3,071 research outputs found

    Automatic Segmentation of Exudates in Ocular Images using Ensembles of Aperture Filters and Logistic Regression

    Get PDF
    Hard and soft exudates are the main signs of diabetic macular edema (DME). The segmentation of both kinds of exudates generates valuable information not only for the diagnosis of DME, but also for treatment, which helps to avoid vision loss and blindness. In this paper, we propose a new algorithm for the automatic segmentation of exudates in ocular fundus images. The proposed algorithm is based on ensembles of aperture filters that detect exudate candidates and remove major blood vessels from the processed images. Then, logistic regression is used to classify each candidate as either exudate or non-exudate based on a vector of 31 features that characterize each potensial lesion. Finally, we tested the performance of the proposed algorithm using the images in the public HEI-MED database.Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación; EcuadorFil: Brun, Marcel. Universidad Nacional de Mar del Plata; ArgentinaFil: Ballarin, Virginia Laura. Universidad Nacional de Mar del Plata; Argentin

    Automatic segmentation of exudates in colour retinal fundus images

    Get PDF
    This work aims at the development of an algorithm that allows the automatic detection of exudates in retinal fundus images. The detection of exudates allows diabetic retinopathy (DR) to be diagnosed, consequently it is an important task for the control and the treatment of people suffering DR. In addition, an increase of 35\% of people suffering from diabetes is predicted and, therefore, of people who will suffer from DR in the coming years. As a result, an important burden for ophthalmologists will be expected. For all this, it's highly needed the development of an automatic system for the detection of exudates. Two different algorithms are proposed. Background subtraction to deal with uneven illumination and mathematical morphology operators are used for exudate location. Finally, dynamic thresholding is applied for exudate segmentation. In the first algorithm dynamic thresholding is combined with the Kirsch edge detector. In the second one, a template and morphological operators are used to differentiate bright elements from exudates is used. The methods have been validated in three public datasets named e-ophta-EX, HEI-MED and DiaretDB1. The first two datasets have been used to validated the algorithms both at lesion level and image-level. However, DiaretDB1 was only used to validate the algorithms at image-level due to its ground truth does not mark exact boundaries of exudates. The results for the image-level validation are better for the second algorithm obtaining an AUC of 0.84, 0.75 and 0.84 for e-ophta-EX, HEI-MED and DiaretDB1, respectively. The results obtained with the evaluation at lesion-level are the same for the two methods and are quantified in terms of sensitivity and PPV. We have achieved values of sensitivity and PPV of 0.54 and 0.52, respectively, in e-ophta-EX and, 0.52 and 0.52, respectively, in HEI-MED for method 1. For method 2, we have obtained values for sensitivity and PPV of 0.5 and 0.57, respectively, for e-ophta-EX and 0.42 and 0.76, respectively, for HEI-MED.Outgoin

    Detection and Classification of Diabetic Retinopathy Pathologies in Fundus Images

    Get PDF
    Diabetic Retinopathy (DR) is a disease that affects up to 80% of diabetics around the world. It is the second greatest cause of blindness in the Western world, and one of the leading causes of blindness in the U.S. Many studies have demonstrated that early treatment can reduce the number of sight-threatening DR cases, mitigating the medical and economic impact of the disease. Accurate, early detection of eye disease is important because of its potential to reduce rates of blindness worldwide. Retinal photography for DR has been promoted for decades for its utility in both disease screening and clinical research studies. In recent years, several research centers have presented systems to detect pathology in retinal images. However, these approaches apply specialized algorithms to detect specific types of lesion in the retina. In order to detect multiple lesions, these systems generally implement multiple algorithms. Furthermore, some of these studies evaluate their algorithms on a single dataset, thus avoiding potential problems associated with the differences in fundus imaging devices, such as camera resolution. These methodologies primarily employ bottom-up approaches, in which the accurate segmentation of all the lesions in the retina is the basis for correct determination. A disadvantage of bottom-up approaches is that they rely on the accurate segmentation of all lesions in order to measure performance. On the other hand, top-down approaches do not depend on the segmentation of specific lesions. Thus, top-down methods can potentially detect abnormalities not explicitly used in their training phase. A disadvantage of these methods is that they cannot identify specific pathologies and require large datasets to build their training models. In this dissertation, I merged the advantages of the top-down and bottom-up approaches to detect DR with high accuracy. First, I developed an algorithm based on a top-down approach to detect abnormalities in the retina due to DR. By doing so, I was able to evaluate DR pathologies other than microaneurysms and exudates, which are the main focus of most current approaches. In addition, I demonstrated good generalization capacity of this algorithm by applying it to other eye diseases, such as age-related macular degeneration. Due to the fact that high accuracy is required for sight-threatening conditions, I developed two bottom-up approaches, since it has been proven that bottom-up approaches produce more accurate results than top-down approaches for particular structures. Consequently, I developed an algorithm to detect exudates in the macula. The presence of this pathology is considered to be a surrogate for clinical significant macular edema (CSME), a sight-threatening condition of DR. The analysis of the optic disc is usually not taken into account in DR screening systems. However, there is a pathology called neovascularization that is present in advanced stages of DR, making its detection of crucial clinical importance. In order to address this problem, I developed an algorithm to detect neovascularization in the optic disc. These algorithms are based on amplitude-modulation and frequency-modulation (AM-FM) representations, morphological image processing methods, and classification algorithms. The methods were tested on a diverse set of large databases and are considered to be the state-of the art in this field

    Exudate detection in color retinal images for mass screening of diabetic retinopathy

    No full text
    International audienceThe automatic detection of exudates in colour eye fundus images is an important task in applications such as diabetic retinopathy screening. The presented work has been undertaken in the framework of the TeleOphta project, whose main objective is to auto-matically detect normal exams in a tele-ophthalmology network, thus reducing the burden on the readers. A new clinical database, e-ophtha EX, containing precisely manually contoured exudates, is introduced. As opposed to previously available databases, e-ophtha EX is very heterogeneous. It contains images gathered within the OPHDIAT telemedicine network for diabetic retinopathy screening. Image definition, quality, as well as patients condition or the retinograph used for the acquisition, for example, are subject to important changes between different examinations. The proposed exudate detection method has been designed for this complex situation. We propose new preprocessing methods, which perform not only normalization and denoising tasks, but also de-tect reflections and artifacts in the image. A new candidates segmentation method, based on mathematical morphology, is proposed. These candidates are characterized using classical features, but also novel contextual features. Finally, a random forest algorithm is used to detect the exudates among the candidates. The method has been validated on the e-ophtha EX database, obtaining an AUC of 0.95. It has been also validated on other databases, obtaining an AUC between 0.93 and 0.95, outperforming state-of-the-art methods

    NON-INVASIVE IMAGE DENOISING AND CONTRAST ENHANCEMENT TECHNIQUES FOR RETINAL FUNDUS IMAGES

    Get PDF
    The analysis of retinal vasculature in digital fundus images is important for diagnosing eye related diseases. However, digital colour fundus images suffer from low and varied contrast, and are also affected by noise, requiring the use of fundus angiogram modality. The Fundus Fluorescein Angiogram (FFA) modality gives 5 to 6 time’s higher contrast. However, FFA is an invasive method that requires contrast agents to be injected and this can lead other physiological problems. A reported digital image enhancement technique named RETICA that combines Retinex and ICA (Independent Component Analysis) techniques, reduces varied contrast, and enhances the low contrast blood vessels of model fundus images

    Bright lesion detection in retinal images

    Get PDF
    Master'sMASTER OF SCIENC
    corecore