272,518 research outputs found

    Development of drive mechanism for an oscillating airfoil

    Get PDF
    The design and development of an in-draft wind tunnel test section which will be used to study the dynamic stall of airfoils oscillating in pitch is described. The hardware developed comprises a spanned airfoil between schleiren windows, a four bar linkage, flywheels, a drive system and a test section structure

    Engineering analysis and test results of the pre-stage planetary gear trains for wrist rotation and pitch assembly and azimuth and elevation assembly of the extendable stiff arm manipulator kit assembly

    Get PDF
    In order to improve the performance capability of the Extendable Stiff Arm Manipulator (ESAM) it was necessary to increase the overall gear ratio by a factor of approximately four. This is accomplished with minimum effect to existing hardware by the interposition of a planetary gear transmission between the respective drive motors and the harmonic drive transmissions. The engineering analysis in support of this design approach and the subsequent no-load test results are reported

    Permanent-Magnet Motors and Generators for Aircraft

    Get PDF
    Electric motors and generators that use permarotating machinery, but aspects of control and power conditioning are also considered. The discussion is structured around three basic areas: rotating machine design considerations presents various configuration and material options, generator applications provides insight into utilization areas and shows actual hardware and test results, and motor applications provides the same type of information for drive systems

    Integration of a mean-torque diesel engine model into a hardware-in-the-loop shipboard network simulation using lambda tuning

    Get PDF
    This study describes the creation of a hardware-in-the-loop (HIL) environment for use in evaluating network architecture, control concepts and equipment for use within marine electrical systems. The environment allows a scaled hardware network to be connected to a simulation of a multi-megawatt marine diesel prime mover, coupled via a synchronous generator. This allows All-Electric marine scenarios to be investigated without large-scale hardware trials. The method of closing the loop between simulation and hardware is described, with particular reference to the control of the laboratory synchronous machine, which represents the simulated generator(s). The fidelity of the HIL simulation is progressively improved in this study. First, a faster and more powerful field drive is implemented to improve voltage tracking. Second, the phase tracking is improved by using two nested proportional–integral–derivative–acceleration controllers for torque control, tuned using lambda tuning. The HIL environment is tested using a scenario involving a large constant-power load step. This provides a very severe test of the HIL environment, and also reveals the potentially adverse effects of constant-power loads within marine power systems

    Simulation of an open-loop stepping motor system

    Get PDF
    This report presents a description and functional model of a hybrid stepping motor drive system. The motor drive methods of fullstepping and backstepping are presented as examples. Test methods for system characterization are described, and response characteristics for the simulated and experimental results are compared to verify the model. This paper shows that an open-loop stepping motor drive system can be accurately simulated to predict real hardware performance

    Development of Drive Control Strategy for Front-and-Rear-Motor-Drive Electric Vehicle (FRMDEV)

    Full text link
    In order to achieve both high-efficiency drive and low-jerk mode switch in FRMDEVs, a drive control strategy is proposed, consisting of top-layer torque distribution aimed at optimal efficiency and low-layer coordination control improving mode-switch jerk. First, with the use of the off-line particle swarm optimization algorithm (PSOA), the optimal switching boundary between single-motor-drive mode (SMDM) and dual-motor drive mode (DMDM) was modelled and a real-time torque distribution model based on the radial basis function (RBF) was created to achieve the optimal torque distribution. Then, referring to the dynamic characteristics of mode switch tested on a dual-motor test bench, a torque coordination strategy by controlling the variation rate of the torque distribution coefficient during the mode-switch process was developed. Finally, based on a hardware-in-loop (HIL) test platform and an FRMDEV, the proposed drive control strategy was verified. The test results show that both drive economy and comfort were improved significantly by the use of the developed drive control strategy

    Development of the CLAES instrument aperture door system

    Get PDF
    The design, assembly, and test processes followed in developing a space-qualified aperture door system are described. A blackbody calibration source is mounted inside the door, requiring the assembly to open and close a minimum of 150 cycles for instrument recalibration. Within the door system are four separate mechanisms, three of which are redundant; a pyro launch latch, a hinge bearing assembly, and a pair of pivot mechanisms. Decoupling devices within the pivot mechanisms allow an active drive unit to automatically overdrive a failed drive unit. The door is also stowable for possible Shuttle retrieval and re-entry. Illustrations and photographs of the flight hardware help acquaint the reader with the design. The aim is to pass on lessons learned in all phases of developing this spaceflight mechanism

    International Space Station alpha remote manipulator system workstation controls test report

    Get PDF
    Previous development testing for the space station remote manipulator system workstation controls determined the need for hardware controls for the emergency stop, brakes on/off, and some camera functions. This report documents the results of an evaluation to further determine control implementation requirements, requested by the Canadian Space Agency (CSA), to close outstanding review item discrepancies. This test was conducted at the Johnson Space Center's Space Station Mockup and Trainer Facility in Houston, Texas, with nine NASA astronauts and one CSA astronaut as operators. This test evaluated camera iris and focus, back-up drive, latching end effector release, and autosequence controls using several types of hardware and software implementations. Recommendations resulting from the testing included providing guarded hardware buttons to prevent accidental actuation, providing autosequence controls and back-up drive controls on a dedicated hardware control panel, and that 'latch on/latch off', or on-screen software, controls not be considered. Generally, the operators preferred hardware controls although other control implementations were acceptable. The results of this evaluation will be used along with further testing to define specific requirements for the workstation design

    Inter-spikes-intervals exponential and gamma distributions study of neuron firing rate for SVITE motor control model on FPGA

    Get PDF
    This paper presents a statistical study on a neuro-inspired spike-based implementation of the Vector-Integration-To-End-Point motor controller (SVITE) and compares its deterministic neuron-model stream of spikes with a proposed modification that converts the model, and thus the controller, in a Poisson like spike stream distribution. A set of hardware pseudo-random numbers generators, based on a Linear Feedback Shift Register (LFSR), have been introduced in the neuron-model so that they reach a closer biological neuron behavior. To validate the new neuron-model behavior a comparison between the Inter-Spikes-Interval empirical data and the Exponential and Gamma distributions has been carried out using the Kolmogorov–Smirnoff test. An in-hardware validation of the controller has been performed in a Spartan6 FPGA to drive directly with spikes DC motors from robotics to study the behavior and viability of the modified controller with random components. The results show that the original deterministic spikes distribution of the controller blocks can be swapped with Poisson distributions using 30-bit LFSRs. The comparative between the usable controlling signals such as the trajectory and the speed profile using a deterministic and the new controller show a standard deviation of 11.53 spikes/s and 3.86 spikes/s respectively. These rates do not affect our system because, within Pulse Frequency Modulation, in order to drive the motors, time length can be fixed to spread the spikes. Tuning this value, the slow rates could be filtered by the motor. Therefore, this SVITE neuro-inspired controller can be integrated within complex neuromorphic architectures with Poisson-like neurons
    • …
    corecore