
BRIGHT LESION DETECTION

IN RETINAL IMAGES

ZHANG XIAOLI

A Thesis submitted for

the Degree of Master of Science

Department of Computer Science

School of Computing

National University of Singapore

· 2006 ·

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Digital retinal images are widely used as effective means of screening medical

conditions such as diabetic retinopathy. The presence of bright lesions such as

hard exudates and cotton wool spots is an indicator of diabetic retinopathy and

automated detection of these bright lesions in retinal images is useful to reduce

the cost of screening process.

This work is focused on automatic detection of two types of bright lesions,

namely hard exudates and cotton wool spots in retinal images. Hard exudates

appear as yellow-white small spots in retinal images. We developed a technique

that utilize wavelet analysis to localize the hard exudates. Cotton wool spots are

yellowish fluffy patches in retinal images. We used intensity difference map of

contrast-enhanced retinal images to localize cotton wool spots. Then we validated

the candidate cotton wool spots regions with two methods. The first method is

eigenimages and the second method is Support Vector Machine(SVM) classifica-

tion. We evaluated our algorithms with 1198 retinal images collected from local

clinics. Our hard exudates detection algorithm achieved 97.9% sensitivity and

78.2% specificity. The SVM classification approach outperformed eigenimages

and achieved 100% sensitivity and 82.8% specificity. With the high sensitivity

and specificity, our proposed approach will be able to facilitate the automated

screening in clinics.
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Chapter 1

Introduction

1.1 Motivation

Diabetic retinopathy is identified as a leading cause of blindness and visual im-

pairment in many developed countries and accounts for 12,000 to 24,000 blind

cases in United States alone every year [12]. Digital retinal images taken by spe-

cial fundus camera are used for diabetic retinopathy screening. The presence of

certain lesions in retina have proven to be a visible sign of diabetic retinopathy.

Hard exudates and cotton wool spots are two types of bright lesions in retinal

images that are considered indicative of the presence of diabetic retinopathy be-

cause they are the first retinal changes to develop in this disease. Hard exudates

are yellow-white small spots, while cotton wool spots are white fluffy patches.

Figure 1.1 shows a retinal image that contains hard exudates. Hard exudates

are visible as yellowish deposits in the retina. Their presence implies leaking reti-

nal capillaries. The weakened capillary walls causes out-pouchings in their walls

called microaneurysms, which may also leak. Exudates very frequently arrange

themselves in a circular pattern in diabetes, and often a cluster of leaking microa-
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Figure 1.1: Hard exudates in a retinal image

neurysms appear in the middle of such a ring of exudates. This arrangement is

called ‘circinate exudates’. As with most other conditions, exudates affect vision

only when they encroach on the macula, and hence the need for regular retinal

screening of diabetic subjects so that any exudates approaching the macula may

be treated. Automated detection of these lesions in retinal images produced from

screening programmes will be useful to reduce the workload of the doctors reading

the retinal images and facilitate the follow-up management of diabetic patients.

Figure 1.2 shows four cotton wool spots in a retinal image. Cotton wool spots

are common features of diabetic retinopathy and appear as white fluffy opaque

area in the sensory retina. They result from an arteriolar occlusion in the retinal

nerve fibre layer. The evolution of cotton wool spots in diabetic retinopathy is

somewhat variable. Many cotton wool spots associated with diabetic retinopathy

persist for three or six months. As cotton wool spots resolve slowly, they often
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Figure 1.2: Cotton wool spots in retinal image

appear as multiple small round white dots. In diabetes cotton wool spots indicate

advanced background or pre-proliferative stages of retinopathy. Cotton wool

spots are usually related to Age-related Macular Degeneration in diabetes in

radiation retinopathy transient and rarely remain visible for more than a few

months. It is important to realize that cotton wool spots, exudates and retinal

haemorrhages frequently co-exist since they may appear as a result of the same

vascular disorders, the most common being diabetes and hypertension.

The detection of hard exudates and cotton wool spots in retinal images is

a challenging task. The main obstacle is the extreme variability of the color of

retinal images and the presence of retinal blood vessels. Different types of bright-

colored lesions such as hard exudates, cotton wool spots and drusen may appear

in one retinal image, which makes it difficult to detect hard exudates and cotton

wool spots based on their intensity features. The algorithms proposed in [5,10,28]
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to detect hard exudates are tested only on a small set of images. Zhang et al. [41]

proposed an algorithm based on classification between cotton wool spots and

other lesions and the achieved sensitivity is around 80% with 30 images. It is not

very clear how their system will perform on large set of real-world images.

1.2 Objective

In this research, we are interested in developing sensitive and robust detection

algorithms for hard exudate and cotton wool spots in digital retinal images which

can be used for automated screening of diabetic retinopathy. We investigate how

wavelet analysis can be utilized to localize hard exudates and cotton wool spots

and techniques such as eigenimages and SVM classification, can be employed to

detect cotton wool spots.

There has been a growing interest to use wavelets as a new transform technique

for image processing. The aim of wavelet transform is to ‘express’ an input

signal as a series of coefficients of specified energy. It has been used for the

compression of medical images, CT(computerized tomography) reconstruction,

wavelet denoising, feature extraction, image enhancement, etc. [16, 34] Given

the intensity of hard exudates is relatively high compared to their background,

we note that wavelet transform is suitable to detect them. We examine how

wavelet transform can be used to detect the hard exudates, those bright spots

where the sharp changes of intensity occur.

Eigenimage has been widely applied in face recognition [19,33], texture classi-

fication and retrieval [8]. Li et al. [21] used eigenimage for optic disc localization

in retinal images. As cotton wool spots are relatively larger than hard exudates,

they usually have high intensity in the center and have dim and fuzzy boundaries.
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With these characteristics of cotton wool spots, we investigate how eigenimage

can be sued to detect cotton.

Support vector machine (SVM), is a type of learning machine based on statis-

tical learning theory [31]. It has gained a lot of popularity in pattern classification

of medical imaging due its satisfactory performance. Feature selection is quite

crucial for classification problem. Since the cotton wool spots do not have uni-

form color, the color information of cotton wool spots is not sufficient to identify

them. In this work, we explore other features of cotton wool spots, such as com-

pactness, the number of pixels on the boundary, distance from centroid to the

window center, etc.

1.3 Major Contribution of the Thesis

The thesis has contributed to the analysis of retinal images and the detection

of bright lesions such as hard exudates and cotton wool spots in retinal images.

The proposed wavelet-based detection algorithm provides an accurate method to

detect hard exudates. To our best of our knowledge, this is the first work to

utilize wavelet analysis to detect hard exudates. Our algorithm of detecting hard

exudates using wavelet analysis has sensitivity of 97.9% and specificity of 78.2%.

The wavelet approach captures the sharp color changes on the boundary of hard

exudates and the good performance shows wavelet is suitable for hard exudate

detection.

Cotton wool spots detection is a challenging task. Existing efforts are focused

on detecting lesions and do not identify cotton wool spots directly. In this thesis,

we described how eigenimages and SVM classification can be utilized to detect

cotton wool spots. The proposed SVM classification approach is able to achieve
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100% for Sensitivity and 82.8% for Specificity. The variation in color and shape

of cotton wool spots make it very difficult to detect cotton wool spots. Our

proposed approach reduces the variation in color in a pre-processing step and the

candidate cotton wool spots are further validated using two different methods,

eigenimages and SVM classification. The basic idea of Eigenimage approach is

template matching. Since cotton wool spots do not have uniform shape, the

Eigenimage approach does not perform as well as SVM classification approach.

We also demonstrate the robustness and reliability of our methods by evaluat-

ing them on a real world dataset of 1198 retina images which have been collected

from local clinics. The experiment results indicate that the proposed approach

have the potential to be applied to the real world.

1.4 Organization

The rest of the thesis is organized as follows.

Chapter 2 reviews the major in literature on lesion detection. Chapter 3

describes how the wavelet analysis is utilized for hard exudates detection and

how domain knowledge of vessels is used to remove the false hard exudates. We

also present the experiment results with 1198 images.

In Chapter 4, two different cotton wool spots detection approaches are dis-

cussed. The first approach is to use eigenimages. In this approach, an eigenim-

age is computed from training images and used to validate the candidate regions

from thresholding intensity difference map. Secondly, the Support Vector Ma-

chine classification is employed to classify the candidate regions resulting from

fuzzy c-mean clustering into true cotton wool spots and non-cotton wool spots.

In order to give more insights into the three approaches, the results of these two

7



approaches are compared as well.
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Chapter 2

Literature Review

There is an increasing interest for developing systems and algorithms that can

help screen a large number of patients for sight threatening diseases like diabetic

retinopathy with automated detection of these disease. Digital fundus images

are used as tools to screen and diagnose diabetic retinopathy. Digital image pro-

cessing is now being very practical and useful for diabetic retinopathy screening.

Several examples of application of digital image processing techniques can be

found in literature. In this chapter we present a survey on the major retinal

image analysis systems and algorithms, which have been already proposed with

the main highlight on hard exudates detection and cotton wool spots detection.

2.1 Lesion Detection

A number of systems ( [5, 15, 36, 41]) have been developed to detect lesions in

retinal images. The work in [36] dose not classify lesions into hard exudates,

drusen or cotton wool spots, while others [5, 15, 41] developed systems to detect

lesions and further differentiate them into different types of lesions.
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Wang et al. [36] have implemented an algorithm to detect exudates in digital

retinal images. Initially a non-linear brightness adjustment procedure is applied

to retinal images in order to work with different illuminant conditions. Feature

space is transformed in to spherical coordinates and feature space consisting

intensity, theta and phi have been selected for further processing. Bayes rule is

next employed to derive an appropriate discriminant function for the algorithm.

Selected lesion regions are next verified by adaptive thresholding. The enhanced

algorithm has been tested against 100 digital retinal images and achieved 100%

sensitivity and 78% specificity in detecting exudates.

Ege et al. [5] developed a screening system for diabetic retinopathy. The

background of a retinal image was estimated using a 31x31 median filter on the

original raw image. A threshold above the estimated background was selected to

extract the bright objects and a threshold below the estimated background was

chosen to extract the dark objects. Abnormal appearances (cotton wool spots,

exudates, haemorrhages and microaneurysms) were distinguished by extracting

features and feeding the features into a statistical classifier for pattern recogni-

tion. They also implemented a shape estimation routine using region growing in

order to get the features on shapes. The classification was done based on fea-

tures such as color, size, shape etc. The efficiency of three statistical classifiers,

Bayesian, Mahalanobis, and KNN(k-nearest neighbor) classifier were discussed.

The Mahalanobis classifier has given the best results; microaneurysms, hemor-

rhages, exudates, and cotton wool spots were detected with a sensitivity of 69%,

83%, 99%, and 80% respectively.

Katz et al. [15] and Goldbaum et. al. [10] have attempted to discriminate

colored objects such as exudates, cotton wool spots and drusen in the scanned

retinal images using a Mahalanobis classifier. Initially the algorithm converts the
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color space to spherical coordinates and use the theta and phi for processing. To

quantify the separability of three classes, Mahalanobis classifier and the jackknife

technique have been used. Performance studies with 30 scanned retinal images

have given 70% sensitivity for exudates, 70% sensitivity for cotton wool spots

and 50% sensitivity for drusen.

Zhang et al. [41] applied Fuzzy C-Means clustering in Luv color space to the

whole image and this resulted in a large number of segmented areas. They used

two-step classification to classify these segmented areas into hard exudates and

cotton wool spots. In fact, many of these areas were non-lesion related. As a

result, the accuracy of classification was affected by these non-lesion related areas.

Hence, to overcome this, in our research, we will use intensity difference map to

identify potential cotton wool spots and Fuzzy C-Means clustering to refine the

segmentation before classification.

2.2 Hard Exudates Detection

Previous hard exudates detection algorithms are mainly based on color infor-

mation, shape, texture features, etc. They can be divided into four main cate-

gories, thresholding [24, 27, 28, 37], region growing [21], clustering [14], classifica-

tion [9, 25], and a combination of above techniques [29].

Ward et al. [37] have implemented shade correction routine to reduce the

shade variations in the fudus image. The background was considered sufficiently

uniform, and the hard exudates were detected by grey-level thresholding.

Phillips et al. [27, 28] have proposed an adaptive thresholding technique for

automated detection and quantification of retinal exudates. In the pre-processing

stage, the image features were sharpen by convolution with a shade correction
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kernel and median filtering to generate a smoothed image. It required the user

to select the region of interest and sub-images of predefined size were created

from the region of interest. The threshold was set with consideration of the

characteristics of each image. The algorithm was evaluated on 14 scanned retinal

images and it reported 87% mean sensitivity and 85% mean specificity.

Liu et al. [24] proposed another dynamic thresholding based method to detect

exudates. A retinal image was firstly divided into subimages consisting 64x64

pixels with 50% overlap with each other. A dynamic threshold was selected based

on the histogram of subimages. Those subimages which have uni-modal histogram

were considered as the retinal background. After that, thresholding is applied to

those subimages with bi-modal distribution or wide spread distribution. All the

pixels whose intensity values were above the threshold were classified as exudates

pixels. Region growing was employed to cluster these pixels together. They

carried out experiment on 20 fundus images, out of which 7 images contain hard

exudates. Their system failed to detect hard exudates in 2 images.

Li et al. [22] presented a combined method of edge detection and region grow-

ing to detect hard exudates. Luv color space was chosen as the suitable color

space for exudates detection. A retinal image is divided into 64 subimags. Seeds

in a subimage are selected and the region was allowed to grow from the seed

until reaching an edge or large gradient. The edges were detected by Canny

edge detector and the thresholds of edge detector were determined based on a

fixed percentile of total number of pixels. If any hard exudate was detected in

a subimage, the presence of hard exudates was identified. They reported 100%

sensitivity and 71% specificity on 35 tested images.

Hsu et al. [14] propose an algorithm to improve the reliability of exudates

detection by using domain knowledge. The cluster of lesions were found first by
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dynamic clustering algorithm. Following that, hard exudates were differentiated

from other lesions(drusen, cotton wool spots, etc.) with domain knowledge of

these other lesions. Domain knowledge of location of vessels were used to remove

those high intensity artifacts near large retinal vessels as results of light reflection.

They reported 100% sensitivity and 74% specificity on 384 tested images.

Gardner et al. [9] have presented a neural network based system to detect

various diabetic retinopathy lesions in digital retinal images. An artificial neural

network has been trained with back-propagation algorithm to recognize features

in 179 retinal images (147 diabetic and 32 normal). The effects of digital filtering

techniques and different network variables have been assessed at the training

stage. 200 diabetic and 101 normal images were then randomized and used

to evaluate the networks performance against an ophthalmologist. Detection

rates were 91.7%, 93.1% and 73.8% for recognition of vessels, exudates, and

hemorrhages respectively. It has achieved sensitivity of 88.4% and a specificity

of 83.5% for the detection of diabetic retinopathy.

Osareh et al. [25] first normalized the retinal images by using histogram spec-

ification such that their frequency histograms matched a selected reference image

distribution. Then they applied an image segmentation approach based on a

coarse and fine stages. The segmentation on coarse stage produced an initial

classification into a number of classes and the center for each class. In the fine

stage, Fuzzy C-mean(FCM) clustering assigned any remaining un-classified pixels

to the closest class based on the minimization of an objective function. In the

following step, they used neural network to classify the segmented region into

exudate or non-exudates. Their evaluation of their system on 67 retinal images

were able to achieve 95.0% sensitivity and 88.9% specificity.

Sinthanayothin et al. [29] developed a system to detect diabetic retinopathy
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automatically. Their system pre-processes the retinal images to enhance their

contrast by using locally adaptive approach. Their identification of candidate

bright lesions(hard exudates) was done by recursive region growing and adaptive

intensity thresholding and the dark lesions(haemorrhages and microaneurysms)

are identified in a similar way but with the additional use of an edge enchance-

ment operateor, called a ‘moat operator’. They then classify them into true hard

exudates or noise by artifitial neural network. The features they used are the

size, shape, hue and intensity of each candidate. Their evaluation of the system

was done on 30 images. From the 30 images, 60780 candidate hard exudates

were identified. Their classification achieved 88.5% sensitivity and 99.7% speci-

ficity. However, their measurements were based on 10x10 pixel grids which were

identified by the ophthalmologist as exudate or non-exudate regions.

2.3 Discussion

To summarize, the research done on lesion detection in retinal images involves five

main techniques, namely, thresholding [5, 24, 27, 28, 36, 37], region growing [21],

clustering [14], classification [9,10,15,25], and a combination of above techniques

[29,41].

The approaches proposed in [18, 20, 27, 28, 37] used thresholding techniques

based on the intensity histogram. Simple thresholding techniques are highly

undesirable for lesion detection, as the variation in the background intensities

makes it difficult to find a proper threshold. Although adaptive techniques tend

to give much better results, it is difficult to test its robustness and it is not

sufficient to distinguish among different types of bright lesions including hard

exudates and cotton wool spots. The results of these approaches depend on the
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quality of the images.

Region growing techniques work well on the basis of suitable seeds selection.

The criteria of region growing is usually defined on the relations between the

intensities of the neighboring pixels. Even given the seeds are well selected, the

criteria of region growing is hard to define due to inhomogeneous illumination of

background and uneven intensity of lesions.

On the other hand, statistical classifiers based techniques and neural networks

makes lesion detection more robust. [5, 10, 15] employed classification techniques

to detect hard exudates. Their results are highly dependent on the training im-

ages. The other lesions that have similar shape and color features are difficult to

differentiate using the classifier. Statistical classifiers such as Mahalanobis classi-

fier [5,10,15] and Bayes classifier [5,36] were reported with good result in detecting

lesions. Clustering algorithms has been employed to achieve initial segmentation

of bright lesions. [25] claimed that Support Vector Machine has advantages com-

pared to Neural networks based systems as they can achieve a trade-off between

false positive and false negatives. The performance of classification techniques

depends on proper selection of the features.

2.4 Wavelet Application in Medical Image Pro-

cessing

The advancement in wavelet theory has sparked researchers’ interest in the ap-

plication of wavelet in medical image processing [16, 34]. Here we summarized

three of the applications.

Wavelet applications in medical imaging have been mainly on image compres-

sion, image denoising, texture features extraction, etc. In our work, we explored
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wavelet application in localizing hard exudates in retinal images.

1. Noise Reduction

Wavelet application in noise reduction is not specific to medical imaging.

The approach proposed by Weaver et al. [38] was to compute an orthogonal

wavelet decomposition of the image and apply soft thresholding rule on the

coefficients. Noise reduction is usually used in the pre-processing stage

followed by image enhancement in image processing.

2. Image Enhancement

The objective here is to accentuate the image features that are related to

clinical diagnosis but are difficult to view in normal conditions. For exam-

ple, the contrast between soft tissues of the breast is small in mammography

and a relatively minor change in mammary structure can signify the pres-

ence of a malignant breast tumor. Laine et al. [17] proposed wavelet-based

contrast enhancement method for mammographic screening purpose.

3. Detection of Microcalcifications in Mammograms

The presence of clusters of fine, granular microcalcifications is one of the

primary warning signs of breast cancer. Micorcalcification have high at-

tenuation, a good visibility property but their sizes are usually very small,

which makes them extremely difficult to view. Strickland [32] proposed a

wavelet-base method to detect the microcalcifications by thresholding in

wavelet domain. They used wavelet transform to detect the microcalcifica-

tion in mammograms. In their work, they apply B-spline wavelet transform

to the mammograms, threshold the wavelet components at 6 levels, combine

the binary results, and finally, carry out an inverse wavelet transform.
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To date, no work has been done to apply wavelet for the detection of hard

exudates. In the next chapter, we will describe how wavelet can be utilized to

detect hard exudates in retinal images.
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Chapter 3

Hard Exudates Detection

Hard exudates appear as small yellow-white spots in retinal images. They have

relatively distinctive boundaries. The aim of wavelet transform is to ‘express’

an input signal as a series of coefficients of specified energy. Wavelet transform

can capture the sharpen changes in the images, thus the distinctive boundaries

of hard exudates are captured in the components from wavelet transform.

In this chapter, we present an approach to detect hard exudates using wavelet

analysis.

3.1 Wavelet Transform

Wavelet transform has become a popular technique for image analysis and com-

pression. In the 2-D wavelet decomposition, the low-pass filter L, and high-pass

filter H are applied to the image in both horizontal and vertical directions. These

filters produce three highpass subbands HL, LH and HH (also called detail co-

efficients), and one lowpass subband LL (also called approximation coefficients)

[3]. The LL component can be further decomposed by repeating the same pro-
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cess.

With discrete wavelet transform, the HL, LH, HH and LL components are

down-sampled and their size is half of the input signals. The multi-level de-

composition produces HL, LH and HH components at different scales, and the

multi-resolution analysis can be done on these components. Hence, if we decom-

pose an image of size M × N at level i, the sizes of the resulting detail images

are (M/2i)× (N/2i).

On the other hand, in stationary wavelet transform, the image is not down-

sampled but the filter is up-sampled. With this multi-resolution decomposition,

we can analyze the image in different scales.

The algorithm of two-dimensional stationary wavelet decomposition is illus-

trated in Figure 3.1(a), where LHi+1, HLi+1 and HHi+1 correspond to different

frequency sub-bands at resolution level i + 1. LHi is computed by filtering the

rows with low-pass filter L followed by filtering the columns with high-pass filter

H. Since the high-pass filter is applied to the columns of the input image, the

component LHi captures the vertical energy changes. Similarly, HLi contains the

horizontal features and HHi corresponds to the diagonal features. The wavelet

reconstruction(Figure 3.1(b)) is basically the reverse of wavelet decomposition.

Following column convolution, the corresponding images are summed. The final

image is the summation of the two images resulting from row convolutions.

3.2 Hard Exudates Detection

The intensity of hard exudates is relatively high compared to their background.

These characteristics make them suitable to be detected by wavelet transform,

as wavelet transform can detect those spots where the sharp changes of intensity
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(a)Deomposition

(b)Reconstruction

Figure 3.1: Wavelet decomposition and reconstruction
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occur.

In Figure 3.2, the hard exudates are marked out by black circles and the green

circle marks out the other type of lesion, cotton wool spots. Both of them are

relatively bright compared to the background, and it is difficult to differentiate

them based on the intensity values. However, the hard exudates have stronger

features in the wavelet domain, as the intensity changes in cotton wool spots are

gradual. Liu et al. [24] has shown that hard exudates have higher intensity level

Figure 3.2: Lesions in retinal image

compared to background in the green layer than than other two layers.

In this section, we present the proposed method of wavelet-based exudate

detection. In order to remove the artifacts due to light reflectance along the ves-

sel, we also implement a routine to remove these artifacts. The whole process is

summarized in Figure 3.3. We first smooth the image using 3x3 mean filters. As

explained in Section 3.1, the HL, LH and HH components of wavelet decom-
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Figure 3.3: Summary of hard exudates detection using wavelet transform

position are sensitive to horizontal, vertical, and diagonal features respectively,

the small bright hard exudates usually correspond to large coefficients in these 3

components.

To detect hard exudates in retinal images, we will use the absolute values

of these components, as the large absolute values correspond to sharp intensity

changes of the image and the sign of these components corresponds to the direc-

tion of the intensity changes, which is not of our concern.

n l h̄
1 0.0352 -0.3327
2 -0.0854 0.8069
3 –0.1350 -0.4599
4 0.4599 -0.1350
5 0.8069 0.0854
6 0.3327 0.0352

Table 3.1: Coefficients of wavelet

The detection of hard exudates utilizes the HL and LH components, as the

features that appear in HH component are in diagonal orientation and they

appears in HL and LH components as well. The wavelet we chose is Daubechies

wavelet whose filter length is 6. Its coefficients are shown in Table 3.1.

The input image is decomposed at resolution level 2. At each level, the filter

is upsampled in order to have decomposition at different scales. At level 3, the
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length of filter will be too large for the hard exudates. Figure 3.4 shows the 6

detail images(Figure 3.4(b) (g)) of input image(Figure 3.4(a)) after the wavelet

decomposition.

For each level i, from HLi and LHi components, we compute the magnitude

as follows:

Let hi(x, y) be the value of HLi at the pixel (x, y) and gi(x, y) be the value of

LHi at pixel (x, y), then the magnitude at the pixel (x, y) is

fi(x, y) =
√

h2
i (x, y) + g2

i (x, y).

A non-horizontal feature corresponds to smaller coefficients in HL components

than a horizontal feature, but it corresponds to larger coefficients in LH compo-

nents. The magnitude, which is
√

HL2 + LH2, represents the energy level of a

feature, regardless of its direction.

f1 and f2 are shown in Figure 3.5. Thresholding f1 and f2 produces two binary

images. By applying the logical OR operation to the two binary images, we ex-

tract those spots where the sharp changes happen into a single binary image. The

threshold is chosen based on a fixed percentile of the histogram of fi. The binary

image produced by logical OR is shown in Figure 3.6 and its original image is

shown in Figure 3.4(a).

The small noises can simply be removed by morphology open operation with

disk structure. The high intensity artifacts near the large vessels as a result of

light reflection are also detected in the binary image. Such artifacts are removed

by removing all the areas connected to the vessels detected by [6]. A few steps are

needed to remove these artifacts along the vessel. Firstly, morphology open, close

and dilation were applied the vessel image to close up the broken vessels and dilate

the vessel to cover the reflection along the vessels. After that, region growing

technique was applied, using the binary image produced by morphological OR
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(a)Input Image

(b)HL1 component (c)HL2 component

(d)LH1 component (e)LH2component

(f)HH1 component (g)HH2 component

Figure 3.4: Detail images of wavelet decomposition
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(a) f1 (b) f2

Figure 3.5: Magnitude computed from HL and LH components at level 1 and 2

(a)Binary image b1 (b)Binary image b2 (c)logical OR
of b1 and b2

Figure 3.6: Logical OR of resultant images of threshoding magnitude images

operation as a mask image, to remove any detected area that was connected to

any vessels.

To summarize, two levels wavelet decomposition are performed and the hard

exudates are identified based on the combination of 4 of the resulting components.

To remove the reflection along the vessels, the domain knowledge of vessels are

taken into consideration.

3.3 Experiment Results

We evaluate our hard exudate detection approach with a large realword dataset

of 1198 consecutive images. Out of those 48 of which contain hard exudates.

These images contain artifacts and retinal lesions and the quality of these images

varies from poor to good. We compared the results of our hard exudates detection
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(a) vessel image,
(b) morphological closing of (a),
(c) morphological opening of (b),
(d) binary image from wavelet analysis,
(e) growing vessels in (c) based on (d),
(e) subtract (e) from (d)

Figure 3.7: Post-processing diagram
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algorithm with those given by the two retinal specialists.

We also compare our results with the algorithm proposed by Hsu et al. [14].

Their algorithm first find the cluster of lesions, including drusen, cotton wool

spots and hard exudates, by dynamic clustering. Then the hard exudates are

differentiated from other lesions based on the color differences between lesions

and background.

We use two measurements, Sensitivity and Specificity, to evaluate the perfor-

mance. Sensitivity is defined as the ratio of number of images where the hard

exudates are localized correctly to the total number of images where the hard ex-

udates are identified by the retinal specialist in the image. Specificity is the ratio

of number of images where no hard exudates are detected to the total number of

images where no hard exudates are identified by the retinal specialist.

Table 3.2 shows our experiment results. Our system can correctly localize the

hard exudates in 47 images from 48 images that contains hard exudates. Our

system gives false positive tests for the 251 images out of 1150 images that do

not contain any hard exudates. Hence, we can achieve (1150 − 251)/1150 =

78.2% specificity. The result are compared to two retinal specialists’ diagnosis in

Table 3.2. Moreover, we also evaluated the algorithm proposed by Hsu. et al. [14]

with these 1198 images and compared their results in Table 3.2) with ours.

Doctor 1 Doctor 2 Algorithm in [14] our result
Sensitivity 91.7% 93.75% 84% 97.9%
Specificity 91.9% 95.5% 80% 78.2%

Table 3.2: Hard Exudates Detection

Our experiment results with 1198 images show that our system are more

robust than the system proposed by Hsu et al. [14]. In their algorithm, the

hard exudates are differentiated from other lesions such as drusen and cotton
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wool spots by clustering them in 3-D spherical coordinates. It achieved 100%

sensitivity for the tested 543 images. However, it is not robust enough to handle

more images, as the 3-D spherical coordinates are not sufficient to differentiate

hard exudates from other lesions and noises. Our approach is to detect hard

exudates in wavelet domain at multi-resolutions. The features of hard exudates

are well represented in wavelet domain, which makes the detection easier.

28



Chapter 4

Cotton Wool Spots Detection

Cotton wool spots appear as yellow-white fluffy opaque area (Figure 1.2) in the

retinal images. Similar to hard exudates detection, one obstacle of the detection

of cotton wool spots has been that the reflectance of the normal background,

on which the pathology is superimposed, is inherently non-uniform. Given two

cotton wool spots, one near the optic disc and one further away, the observer

will see them differently in the retinal image. The one near the optic disc will

appear brighter. Moreover, cotton wool spots are more difficult to detect than

hard exudates, as they have irregular shapes and their sizes vary greatly.

We investigate the application of wavelet analysis in localizing cotton wool

spots. While the hard exudates have high coefficients in wavelet images of level 1

and level 2, cotton wool spots do not become visible until level 3 and level 4. In

Figure 4.1, the HL components at 4 levels of wavelet decomposition are shown.

The original input image (Figure 1.2) contains four cotton wool spots. We can

see that the cotton wool spots are more obvious in level-4 images.

To identify candidates of cotton wool spots, we threshold the level-4 HL and

LH components based on a fixed percentile. An example of the binary image

29



(a)HL1 component (b)HL2 component

(c)HL3 component (d)HL4component

Figure 4.1: HL components at 4 levels wavelet decomposition of the image in
Figure 1.2
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produced by thresholding HL components at level 4 (overlaid on the original

image) are shown in Figure 4.2, in which all the four true cotton wool spots

are identified. Our experiment on 1198 retinal images shows that during the

Figure 4.2: Binary image resulting from thresholding HL component overlaid
with the input image

candidate identification step, all the true cotton wool spots are indeed selected

as candidate patches. However, the step has also resulted in a large number of

false candidate patches being highlighted. These false candidate patches are the

reflection along vessels, artifacts, and other noises. The large number of candidate

patches makes it difficult to validate the true cotton wool spots. Moreover, when

the cotton wool spots are near retinal vessels, they are identified as part of the

patches that correspond to the reflection along the vessels.

With these problem, we developed a strategy to detect cotton wool spots in

two steps: a candidate identification step and a validation step. The candidate
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identification step identifies potential regions that may contain cotton wool spots.

The validation step checks whether the regions identified truly contain cotton

wool spots. Two different approaches are presented for the validation step and

their experiment results are compared.

In order to remove the non-uniform illuminant conditions among different

retinal images, the retinal images are first normalized by using histogram specifi-

cation. To deal with the variation of intensity in a retinal image, the local contrast

of each image is enhanced using adaptive histogram equalization technique. After

the color normalization and local contrast enhancement, the suspected regions

are first localized based on the difference map of intensity. The Fuzzy-C means

clustering is employed to refine the segmentation of the bright regions. The seg-

mented bright regions are further classified into cotton wool spots and non-cotton

wool spots by using two different approaches, eigenimages and Support Vector

Machine Classifier. Figure 4.3 shows the overview of our cotton wool detection

process.

Figure 4.3: Overview of cotton wool detection
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4.1 Preprocessing

4.1.1 Image Normalization

As the retinal images were taken by different user at different hospitals, the illu-

mination of retinal images are different. Due to the wide variations in the color

of retinal images from different patients, the bright lesions in some region of one

image may appear dimmer than the background color of other regions in other

images. The variation in color makes it difficult to detect lesions based on their

color information. To reduce the variation, the color of the set of images are nor-

malized before further processing. In order to improve the overall performance,

normalization of the illumination of different images is necessary.

Histogram specification [11] is employed to perform color nomalization. This

modifies a color value in the given original image so that the resultant intensity

distribution matches a desired distribution. Let pr(t) and pz(w) represent the

probability density distribution functions of the values of one color channel of

the original and desired image, respectively. The cumulative density distribution

of the original image is denoted as T (r), then T (r) is computed as follows:

T (r) =

∫ r

0

pr(t)dt

The cumulative density distribution of the desired image is denoted as G(z),

then G(z) is computed as follows:

G(z) =

∫ z

0

pz(w)dw

T (r) and G(r) should be identical density distribution. Thus T (r) = G(z).

Therefore, z must satisfy the condition z = G−1[T (r)]. Thus, all r values in
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original image is mapped to z values for the desired image.

Since retinal images are color images, this process is applied to each color chan-

nel of RGB channels independently. A well-illuminated reference image (Figure

4.4) is selected and its histogram (Figure 4.5) is used as a reference. All other

retina images are transformed so that their histogram matched the reference his-

togram. Compared to histogram equalization, using which we can only generate

one type of output image with uniform histogram, histogram specification can

generate an output image with any specified histogram.

Figure 4.4: Reference image

To demonstrate the color normalization effect, a different color retinal image

and its normalized version are shown in Figure 4.6(a) and (b). The histograms

of RGB channel before and after histogram specification can be seen in Figure

4.7(a),(b) and (c). The normalization process modifies the color distributions

of the considered image to match the reference image’s distribution. This can
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Figure 4.5: Histogram of reference image

clearly be seen from comparison of the normalized image histograms (Green lines

in in Figure 4.7) with the reference image’s histograms(in Figure 4.5). The color

normalization process improves the clustering ability of the different lesion types

and removes the variation due to the retinal pigmentation differences between

individuals.

(a) A retinal Image (b) After Histogram Specification

Figure 4.6: Result of Histogram Specification
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(a) Red Layer

(b)Green Layer

(c)Blue Layer

Figure 4.7: Histogram of RGB components
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4.1.2 Local Contrast Enhancement

Besides the illuminant difference between two images, the illuminant conditions

of one image is also not homogenous. The center part near the optic disc of a

retinal image is usually brighter than the boundary due to the ball-shape of the

retina and the different light reflection. Local contrast need enhancing in order to

localize lesions in the relative dim area of a retinal image. In local enhancement,

the image is divided into subimages and the enhancement is done relative to each

subimage. In this way, the details over small areas in an image are enhanced.

As the low-contrast image’s histogram is narrow and centered toward the mid-

dle of the gray scale, if we distribute the histogram to a wider range, the quality

of the image will be improved. Histogram equalization is similar to histogram

specification in section 4.1.1. The color value of a given image are adjusted so

that so that the probability density function of color values spread equally. An

output image is obtained by mapping each pixel with level t in the input image

into a corresponding level w in the output image, where w ∈ [0, 1]. Let pr(t) and

pz(w) represent the probability density distribution functions of the values of one

color channel of the original and desired image, respectively. The histogram of

the output image is uniform i.e. pz(w) = 1/N , if there are N possible values for

w.

If the equalization is applied to the histogram of a whole image, the result

tends to over-expose bright areas and the lesions are not differentiable in the

resultant image. Moreover, the dim areas are still relative dim in an image. An

example images is shown in Figure 4.8.

In the adaptive histogram equalization, the histogram of color values of one

color channel in a NxN window of an image is generated first, where we set N to be

64. The cumulative distribution of green layer intensities, that is the cumulative
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(a) Green Layer

(b) Green Layer after adaptive histogram equalization

Figure 4.8: Histogram Equalization
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sum over the histogram, is used to map the input pixel green layer intensities to

output green layer intensities.

In order to eliminate artificially induced boundary, input image is divided into

64x64 partially overlapping windows and the neighboring windows are combined

to compute the final result. For example, if the first window includes the first

64 columns, then the second window will start from the 33th column. Therefore,

each 4 neighboring windows have a common subwindow of size 32x32. In Figure

4.9, the 4 windows are marked out by different texture patterns and they have

common subwindow in the center. Since each window has a mapping function

computed based on histogram equalization of each window, there are four output

values for center subwindow corresponding to the four mapping functions. For

each pixel in the center subwindow, its final output value is computed as the

average of the four output values.

Figure 4.9: Divide Image into 64x64 partially overlapping windows

If the size of the input image is MxN, the algorithm is as follows:

1. Divide each image into windows of size 64x64

NumRows=M/64;
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NumCols=N/64.

2. Process each window using histogram equalization

a) extract a 64x64 window

b) make a histogram for this window using 256 bins

c) create a mapping for this window using histogram equalization technique

3. Interpolate green layer mappings in order to assemble final image

For each window

Extract four neighboring mapping functions

For each pixel in the window

Apply four mappings to that pixel

Compute the average to obtain the output pixel.

The contrast enhanced version of the image in Figure 4.8 is show in Figure

4.10.

4.2 Candidate Identification Step

After the color normalization and local contrast enhancement, the suspected

regions are localized based on the difference map of intensity. The Fuzzy-C

means clustering is employed to refine the segmentation of the bright region.

In order to segment potential cotton wool spots, we adopt a coarse segmenta-

tion based on intensity difference map of retinal images. The coarse segmentation

identifies the high intensity regions by applying a threshold to the difference map.

After that, we apply fuzzy c-mean clustering to each identified region to find the

proper boundaries of each potential cotton wool spots.
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Figure 4.10: Adaptive Histogram Equalization

Recently, many image segmentation algorithms have been proposed according

to region edge, and color information. Generally, the color information appeared

in the image provides an important feature for human to cluster the desired ob-

jects. Based on color information, many techniques including region growing,

fuzzy C-means (FCM) and neural network, have been proposed. Region growing

is a technique for extracting an image region that is connected based on some

predefined criteria. These criteria can be based on color information. Cluster-

ing analysis is a statistical classification technique for discovering whether the

individuals of a population fall into different groups by making quantitative com-

parisons of multiple characteristics. Here, Fuzzy C-mean Clustering is used with

3 coordinates in Lab color space to refine the segmentation after localization on

difference map.

Fuzzy C-mean Clustering is a clustering method, with which an object has
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different membership values for each class. The membership value is the proba-

bility of the object belonging to a certain class. Now it has received increasingly

attention in image segmentation for its robustness and easy implementation.

The basic idea of the fuzzy clustering method is that patterns are allowed to

belong to all clusters with different degrees of membership.

Fuzzy C-means is to find a solution for parameters yji(i = 1, ... ,n; j = 1, ...,

g) for which

J =
n∑

i=1

g∑
j=1

yr
ji|xi −mj|2 (4.1)

is minimized subject to the constraints

g∑
j=1

yji|xi −mj|2 (4.2)

In the above formula, xi is the feature data to be clustered; mj is the center

of each cluster; yij is the fuzzy partition corresponding to the feature data; n

describes the number of the feature data; g is the number of the clusters; and r

is the exponent used to adjust the fuzzy degree. Generally, r should be greater

than 1, and when r is tend to infinity, the fuzzy degree is increasing. This cost

function is used as a control on the updating. That is, we get final result yij and

stop the updating by minimizing the cost function. Moreover, the yij has the

range from 0 to 1 is the main difference with hard c-means which can only have

value 0 or 1.

The basic algorithm [1] is iterative and can be stated as follows.

1. Select r (1 < r < ∞); initialize the membership function values yji, i =

1, . . . , n; j = 1, . . . , g.
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2. E-step: Compute the cluster centers mj, j = 1, . . . , g.

mj =

∑n
s=1 yr

jixi∑n
s=1 yr

ji

(4.3)

3. M-step: Compute the membership function.

yij =
1∑g

s=1(
|xi−mj |
|xi−ms|)

2
r−1

(4.4)

4. If not converged, go to step 2.

E-Step is used to obtain the new center of each cluster and M-Step is used to

update the fuzzy partition. By repeating E-step and M-step, cluster center mj

and fuzzy partition yji are updated, until the cost function reaches the minimal

value, or cant be reduced anymore, we can get the final cluster information.

When the cluster centers converge, the algorithm stops, i.e.:

g∑
j=1

|mj(k)−mj(k)|2 < ε

where ε is a positive value.

In order to reduce the influence of noises, we tried using filtering and wavelet

denoising technique to remove noises. Our experiment shows that wavelet denois-

ing technique works better than filtering using 3x3 mean filter. Therefore, the en-

hanced green layer of retinal image is first de-noised by using 4-level harr wavelet

transformation. Then the background is estimated by filtering the smoothed im-

age with a median filter of size 30x30. The difference of the smoothed image and

the estimated background is shown in Figure 4.11(d), in which we can see that

the bright patches are enhanced.
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The result of thresholding difference map is shown in Figure 4.13, where optic

disc area detected by Pallawala et al. [26] is removed. It is firstly processed

by connected-component labeling. After connected component labeling, each

candidate region is given an unique label.

(a)Green layer (b) Denoised green layer

(c)Estimated background (d) Difference of (c) and (b)

Figure 4.11: Intermediate images

An enclosing window centered at the center of the region is imposed and the

window size is either (xmax − xmin) × (ymax − ymin),or 32*32 if (xmax − xmin) ×
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L component a component

b component

Figure 4.12: Lab Components of image in Fig 4.6
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(ymax−ymin) is smaller than 32x32,where xmin is minimum X-coordinate, xmax is

the maximum X-coordinate, ymin is the minimum Y-coordinate and ymax is the

maximum Y-coordinate of the region. For each window, we used fuzzy clustering

to further separate the pixels inside the window into three classes, for most cases,

background, vessel, and bright object.

Figure 4.13 shows the candidate regions for a retinal image and on its right,

clustering results of four candidate regions are also shown, in which blue areas

are bright objects, red areas are vessels or dark objects, and green areas are

background.

Figure 4.13: Segmentation Fuzzy C-mean clustering

4.3 Validation Step

The candidate identification step finds all the potential cotton wool spots, which

contains a lot of noises, reflection along the vessels, etc. The aim of the validation

step is to find the true cotton wool spots from all the given candidate regions.
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To validate the candidate regions found by coarse-to-fine segmentation, we tried

two approaches, SVM classification and eigenimages.

4.3.1 Eigenimages

In this section, we examine how eigenimages can be used to validate cotton wool

spots.

Eigenvectors x of a n-by-n matrix A are defined as the length n column vec-

tors for which the following equation holds: Ax = λx, with λ being the corre-

sponding eigenvalue. These eigenvectors are particularly useful in the Karhunen-

Loève Transform (KLT, also called Hotelling Transform or Principal Component

Analysis PCA). PCA based approach has been widely applied in face recogni-

tion [19,33], texture classification and retrieval [8]. In medical imaging area, some

research has shown the application of PCA analysis in optic disc localization [21].

The problem of cotton wool spot detection is similar to face recognition since

cotton wool spots have some texture pattern. The idea of template matching

using PCA is to perform cross-covariances with the given image and a template

that is representative of the image. Therefore, in application to cotton wool spots

detection, the template should be a representative cotton wool spot - being either

an average image of all the cotton wool spots in the training images. In our case,

the first step was to crop out the cotton wool spots from retinal images and these

cotton wool spot images as our set of training images. In our case, 20 cotton

wool spots in 15 different images were cropped out manually. After the images

were acquired, they were resized to the average size, 20× 14 pixels. Their inten-

sity is adjusted linearly to the same range so that the illumination difference is

eliminated. They are considered as a column vector of size N = m× n. N is set

to 20 × 14 in our case. Let Γi be the vector of a image i = 1 . . . K, obtained by
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row-scanning the two dimensional images with N = m×n pixels in each images.

The average image vector is computed as

Ψ =
1

K

K∑
i=1

Γi

Samples of training images and their average images are shown in Figure 4.14.

Let Φi = Γi−Ψ denotes the difference between the training image and the average

Figure 4.14: Training images and average image

image. Then the covariance matrix C can be obtained by:

C = 1
K

∑K
i=1 ΦiΦ

T
i = 1

K
GGT , where G = [Φ1Φ2 . . . ΦK ].

A set of eigenvalues λi and eigenvectors vi can be computed for GT G. Thus we

have: GT Gvi = λivi where vi are the eigenvectors, and λi are the corresponding

eigenvalues. From this result, it is evident that multiplying this equation by G

will give us the eigenmatrices of C = GGT , as GGT Gvi = λiGvi. Therefore,

Gvi is eigenvector of C. Based on vi, we computed the eigenvector ui for C. ui

is a linear combination of the original training image vectors and arranged in

descending order according to its corresponding eigenvalue. The vectors ui are

actually images, called eigenimages.

The first K ′ eigenvectors ui, i = 1, . . . , K ′ are regarded dominant. Detection

using eigenimages is to test whether or not a candidate patch was a cotton wool

spot. This method is based on the assumption that the space of cotton wool

spots can be spanned by the set of eigenvectors ui, i = 1, . . . , K ′. To test a candi-
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date patch, the patch is firstly cropped out by its bounding rectangle. Then this

rectangle image Γ is resized to the same size as the average image. Its intensity is

linearly adjusted to the same range. To project the image to the space of cotton

wool spots, the mean image Ψ is subtracted first: Φ = Γ − Ψ. The image Γ is

reconstructed by the following transformation:

wi = ui · (Γ−Ψ), i = 1, 2, . . . , K.

wi denotes the contribution of Φi in representing the input image Γ. Let Φp de-

note the projection of Φ, where Φ = Γ−Ψ. The input image can be reconstructed

as Γp:

Γp = Ψ + Φp = Ψ +
∑K′

i=1 wiui

To measure the likeness of a input candidate to be cotton wool spot, the distance

between the original image and its projection is calculated. Their Euclidean dis-

tance E is computed as:

E= ‖Φ− Φp‖
= (Φ− Φp)

T (Φ− Φp)

= (ΦT Φ− ΦpΦ
T
p − (Φ− Φp)

T Φp − ΦT
p (Φ− Φp)

Since Φp is the projection of Φ, Φp is orthogonal to Φ−Φp. Therefore,(Φ−Φp)
T Φp

and ΦT
p (Φ − Φp) are equal to zero. Since Φp =

∑K′
i=1 w2

i , the computation of E

can be simplified as E = ΦT Φp −
∑K′

i=1 w2
i .

Since cotton wool spots appear in retinal images in different rotations, we

rotate a candidate patch by 0, 45, 90,135 degrees, and take the shortest the

Euclidean distance of the four, which is corresponding to the best match. The

Euclidean distance measures the similarity between the input image to the train-

ing cotton wool spot images. A large Euclidean distance implies the candidate
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region is unlikely cotton wool spots. The Euclidean distances between recon-

structed images of the training images to the training images are computed. The

mean distances (denoted by m) and their standard deviation (denoted by std)

are used to compute a threshold. The threshold is defined as m + 5 ∗ std. A

input image with Euclidean distance larger than the threshold is considered as

non-cotton wool spots.

4.3.2 SVM Classification

After Fuzzy C-means clustering, for each local window, we have three clusters,

background, vessel and bright regions. We need to classify these segmented bright

regions into true cotton wool spots and non-cotton wool spots (noises, reflection

along the vessel). In this section, we investigate the Support Vector Machine’s

application to this task of classifying the segmented bright regions.

Support Vector Machines have become an increasingly popular tool for ma-

chine learning tasks. They have been successfully applied to various pattern

recognition and medical imaging problems. The reason of using SVM is the fact

that SVM is very well grounded from the mathematical point of view [31].

When used for classification, the SVM algorithm creates a hyperplane that

separates the data into two classes with the maximum-margin. Given training

examples labeled either ”+1“ or ”-1“, a maximum-margin hyperplane is identified

which splits the “+1“ from the ”-1“ training examples, such that the distance

between the hyperplane and the closest examples (the margin) is maximized.

In order to classify cotton wool spots from the non-cotton wool spots, we need

to select those features which differentiate cotton wool spots from non-cotton wool

spots. After the clustering, the cotton wool spots usually lie in the center of the

local window. Their shapes are usually more compact than noises. On the other
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hand, the reflection areas along the vessels are usually elongated. From these

analysis, we have selected the following features:

1. Lab Components

The 3 values for Lab Components.

2. Elongation

Eigenaxes are defined by eigenvalues.

Suppose

E =




x1 y1

x2 y2

. . . . . .

xN yN




, where xi and yi are the x-coordinate and y-coordinate of i-th point on the

edge. Suppose the covariance of E is C and V1 and V2 is two eigenvectors

of C, where V1 is associated with larger eigenvalue r1 and V2 is associated

with smaller eigenvalue r2. Then V1 and V2 is the major and minor axis of

the shape, while r1 and r2 are proportional to the length of the major axis

and minor axis. Thus elongation = r1/r2;

3. Compactness = Perimeter2/Area

Perimeter is defined by the length of the edge of a region. The distance

between two diagonal points are estimated as
√

2.

Suppose there are N points lying on the edge and Ei is a point lying on the

edge, i=1...N. Then the perimeter is computed as follows:

For n = 1 : N

Un = En.x + En.y ∗ i
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Perimeter =
∑N

n=1 |Un − Un−1|
Area is defined as the total number of pixels inside the region.

4. Distance between centroid to window center

Centroid is the center of mass (color intensity in this case). Suppose

centroidx and centroidy are x-coordinate and y-coordinate of centroid,

color(x, y) is the intensity value at pixel (x, y). The following algorithm

computes the two coordinates.

Region-Based Centroid Estimation

centroidx = 0; centroidx = 0;

totalWeight=0;

For x=1 to LengthX do

For y=1 to LengthY do

If (q(x,y)==1)

centroidx = centroidx + x× color(x, y);

centroidy = centroidy + y × color(x, y);

totalWeight = totalWeight+color(x,y);

end

end

end

centroidx = centroidx/totalWeight;

centroidy = centroidy/totalWeight;

After computing centroid, the distance from window center to centroid

is computed as
√

(Xcenter − centroidx)2 + (Y center − centroidy)2, where

Xcenter is x-coordinate and Y center is y-coordinate of window center.
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5. Number of Pixels near the center

For each local window, we define a smaller window centered at the same cen-

ter of the original window and its size is half of the original window(Figure

4.15). The total number of pixels of a candidate region that lie in the

smaller window is counted as this feature.

Figure 4.15: Smaller center window

6. Number of pixels at the boundary of the rectangular window

If the red area grows until the boundary, it is less probable that the red

area is CWS. This feature is defined as the number of pixels that lie in the

first column, last column, first row, last row of the window (the gray color

in Figure 4.16).

7. Number of pixels next to vessels

When a blue area’s elongation is larger than certain value, it is probably

the vessel. If the red area is quite near the blue area and the direction of

the edges are similar, then the red area is not CWS but the reflection along

the vessels.

Firstly both areas are dilated using morphological operation by element

structure with disk of radius 1. After this dilation, the overlapping pixels
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Figure 4.16: Boundary of a window

correspond to the neighboring pixels of two areas. Thus, the overlapping

pixels are counted and its total number is taken as this feature.

In our work, we used SVM library package developed by C. C. Chang et

al. [2]. The radial basis function exp(−γ ∗ |u − v|2), where γ = 1/k and k is

the number of features, is used as the function. For each candidate region (red

area after fuzzy clustering), those features described in above are computed and

input into the SVM classifier. The regions from 64 images that graded by retinal

specialists are prepared as training data. There more negative examples than

positive examples. To make the training set balanced, we randomly selected the

same number of negative examples and combined with all the positive examples

as a training set. The trained model is tested on more than 1000 images. The

experiment results will be shown in next section.

4.4 Experiment

We use the same real world dataset of 1198 consecutive images to evaluate the

cotton wool spots detection algorithm. These images are graded by two retinal
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specialists. Out of the 1198 images, a total of 260 regions have been marked as

cotton wool spots by the two retinal specialists. They agree on 221 regions and

disagree on 39 regions. Table 4.1 compares the number of regions detected by our

algorithms with the number of the regions identified by the two retinal specialists.

We denote the set of cotton wool spots identified by Retinal specialist 1 as R1

and the set of cotton wool spots identified by Retinal specialist 2 as R2. The first

column shows the number of cotton wool spots detected by our two algorithms,

which are also identified by both retinal specialists. The second column shows

the number of cotton wool spots detected by our algorithms, which are identified

by at least one of the retinal specialists. The third column shows the number

of cotton wool spots detected by our algorithms, which are not identified by any

retinal specialist.

R1
⋂

R2 R1
⋃

R2 /∈ (R1
⋃

R2)
R1 221 240 0
R2 221 241 0

Candidate regions 221 231 31089
Eigenimages 106 110 337

SVM Classification 187 211 795

Table 4.1: Comparison of the number of regions identified

Due to the weak characteristics of cotton wool spots, our systems detected

some false cotton wool spots. The cotton wool spots sometimes are hard to

differentiate from other lesions like drusen. In Figure 4.4, the two false cotton

wool spots identified by SVM classification are shown.

The 260 regions marked by the two retinal specialists are contained in 73

images. We say an image contains cotton wool spots if it contains at least one

cotton wool spot. Out of the 1198 images, the two specialists agree that 71

images contain cotton wool spots and 1125 images do not contain cotton wool
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Figure 4.17: False cotton wool spots detected by SVM classification

spots. They disagree on 2 images. Our eigenimage approach is able to detect the

cotton wool spots in 44 images out of the 71 images they agreed on and our SVM

approach finds cotton wool spots in all 71 images.

In table 4.2, the images in which our algorithms detected cotton wool spots

are compared with the images in which the two retinal specialists found cotton

wool spots. We denote the set of images in which Retinal specialist 1 found

cotton wool spots as I1 and the set of images in which Retinal specialist 2 found

cotton wool spots as I2. The first column shows the number of images detected

by our two algorithms, which are also identified by both retinal specialists. The

second column shows the number of images detected by our algorithms, which

are identified by at least one of the retinal specialists. The third column shows

the number of images detected by our algorithms, which are not identified by any

retinal specialist.

56



I1
⋂

I2 I1
⋃

I2 /∈ (I1
⋃

I2)
I1 71 1 0
I2 71 1 0

Eigenimages 44 1 245
SVM Classification 71 2 193

Table 4.2: Comparison of the number of images identified

We compute the sensitivity and specificity based on the images the two spe-

cialists agree on, i.e. 71 images contain cotton wool spots and 1125 images do not

contain cotton wool spots, Table 4.4 shows the sensitivity and specificity of our

two approaches. Eigenimage approach can achieve 62.1% sensitivity and 78.2%

specificity.

Training Set Sensitivity Specificity
1 100% 83.9%
2 100% 81.5%
3 100% 83.0%

Average 100% 82.8%

Table 4.3: SVM Classification Result

Approaches Sensitivity Specificity
Eigenimages 62.1% 78.2%

SVM Classification 100% 82.8%

Table 4.4: Experiment Results of the Two Approaches

For SVM classification, only the regions the two specialists agree on are used as

training data. 32 images are selected from 71 images in which the two specialists

found cotton wool spots and another 32 images from the 1125 images in which

the two specialists do not found any cotton wool spots. There are 3266 segmented

bright regions in these 64 images, and among them there are only 57 cotton wool

spot regions. We randomly selected 57 non-cotton-wool-spot regions from them

and input them together with 57 cotton wool spots to SVM classifier for training.
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The rest of the images are used as testing images. Since the negative examples

are chosen randomly, the experiment is conducted 3 times. That is we have 3

different models trained with 3 different training dataset. The testing results

for these three models are shown in Table 4.3. On average, the classification

approach can achieve 100% sensitivity and 82.8% specificity on image level.

The experiment results of these two approaches summarized in Table 4.4

show that the SVM classification has the better performance. The basic idea of

Eigenimage approach is template matching. Given that the cotton wool spots do

not have uniform shape, the Eigenimage approach does not perform as well as

SVM classification approach.
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Chapter 5

Conclusion and Future work

In this research, we have developed algorithms on the detection of bright lesions

such as hard exudates and cotton wool spots in retinal images. The proposed

wavelet-based algorithm to detect hard exudate has sensitivity of 97.9% and

specificity of 78.2%. To our best of knowledge, no work has been done using

wavelet to detect hard exudates. Our algorithm were evaluated using 1198 retinal

images collected from clinics.

Existing work were focused on detecting lesions and do not identify cotton

wool spots directly. We described how eigenimages and SVM classification can

be utilized to detect cotton wool spots. We also demonstrate the robustness and

reliability of our methods by evaluating on a realworld dataset of 1198 images.

Eigenimage approach can achieve 62.1% sensitivity and 78.2% specificity and

the classification approach can achieve 100% sensitivity and 82.8% specificity on

image level.

Future work would be focused on developing algorithms to detect other types

of lesions, such as microaneurysms and hemorrhages. These are dark lesions in

retinal images. Similar to hard exudates, the size of microaneurysms is relatively
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small. The wavelet application can be investigated to detect microaneurysms

and hemorrhages. We can also investigate the application of Fuzzy C-Means

clustering and SVM classification in detecting microaneurysms and hemorrhages.
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