx
DRAM bus need to be switched or not, which induces an
additional delay of up to 18 cycles [12].

To test the hypothesis that variability in DRAM latency
could mask the presence of a DoS HT we simulated a DRAM-
based system under a number of DoS HT scenarios, and
examined the latencies obtained from each of these simulations
along with the latency of a baseline HT-free simulation. We
assumed an injected DoS HT may introduce delays at the
point where transactions are forwarded from the arbiter to the
scheduler (inside the DRAM controller) and/or at the point
where they are released from the DRAM controller. Table I
summarizes the actions performed by the simulated HTs. From
the values of the obtained latencies shown in Figure 1, it is
clear that most transactions have a latency of less than 300ns,
regardless of whether a HT was inserted or not. Furthermore,
the maximum baseline latency of 464.5 ns was exceeded only
twice by each of HT B and HT C, whereas the HTs A, D, and
E were found to never exceed that value in around 2 million
transactions. This finding strongly supports our hypothesis that
the actions of DoS HTs could be masked and obfuscated by
the variability and unpredictability of DRAMs and that the
upper bound baseline latency might never be exceeded when
”stealthy” HTs are injected into a DRAM system.

Our proposed technique is based on the notion that the
latency of a specific DRAM access can be modeled as a dis-

TABLE I: The implemented ”DoS HT” modifications

HT Forward Release Read Write Delay
HT A X X X 11.25 ns
HT B X X X 11.25 ns
HT C X X X X 11.25 ns
HT D X X X 5 ns
HT E X X X 1.25 ns

crete function of a small number of dynamic access features.
Specifically, the latency of a DRAM device at a given point
of time is directly influenced by its workload, the type of the
transaction to be performed, and the attributes of preceding
transactions.

This approach allows a baseline distribution of DRAM
latencies to be constructed as a machine-learning model for
each combination of dynamic access features. These models
can then be used to predict the expected DRAM latencies that
should be experienced at run-time, allowing anomalous latency
distributions to be detected.

A key aspect of this hypothesis is the influence of the
workload on the latency. Internally, DRAMs contain per-bank
request queues, and the dynamic depth of each queue naturally
influences the latency of requests entering the queue. This
relationship was verified by putting a simulated DRAM system
under varying amounts of load, derived across a number of
different benchmark applications. The results are presented in
the heat map of Figure 2. The DRAM load, represented as
the number of outstanding operations, is plotted against the
latency experienced by the respective transaction. This shows
the general trend that increasing load results in increased
latency. However, it is also clear that load is not the only
determinant of latency, as there is a noticeable overlap between
the ranges of latencies for the different loading conditions –
other latency-affecting parameters also need to be taken into
account.

Given that the DRAM latency varies as a consequence of
the variability in the number of read/write steps, we identified
a set of external parameters that influence the latency of a
given access for a specific DRAM state at run-time. These
parameters, which we refer to as features of the DRAM latency
model, are unified across all DRAM systems and hence are
not specific to DRAM architecture or implementation. These
features are:

• Dynamic DRAM load, defined as the number of outstand-
ing transactions

• Type of transaction (read or write)
• Type of preceding transaction (read or write)
• The row (and the bank) to which the transaction is

destined
• The row (and the bank) to which the preceding transac-

tion was destined
Collecting data related to these features at run-time allowed

us to identify the loading condition and the state of operation
of the DRAM (i.e. open-row, closed-row, or conflict-row).
Additionally, it allowed us to determine whether the direc-
tion of the internal DRAM bus would be switched by the



Fig. 1: Memory access latencies for HT-free and DoS HT
DRAM simulations

Fig. 2: Heat map showing the range and distribution of
latencies for different DRAM loadings

transaction. All of these features directly affect the latency
of the next access. In this context, it is worth noting that
in this work the focus was on the DRAM access patterns
that result in best case latency (open-row access) and worst-
case latency (conflict-row access) and hence the third type
of access, closed-row access, was not exclusively addressed.
Nevertheless, the framework could with slight adjustment be
extended to address and analyze closed-row access by simply
adding the bank number to the list of features.

We use the following terminology to describe concisely
the feature set for any transaction (or set of transactions)
received by the DRAM system: TcTpRL. Where Tc is the
type of the current transaction, Tp the type of the previous
transaction, R is the row situation, and L for the number of
outstanding transactions at the DRAM interface. Therefore,
a read transaction that came after another read transaction
when the load was three, and where both transactions targeted
the same row, is denoted RRS3. Whereas, a write transaction
after a read transaction to different rows and with zero load
is denoted WRD0.

IV. METHODOLOGY AND EXPERIMENTS

A. Experimental setup

The experimental setup for reporting the results in this paper
was based on the integration of two simulators; the gem5 CPU
simulator [13] and the DRAMSys memory simulator, which
simulates a DDR3 DRAM and its controller [14] [15] [16].
We selected our workload as a subset of applications from
the PolyBench benchmark suite [17]. Table II summarizes the
details of the experimental setup.

TABLE II: The experimental setup

Simulation Specifications
System simulation Gem 5 simulator

System emulation(SE) mode
O3 CPU (out-of-order CPU)
a range of frequencies from 1 GHz to 8 GHz1

32KB L1 cache and 8KB L2 cache
DRAM simulation DRAMSys simulator

gem5 coupling mode
DDR3 standard

A small number of minor modifications were made to
DRAMSys to enable the extraction of transaction traces con-
taining the start and end times for each transaction (observed
at the DRAM controller), as well as the row and bank number
and transaction types. With minimal knowledge of the DRAM
dimensions a hardware DRAM transaction monitor could infer
the row and bank numbers, and a cycle counter could be
used to create timestamps for the start and end time of each
transaction. Traces of 20 million DRAM transactions were
extracted from the benchmarks and used for offline training
of our machine-learning model of DRAM latency.

B. DRAM transaction features and categories

In order to assess the impact of each combination of
transaction features on the resultant latency, the memory traces
obtained from simulation were sorted, placing transactions
with identical features in the same group. There are four
combinations of transaction type for the current and preceding
transaction (RR, RW, WR, and WW), and two combinations of
the current and preceding rows (same or different), resulting
in eight categories that are uniform across all systems. The
last feature, the load, is an orthogonal feature that determines
the total number of categories based on the maximum number
of outstanding transactions occurring for each of the previous
eight categories. Although, our simulated system occasionally
had transactions occurring when there were up to six outstand-
ing transactions, this occurred only rarely; hence, and without
loss of generality, we limited our analysis to a maximum of
three outstanding transactions. This resulted in a total of 32
transaction categories, and naturally some categories had more
transactions than others. By analysing the range of latencies
for each of the different categories it was found that the latency
distribution for each of the categories had its own distinctive
distribution with one large peak and one small peak. The large
peak occurred at the nominal latency for that category, whereas
the small peak occurred at a latency resulting from instances
where a transaction of that category coincided with an internal

1High-frequency simulations were ran to force the system to generate main
memory transactions at a higher rate for the purpose of training the machine-
learning model.



refresh cycle. This lengthens the latency as the transaction has
to wait for the refresh to be performed before it is processed.

The aggregated latency distribution of transactions from
all categories (i.e. unsorted) would contain many individual
peaks at different latency values, making for difficult analysis.
However, by sorting the transactions into categories, defined
in terms of fundamental features of a transaction, we see a
collection of distributions each showing the distinctive and
recognizable properties shared by transactions of the same
category.

C. The machine-learning algorithm

Predicting the latency of each individual transaction is not
our purpose; instead we are interested in knowing whether the
DRAM system exhibits latencies that are nominal or unusual.
This requires real-time statistical analysis of measured DRAM
latencies and an efficient method by which to compare them
against the expected baseline latency. We have seen that
DRAM latency is not a fixed predictable value, even for
transactions of the same category. However, DRAM latency
can be represented efficiently as a discrete probability distri-
bution, and in real time such a distribution can be measured
by capturing a histogram of latencies. We therefore selected
a machine learning approach through which we could create
a model of the actual latency distribution for each category
of access. For this we use Kernel Density Estimation (KDE),
a non-parametric probability density estimation that has the
ability to provide probability distribution approximations for
data-sets with multiple peaks and non-defined distributions –
as we see in the probability distributions for DRAM latencies.
We used the KDE implementation provided by the Scikit-learn
tool [18]. A top-hat kernel was used and the KDE algorithm
bandwidth was set to 0.5 so that a reasonable estimation can
be obtained that is neither too detailed nor too simplified.

The latency data obtained from running the Polybench
benchmark applications on the simulated system was divided
into a training and evaluation data-sets. The number of DRAM
transactions in each of the training and evaluation sets for each
benchmark are shown in Table III

TABLE III: Number of transactions in the testing and evalu-
ation data-sets

Benchmark Training Evaluation
atax 2,420,781 1,000,000
jacobi-2d 7,030,047 2,000,000
adi 5,129,039 2,571,703
mvt 1,101,975 1,498,752
3mm 1,259,717 289,503
bicg 83,773 216,635
doitgen 1,286,567 879,942
2mm 1,002,676 39,197

Transactions from the training data-set were partitioned
into the 32 categories and each partition was used to train
a distinct KDE model that would serve as a baseline latency
model for that category. The evaluation data-sets were then
used to construct evaluation KDE models for the purpose of
comparing them with the baseline distributions obtained from

the training data-sets. This comparison was first performed
through visual inspection of the training and evaluation KDEs,
which confirmed that the training KDEs could be used as
reference for analysing and detecting anomalies in latency data
obtained in real-time. For example, the KDEs of the training-
data sets and those of the evaluation data-sets for the RR
category are shown in Figures 3 and 4. From these figures,
it can be seen that the KDEs of the evaluation and training
data for the same categories are similar, and providing initial
confidence that DRAM latency modeling could be made pre-
dictable, provided transactions are characterized appropriately.

Visual inspection is a subjective approach to comparing
and analysing the obtained KDEs and that our main goal
is building an automated and systematic DoS HT detection
technique, the possibility of using statistical methods of sim-
ilarity or distance measurement for the quantification of the
similarity between KDEs was explored. One such technique
is the Jensen–Shannon distance. This is the square-root of the
Jensen–Shannon divergence, which is in turn based on the
Kullback-Leibler divergence that measures the divergence of
one probability distribution from another using the sum of
probabilities in the former and the log of probabilities of both.

The Jensen–Shannon distance (J-S distance) was utilized
for quantitatively measuring the similarity between the KDEs
obtained from training and evaluation data-sets, or more
precisely, the similarity between the KDEs of the baseline
distribution and the real-time distribution, when deploying the
framework in a live system. Figure 5 shows the values obtained
for the J-S distance between the KDE of each training set and
the KDE of the corresponding evaluation set for the 20 most
populated categories. We observe that all J-S distances are in
the range 0–0.4, with the majority being below 0.3. Since the
basic J-S distance is a distance that could only take values
between 0 and 1, where 0 is for identical data-sets and 1 is
for completely distinct ones, the values shown in Figure 5
clearly indicate that the training and evaluation data for all
categories have very similar attributes. These distances further
demonstrate the feasibility of using the proposed framework in
long-term analysis and inference of any abnormalities, shifts,
or gradual and consistent change in DRAM latency. As the
more discrepancies there are between the shapes of the training
KDEs and the real-time KDEs, the larger the J-S distances
between them are and the further these distances are from
those obtained from the HT-free case.

V. THE IMPLEMENTATION

The implementation of our DRAM latency analysis frame-
work is presented in outline in Figure 6. The first two
steps are the recording and sorting of data observed at the
DRAM controller interface. For reasons of practical efficiency
and security the first two steps would be performed using
hardware, either in a security wrapper [19] [20] or in the
DRAM controller itself. For recording the data relevant to
each transaction, a log of size N +1 would be needed, where
N is the maximum number of outstanding transactions (at
the interface of the DRAM controller) allowed by the system



Fig. 3: Training KDEs of RR transac-
tions

Fig. 4: Testing (evaluation) KDEs of RR
transactions

Fig. 5: The J-S distances between the
training KDEs and the testing KDEs

at any given point of time. This logging mechanism shall
allow the categorizing of transactions based on the values of
the DRAM latency features as, for instance, RRS0, RRS1,
RRD0, RRD1, RWS0, RWS1, and so on. Each category has a
dedicated collection of bins, each entry of which is a simple
reference counter. The number of bins depends on the range
of latency expected for that category and its granularity. The
convention here is to avoid unnecessary hardware overhead by
quantizing the latency values and in a number of sub-ranges
that are within the overall expected latency range for each
category. For example, a category with an expected latency
range between 20ns and 40ns could have 10 bins where the
first bin is used to count the number of occurrences of latency
values between 20ns and 22 ns. Deciding on the number
of bins needed for each category is a design choice that
the SoC integrator/ IC designer would choose based on how
accurate and detailed they want their analysis to be. The KDE
modelling and testing carried out in this work was performed
after quantizing each of the latency ranges, for each of the
32 different categories, into 1000 bins. This represented a
good trade-off between histogram size and specificity for the
latency ranges obtained from our simulations, which for most
categories were relatively large. Additionally, we maintained
extra bins for each category to count the occurrences of latency
values that were beyond the expected latency bounds for the
category (to account for any out-of-bounds DoS HT action).

The monitoring hardware effectively histograms the actual
latencies observed for each of the 32 categories of DRAM
access. These real-time histograms are processed periodically
by software embedded within the operating system. The in-
terval between software sampling of the hardware counters
depends on the dynamic range of the counters, the expected
frequency of DRAM accesses, and the time-wise resolution
and responsiveness required of the overall DoS HT monitoring
system. Each time the software-based module is run it creates a
KDE model from the run-time latency data for each transaction
category over the previous time interval. The J-S distance
between the instantaneous KDE and the baseline KDE is then
computed and used to assess the similarity between the cur-
rent DRAM latency distribution and the baseline distribution
obtained from pre-deployment data (or from previous trusted

run-time data). Any significant discrepancy between the two
KDEs may indicate a potential DoS HT attack.

Fig. 6: The implementation of the proposed technique in real-
life systems

VI. DETECTION OF DOS HTS

For an analysis of the DRAM latency behaviour when the
DRAM is infected with a DoS HT, the data obtained from
simulating the HTs in table I was used in training KDE
models and comparing those KDEs with the baseline ones
(obtained from HT-free simulations) using the Jensen-Shannon
distance. Before discussing the results of this comparison, it
is fundamental to explain how those HTs were introduced
to our experimental setup. In particular, an integer multiplier
was used to vary the value of the “notification delay” variable
that is used in DRAMSys when calculating the time needed
to forward transactions from the arbiter to scheduler and the
time needed to release transactions from the DRAM controller.
Doing so added delays to DRAM transactions, extending
their latencies. These additional delays served as a proxy for
expected DoS HT behavior. Figure 7 shows the J-S distance
between the HT-KDEs and baseline-training KDEs for the
20 most populated categories. The J-S distances between the
evaluation data with inserted HS proxy behavior and the
baseline allow each type of HT to be identified by its selective
impact on each category of transaction. For example, the J-S
distances obtained from HT C are the ones that most divert



from the baseline J-S distances, conforming with the fact that
HT C is the one with the greatest latency-extending action that
affects all types of transactions. Whereas, the J-S distances
obtained from HT B, which targets only read transactions,
don’t show large discrepancies from the baseline case for
categories concerned only with write transactions.

Fig. 7: The J-S distance between the training KDEs and the
testing KDEs, in normal conditions and HT conditions

VII. CONCLUSION

The inherent variability in DRAM operation has been iden-
tified as a hindrance to proper characterization and analysis
of DRAM latency. Several publications introduced techniques
to address this issue, with the main aim of introducing more
efficient refresh mechanisms or detecting DRAM failures. In
our work, we focus on an unexplored aspect of the variability
in DRAM latency and introduce a hypothesis on the possibility
of using this variability in obfuscating attacks on DRAM,
and specifically, denial-of-service hardware Trojan attacks.
Through experimental verification we test this hypothesis and
show that it is possible to hide the actions of DoS HTs in
the unpredictability of DRAM latency, and consequently, we
propose a Kernel Density Estimation based run-time technique
to characterize the distribution of latencies partitioned into
categories according to DRAM access patterns and loading
conditions. This facilitates the potential detection of DoS HTs
through continuous statistical comparison between a set of
real-time distributions of DRAM latency and a set of baseline
distributions. Basing our technique on externally observable
features, such as the type of DRAM transaction and the work-
load, instead of internal factors such as the refresh mechanism
and DRAM cell retention rate, allows it to be applied to all
types of DRAMs including untrusted third party DRAMs. Our
paper is to our knowledge, the first to investigate the possibility
of using the variable DRAM latency in obfuscating DoS HT
attacks, and to develop a generic framework to characterize
this variable latency using machine-learning techniques.

REFERENCES

[1] R. S. Chakraborty, S. Narasimhan and S. Bhunia, ”Hardware Trojan:
Threats and emerging solutions,” 2009 IEEE International High Level
Design Validation and Test Workshop, 2009, pp. 166-171.

[2] B. Hopkins, J. Shield and C. North, ”Redirecting DRAM memory
pages: Examining the threat of system memory Hardware Trojans,” 2016
IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), 2016, pp. 197-202.

[3] K.Nagarajan, A.De,M.N.I. Khan, and S. Ghosh, “Trapped:DRAM trojan
designs for information leakage and fault injection attacks,”ArXiv,vol.
abs/2001.00856, 2020.

[4] T. Hoque, X. Wang, A. Basak, R. Karam and S. Bhunia, ”Hardware
Trojan attacks in embedded memory,” 2018 IEEE 36th VLSI Test
Symposium (VTS), 2018, pp.1-6.

[5] M.N. Imtiaz Khan, K. Nagarajan and S. Ghosh, ”Hardware Trojans in
Emerging Non-Volatile Memories,” 2019 Design, Automation & Test in
Europe Conference Exhibition (DATE), 2019, pp. 396-401.

[6] K.K. Chang, A. Kashyap,H. Hassan, S. Ghose, K. Hsieh, D. Lee,T.
Li, G. Pekhimenko, S. Khan, and O. Mutlu, “Understanding latency
variation in modern DRAM chips: Experimental characterization, anal-
ysis,and optimization,” in Proc. 2016 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Science (SIG-
METRICS ’16), New York, NY, USA: ACM, 2016, pp. 323–336.

[7] A. Das, H. Hassan and O. Mutlu, ”VRL-DRAM: Improving DRAM Per-
formance via Variable Refresh Latency,” 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018, pp. 1-6.

[8] I. Giurgiu, J. Szabo, D. Wiesmann, and J. Bird, “Predicting
DRAMreliability in the field with machine learning,” in Proc. 18th
ACM/IFIP/USENIX Middleware Conference: Industrial Track, (Middle-
ware ’17). New York, NY, USA, ACM, 2017, p.15–21.

[9] E. Baseman et al., ”Improving DRAM Fault Characterization through
Machine Learning,” 2016 46th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks Workshop (DSN-W), 2016,
pp. 250-253.

[10] E. Baseman et al., ”Physics-Informed Machine Learning for DRAM
Error Modeling,” 2018 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2018,
pp. 1-6.

[11] L. Mukhanov, K. Tovletoglou, H. Vandierendonck, D. S. Nikolopoulos
and G. Karakonstantis, ”Workload-Aware DRAM Error Prediction using
Machine Learning,” 2019 IEEE International Symposium on Workload
Characterization (IISWC), 2019, pp. 106-118.

[12] M. Hassan, ”On the Off-Chip Memory Latency of Real-Time Systems: Is
DDR DRAM Really the Best Option?,” 2018 IEEE Real-Time Systems
Symposium (RTSS), 2018, pp. 495-505.

[13] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,J.
Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,M.
Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,
”SIGARCH Comput. Archit. News, vol. 39, no. 2, Aug 2011, pp. 1–7.

[14] M. Jung, C. Weis, N. Wehn, and K. Chandrasekar, “TLM modelling
of 3D stacked wide I/O DRAM subsystems: A virtual platform for
memory controller design space exploration,” in Proc. 2013 Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools
(RAPIDO ’13), New York, NY, USA, ACM, 2013.

[15] M. Jung, C. Weis, and N. Wehn, “DRAMsys: A flexible DRAM
subsystem design space exploration framework,” IPSJ Transactions on
System LSI Design Methodology, vol. 8, pp. 63–74, 2015.

[16] L. Steiner, M. Jung, F. S. Prado, K. Bykov, and N. Wehn, “DRAMsys
4.0: A fast and cycle-accurate Systemc/TLM-based DRAM simulator,”
Embedded Computer Systems: Architectures, Modeling, and Simulation,
A. Orailoglu, M. Jung, and M. Reichenbach, eds., Springer International
Publishing, 2020, pp. 110–126.

[17] L.-N. Pouchetet al., “Polybench: The polyhedral benchmark suite,
”URL: http://www.cs.ucla.edu/pouchet/software/polybench, vol. 437,
2012.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O.Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, 2011, pp. 2825–2830.

[19] A. Basak, S. Bhunia, and S. Ray, “A flexible architecture for systematic
implementation of SoC security policies,” in 2015 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), 2015, pp.
536–543.

[20] H. Salem and N. Topham, ”Trustworthy computing on untrustworthy
and Trojan-infected on-chip interconnects,” 2021 IEEE European Test
Symposium (ETS), 2021, pp. 1-2.


