
Inter-spikes-intervals exponential and gamma distributions study
of neuron firing rate for SVITE motor control model on FPGA

Fernando Pérez-Peña a, Arturo Morgado-Estévez a, Alejandro Linares-Barranco b
a Computer Architecture and Technology Area, Universidad de Cádiz, School of Engineering, Calle Chile, 1, Cadiz 11002, Spain
b Robotic and Technology of Computers Lab (RTC), Universidad de Sevilla, ETSI Informática, Avd. Reina Mercedes s/n, Seville 41012, Spain

Keywords:
Bio-inspired
Neuro-inspired
AER
LFSR
Poisson
FPGA

a b s t r a c t

This paper presents a statistical study on a neuro-inspired spike-based implementation of the Vector-
Integration-To-End-Point motor controller (SVITE) and compares its deterministic neuron-model stream
of spikes with a proposed modification that converts the model, and thus the controller, in a Poisson like
spike stream distribution. A set of hardware pseudo-random numbers generators, based on a Linear
Feedback Shift Register (LFSR), have been introduced in the neuron-model so that they reach a closer
biological neuron behavior. To validate the new neuron-model behavior a comparison between the Inter-
Spikes-Interval empirical data and the Exponential and Gamma distributions has been carried out using
the Kolmogorov–Smirnoff test. An in-hardware validation of the controller has been performed in a
Spartan6 FPGA to drive directly with spikes DC motors from robotics to study the behavior and viability
of the modified controller with random components.

The results show that the original deterministic spikes distribution of the controller blocks can be
swapped with Poisson distributions using 30-bit LFSRs. The comparative between the usable controlling
signals such as the trajectory and the speed profile using a deterministic and the new controller show a
standard deviation of 11.53 spikes/s and 3.86 spikes/s respectively. These rates do not affect our system
because, within Pulse Frequency Modulation, in order to drive the motors, time length can be fixed to
spread the spikes. Tuning this value, the slow rates could be filtered by the motor. Therefore, this SVITE
neuro-inspired controller can be integrated within complex neuromorphic architectures with Poisson-
like neurons.

1. Introduction

The main goal of the neuromorphic engineering research field is
to develop hardware devices based on the principles of the human
nervous system [1]. The term “Neuromorphic Engineering” was first
coined by Caver Mead in the late eighties [2]. He started mimicking
the behavior of neuron cells by using Very-Large-Scale-Integration
(VLSI) chips. Then, Sivilotti [3] defined the commu-nication protocol
to be used between those devices: Address Event Representation
(AER). AER enables the communication of thou-sands of neurons
from one chip to another. Within AER, each neuron is given an
address to identify along the architecture. All the devices were
expected to be connected with that AER bus.

The most popular options to implement the end neuromorphic
devices into hardware are these three: the use of a full custom VLSI
design application-specific integrated circuit (ASIC) [4], a Field

Programmable Gate Array (FPGA) [5,6] or a Field-Programmable
Analog Array (FPAA) [7]. Up to these days, many neuron models [8],
large scale architectures [9] and sensory devices such as vision [10]
or cochlea sensors [11] have been developed. However, the chal-
lenge today is to bridge the gap between sensors and large
architectures to reach an accurate spiking motor control.

An FPGA design based on neurons known as Integrate and
Generate (I&G) which is described in [12] was used in this study.
I&G neuron includes one pre and postsynaptic connection and an
integrator which computes the ongoing spikes. It models the
activity level of the neuron; its firing rate depends on the
integrated value. In its basic model, the integrated value is updated
for each incoming spike by an increment or a decrement of the
membrane potential (MP), modeled by a counter, depending of the
polarity of the received spike. If the spike is positive MP is
incremented, but it is decremented when the spike is negative.
Current MP is continuously translated into an output stream of
spikes. The distribution of these output stream is deterministic in
the basic model, but it can be easily modified to obtain new
distributions. This model is similar to LIF model but it allows
to modify the distribution over time of the outgoing spikes.

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.08.024
http://dx.doi.org/10.1016/j.neucom.2014.08.024
http://dx.doi.org/10.1016/j.neucom.2014.08.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.024&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.024&domain=pdf
mailto:fernandoperez.pena@uca.es
mailto:arturo.morgado@uca.es
mailto:alinares@atc.us.es
http://dx.doi.org/10.1016/j.neucom.2014.08.024

The behavior is currently described in VHDL and implemented for
FPGA. This model has a completely deterministic output firing rate
(Eq. 4), without any random component, which fits with the aim of
spike based motor controlling [13].

In principle, for motor controlling it does not seem feasible to
have random spikes distributions inside the controller. However,
in this paper we present a study where pseudo-random distribu-
tions of spikes have replaced deterministic ones in the motor
controller. Statistical models are presented and the results show
that random distributions can be used for spike-based motor
control.

There are in-vivo experiments that show variability at the firing
rate pattern if a constant stimulus is presented within different
tests at different times [14]. This behavior is extremely proble-
matic if the current trend is to match the neuron response per
each stimulus presented to elaborate a map between stimuli and
firing patterns. Regarding this view, [15] points out that if the
stimulus presented is fluctuating, the neuron will produce a
precise spike timing response.

For a deterministic spike distribution motor controller, if we
consider this controller as an isolated part of the architecture,
there would not be any noisy or random spikes. However, if we
consider this controller as part of large neuromorphic architec-
tures, we must face these different possible distributions of spikes
and try to minimize their effects or at least predict the behavior of
the motor controller and act in accordance with them.

The next paragraphs include a review on the current spike-
based neuro-inspired motor controller.

The neurocontroller used in this study for deterministic beha-
vior is presented in [13]. It is based on an algorithm proposed by
Professor Grossberg [16], the Vector Integration To-End Point
(VITE). It was translated into the spikes paradigm by using existing
building blocks in the literature [17,18]. The block diagram is
shown in Fig. 1, where a digital reference signal is converted into
spikes (Spikes Generator). These spikes arrive to a Hold&Fire block,
which is in charge of subtracting those spikes coming from the
motor behavior from this reference translated into a spike stream.
The resulting spike stream is low pass filtered by a spike-based
low pass filter (Spikes LPF) block. Then, a special GO block is used
to enable and speed up the movement. Finally, another spike-
based low-pass filter and an Integrate and Generate neuron (I&G)
offer a final uniformly distributed spike stream output, as
explained deeply in [13]. It must be pointed out that there are
two signals available for motor control: the one at the output of
the second LPF that represents the speed profile, or the one at the
output of the last block (I&G), which is the commanded position to
reach. It will depend on the desired parameter to be controlled
(speed of a motor or position of a robotic joint). Another important
point is the GO block; it triggers the movement and allows
controlling the speed. It injects spikes according to a growing rate
fixed with time (like the slope of a ramp). The behavior of this GO
block evidences the dependence of the firing rate with time.

As described in Ref. [17], and shown in Fig. 2, each LPF block is
composed by an I&G block with a feed-back loop using another

H&F block. In such a configuration, the Laplace transfer function of
the system correspond to a low-pass-filter.

The advantages of this neuro-inspired controller are that it is
very efficient regarding power and hardware resources consump-
tion (3.4 W and 2.5% of the FPGA1 respectively) and it uses only
five neurons. It can also be replicated: one Spike-based VITE for
each motor or degree of freedom you want to control.

In contrast, the disadvantages are that it applies an open-loop
control. Thereby, the problem of motor inertia is present and this
could be a mismatch between the order commanded and the
position reached. Both issues are being solved within the ongoing
research.

However, the main advantage of the neuro-motor-controller is
that it uses the spikes to drive the motors. There are many
modulation protocols to control the motors, though the most used
one is the Pulse Width Modulation (PWM). In our research, and in
this study, we used the Pulse Frequency Modulation (PFM), where
pulses transmitted to the motor always have the same width, but
the frequency will be the parameter, in order to achieve an
accurate control.

This way of motor control seems to be the most neuro-inspired
one because it is possible to deliver the spikes directly to the
motors. Neither computation nor translation is necessary to have
motion; this can be achieved just by extending the time length, to
the fixed quantity, in order to avoid the spike filter of the motor
(this is the reason for including the upper “Spike Expander” block
at the block diagram of Fig. 1).Considering a digital clock frequency
of 50 MHz, the pulses will last 20 ns with a rate that could be up to
mega events per second. This time length and rates have to be
adapted before going into the power stage of a DC motor. The
power stage fixes the maximum switching frequency and the
motor fixes the minimum according to their response. Thus, in
theory, the entire system should produce spikes within this range,
which will change within each motor.

This method has been established for a low level control of DC
motors without delay from the new motor command from the
controller to the actuation to the motor. Otherwise with Pulse-
Width-Modulation (PWM) for DC motor actuation, or using
servomotors, the actuating signal send to the motor/servo has a

Fig. 1. Block diagram of the neurocontroller where the Spike-based Vector Integration To-End Point (SVITE) algorithm is included. All the information flows as spikes.
The Hold & Fire block computes the subtraction of two spike streams: current commanded position and target position (reference in spike domain). Green blocks represent
where pseudo-random behavior has been included using LFSR. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 2. Spikes Low-Pass-Filter decomposition into I&G neuron and its Laplace
Transfer function [17]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article).

1 The FPGA selected is from Spartan 6 family; device XC6S150LX with 23,038
slices.

fixed period in the order of 20 ms, so we should integrate the
output spikes of the neuro-motor controller during a fixed time
(those 20 ms) before actuating. Therefore, you were setting a delay
from the side of the controller in the system. This delay can have
some side effects as over dumped responses [12].

Once the controller is defined, we now propose how we can
include the random components inside the blocks of the algorithm
to get closer to a more realistic model or at least how they can be
included as the edge of large neuromorphic architectures.

As we used deterministic firing patterns, if we include some
random elements to enforce the variability at the firing rates, we
need to manage the expected spike signal. Several previous studies
established that neuron firing rates can often be modeled by a
homogeneous Poisson distribution [19,20]. In such kind of process,
the average firing rate is constant over time and its times between
spikes fit in an exponential distribution. A Poisson distribution is
described by the following formula:

Pnðt ¼ TÞ ¼ ðλTÞn
n!

eλT ð1Þ

However, that homogeneous Poisson process is at the front line
of our case, in which the algorithm injects spikes in a time
dependent manner [15] and a feedback is included. For these
cases, there are two options: an inhomogeneous Poisson process
where the firing rate varies with time or a renewal process where
also time dependence with only the previous spike fired is
included [19]. Looking through the inter spike interval, it should
follow an exponential or gamma distribution, respectively (2) and
(3). We present a methodology to check this.

f ðxÞ ¼ λe� λx ð2Þ

f ðxÞ ¼ βαxα�1e�βx

ΓðαÞ ð3Þ

The rest of the paper is structured as follows: In the methodol-
ogy section, the hardware implementation is briefly explained and
the tests performed are exhaustively described. Then, the results
and discussion section shows and discusses the results obtained.
Finally, the conclusion section sets up the novelties and advan-
tages shown in this study.

2. Methodology

2.1. Introduction

Two methodologies were used: (1) a statistical hypothesis test
to check if the inter spike interval (ISI) of the information-carrying
signals could be fitted into any well-known and largely studied
neuronal distributions like gamma or exponential [19,20]; and
(2) a comparison between the signals used for motor controlling
[15] to check how long they can be used for their original purpose:
motor controlling.

The base line is set as the SVITE algorithm running within a
robotic platform [15] shown in Fig. 1. As long as the algorithm uses
only deterministic neurons, it is necessary to include random
components [21] to reach different behaviors along the tests.

2.2. Setup components: hardware

The algorithm was implemented using the AER Node board.
This board includes a Xilinx Spartan-6 LXT 1500 FPGA. It was
developed by RTC lab under the VULCANO project2 and it allows

high speed serial AER communications over Rocket IO transcei-
vers, and adaptation to particular scenarios through daughter
boards connected on the top. For these tests, the setup includes
a daughter board with an USB microcontroller that communicates
with the FPGA over Serial Peripheral Interface (SPI). This interface
is used to send the parameters needed for each block [12] and to
manage the tests.

This main board also runs a massive spikes monitor [22] that
addresses each block of the algorithm and does the handshake to
communicate, using the AER protocol, with a monitor board [23].
The monitor board receives the spikes and allows them to be
processed by the computer using jAER [24] or MATLAB.

2.3. Running tests

Once the system with pseud-random behavior is implemented
on the Spartan 6 board, a PC with MATLAB is used to deliver the
target position to the algorithm. This position can arrive to the
controller in the form of AER coming from a PC or from an
hardware AER visual system (cortex inspired) [25]. It is a spatial
coordinate, for instance, x¼5 (we used only one dimension,
although it can be replicated to control more complex robotic
structures by replicating one SVITE motor-controller per joint in
the robot).

This coordinate is feed into the “Spikes Generator” (first block
on the left in Fig. 1) and it plays the role of reference. A spike
stream is then produced by this block for stimulating the whole
controller. The firing behavior produced here is very important
since it will determine the spike distribution. Original firing rate
(using a deterministic “Spikes Generator” [26]) is described by
Eq. (4),

r¼ f CLK
2NBITS� 1 � input ð4Þ

where fCLK is the clock frequency (50 MHz in our tests), NBITS is
the amount of bits used to implement the internal spikes counter
of the “Spikes Generator” and input is the parameter received
through the SPI interface (16 bits). For this clock frequency we
define as time bin the period of the clock (20 ns) as the minimum
update period for neurons’ state.

The output of this block has a constant firing rate for a fixed
input reference. Thus, this was the main block to be modified in
order to include a non-deterministic behavior. The other green
blocks of Fig. 1 must also be modified because they include a firing
element like the Integrate and Generate (I&G) or LPF block. The
firing pattern of these blocks is the same as Eq. (4), but input
becomes the spikes fired by the previous block.

So, to modify that behavior, we have included a linear feedback
shift register (LFSR) for both: “Spikes Generator” and I&G. This
component, with the proper XOR feedback, generates a uniform
sequence of different pseudo-random values within a range that
depends on the number of bits used to implement it. Once all the
possible numbers have been generated, this LFSR will repeat the
same random sequence over and over again. Also, a time-slice or
bin to trigger the output can be configured. With this component,
the probability to fire a spike at T will be:

P ðspike¼ 1jTÞ ¼ input

2NBITSLFSR �1
ð5Þ

Some specific details depend on the type of block

a. Spikes Generator
When the time bin is reached the value from the LFSR will be
compared with the reference and only if it is lower, the block
will fire a spike. Usually, the digital input reference for the
spikes generation has 16 bits, so we took this initial number of

2 VULCANO Project: Ultra-Fast Frame-less Vision by Events. Application to
Automation and Anthropomorphic Cognitive Robotics. (TEC 2009-10639-C04-02).

bits to build the LFSR register. From Eq. (5), one can see that
there is an inversely proportional relationship between the
reference (input) and the number of bits of the LFSR (NBITSLFSR).
A trade-off should be reached. Later on we will measure
different behaviors for different LFSR lengths.

b. Integrate & Generate (I&G)
In this case, the comparison with LFSR will be made with the
number of spikes counted and only if it is lower, the block will
fire a spike.

If we consider Eq. (5) and the algorithm architecture, one can
see that if we fix the same LFSR register for each I&G neuron
included at the algorithm (one at each spikes low-pass-filter and
last I&G), the firing rate will decrease along the blocks because the
events (firing a spike) are not independent from the previous one,
it is a conditional probability. Furthermore, we have to manage an
adequate amount of spikes to allow the motors to run. To reach
this behavior, we considered a gradual increase of the LFSR
resolution which provokes higher rates of spikes for the useful
signals.

2.4. Data processing

At the end of the tests, we have a set of firing rates or spike
signals belonging to each block of Fig. 1 for all the combinations
performed. First, they are split and each inter spike interval (ISI) is
calculated. Second, for each ISI, we get the empirical cumulative
distribution function (CDF) that can be compared with the ideal
distribution’s CDF. This is the first comparison, the CDF plotted one.

On the other hand, the second comparison is carried out with
the Kolmogorov–Smirnov test (KS test) and chi-square test to
validate the distribution fitness. We have applied this test to
compare how well the observed distribution of ISIs follows the
theoretical exponential and gamma distributions. These tests give
the p-value that allows rejecting or not the null hypothesis.
We have considered a p-value between 0.05 and 0.1 as reasonable
and above 0.1 to accept the hypothesis. Additionally, if the
statistical test result is below 5% one can assume that the sample
data fitness is good enough. All these statistical studies were
conducted using the Statgraphics Centurion software package.

We performed these two comparisons because the K–S test
does not show a good performance at Null-hypothesis and p-value
when the CDF for the theoretical distribution is made up from

empirical data [27]. In such cases, the K–S is an alternative statistic
available in the test results. It shows the biggest difference
between both distributions. Furthermore, with this value and the
plotting comparison, a right conclusion can be drawn.

In view of this comparison, it cannot be forgotten that these
signals are used for motor control purposes. Therefore, for each
modification done to include the random element, we must check
if the motor controller performance and accuracy are not lost.

3. Results and discussion

All the results shown in this section were measured on real
hardware. There are no simulation results.

3.1. Spikes Generator

If we were considering a bigger time bin, i.e., 0.1 ms, instead of
the agreed 20 ns, we would only have an average of 67.4 spikes/s
with the maximum digital input reference of 7000 and 20 bits
LFSR to reach good distribution fitness for the “Spikes Generator”.
Therefore the time bin has been fixed to 20 ns. Fig. 3 shows the
relation between the digital input references, the size (bits) used
for the LFSR register and the goodness of fit for a gamma or
exponential distribution for the “Spikes Generator”, first block of
the control model.

Fig. 3 shows that for small sizes of the LFSR register (such as
from 16 to 20 bits), the results of the test are far from the statistical
threshold of 5%. If a deterministic source were used, the KS
minimum values would be 0.6321 and 0.5243 for the Exponential
and Gamma distributions respectively. As the size increases,
the results improve. Besides, the higher the reference, the higher
the spike rate, and so, the better the result. That matches the
probability definition we made in Eq. (5). So, in order to make a
decision onwhich value should be selected, we are going to look at
the p-value for each approach.

From the point of view of the Kolmogorov–Smirnoff test, the
best approximation is got with a 30-bit LFSR, for a Gamma
distribution. Looking through the statistical analysis, the p-value
also indicates that the best fitness was obtained for the Gamma
approach (Table 1) and for a 30-bit LFSR. One can think that an
Exponential approach is more accurate, because it involves a
Poisson process since there is a time independent probability

Fig. 3. 3D representation of the KS-value for the gamma and exponential distributions. The red plane is fixed at 0.05 (threshold of the K–S test: passed if the value is below
the threshold). The green surface represents the Exponential approach and the blue surface represents the Gamma one. It can be observed that for LFSR resolutions of 24, 26
and 30 bits the test is passed for both approaches (the red plane is visible). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article).

definition for each event (spike in our case). However, the results
show that the value produced by the LFSR register is not purely
random, but pseudo-random. Therefore, both approaches are quite
similar, as shown in Fig. 3. The final decision is to take a 30-bit
LFSR based on the p-value and KS statistical value. Fig. 4 shows
also the accuracy for a 24-bit LFSR.

If we go across the table and compute the average value, it results
in 0.16 for Exponential and 0.22 for Gamma, for 30 bits value. For 24
and 26 bits, the average p-value does not reach 0.01. Looking at
columns where the average firing rate is shown, one can see that
for 24 bits there are bigger differences between the gamma and
exponential approaches and if LFSR size is higher, the differences are
lower, reaching at 30 bits value nearly the same rates.

Considering a 30-bit LFSR register, there is a linear relationship
between the reference delivered to the block and the output firing
rate for the Gamma approach. The maximum firing rate within a
16 bit width reference (65535) is 1.5 K spikes/s.

With the “Spikes Generator” characterized, it is time to use
it inside the neuro-motor controller, study the behavior and
compare it with the previous deterministic one. Fig. 5 shows the

output signals for each block of the algorithm (blue lines). It can be
observed that if we are using a random source, the commanded
signal does follow the input signal multiplied by 2. That is the
reason why there are three different representations in the graph.
Eventually, it is possible to use a random “Spikes Generator” to
provide the reference to the algorithm.

3.2. Integrate and generate (I&G)

We have started using the same LFSR for each I&G neuron.
Fig. 6 shows the KS-values for the useful blocks from the motor
control point of view, that is the speed profile signal and the
commanded position signal. It is demonstrated that adding the
same LFSR to all the neurons is not a good option; Fig. 7 shows
how the algorithm goes into a non-stable situation and starts
oscillating around the goal; eventually, the goal is not reached. The
reason for this is that with such a small number of spikes flowing
across the algorithm, the inhibited connections (understood as
spikes which decrease the integrated value) can have higher and
so damaging effects on the whole algorithm. The response of some

Table 1
P-value and average firing rate for the exponential and gamma approaches when the LFSR is implemented with 24, 26 and 30 bits.

Ref. p-value (exp) p-value (gamma) Average(exp) [spikes/s] Average(gamma) [spikes/s]

24 Bits 26 Bits 30 Bits 24 Bits 26 Bits 30 Bits 24 Bits 26 Bits 30 Bits 24 Bits 26 Bits 30 Bits

100 0 0 0.219638 0 0 0.258212 50.57 37.25 2.33 130.47 32.2 3.03
300 0 0 0.316934 0 4.69E-08 0.314826 447.27 111.68 6.94 387.76 125.84 6.62
500 0 0 0.0539985 0 0 0.0239918 745.17 186.29 11.59 718.45 191.92 10.86
800 0 0 0.228294 0 0 0.0519524 1191.95 297.94 18.43 1201.62 300.08 17.15

1000 0 1.23361E-05 0.0189995 0 7.79468E-05 0.00416151 1487.61 372.81 23.32 1527.63 363.5 22.63
2000 0 5.30E-07 0.00278128 0 1.24587E-05 0.000501784 2978.14 745.2 46.55 3119.73 762.55 44.72
3000 0 0.0108252 0.223811 1.6556E-06 0.00204732 0.189354 4462.33 1118.03 69.86 4802.4 1102.85 69.42
4000 1.2414E-06 6.0598E-06 0.0162689 0.00267274 3.18256E-06 0.0587112 5940.60 1489.4 92.95 6422.73 1481.73 89.04
5000 1.7624E-05 0.000336263 0.441025 0.0012794 0.015823 0.8107 7435.44 1861.94 116.29 8013.46 1905.94 113.88
7000 0.00764807 0.00480427 0.134655 0.0197746 0.0138585 0.535872 10409.17 2605.19 163.02 10959.4 2668.41 159.20

ISI (s)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Cumulative distribution probability. Input 100

0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

ISI (s)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Cumulative distribution probability. Input 500

0 2 4 6 8
(X 0.001)

0

0.2

0.4

0.6

0.8

1

ISI (s)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Cumulative distribution probability. Input 2000

0 4 8 12 16 20 24
(X 0.0001)

0

0.2

0.4

0.6

0.8

1

ISI (s)

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Cumulative distribution probability. Input 7000

0 2 4 6 8
(X 0.0001)

0

0.2

0.4

0.6

0.8

1

Fig. 4. Cumulative distributions function for gamma and exponential approaches when a 24 bit LFSR and constant digital input reference values of 100, 500, 2000 and 7000.

neurons may start oscillating due to this negative contribution.
Also, it seems that if the GO block injects a large number of spikes,
those damaging effects will be amplified.

To increase the firing rates as it was defined in the methods, some
of the tested options have been: 10-15-20, 15-20-25 or 20-25-30 bit
LFSR (each LFSR of the triplets for each I&G component: both spike

low-pass-filters and last I&G block); other configurations do not
provoke any spikes at the useful signals (speed profile or position).
The obtained results open up discussions:

– The first two configurations do not pass the KS-test for any
digital reference or any useful signal. Therefore, although the

Fig. 5. Output signals of each block of the algorithm. They were obtained by integrating a fixed period of spikes in a similar way as the kernel density estimation [28]. Blue
lines represent the behavior used in the running neuro-motor-controller presented in [13] versus the random source, represented by red lines. The dotted red lines represent
a 50 spikes/s input reference and the solid red lines represent a 100 spikes/s input. The standard deviation calculated from comparing the sources was 7.4 spikes/s;
100 spikes/s for the speed profile and 3.86 spikes/s for the commanded position. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article).

Fig. 6. The yellow surface represents the plane for KS¼0.05. The green surface represents the KS-value for the gamma approach and the red surface represents the ks-value
for the exponential approach; both for the commanded position signal. The blue surface represents the ks-value for the exponential approach and the pink surface
represents the ks-value for the gamma approach; these two for the speed profile signal. As it is easy to see, none of the combinations passed the test, neither any of the
possibilities between the range (16, 32) bits for the LFSR got a p-value different from zero. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article).

Fig. 7. Output signals of each block of the algorithm. These signals are for a 25 bit LFSR register for all the neurons and 50 spikes/s as the input reference to the algorithm.

Fig. 8. Output signals of each block of the algorithm. The blue lines represent the entire deterministic algorithm and the red lines represent the one which includes the
random “Spikes Generator” and the 20-25-30 LFSR configuration. The average behavior is nearly the same. The standard deviation calculated from comparing the sources
was 21.38 spikes/s; 157 spikes/s for the speed profile and 11.53 spikes/s for the commanded position. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article).

signals nearly match the deterministic behavior, we cannot
predict them with any distribution.

– However, the last configuration (20-25-30) gives us a chance
because if we compare the signals behavior with the complete
deterministic situation, the result is an absolute equality
(Fig. 8). Thus, these signals (speed profile and command
position) are useful for motor control. But, can we predict
them? Do they follow any well-known distribution?

The statistical study states that position commanded signals
can be approximated by an exponential distribution for references
higher than 1600 (since 16 bits are used for the input, the range is
very large).

4. Conclusions

In this study, we assessed the effect of including a random
spike distribution in a neuro-inspired motor controller with the
aim of approaching to a pure neuron model, which is supposed to
have variations at its firing pattern between tests with the same
stimuli presented. Also, this random component could be seen as
it were generating some noisy spikes.

A Poisson “Spikes Generator” can be used to convert the digital
input reference into spikes for a neuro-inspired neuro-motor-
controller without losing accuracy. The key point is to correctly
match the digital input reference delivered to the block with the
desired firing rate produced. The spike timing of the source can be
predicted by a gamma or exponential approach.

In the results section, output motor control signals have quite a
considerable ripple. It means that a small number of spikes are
fired in a randomway above or below the average. These spikes do
not affect the system´s functionality; the motor will filter these
spikes and they will not provoke or disturb the motion. This is one
of the advantages of delivering spikes straightforward to the
motor: if there is any situation where there are some noisy spikes,
they will not provoke any movement.

It is reasonable to think that in a massively connected neuronal
network, one of these neurons with multiple pre-synaptic con-
nections belonging to different systems could reach its threshold
due to mixed contributions or noise and finally fire a spike. In such
case, this spike would not provoke any change in the system
because the surrounding neurons will ‘filter’ it or not reach their
threshold. In our neuro-inspired motor controller, there would not
be any action done if noisy or even deliberate spikes are fired;
again, the motor will filter them.

To sum up, this study showed that it is possible to include a
Poisson spike distribution as the input reference of the algorithm
and even a random component in all the neurons of the algorithm
without making disturbances on the final movement accuracy.
Besides, the position commanded signals produced will follow an
Exponential distribution for their ISI if all the firing blocks of the
algorithm are fine-tuned with a random element (20-25-30 bit
LFSRs configuration) and the motor controller works properly
with them.

References

[1] Janardan Misra, Indranil Saha, Artificial neural networks in hardware: a survey
of two decades of progress, Neurocomputing 74 (2010) 239–255.

[2] C. Mead, Analog VLSI and neural systems, Addison-Wesley, Reading, MA, 1989.

[3] M. Sivilotti, Wiring Considerations in Analog VLSI Systems with Application to
Field-Programmable Networks (Ph.D. Thesis), California Institute of Technology,
Pasadena, CA, USA, 1991.

[4] G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons
and bistable synapses with spike-timing dependent plasticity, IEEE Trans.
Neural Netw. 17 (1) (2006) 211–221.

[5] A. Cassidy, A.G. Andreou, J. Georgiou, Design of a one million neuron single
FPGA neuromorphic system for real-time multimodal scene analysis, in:
Proceedings of the 45th Annual Conference on Information Sciences and
Systems (CISS) 23–25 March, 2011 pp. 1–6.

[6] L.P. Maguire, et al., Challenges for large-scale implementations of spiking
neural networks on FPGAs, Neurocomputing 71 (2007) 13–29.

[7] M. Sekerli, R.J.Butera, An Implementation of a Simple Neuron Model in Field
Programmable Analog Arrays, in: Proceedings of the 26th Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society, San
Francisco, CA, USA, 1–5 September, 2004 pp. 4564–4567.

[8] Gerstner Wulfram, Werner M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity, Cambridge UniversityPress, 2002.

[9] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-
Vicente, F. Gómez-Rodríguez, L Camuñas-Mesa, et al., CAVIAR: A 45 k neuron,
5 M synapse, 12 G connects/s AER hardware sensory–processing–learning–
actuating system for high-speed visual object recognition and tracking, IEEE
Trans. Neural Netw. 20 (9) (2009) 1417–1438.

[10] E. Culurciello, R. Etienne-Cummings, K.A. Boahen, A biomorphic digital image
sensor, IEEE J. Solid State Circuits 38 (2003) 281–294.

[11] V. Chan, S.C. Liu, A Van Schaik, AER EAR: a matched silicon cochlea pair with
address event representation interface, IEEE Trans. Circuit Syst. 54 (1) (2006)
48–59.

[12] A. Jimenez-Fernandez, G. Jimenez-Moreno, A. Linares-Barranco,
M.J. Dominguez-Morales, R. Paz-Vicente, A. Civit-Balcells, A neuro-inspired
spike-based pid motor controller for multi-motor robots with low cost FPGAs,
Sensors 12 (2012) 3831–3856.

[13] F. Perez-Peña, A Morgado-Estevez, A. Linares-Barranco, A. Jimenez-Fernandez,
F. Gomez-Rodriguez, G. Jimenez-Moreno, J. Lopez-Coronado, Neuro-inspired
spike-based motion: from dynamic vision sensor to robot motor open-loop
control throughspike-VITE, Sensors 13 (2013) 15805–15832.

[14] Softky, R. William, C. Koch, The highly irregular firing of cortical cells is
inconsistent with temporal integration of random EPSPs, J. Neurosci. 13 (1)
(1993) 334–350.

[15] Z.F. Mainen, T.J. Sejnowski, Reliability of spike timing in neocortical neurons,
Science 268 (5216) (1995) 1503–1506.

[16] D. Bullock, S. Grossberg, Neural dynamics of planned arm movements:
emergent invariants and speed-accuracy properties during trajectory forma-
tion, Psychol. Rev. 95 (1988) 49–90.

[17] A. Jimenez-Fernandez, M. Domínguez-Morales, E. Cerezuela-Escudero,
R. Paz-Vicente, A. Linares-Barranco, G. Jimenez, Simulating building blocks
for spikes signals processing, in: Proceedings of the 11th International Work-
Conference on Artificial Neural Networks, Torremolinos-Málaga, Spain, 8–10
June, 2011 vol. 6692, pp. 548–556.

[18] F. Perez-Pena, A. Morgado-Estevez, C. Rioja-Del-Rio, A. Linares-Barranco,
A. Jimenez-Fernandez, J. Lopez-Coronado, J.L. Muñoz-Lozano, Towards AER
VITE: BuildingSpikeGate Signal, in: Proceedings of the 19th IEEE International
Conference on Electronics, Circuits, and Systems, Seville, Spain, 9–12 Decem-
ber, 2012 pp. 881–884.

[19] P. Dayan, L. Abbot, Theoretical Neuroscience, MIT Press, Cambridge, MA, 2001.
[20] F. Rieke, D. Worland, R. De Ruyter van Steveninck, W. Bialek, Spikes: Exploring

the Neural Code, MIT Press, Cambridge, 1999.
[21] A. Linares-Barranco, M. Oster, D. Cascado, G. Jiménez, A. Civit, B. Linares-

Barranco, Inter-spike-intervals analysis of AER Poisson-like generator hard-
ware, Neurocomputing 70 (16-18) (2007) 2692–2700.

[22] E. Cerezuela-Escudero, M.J. Dominguez-Morales, A. Jiménez-Fernández, R.
Paz-Vicente, A. Linares-Barranco, G. Jiménez-Moreno, Spikes Monitors for
FPGAs, an Experimental Comparative Study, in: Proceedings of the 12th
International Work-Conference on Artificial Neural Networks, Puerto de la
Cruz-Tenerife, Spain, 12–14 June, 2013 7902, 179–188.

[23] R. Berner, T. Delbruck, A. Civit-Balcells, et al., A 5 Meps $100 USB2.0 address-event
monitor-sequencer interface, in: Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS), New Orleans, LA, 2007 pp.2451–2454.

[24] jAER Open Source Project, URL: 〈http://jaer.wiki.sourceforge.net/〉, 2014
(accessed 24.01.14).

[25] F. Perez-Peña, A. Morgado-Estevez, T. Serrano-Gotarredona, F. Gómez-Rodríguez,
V. Ferrer-García, A. Jimenez- Fernandez, A. Linares-Barranco, Live demonstration:
spike-based vite control with dynamic vision sensor applied to an arm robot, in:
Proceedings of the IEEE International Symposium on Circuits and Systems
(ISCAS), Melbourne, AU, 2014.

[26] A. Linares-Barranco, G. Jimenez-Moreno, B. Linares-Barranco, A. Civit-Ballcels,
On algorithmic rate-coded AER generation, IEEE Trans. Neural Netw. 17 (3)
(2006) 771–788.

[27] Mathworks Documentation Center, URL: 〈http//www.mathworks.es〉, 2013
(accessed: 16.12.13).

[28] G. Sonja, S. Rotter, Analysis of parallel spike trains, Springer, 2010.

http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref1
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref1
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref2
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref3
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref3
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref3
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref4
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref4
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref4
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref5
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref5
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref6
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref6
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref7
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref7
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref7
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref7
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref7
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref7
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref7
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref7
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref8
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref8
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref9
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref9
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref9
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref10
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref10
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref10
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref10
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref11
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref11
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref11
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref11
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref12
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref12
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref12
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref13
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref13
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref14
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref14
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref14
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref15
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref16
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref16
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref900
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref900
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref900
http://www.jaer.wiki.sourceforge.net/
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref17
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref17
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref17
http://www.mathworks.es
http://refhub.elsevier.com/S0925-2312(14)01038-8/sbref18

	Inter-spikes-intervals exponential and gamma distributions study �of neuron firing rate for SVITE motor control model on...
	Introduction
	Methodology
	Introduction
	Setup components: hardware
	Running tests
	Data processing

	Results and discussion
	Spikes Generator
	Integrate and generate (I&G)

	Conclusions
	References

