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ABSTRACT 

The analysis of retinal vasculature in digital fundus images is important for 

diagnosing eye related diseases.  However, digital colour fundus images suffer from 

low and varied contrast, and are also affected by noise, requiring the use of fundus 

angiogram modality.  The Fundus Fluorescein Angiogram (FFA) modality gives 5 to 

6 time’s higher contrast.   However, FFA is an invasive method that requires contrast 

agents to be injected and this can lead other physiological problems.   A reported 

digital image enhancement technique named RETICA that combines Retinex and ICA 

(Independent Component Analysis) techniques, reduces varied contrast, and enhances 

the low contrast blood vessels of model fundus images.   

In this thesis the performance of RETICA has been investigated using real fundus 

images for two databases.   The first database is the 35-Fundus database that contains 

35 colour fundus images with their corresponding Fundus Fluorescein Angiogram 

(FFA) images.   RETICA is found to give a better Contrast Improvement Factor (CIF) 

of 5.46 as compared to CIF of 5.12 for FFA images.  The second database is the 

Fundus Image for Non–invasive Diabetic Retinopathy System (FINDeRS) database 

that contains 175 colour fundus images of various Diabetic Retinopathy (DR) stages.   

The cause for the lower CIF performance for RETICA in the case of FINDeRS 

database is due to lower Peak Signal-To-Noise Ratio (PSNR) of the images.   Noise 

seems to be affecting the performance of RETICA.  However, before attempting to 

improve PSNR by reducing noise in fundus images, it is necessary to identify the 

nature of noise in the images. 

The identification of the noise in the fundus image (model fundus image or real 

fundus image) has been the focus in this research.  The approach used to identify 

noise is based on 3 adaptive wiener filters (additive, multiplicative, and additive plus 

multiplicative filters) and determining the highest PSNR improvement among three an 
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adaptive wiener filters. It is observed that fundus image contained additive and 

multiplicative noise and this is because of the image acquisition in Fundus camera.  

Various denoising methods are used to improve the Signal to Noise Ratio (SNR) of 

the fundus images before further image enhancement.  Based on the performance of 

several techniques for denoising fundus images, it was found that the Time Domain 

Constraint Estimator (TDCE) gave a better performance in the PSNR improvement of 

retinal fundus images around 3dB.   

The noise in fundus images of the FINDeRs database is reduced by applying the 

TDCE.   The PSNR of the FINDeRS images (green band) are first improved by 

around 3dB using TDCE and after applying RETICA, higher contrast improvement 

factors have been achieved averaging around 5.56 compared to 5.46 for the normal 

fundus images and 5.12 for FFA images of 35-Fundus dataset.  TDCE along with 

RETICA has a fair potential to reduce the need for FFA method in eye related disease 

assessment. 
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ABSTRAK 

 

Analisis vaskular retina dari imej digital fundus adalah penting untuk 

mengdiagnosis penyakit yang berkaitan mata. Namun, imej warna fundus digital yang 

diambil mempunyai nilai kontras yang rendah dan berbeza, ditambah dengan 

kehadiran hingar, ia memerlukan penggunaan fundus angiogram sebagai modaliti. 

Fundus fluorescein angiogram (FFA) adalah modaliti yang meningkatkan nilai 

kontras pada vaskular retina kepada 5 hingga 6 kali ganda. Namun, FFA adalah teknik 

invasif (suntikan perwarna kontra) yang boleh meberi kesan kepada masalah fisiologi. 

Terdapat satu teknik untuk peningkatan imej secara digital yang dinamakan sebagai 

RETICA iaitu kombinasi daripada teknik Retinex dan ICA dimana ia mengurangkan 

nilai kontras yang tidak tetap dan meningkatkan nilai kontras yang rendah pada imej 

fundus pembuluh darah. RETICA telah diuji menggunakan imej fundus yang sebenar. 

Dua pangkalan data dianalisis menggunakan teknik RETICA. Pangkalan data 

pertama 35-Fundus, mempunyai 35 imej warna fundus berserta imej FFA  yang 

sepadan setiap satu. Faktor peningkatan kontra diukur dan RETICA memberi faktor 

peningkatan kontra (CIF) yang lebih baik  iaitu 5.46 berbanding CIF imej FFA iaitu 

5.12. Pangkalan data kedua adalah himpunan data Fundus Image for Non–invasive 

Diabetic Retinopathy System (FINDeRS) yang terdiri daripada 175 imej warna 

fundus dari pelbagai peringkat retinopati diabetik (DR). Faktor penurunan prestasi 

CIF untuk pengkalan data FINDeRS diselidiki.  CIF yang rendah pada pangkalan data 

FINDeRS menggunakan teknik RETICA adalah disebabkan oleh nisbah signal ke 

hingar (SNR) imej tersebut adalah rendah. Hingar telah memberi kesan kepada 

prestasi RETICA. Namun, sebelum mencuba  meningkatkan nilai puncak SNR 

(PSNR) dengan mengurangkan hingar pada imej retina fundus, adalah perlu untuk 

mengenalpasti sifat hingar dalam imej-imej tersebut.  
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Pengenalpastian hingar dalam imej fundus (model imej fundus atau imej 

fundus yang sebenar) adalah fokus dalam kajian ini. Pendekatan yang digunakan 

untuk mengenal pasti bunyi adalah berdasarkan pada tiga adaptive wiener filters 

(penapis penambahan, pendaraban, dan penambahan & pendaraban) dan menentukan 

peningkatan PSNR yang tertinggi di antara tiga adaptive wiener filters tersebut. 

Daripada kajian yang dibuat, didapati imej fundus retina mempunyai hingar 

penambahan dan pendaraban. Hingar penambahan dan pendaraban dijumpai di 

spektrum hijau pada imej kerana modaliti imej (kamera fundus). Pelbagai kaedah 

membuang hingar digunakan untuk meningkatkan SNR dalam imej fundus retina 

sebelum peningkatan kualiti imej dilakukan. Berdasarkan prestasi teknik membuang 

hingar imej fundus, didapati bahawa Time Domain Constraint Estimator (TDCE) 

menunjukkan prestasi yang bagus dalam meningkatkan PSNR pada imej fundus 

retina. 

Hingar pada imej fundus daripada pangkalan data FINDeRS dikurangkan dengan 

menggunakan TDCE. Teknik ini digunakan untuk membuang hingar pada imej 

fundus retina. TDCE adalah teknik linear sub-space yang berfungsi keatas isyarat 

condong dan membuang hingar pada imej. PSNR pada imej FINDeRS (spektrum 

hijau) akan ditingkatkan sebanyak 3dB dengan menggunakan TDCE dan setelah 

mengaplikasikan RETICA, faktor peningkatan kontras yang tinggi telah dicapai 

dengan purata sebanyak 5.56 berbanding 5.46 pada imej fundus yang biasa dan 

sebanyak 5.12 pada set data 35-Fundus. TDCE bersama-sama dengan Retina 

mempunyai potensi yang adil Mengurangkan keperluan untuk kaedah FFA dalam 

penyakit berkaitan penilaian mata. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background Study 

Analysis of biomedical images is one of emergent research area that is related to 

the study and analysis of digital images based on the image processing techniques 

with computation tools that assist in  analysis of clinical problems [7].  In recent 

years, the progress of research in biomedical images analysis has proven significantly 

important in order to provide the solution of digital analysis while reducing the use 

invasive approaches.   

 

Eye related disease such as Diabetic Retinopathy is the impediment of diabetes 

mellitus which is caused by damage to retinal vasculature and is the leading cause of 

blindness.  It is a silent disease that is only realised by the patient when they have 

vision problems.  However, this occurs when the changes in the retina have 

progressed to a level where treatment is complicated and there is a greater chance of 

vision loss [8].   

 

The prevalence of diabetic retinopathy has increased with an increase in life 

expectancy of diabetics.  In world healthcare challenges, the diabetes is one of the 

major issues [9].  World Health Organization (WHO) forecasted that number of 

people with diabetics is to increase from 130 million to 350 million over the next 

25years [9].  In Malaysian National Eye database 2007, among 10,856 cases with 

diabetes 36.8% had any form of DR, from which 7.1% comprises of proliferative 
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diabetic retinopathy [5].  The incidences of diabetic and diabetic retinopathy (DR) are 

shown in Figure 1.  

 

 

 

 

Diabetic retinopathy generally has two categories, Non-Proliferative Diabetic 

Retinopathy (PDR) and Proliferative Diabetic Retinopathy (NPDR), characterised by 

presence of pathologies namely micro aneurysms, dot and blot haemorrhages, cotton 

wool spots, exudates and changes of veins.  NPDR is further classified into Mild, 

Moderate and Severe NPDR stages.  Eye screening is important in detecting of DR.  

The main purpose of eye screening is to identify patients with sight-threatening DR so 

that essential treatment could be given for prevention of vision loss [8].  

It has been observed that a retinal vasculature feature analysed in DR cases is 

loss of retinal capillaries in the perifoveal capillary network resulting in the 

enlargement of the Foveal avascular zone (FAZ).  The area of FAZ can be observed in 

colour fundus image and fundus fluorescein angiograms (FFA).  Previous research by 

Fadzil et al [10, 11] on analysis of fundus images found that size of fovea avascular 

zone increases with severity level of DR 

The retinal photography known as FFA is carried out after an arterial injection 

of fluorescein dye which takes place in a rapid sequence.  Three main characteristics 

are given by the FFA:  Firstly, First, the characteristic of how the dye flows through 

blood vessels to reach the retina and choroid, and its circulation when it gets there.  

Secondly, fine details of the pigment epithelium and retinal circulation are recorded 

which might be invisible.  Thirdly, the retinal blood vessels are clear in the resulting 

Figure 1.1 Incidence of DR in Malaysia [5] 
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Fluoroscopy  Computed Tomography 

Single Photon Emission Computed 

Tomography (SPECT) 
 Positron Emission Tomography 

(PET) 

image and their functional integrity is assessed [8].  Most of research work on 

determination of FAZ is evaluated based on the FFA images. 

1.2 Medical Imaging Modalities 

Medical imaging modalities are the source of medical images.  Medical image 

contain information that can be used to ascertain or grade severity of diseases and 

monitor diseases during treatments.  Medical imaging modalities enable investigations 

into the anatomical structure, function and pathologies of the human organs.  There 

are two types of the medical image modalities namely, Ionizing radiation (Invasive) 

imaging and Non-ionizing radiation (Non-Invasive) imaging [12].  

1.2.1 Ionizing Radiation Imaging Modalities 

Due to the use of radiation in Ionizing radiation imaging modalities, living 

tissues are damaged by destruction of individual cells at molecular level.  

 

 

 

 

 

 

 

 

 

Figure 1.2 Examples of Ionizing Radiation Imaging Modalities 
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Magnetic Resonance 

Imaging (MRI) 
 Mammography Machine  

 Fundus Image 

Figure 1.2 shows an example of ionizing radiation imaging modalities such as 

Radiography and Fluoroscopy, Computed Tomography (CT), Radionuclide imaging 

(Nuclear Medicine), Single photon emission computed tomography (SPECT), 

Positron emission tomography (PET) [13].   

1.2.2 Non-Ionizing Radiation Imaging Modalities 

 

Non-ionizing radiation imaging modalities use radio frequency (RF) waves that 

can be low frequency, infrared and visible light.  Figure 1.3 shows image modalities 

that use non-ionizing radiation such as fundus camera, magnetic resonance imaging 

(MRI), ultrasound, and optical 3D scanner [13].  

There are some technical confines in these medical imaging modalities due to 

improper acquisition processes including poor focus and uneven illumination which 

produces noise and artefacts in the image. 

1.3 Problems in Medical Images  

  Three main problems are identified when using imaging modalities; these are 

low contrast, varied contrast and noise in the medical images.  Referring to the Figure 

1.4, as an example, such problems could be observed in retinal images from fundus 

camera [14], images obtained from magnetic resonance imaging (MRI) [1], 

Figure 1.3 Examples of Non- Ionizing Radiation Imaging Modalities 



 

5 

mammography images obtained by x-rays [15] and ultrasound images obtained by CT 

angiography [16].  

 

 

 

The different medical images are shown in Figure 1.4.  The Retinal fundus 

image is captured by using fundus camera and it suffers from low and varied contrast 

and occurrence of noise also as elaborated in the next section.  

 

 

 

 

Mammography Image Fundus Retinal Image  

 MR Image Ultrasound Image 

Figure 1.4 Examples of Medical Images Problem of Contrast Obtained From 

Different Medical Imaging Device 
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1.4 Problems in Retinal Fundus Images 

Retinal images are obtained from fundus cameras and suffer from problems of 

varied contrast, low contrast and noise.  To obtain a good image, it depends upon the 

acquisition process and the illumination variation on the different parts of the retina.  

In spite of making the proper acquisition process with the fundus camera, the  retinal 

fundus image suffers from varied and low contrast [17].  A detailed explanation on 

these three factors is given below. 

1.4.1 Low Contrast in Retinal Colour Fundus Images  

 

The image of the retina captured by using advanced fundus cameras has 

become a standard imaging modality in many ophthalmologic clinics.  The digital 

retinal images can be analysed by using digital image processing techniques for 

diagnosis of eye related diseases. The diagnostics of eye related diseases from a 

digital colour fundus image depends upon the image quality.  The quality of a digital 

retinal fundus image depends upon three factors, i.e,, the image resolution 

(determined by the camera resolution), contrast of the objects on the retina (bloods 

vessels against their background and the optic disc) and proper illumination.  It is very 

important to uniform and enhance the contrast of the retinal fundus image.  There are 

two different definitions of contrast found in the literature.  First, Michelson Peli et al 

[18] defined the contrast as a relation between the luminous intensity values in an 

image or selected specified region of the image. This is mathematically shown in 

Equation 1-1.  

         
         

         
      

Where               are the largest and smallest luminous intensity values of 

an image.  The second definition of contrast was given by Weber’s law.  He defined 

the contrast as the ratio of intensities between the most intense (brightest) and least 

intense (darkest) elements of a scene.  This is mathematically as given in Equation 

1.2.  

(1-1) 
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Where          are the luminance of specified objects or the image and the 

background. Contrast is the dimensionless ratio between the absolute luminance 

difference of an object and the average background luminance.  An image’s 

information is distributed in terms of its intensity values and its contained specified 

range, and an image may appear in low contrast.  The aim of image enhancement is to 

increase image intensity values of low contrast objects to be observed clearly.  The 

digital retinal color fundus image suffers from low contrast between the blood vessels 

against their surrounding background.  Due to the low contrast between the retinal 

blood vessels and their surrounding background in retinal fundus images, it becomes 

difficult to determine the retinal vasculature [6].  Consider Figure 1.5, a macular 

region of a colour fundus image is shown to suffer from low contrast.   

 

 

 

 

 

Consider Figure 1.6, the colour retinal fundus image is shown and its green 

channels.  The yellow circles are shown in which the intensity values of the blood 

vessels are low against the surrounding background.  Due to this low contrast issue, 

the tiny blood vessels cannot be observed clearly; that makes it difficult to analysis 

the retinal fundus image properly.  

 

 

 

 (1-2) 

Figure 1.5 Example of Low contrast Images 
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1.4.2 Varied Contrast Problem in Retinal Fundus Images   

 

Varied contrast occurs due to the configuration of the light source and the 

uneven illumination of the retinal surfaces  that are irregularly curved  [19].  There are 

two types of varied contrast in the retinal fundus image, i.e., inter-varying and intra-

varying contrast.   

 

 

 

 

 

Figure 1.6  Illustration of Low contrast in 

Retinal colour fundus Images 
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Retinal fundus images of different eyes have different contrasts; this is known 

as inter-varying contrast and is shown in Figure 1.7a.  This can occur when the retinal 

image is obtained from the same eye but at different times.  Intra-varying contrast is 

when the contrast varies within the retinal fundus image and this is shown in Figure 

1.7b.  

 

 

(a) Inter- Varying contrast 

(b) Intra- Varying contrast  

 Figure 1.7 Example of varied contrast in Fundus Images 
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The macular regions of the two fundus images shown also suffered from the 

varied contrast because some regions are dark and some regions are brighter due to 

the variation of the illumination.  Consider Figure 1.8,  a green band macular region 

of the fundus images are shown and different regions are marked with yellow circles 

within the macula of the green band.  Due to the varying contrast, the image cannot  

be analysed properly. 

 

 

 

 

 

 

Figure 1.8 Example of varied contrast in Fundus Images 
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Fundus Retinal Image  
Macular 

Regionof Colour 

Fundus  Image 
Green Band of 

colour Fundus  

Image 

1.4.3 Noise in Retinal Fundus Images   

 

 Noise is any unwanted data that occurs in the image due to the improper 

acquisition process of imaging modalities and imaging process methods that could 

decrease the contrast and details of the image.  There are three basic noise models, 

additive, multiplicative and additive plus multiplicative.  Multiplicative noise, which 

is commonly known as  speckle noise, is dependent on the image properties; on the 

other hand, additive noise is naturally systematic and can be easily modelled [20].  

The additive plus multiplicative noise models contain both types of noise.  The 

Retinal fundus images (FFA images and digital colour fundus images) contain noise 

due to which the blood vessels in the fundus images cannot be observed clearly as 

shown in Figure 1.9.  

 

 

 

 

 

Referring to Figure 1.9, colour fundus images contain noise due to which the 

blood vessels against their background cannot be observed clearly but the green band 

image of colour also contains noise due to which the details of the image are lost.  The 

source of the noise in the digital fundus image was the image modality (Fundus 

camera) and during the acquisition process, it was observed that the fundus image 

contained additive noise because of the camera electronics and multiplicative noise 

due to the flash of the fundus camera.  The filter-based approach has been developed 

in this thesis for the identification of noise in the fundus image.  It has been proved 

that the fundus image contained additive and multiplicative noise [21].  Further 

Figure 1.9 Illustration of noise in Fundus Images 
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identification of noise in digital colour fundus images are elaborated in chapter 3 and 

4.  

1.5 Medical Image Enhancement Techniques for Retinal Fundus Images 

Image enhancement is an important pre-processing step to improve the quality 

of the image for the purpose of better analysis.  The quality of medical images 

obtained from the medical imaging devices depends on three factors; they are, spatial 

resolution, illumination and signal to noise ratio [22].  

Spatial resolution gives the information about the sharpness of the image and 

its detailed features thus, sufficient resolution is needed to analyse, objectively, the 

image features of interest; in this work, and this is the retinal blood vessels and related 

pathologies, such as the FAZ area. The different fundus cameras have different 

resolutions depending upon the manufacturers but in this research work, the fundus 

camera Kowa 7 is used to capture the colour retinal fundus images.  However, in this 

research work, the image resolution used is 1296×1936 pixels and the selected 

macular region has a resolution of 390×582 pixels.  The resultant contrast of an image 

is related to the illumination of the scene.  Thus, a proper acquisition process with the 

fundus camera is required, which provides an even illumination and will produce a 

good quality image.  

A fundus camera contains a specialised low power microscope with an 

attached camera to capture the interior surface of the eye (Fundus), which  contains  

the retina, optic disc, macula and posterior pole [2].  The ophthalmologists use the 

fundus camera to capture fundus images to analyse the progression of eye related 

diseases, such as diabetic retinopathy.  

 A digital fundus camera obtains retinal fundus images by capturing the 

illumination reflected from the retinal surface.  The principle of the fundus camera is 

similar to that of indirect ophthalmoscopy in which illumination and imaging systems 

follow a dissimilar path surface [2].  The only difference is that the observed eye in 

the indirect ophthalmoscopy, as shown in Figure 1.10, is now replaced by a camera as 
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a sensor to photograph and capture the image digitally.  An optical diagrammed of the 

fundus camera is shown in Figure 1.11. 

 

 

  

 

 

 

 

The fundus camera is one of the complex optical systems that give a 

magnified view of the retina of the eye.  The fundus camera contains two illumination 

systems, a flash tube for flash photography and a viewing lamp for the observation; 

whilst, the indirect ophthalmoscope contains only one illumination system.  The 

source of these two illumination systems is required since the intensity of the light 

used for the visual observation of the retinal surface is not sufficient for 

photographing the image of the retinal surface.  The use of one illumination system in 

the indirect ophthalmoscope is one of its drawbacks because of prolonged exposure to 

high intensity indirect ophthalmoscope illumination.  Moreover, it causes discomfort 

Figure 1.11 Principle of Fundus Camera [2] 

 

Figure 1.10 Principle of indirect ophthalmoscopy [4] 
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to patients and possibly leads to damage of the retina.  In the fundus camera, the 

illumination system passes the light from the source to the retinal surface through a 

condensing lens [2].  

The condensing lens has two main functions.  First, it projects the illuminated 

light to form a ring, such as the illumination at the pupil, allowing the retinal surface 

to be illuminated through the outer part of the pupil.  The ring like illumination is 

shown in Figure 1.13.  It has the imaging pupil and contains the imaging path and 

illumination path to the exit and entrance of the aperture. 

 

Second, the converging lens collects the reflected diverging light from the 

retinal surface and passes it to further optics to form an image.  The field of view of 

the retinal surface is determined by the ratio of the condensing lens and its focal 

length.  An optic fundus camera normally has a field of view (FOV) of the retinal area 

from 20 to 60 degrees with a magnification of around 2.5times.  The modification can 

be possible in the fundus camera with inserting the additional zoom lens with the 

FOV of around 15 to 140 degrees with a magnification of around five times.  

Noise contains undesired objects that deteriorate an image’s contrast and its 

quality.  A good quality medical image is required for the analysis of pathologies.  

Due to the contrast injecting agent in the blood vessel of a patient in the invasive 

method, it gives good contrast of the image and the pathologies in the FFA image can 

be observed.  However, in a colour fundus image, due to the presence of noise from 

Figure 1.12 Fundus illumination and imaging path from optic fundus camera  
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Colour Fundus Image Macula Region of Colour 

Fundus Image 

FFA Image Macula Region of FFA Image  

uneven illumination, the tiny blood vessels against the background cannot be 

observed clearly nor can the pathologies.  Consider Figure 1.13, the colour fundus 

image and FFA is shown.   Due to the contrast injecting FFA, a more clear 

observation of the blood vessels and pathologies is given as shown in the white circle 

as compared to the colour fundus image.  But, the invasive method is not preferred 

due to injecting the contrast agent that causes other physiological problems.  It is 

challenging to achieve a well contrasted colour fundus such as with FFA.  In this 

research work, novel image enhancement techniques have been developed to handle 

noise levels in fundus images, and normalise and enhance the contrast of the images.  

   

 

 

 

 

 

 

 

 

 

Technically, in overcoming the above issues, medical image enhancement 

offers two approaches, namely, invasive and non-invasive image enhancement 

methods [23].  

 

Figure 1.13 Colour Fundus Image vs FFA Image  
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1.5.1 Invasive Image Enhancement Techniques 

The invasive enhancement method is related to injecting a contrast agent into the 

human body to capture an image through image modalities.  In ophthalmology, the 

fluorescein angiography is used as an invasive method to capture retinal images.  It 

gives a better contrast of the retinal blood vessels against their background.  Due to 

injecting the contrast agent into the patient’s blood vessels, this method leads to 

physiological problems, such as nausea, vomiting and dizziness.  In the worst case, 

death can occur as well.  It was reported by Yanmuzzi et al [24] that there is a 

1:222,000 frequency rate of deaths due to fundus fluorescein angiography so it is not 

recommended for daily routine use other than the fact that it gives good contrast of 

the image.  For this issue, the safety of the patient is a priority whilst acquiring 

medical images.  Whilst FFA gives a good contrasted image but needs an injecting 

contrast agent.  The non-invasive image enhancement technique provides safety of the 

patient and good quality of images without any injection for improving the contrast of 

the blood vessels against their background [25]. 

1.5.2 Non-Invasive Image Enhancement Techniques 

 

This approach is based on a digital image processing method which gives 

better quality images without the injection of a contrast agent and provides a solution 

for the automatic analysis of an image and its grading severity.  The main purpose of 

the implementation of non-invasive image enhancement techniques is to improve the 

image quality without using  any contrast agent in the human body [26].  Many image 

enhancement techniques are used to  improve the image quality and remove noise; 

moreover, it is very necessary to enhance the contrast of  the image, normalise the 

contrast and reduce  noise in order to improve the image quality for  the visual 

perception of the human observation [27].  Different enhancement techniques are used 

for different problem related applications.  In medical images, there are problems of 

varied contrast, low contrast and noise.  The main challenge of a non-invasive image 

enhancement technique is to determine the object of interest in the image and 
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distinguish the object of interest from other objects, such as noise and artefacts, to 

obtain a better enhanced image.   

1.6 Problem Statement and Formulation 

Digital colour fundus images suffer from noise and varying low contrast 

problems.  Due to an improper acquisition process, noise is observed in the image, 

which degrades the image quality.  Due to uneven illumination, the colour fundus 

image suffers from varied contrast.  The colour fundus image also suffers from low 

contrast due to the biological structure of the objects in the image and the amount of 

light being absorbed.  These low contrast objects of the retinal fundus image, 

especially in the macular region, need to be enhanced properly to observe the tiny 

blood vessels against the background. 

A digital image enhancement technique developed by Hanung.A.Nugroho et 

al  [28] called RETICA reduces the varied contrast and enhances the low contrast 

blood vessels and the technique was investigated  on model fundus images.  The 

RETICA method applies the Retinex algorithm [29] for contrast normalisation to 

overcome the varied contrast followed by the Independent Component Analysis [30] 

for contrast enhancement to overcome the low contrast.  RETICA was tested on the 

model fundus image.  RETICA successfully achieved a good contrast improvement 

factor of 5.38 on model images as compared to the standard contrast improvement 

factor of 5.79 of the FFA method.  However, Hanung.A.Nugroho et al [28] did not 

extensively investigate the performance of RETICA on real fundus images in 

FiNDeRs database and more importantly the effects of noise in fundus images on 

RETICA. 

To address the issues related with the analysis of fundus images, it is 

important to understand the nature of the noise in fundus images and to develop a 

suitable noise reduction technique to address noise prior to any contrast enhancement.  

Noise that arises from the image acquisition by fundus camera will have to be 

investigated thoroughly in order to identify the type(s) of noise.  Available noise 
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reduction schemes should be investigated to obtain the most effective noise reduction 

for the type(s) of noise in fundus images.   

In improving the contrast of the fundus images, it is clear that the RETICA 

method has the potential to address varied and low contrast effectively as described 

from Hanung et al [28].  However, there is a need to ascertain its performance with 

real fundus images. 

RETICA is based on the two hypotheses as follows:- 

1. First, the digital colour fundus images are taken with a fundus camera and 

these images suffer from a varied contrast problem.  The colour fundus image 

has a problem of uneven illumination.  According to the image formulation 

model, the image intensity is the product of illumination and reflectance.  Due 

to uneven illumination, the image has a varied contrast which affects its 

quality.  Therefore, in order to achieve a uniform contrast image, it is 

necessary to normalise the image contrast and separate the illumination from 

the reflectance.  Retinex makes this possible by separating the illumination 

from the reflectance part of the image to give a contrast normalised image. 

2. Secondly, the objects of interest (macular region of the fundus image) suffer 

from low contrast because it is related to the reflectance.  The independent 

component analysis is used to enhance the objects without introducing noise 

or any artefacts.  

The above two problems of varied and low contrast were formulated and 

addressed on statistical models of fundus image by  Hanung et al [28].   The 

performance of RETICA was evaluated in terms of the contrast improvement factor 

and it successfully achieved an average of 5.38 contrast improvement factor on the 

model fundus images.  However, RETICA was not validated on the real fundus 

image. 

In this research, it is hypothesised that noise affects the performance of 

RETICA and that RETICA can be improved with better SNR of fundus images.  The 
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noise in fundus images is therefore studied and its effect on the performance of 

RETICA with real colour fundus image is investigated.   

1.7 Research Objectives 

 Initially, the objective of this research work was to validate and improve the 

earlier developed non-invasive image enhancement technique named RETICA on the 

real colour fundus image instead of the model fundus image.  The improved non-

invasive image enhancement technique can normalise the varied contrast, enhance 

low contrast objects and remove noise to achieve a better image in terms of contrast 

and visualisation as compared to FFA images.  This research addresses three main 

objectives as follows:-. 

1. To validate and analyse the performance of RETICA on the real fundus image 

instead of the model fundus image.  

2. To investigate noise in fundus images in order to identify noise type(s) and 

propose appropriate noise reduction schemes.  

3. To investigate the performance of proposed noise reductions in terms of SNR 

in fundus images and determine the improvement to the contrast improvement 

factors in RETICA. 

1.8 Contribution 

The main contribution of this thesis is the validation and modification of the 

earlier proposed non-invasive image enhancement technique RETICA (it is 

combination of Retinex and ICA) on real fundus image instead of model fundus 

image.  RETICA has been improved by using a denoised technique before Retinex 

algorithm.  Now, image enhancement technique is based on denoised techniques 

(TDCE), Retinex for contrast normalisation and ICA for enhanced digital colour 

fundus image to obtain from fundus camera as imaging modality.  One of the main 

contributions of this thesis is the achievement of the almost same contrast 
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improvement factor 5.56 as compared to contrast improvement factor 5.79 of FFA 

(Referred Chapter 4).  

Another contribution of this thesis is also the development of an approach to 

identify the nature of noise in Fundus image (Referred Chapter 4) which can be used 

for identification of noise in any image processing application and other contribution 

is also study of different denoised methods on fundus and observed the limitation of 

different denoised methods on fundus image. 

1.9 Scope of Work 

It is important to analysis the digital colour fundus image to analysis the eye 

related disease such as diabetic retinopathy. In ophthalmology, the fluorescein 

angiography is used as an invasive method to capture retinal images.  It gives a better 

contrast of the retinal blood vessels against their background.  Due to injecting the 

contrast agent into the patient’s blood vessels, this method leads to physiological 

problems. For this issue, the safety of the patient is a priority whilst acquiring medical 

images.  Whilst fundus fluorescein angiography (FFA) gives a good contrasted image 

but needs an injecting contrast agent.  The non-invasive image enhancement 

technique provides safety of the patient and good quality of images without any 

injection for improving the contrast of the blood vessels against their background.  

The  non-invasive image enhancement technique is improved in this research work , it 

can normalise the varied contrast, enhance low contrast objects and remove noise to 

achieve a better image in terms of contrast and visualisation as compared to FFA 

images. The improved non-invasive image enhancement technique can be played 

significant role to reduce the use of invasive modality. 

1.10 An Overview of Thesis Structure 

This thesis consists of five chapters.  First chapter of this thesis provides the 

introduction of our research work and give a brief knowledge of medical image 

modalities and problems occurred due to medical imaging modalities.  A detailed 
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explanation of problems occurred in medical imaging such as varied contrast, low 

contrast and noise is also provided.  It outlines the motivation, research objectives and 

problem formulation. 

Second chapter of this thesis is about critical literature review of the eye 

related disease such as diabetic retinopathy in terms of medical science and critical 

literature of computerised automatic detection of diabetic retinopathy and is divided 

into three main parts. First part is related to computerised detection of diabetic 

retinopathy based on pathologies, second part provides an analysis of retinal blood 

vessels and fovea for grading diabetic retinopathy and the third part is related to non-

invasive image enhancement techniques of retinal fundus for grading diabetic 

retinopathy.  The last section of this chapter provides comparison of our work with 

other researcher’s works in the field of computerised analysis of diabetic retinopathy. 

Third chapter is related to the proposed methodology.  It is related to analysis 

of retinal fundus images, implementation of RETICA on real fundus image instead of 

model fundus image.  The method of measuring contrast and contrast improvement 

for evaluation of RETICA performance is elaborated in this chapter.  The approach is 

proposed to identify the nature of noise in retinal fundus and method of measuring 

PSNR of fundus image and method of improve of SNR of fundus image is also 

explained in third chapter.  

Fourth chapter is related to results and analysis of proposed experimental work 

in third chapter.  RETICA is validated on real fundus image and performance 

evaluation of RETICA is evaluated in terms of contrast improvement factor and 

performance comparison of the RETICA on real colour fundus images with FFA 

images.  The proposed approach to identify the nature of noise in retinal fundus is 

successfully tested on real fundus image and model fundus. The modification of 

RETICA by inserting denoised method (Time Domain Constraint Estimator (TDCE)) 

before Retinex, validation of modified methods is also elaborated in fourth chapter.  

The fifth chapter of this thesis concludes the research including the brief 

summary of authentication of RETICA and overcome limitations and analysis results 

of improved RETICA and future contribution to research work in this area. 

  



 

  

CHAPTER 2 

LITERATURE REVIEW

 

This chapter presents a literature review on diabetic retinopathy, an eye related 

disease due to diabetes mellitus, and clinical methods to detect and grade the disease.  

This chapter also contains a critical review on a computerised analysis of digital 

colour fundus images for the detection and grading of diabetic retinopathy.  The 

varied and low contrast issues, and noise problems in fundus images are also 

discussed.  In addition, a discussion on noise reduction techniques is presented. 

2.1 Introduction to Diabetic Retinopathy 

Diabetic Retinopathy is damage of the retinal vasculature that is a common 

complication of the diabetes mellitus disease.  It is the leading cause of blindness in 

the working age population.  The vision loss problem is due to high blood sugar level 

and hypertension that damage tiny blood vessels which affects the Retina of eye.  

According to the National Eye Institute Database of United States, diabetes is the 

leading cause of blindness among adults aged 20 to 74 years[5].  Diabetes is regarded 

as one of the world healthcare challenges [31].  The World Health Organization 

(WHO) expects the number of people with diabetes to increase from 130 million to 

350 million over the next 25years[9].    

The rate of diabetes is higher in developed countries than undeveloped 

countries.  It is estimated that 75% of people with diabetic retinopathy are living in 

developing countries[9].   This situation occurs due to inadequate treatment and 

improper management of health care, so proper treatment is essential because patient 

may identify it before treatment is complicated and nearly impossible.  Eye screening 

is important for the detection of the diabetic retinopathy [32].  The main purpose of 
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the screening is to recognize patients with sight-threatening DR so that essential 

treatment would be given for prevention of vision loss [8].  It has been observed that 

retinal vasculature features analysed in DR are the loss of retinal capillaries in the 

perifoveal capillary network due to the increase in the size of Foveal Avascular Zone 

(FAZ) [33].  Recent research on the analysis of fundus images found that the size of 

the fovea avascular zone increased with the severity level of DR.  

 The area of the FAZ can only be observed in colour fundus images and can 

only be seen in fundus fluorescein angiograms (FFA) [28].  The retinal photography 

known as FFA is carried out after an arterial injection of fluorescein dye which takes 

place in a rapid sequence.  Three main characteristics are given by the FFA:  First, the 

characteristic of the dye flow through the blood vessels to reach the retina and 

choroid, and its circulation when it gets there.  Second, fine details of the pigment 

epithelium and retinal circulation are recorded which might be invisible otherwise.  

Third, the retinal blood vessels are clear in the resulting image and their functional 

integrity is assessed [34].  The research related to analysis the retinal fundus image to 

diagnosis eye related disease such diabetic retinopathy is a challenging area for 

medical image processing.  

2.2  Anatomy of Fundus image of Normal Retina 

Fundus image is digital colour retinal image of the eye that can be obtained using 

a fundus camera.  Many eye related diseases can be diagnosed through analysis of 

fundus image.  There are two ways to capture the fundus image i.e. Fundus 

fluorescein angiogram image (invasive method) and digital colour fundus image (non-

invasive method).  Fundus fluorescein angiogram is injection based method in which 

fluorescein dye is injected into patient blood vessel to increase the contrast level of 

retinal vasculature (Retinal vasculature is network of vessel in the retinal layer) of it 

[35].  The digital colour fundus is captured by fundus camera without injecting the 

contrast agent into patient’s blood vessels.  Figure 2.1 shows the FFA and digital 

Colour image. 
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Fundus fluorescein Angiogram Digital Colour Fundus Image  

 

 

 

 

 

 

Two retinal images of the same eye are shown in Figure 2.3 using FFA 

(invasive) and normal fundus (non-invasive).  With the use of contrast agents, the 

retinal vessels appear brighter in the higher contrast FFA image compared to low 

contrast colour fundus image.  Contrast of retinal vasculature of a colour fundus 

image can be enhanced to similar level or better than FFA image and this is discussed 

in the later sections.   The main components of the fundus image are optic disc, 

macula and retinal blood vessels.  The macula is a centre part of retinal that provides 

visual acuity.  Oxygen and nutrients are supplied to retina cells by retinal blood 

vessels.  The retinal blood vessels grow from central retinal artery and vein in optic 

nerve to nourish the inner part of the retina. 

2.3 Abnormalities in Fundus Images 

The abnormalities observed clinically in fundus images are also known as 

pathologies.  These pathologies indicate DR severity levels or disease severity level 

[36].  Pathologies that occur in retinal fundus image such as micro aneurysms, 

haemorrhages and exudates are described in the following sub sections. 

 

 

 

 

Figure 2.1 FFA and Digital Colour Fundus Image 
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Colour Fundus Image Macula Region of Colour Fundus 

Image 

FFA Image Macula Region of FFA Image 

2.3.1 Microaneurysms 

 

Microaneurysms (MAs) are the first clinical signs of DR in the fundus image.  

Referring to the colour fundus image and FFA image of Figure 2.2, MAs that appear 

as small dark red lesions in colour fundus images (in white circles) are clearly seen as 

small around lesions with sharp edges and irregularly brighter rim in the FFA images.  

The colour and inundation of MA vary according to the oxygenation of the blood 

from brighter red to deep red [37].  MA can be observed as small in size around 15-

100µm in diameter in high quality images.  MAs are mostly fairly circular, dark red 

spots with relatively sharp edges.  MAs are appeared as tiny dilations of the blood 

vessels and their occurrences correspond to progression of DR [38].  They are mostly 

occurred in the area near to the macula  [39].  

 

 

 

Figure 2.2 MAs in Colour Fundus image and FFA image 
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2.3.2 Blot and Dot Haemorrhages  

 

A haemorrhage appears as round shaped or irregular shaped sharped or 

diffusely delineated and deep red (colour of intravenous blood) in fundus images.  

Red cells are the main source of haemorrhages formation as the cells leak out from 

damaged blood vessels.  There are two types of haemorrhages blot and dot 

haemorrhages.  Mostly, blot haemorrhages are larger than dot haemorrhages [36].  

Haemorrhages (dot or blot) appear with irregular margins that may occur deeper in 

the retina.  The haemorrhages are found in fundus images shown in Figure 2.3 (see 

marked areas). 

 

Figure 2.3 Haemorrhages in colour Fundus Image 

2.3.3 Hard and Soft (Cotton wool spot) Exudates 

 

In DR, exudates are the second clinical sign appearing after MAs in the fundus 

image.  Exudates are random whitish or yellowish patches found in the retinal fundus 

image with different sizes, shapes and at different locations [40].  There are two types 

of exudates i.e. soft exudates and hard exudates.  Hard Exudates are formed by serum 

lipoproteins that outflow from MA and dump in the retina [38].  Exudates are also 

formed as individual circulate pattern by accumulation of lipids that leak from 

surrounding capillaries and micro- aneurysms (MA).  The soft exudates are also 

known as cotton wool spots.  In the areas where blood vessels are blocked and 

damaged, soft exudates appear as the brighter areas.  They are white, fluffy lesions in 

Colour Fundus Image 

 
FFA Image 
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(a) FAZ (white circle) in Colour 

Fundus Image 

(b) FAZ (red circle) in FFA 

Image  

the nerve fibre layer.  Fluorescein angiography shows no capillary perfusion in the 

area of the soft exudate [41].  They are very common in eye related disease especially 

if the patient is also hypertensive.  Figure 2.4 shows the image containing hard and 

soft exudates. 

 

Figure 2.4 Hard and Soft Exudates in Retinal Fundus Images 

2.3.4 Foveal Avascular Zone (FAZ) 

 

 The FAZ is the central region of the fovea that is usually free of capillaries [42].  

FAZ is usually has a diameter of ranging from 500µ to 1500µ [43].  The enlargement 

of FAZ is often observed in the eye with diabetic retinopathy progresses with DR 

severity as the diabetic condition causes capillary loss in the perifoveal capillary 

network [28].  Figure 2.5 depicts FAZ in colour fundus image and FFA image.  

 

 

 

(a) Hard Exudates 

Retinal Image 

(b) Soft Exudates 

Retinal Image 

Figure 2.5 FAZ in Colour Fundus Image and FFA Image 
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2.4 Severity Level of Diabetic Retinopathy 

The main purpose of the screening of eye is to recognise subjects (patients) 

with sight-threatening DR so that essential treatment would be given to prevent vision 

loss.  The international clinical diabetic retinopathy disease severity scale is defined in 

Table 2.1 [44-45].  From Table 2.1, it can be seen that the appearance of pathologies 

increases with increase in DR severity.  There are four quadrants of retinal fundus and 

pathologies can occur in any of quadrants depending upon the level of severity of DR 

as shown in Figure 2.6.  

 

 

 

 

 

Table 2.1 International DR Grading Scale [44-45] 

 

DR-Stage Indicator 

No_DR Normal image, there is no any abnormalities. 

Mild NPDR Micro- aneurysms only. 

Moderate NPDR Extensive MA, Haemorrhages, hard and soft exudates. 

Severe NPDR 

Any of the below. 

 Micro-aneurysms in all 4 quadrants  

 Venous beading in at least 2 quadrants  

 Prominent intra-retinal micro avascular abnormalities 

(MRA) in 1 quadrant.  

PDR 

Any of the following  

 New blood vessels formation either at disc (NVD) or 

elsewhere (NVE) 

 Vitreous/Pre-retinal haemorrhages 

Figure 2.6 Retinal Fundus Image [1] 
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No DR Image  

Mild NPDR Image  It contained Haemorrhages 

  

Moderate NPDR Image  

Severe NPDR Image  

PDR Image  

  

  

  

It contained Haemorrhages 

New vessel developed 

It contained Haemorrhages 
and hard Exudates  

Referring Figure 2.7, in which all DR stages of retinal fundus images are shown 

according to appearance of pathologies as mentioned in Table 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Retinal Images Contained Pathologies 
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2.5 Computerised Analysis for the Detection of Diabetic Retinopathy 

Interest in computerised analysis of Diabetic Retinopathy pathologies has 

been rapidly increasing and the review of related works is divided into three parts.  

The first part is related to computerised analysis of micro aneurysms and 

haemorrhages, followed by, computerised analysis of soft and hard exudates and 

finally, computerised analysis of FAZ for grading of diabetic retinopathy.  Analysis 

of retinal fundus image is difficult because colour fundus images suffer from varied 

and low contrast.   

Many researchers worked on the detection of DR on the basis its pathologies 

detection. Researchers have developed various computerised methods for the 

detection of Diabetic Retinopathy based on pathologies.  Microaneurysms can be 

automatically detected as the early signs of DR as reported by  Kahai et al [46].  The 

automatic detection of DR using the microaneurysm count was improved using other 

DR-related pathologies.  Sinthanayothin et al [47] proposed a method for the 

automatic detection of DR by determining the number of hard exudates.  Larsen et 

al. [48] and Hansen et al [49] proposed a method for the detection of 

microaneurysms and haemorrhages.  Usher et al [50] proposed a method for the 

detection of diabetic retinopathy to count microaneurysms, haemorrhages and 

exudates. 

2.5.1 Microaneurysm and Haemorrhage Detection 

 

The first automatic detection method for diabetic retinopathy was developed 

by Baudoin and kelin et al  [51] to detect the microaneurysms from fluorescein 

angiograms.  They used a morphological top hat transform with linear structuring 

elements with different orientations. The round shaped micro-aneurysms were 

connected by elongated structures, such as vessels, but it gave many false detections.  

Spencer et al [52] used the top hat transform to produce the candidate 

microaneurysms with an extension of the earlier work of Baudoin et al  [51].  The 

candidate microaneurysm segmentation was performed by using a combination of the 
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top hat transform and match filtering along with the region growing technique.  The 

Spencer et al [52] method did not give so many false results of the microaneurysm 

detection.  Spencer et al [52] method improved the sensitivity of the microaneurysm 

detection by introducing the pre-processing steps.  These pre-processing steps were 

based on the rule-based classifier with a number of shapes and intensities of features.  

The difference between the Spencer et al  [52] method and the earlier proposed 

method was the classification steps of the different features. 

 Another morphological-based technique for the detection of micro-aneurysms 

was studied by Walter et al. [53] to overcome the inadequacy of the top hat-based 

methods.  Walter et al. [53] used the bounding box closing was applied with the top 

hat transform instead of the linear structuring element with the top hat transform. 

 

There are many techniques used for the detection of microaneurysms that are 

not based on morphological operations.  Gardner et al. [54] proposed a method for 

the detection of microaneurysms and haemorrhages based on neural networks.  The 

neural network and supervised learning have been used to detect microaneurysms 

and haemorrhages for the screening of DR.  The colour fundus images contain 

pathologies, such as microaneurysms and haemorrhages.  Many methods [36, 55, 56] 

have assumed that the dark parts in the colour fundus contained blood vessels.  

Sinthanayothin et al [36] and Usher et al. [50] used the recursive region growing to 

cluster the dark areas in the image and classify the vessels. The vessel segment 

region growing resulted from using a neural network.  Enrico and Grisan  et al  [57] 

gave  another suitable method instead of using the neural network; they detected the 

dark parts of the colour fundus image by clustering similar pixels with a local spatial 

density.  

 Further, Garcra et al. [58] improved the method by modification with the use 

of an automatic feature selection and classification steps.  Further, Xiahui and 

Chutatape et al [59, 60] proposed a method for the detection of haemorrhages by 

using the principal component analysis.  The features were extracted by using the 

support vector machine to classify the image patch.  To detect the different sizes of 

haemorrhages, a pyramid of images was created to compute the changing image 

resolution.  Quellec et al [61, 62] also used image templates for the detection of 
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microaneurysms based on template matching in the wavelet domain.  Tables 2.2, 2.3 

and 2.4 summarise the reported performances of the microaneurysm and 

haemorrhage-based detection algorithms for the screening of diabetic retinopathy. 

 

                      Table 2.2 Performances of Proposed Micro aneurysms  

Automatic Detection Algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method Sensitivity Specificity 

 Bhalerao et al [63] 0.83 0.80 

 Ege at el  [64] 0.69 _ 

Pallawala et al [65] 0.93 _ 

Spencer et al [52] 0.82 _ 

Cree et al [66] 0.82 0.84 

Frame et al [67] 0.84 0.85 

Hipwell et al [68] 0.43 _ 

Yang et al [69] 0.80 0.90 

Walter and Klein et al [70] 0.86 _ 

Quellec et al  [62] 0.88 0.96 

Quellec et al [61] 0.90 0.90 

Quellec et al [61] 0.94 0.92 

Quellec et al [61] 0.90 0.89 

Walter et al [71] 0.89 _ 

Hipwell et al [68] 0.81 0.93 

Fleming et al [72] 0.85 0.83 
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Table 2.3 Performances of Proposed Haemorrhages  

Automatic Detection Algorithms 

 

 

 

 

 

 

           

  

      Table 2.4 Performances of Proposed Microaneurysms and Haemorrhages  

Automatic Detection Algorithms 

 

 

 

 

 

 

2.5.2 Hard and Soft Exudate Detection  

 

Thresholding-based detection was initially used to detect hard and soft exudates.  

Ward et al [77] introduced the semi-automatic exudate detection based on the 

thresholding and shade correction method but user interaction is required to apply the 

thresholding.  Philips et al [78] and Zheng et al [79] improved the previous system by 

introducing the dynamic method of thresholding.  The Philips et al [78] method was 

Method Sensitivity Specificity 

Gardner et al [54] 0.74 0.74 

Ege et al [73] 0.83 _ 

Zhang et  al [59] 0.90 _ 

Hatanaka et al [74] 0.85 0.21 

Hatanaka et al [75] 0.80 0.80 

Method Sensitivity 
Specificit

y 

Sinthanayothin et al [47] 0.78 0.89 

Niemeijer et al [76] 0.30 _ 

Grisan and Ruggeri et al [57] 0.94 _ 

Niemeijer et al [76] 1.00 0.87 

Garcia et al [58] 1.00 0.60 
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the based on the detection of large high intensity areas of colour fundus image by 

using global thresholding techniques.  On the other hand, the block-wise local 

threshold method has been used to segment the smaller exudates.  Philips’ method 

was better at detecting the exudate pixels but it gave many false positives.  To 

overcome the false positive detection,  Zheng et al [79] introduces the exudate 

detection system based on the local neighbouring along with the dynamic block-wise 

thresholding method.  Goldbaum et al [80] proposed a method of exudate detection 

algorithm based on the template matching and edge detection approach.  Goldbaum et 

al [80] applied the template matching on the image and located bright lesions of all 

sizes. 

The outlined edges of the located bright lesions were identified by using the 

edge detection method.  The  Goldbaum et al [80] method was improved by Wang et 

al[77] and it was based on the supervised statistical pixel-based lesion classification.  

Wang et al [77] applied the minimum distance discriminant classifier to classify 

image pixels into two classes (hard and soft exudates) according to their pixel values.  

The true hard exudate pixels were then detected by using the contrast information of 

the local neighbourhood.  Sanchez et al [81] further improved the method using the 

alternative approaches for the non-uniform illumination correction factor.  The 

reported algorithms for the detection of hard and soft exudates along with their 

performances are summarised in Tables 2.5 and 2.6.  

Table 2.5 Reported Performances of Soft Exudates  

Automatic Detection Algorithms 

 

 

 

 

 

 

 

Method Sensitivity Specificity 

Ege et al  [82] 0.80 _ 

Niemeijer et al [83] 0.70 0.93 

Zhang et  al [60] 0.88 0.84 
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Table 2.6 Performances of Proposed hard Exudates  

Automatic Detection Algorithms 

 

 

 

 

 

 

 

 

2.5.3 Analysis of FAZ for Grading of Diabetic Retinopathy   

 

Foveal avascular zone (FAZ) is the most accurate vision zone on the retina 

devoid of capillaries in the macular region [42].  Ibanez and Simo [92] showed the 

detection of the foveal avascular zone using eye fundus angiographies.  In diabetic 

retinopathy, an enlargement of the FAZ occurs as a result of a loss of capillaries in 

the peritoneal capillary network [31, 43, 93].  Due to higher hemodynamic stress 

(increase in heart rate and blood flow) the small capillaries surrounding the FAZ 

possibly tend to be blocked or damaged.   A rapid loss in visual acuity may occur as 

a result of the defect of the peritoneal area [42].  Due to the problem in the visual 

observation of FAZ, the diabetic patient may suffer from an abnormally enlarged 

FAZ compared to the normal vision patient [94].  The effect of an enlargement of 

FAZ has now been observable in colour fundus images [28], which was previously 

observed in  FFA images [94],  for both PDR and NPDR.  The FAZ area has been 

determined in the FFA image by using the Bayesian statistical methods or 

Method Sensitivity Specificity 

Phillips et al [78] 0.87 _ 

Walter et al [84] 0.93 0.95 

Walter et al [85] 0.93 0.92 

Osareh et al [86] 0.90 0.89 

Osareh et al [87] 0.94 0.92 

Sivaswamy and Ram et al [88] 0.72 _ 

Ravishankar et al [89] 0.95 0.91 

Gardner et al [90] 0.93 0.93 

Ege et al [82] 0.99 _ 

Sinthanaya et al [47] 0.89 1.00 

Xu and Luo et al [91] 0.88 0.80 
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thresholding techniques based on the morphological operators and Sobel edge 

detectors [95].  H.A.Nugroho and Lila Izhar et al [28, 96] and his team worked on 

the determination of the FAZ area in the colour fundus image to reduce the use of the 

invasive method, FFA.  Lila Izhar et al [96] developed the method for analysis of 

FAZ in a colour fundus image based on the vessel extraction and reconstruction for 

grading of DR and achieved a 92.2% accuracy.  Later Ahmad Fadzil and 

H.A.Nugroho et al  [28] developed RETINO, an automated determination of FAZ for 

DR grading achieving an accuracy of 95%.  

2.6 Image Enhancement Techniques for Varied and Low Contrast Images 

 Analysis of retinal fundus images is a difficult task because the colour fundus 

images suffer from the problem of varied and low contrast.  Many researchers have 

worked on the detection of diabetic retinopathy without firstly addressing the problem 

of low and varied contrast.  Image enhancement is one of the important tasks in the 

field of image processing to improve the quality of the processed image for human 

visual observation.  To obtain a good enhanced image, it is necessary that the 

enhancement technique contains the required application operations because every 

image dataset has different problems.  Most medical images need contrast 

normalisation, contrast enhancement and noise removing image processing operation 

to achieve a good enhancement.  Contrast normalisation is a very important step for 

medical images because medical images have a problem of varying contrast because 

of the variation of the illumination and tiny objects in the medical images are difficult 

to recognise.  Therefore, contrast enhancement techniques have played a vital part to 

enhance the tiny low contrast objects.  Noise affects image quality, therefore, in order 

to obtain a better image quality, it is very important to remove noise and achieve more 

detailed information of the image.  In clinical application, the medical images are 

analysed to diagnosis the disease at early stage  such as analysis of retinal images 

[11], MR images [97], fluoroscopic images [98], and microscopic images [99] .  It is 

important to help the doctors for the accurate analysis of the image data through a 

digital image analysis system.  Many digital image enhancement techniques have 

been proposed by different researchers for the improved or enhanced quality of 
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medical images.  All techniques are proposed for a solution to most of the common 

problems of varied and low contrast images.  Due to these two issues, medical image 

enhancement technique can be divided into three categories, medical image 

normalisation for varied contrast images, image enhancement for low contrast images 

and medical image enhancement for both low and varied contrast images.  

2.6.1 Image Normalisation for Varied Contrast Medical Images 

Medical image normalisation for varied contrast is categorised into two types 

[100]:-  

 

1. Prospective Contrast Normalisation  

2. Retrospective Contrast Normalisation  

 

 The prospective contrast normalisation techniques require an acquisition 

protocol for the adjustment of the varied contrast correction.  It is also known as the 

calibration method.  Whereas, retrospective types depend upon the details in the 

processed image and make certain assumptions about the image  setting, and are able 

to be used for required applications [101].  In general, prospective methods can only 

handle the varied contrast problem for machine failures.  But, most techniques for 

contrast normalisation are intensively developed in retrospective methods.  Most 

retrospective techniques can be classified into the filtering, surface filtering, 

segmentation based, statistical model and all of the varied contrast techniques.  These 

are listed in Table 2.7. 

 

Table 2.7 Varied Contrast Normalisation Techniques 

 

Techniques Advantages Disadvantages 

Filtering [102] 

Simple Implementation. 

Fast operation and well 

performed. 

Produce artefacts(creation of 

edge effects) 

Surface 

Fitting [103] 

Well performed if homogenous 

areas of the image are distinctive 

and large. 

Estimation of a varied contrast 

area using intensities of one 

dominant region may cause 

some adverse information 
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during the extrapolation. 

Segmentation 

based [97] 

Give better contrast 

normalisation through selection 

of the explicitly modelled objects 

classes. 

Assumption that the 

distribution of image intensity 

is achieved by a mixture of 

normal distribution for 

selection of explicitly modelled 

classes is often invalid for 

pathological image data. 

Statistical 

Model [104] 

Its insensitiveness to 

pathological data and fully 

automatic process require no 

model of object classes.  

Computation time and 

convergence performance due 

to its iterative optimisation.  

Retinex [105]  

Detail of image is increased.  

Increase contrast of image with 

uniform illumination and Reduce 

noise also.  

Size of the image must be in 

the power of two.  

 

2.6.2 Image Enhancement for low contrast Medical Images 

 

The main task of contrast enhancement is to increase the image intensity 

difference to improve the image quality.  Image enhancement techniques for low 

contrast images are divided into two categories, namely, spatial domain and frequency 

domain for low contrast images.  The spatial domain techniques involve a process of 

the contrast enhancement by adjusting the luminous intensity histogram of the 

processed image and subsequently, it performs the enhancement process in the 

frequency domain of the image [3].  Some of the most used image enhancement 

techniques for low contrast images are shown in Table 2.8. 

Table 2.8 Low Contrast Enhancement Techniques 

 

Techniques Advantages Disadvantages 

Linear Contrast 

Stretching 

Techniques[3] 

Easy to implementation, well 

performed enhancement by 

stretching certain values of 

histogram but must be bimodal 

Losing correct value in the 

processed image due to 

possibility of having 

various values in output 

image. 
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Global Histogram 

Equalisation [106] 

Effective to enhance low contrast 

image if the image contains one or 

two distinctive objects. 

Over-enhanced image 

leading to an unwanted loss 

of objects visibility with 

presence of high peak in the 

histogram. 

Local Histogram 

Equalisation [107] 

Improve image local contrast and 

produce more detail image. 
Produce noise and artefacts. 

Spatial Filtering [106] 

The use of more local information 

of image enables to enhance image 

details. 

Ringing artefacts and noise 

over enhancement caused 

by amplification of noise 

and high contrast image. 

Wavelet based Multi 

Scale [108] 

Selectively enhance or degrade 

image features of importance in 

different resolution level. 

The results of wavelet 

transform are no longer 

shift invariant. 

Independent 

Component Analysis 

(ICA)[30] 

ICA determines hidden variables 

which are called as the 

independent components of the 

processed data that are both non –

Gaussian and statistically 

independent 

The number of determine 

sources are not in the order.  

 

2.6.3 Image Normalisation and Enhancement Technique 

 

 The non-invasive digital enhancement technique has been required to overcome 

the problem of varied and low contrast.  The Retinal fundus images suffer from 

varying low contrast.  These above techniques were analysed by the different 

researchers on different medical images but most of researchers’ work contained the 

enhancement techniques on the retinal fundus image or any medical image.  But, the 

colour fundus image suffered from varied contrast due to varying illumination; so, the 

retinal fundus image needed to be normalised first and then enhancement was 

performed to overcome the contrast problem in the image.  Ahmad Fadzil and 

H.A.Nugroho et al [28] incorporated a non-invasive image enhancement technique 

called RETICA based on both normalisation and enhancement of the retinal fundus 

image into the computerised DR grading system (RETINO).  But, RETICA has been 

applied on the model retinal fundus images as shown in Figure 2.8.  RETICA is 

applied to overcome the problem of the varied and low contrast of the colour fundus 
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Retinex for Contrast 

Normalisation  

Independent Component 

Analysis for Contrast 

Enhancement  

 

RETICA  

retinal images.  RETICA contains two stages: Retinex for contrast normalisation and 

Independent component analysis for contrast enhancement.  RETICA successfully 

achieved a good contrast improvement factor of 5.38 on retinal model images as 

compared to the standard contrast improvement factor of 5.79 of the FFA method.  In 

this research, RETICA has been further studied and validated with real fundus images 

and analysed to improve the performance of RETICA.  The Retinex and ICA 

algorithms are explained in the following sub-sections.  

 

2.6.3.1 Retinex for contrast Normalisation  

 

The Retinex algorithm has been proposed to reduce variations that exist in the 

illumination in order that the observed image is entirely due to the image reflectance.   

Retinex theory has four rules to follow.  First, three kinds of lightness are used to 

obtain colour; they are lightness sensation, perceived reflectance and physical 

reflectance. Measuring the sensation of light from the physical reflectance which will 

be averaged using a specific colour channel to get the perceived reflectance found in 

the human vision system result is the key goal of Retinex. A measurement of the 

ratios of intensity for the image that has been processed is taken from the surrounding 

area of the estimated changes in the illumination found in the event.  A measurement 

of the lightness in that particular channel (Green, Red, and Blue) of the processed 

image is taken from a large area because the total of the local ratio is used to ascertain 

the lightness of channel that was measured over a large area.  The lightness with 

highest value is to be calculated from a particular place in each channel (Green, Red 

and Blue) of the processed image, which is considered to be maximum reflectance for 

Figure 2.8 RETICA – Image enhancement for varied and low contrast 

fundus images 
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Illuminate L(x, y, λ) 
Image Intensity I(x, y, λ) 

Reflectance Surface  

that particular channel.  Unlike traditional image enhancement algorithm, such as 

linear, non-linear transformation, image sharpening, etc. can only be enhanced to a 

certain type of image features, such as compression of the dynamic range of the 

image, or to enhance the edges of the image, Retinex can be in the dynamic range 

compression, edge enhancement and colour constancy achieve balance, and therefore 

can be performed in a variety of different types of image adaptively enhanced.  

Because  of Retinex have  many good properties, the Retinex algorithm widely used 

in many ways in different applications [109].  In the many applications, the Retinex-

core algorithms used such as the single-scale (Single-Scale Retinex SSR) algorithm 

[110], multi-scale (Multi-Scale Retinex, MSR) algorithm [111] are used.  In the 

Retinex algorithm, it is assumed that perceived reflectance depends upon the relative 

measure of lightness is called the lightness sensation.  The Retinex intensity image 

has some wavelength so it is the product of illumination and reflectance at some 

specific wavelength as shown in Equation 2-1 and Figure 2.9. 

        I(x, y, λ) =L(x, y, λ).R(x, y, (λ)                                                                                              

 

 

 

 

 

 

 

 

 

Figure 2.9 Image Formation Model 

(2-1) 
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McCann et a [112] improved the random walk Retinex algorithm by 

developing the multilevel one dimensional Retinex algorithm [109].  The algorithm is 

based on multi-resolution pyramids and an iteration process through a ratio-product-

reset-average operation.  A fundamental concept behind the Retinex computation of 

lightness is the comparison of pixel values to that of other pixels of the image.  In a 

multi-resolution pyramid, pixel comparison starts at the most averaged top level of the 

pyramid. 

After computing the lightness of the image at a reduced resolution (top level 

pyramid), the resulting lightness values are propagated down, by pixel replication to 

the pyramid’s next level as the initial lightness estimates at that level.  The pixel 

comparison process continues to refine lightness estimates down to the next level as 

the initial lightness estimate until the new product or refined estimated lightness is 

computed at the bottom level of the pyramid (original image resolution). 

 An image pyramid is shown in Figure 2.9 [29].  The iterative Retinex 

algorithm processes image data according to a multi-resolution pyramid but the 

process depends upon the number of iterations.  This iterative Retinex calculates the 

long distance iterations then gradually moves to short distance iterations.  At each 

step, the spacing between the pixels being compared decreases with a one-shift pixel 

distance.  The direction among the pixels also alters at each step in a clockwise 

direction.  At each step, the `pixel comparison is implemented to estimate the 

reflectance part using a ratio-product-reset–average operation [110], which is 

iteratively computed a certain number of times.  The number of iterations is a very 

important parameter of the Retinex algorithm.  The implementation of the McCann 

Retinex algorithm contains four steps described below. The flow chart of the McCann 

Retinex algorithm is shown in Figure 2.11  [29]. 

1. The input images must have dimension of w.  ×h.  .  Where w≥h and w and 

h are integers in the range.  This limitation arises because of different levels of 

image pyramid with factor of 2 as shown in Figure 2.10 
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2. In first step, the log image is averaged down to the lowest resolution level.  At 

each step, resolution level will be doubled.  The number of layers in the 

pyramid depends on the size of the input image.  The number of layers will be 

the greatest power of 2 as shown in Figure 2.10, dividing both the width and 

height of input images as calculated by the function Compute Steps in the 

MATLAB.  

3. When the results (called new products) at one level of dimension n×m have 

been computed, the values are then replicated to form an old product result of 

image with the dimensions of 2n ×2m. 

At all levels of pyramid, the new products are calculated for computed 

estimated lightness and each pixel is computed by visiting each of its (image) eight 

immediately neighbouring pixels in clockwise order.  Each visit involves a ratio-

product-reset-average operation, which is implemented by the function 

“CompareWithNeighbor” in MATLAB and ratio-product-reset-average operation is 

the main implementation of Retinex to achieve normalised image.  It subtracts the 

neighbour’s log luminance (the ratio step) and then adds the result to the old product 

(the product step).  If the result exceeds the maximum defined by Maximum, it is 

reset to Maximum (the reset step) finally, the new product for the pixel obtained by 

comparison to its neighbour is averaged with previous old product (average steps).  

Figure 2.10 Image Pyramid 
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Input Image I(x, y) 

Padding of 1 pixel zero 

value around the perimeters  

Shifting according to 8 

connected neighbour  

 

Reset  

Average  

Is 8-connected 

neighbour 

achieved?  

Output Image R(x, y) 

Initate L(x,y)  

Padding of 1 pixel zero 

value around the perimeters  

Shifting according to 8 

connected neighbour  

Update L(x,y) 

I(xs ,ys) 
+ 

+ 
- L(xs, ys) 

No No 

Yes 

The flow chart of comparison with neighbour function is shown in Figure 2.11.  

Mathematically, ratio-product-reset and average operation is represented by Equation 

2-2.  

                           (   )  
      .[     (   )–      (   )]        (   )/       (   )

 
                                

 

 

 

 

 

 

 

Figure 2.11 Ratio-Product-Reset-Average Operations 

(2-2) 
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The term [logI(x,y)–logL’(x,y)] represents the ratio of image with estimated 

illumination and the term ([log I(x,y)–log L’(x,y)]+ log R’(x,y)) represents the 

product of  ration with initially estimated reflectance of image in the log domain.  

Reset operation updates the maximum intensity according to number iteration.  The 

outcome, logR(x,y)* is a result of averaging with logR'(x,y) and logR* (x,y) is an 

updated output produced in each iteration that will be used as an input for next 

iteration till the final reflectance is obtained at given last iteration.   

A fundamental parameter of the McCann Retinex algorithm is the number of 

times a pixel’s neighbours are to be visited.  The number of times the neighbours are 

cycled through each pixel, as a result, affects the distance at which pixels influence 

one another.  This happens because new product values for all pixels are being 

computed in parallel, for second iteration, all neighbouring pixels have had their new 

products update values.  In second iteration, these update values or new values 

contain information propagated from beyond pixels immediate neighbours.  This 

process is continued with given number of iterations and output image is obtained that 

is simply the input image scaled by the image maximum value.  The flow chart of 

whole process is shown in the Figure 2.12.  
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Figure 2.12 McCann99 Retinex Algorithm 
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2.6.3.2 Independent Component Analysis for Contrast Enhancement  

Independent component analysis is used for contrast enhancement in this 

research work.  Independent component analysis (ICA) is a blind statistical and 

computational technique that belongs to a class of the blind source separation for 

separating the mixed signals and determines the independent components from the 

mixed signals.  ICA is a general model defined for observed multivariate data 

generally obtained from a large number of samples.  Multivariate data consider are to 

be linear or non-linear mixture of some unknown hidden variables or source while the 

mixing process or the distribution of source is unknown as shown in Figure 2.13.  A 

given signal (v) is generated by linear mixing (A) of independent components(s).  

ICA is a statistical analysis method to estimate those independent components (𝒔  ) 

and mixing matrix (W).  The uniqueness of ICA from other methods is that it 

determines hidden variables which are called as the independent components of the 

processed data that are both non Gaussian and statistically independent [30]. 

 

 

 

 

 

 

 

 

The FastICA algorithm with the symmetrical orthogonalisation is commonly 

used to achieve estimated independent components because of its precise accuracy 

and high computational speed for high dimensional data [112].   The ICA is a 

Figure 2.13 Linear ICA model 
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technique used to determine the original signals from the mixtures of several 

independent sources. 

In the case of retinal fundus image, the enhancement of the low contrast of the 

retinal blood vessels in the digital fundus image is performed by determining the 

retinal pigment make-up, namely Haemoglobin    Melanin     and Macular     

pigment using the ICA.  The independent component due to haemoglobin exhibits 

higher contrast of retinal blood vessels and background (melanin and macular 

components).  

2.7 Noise in the Medical Images  

Image noise is a variation of brightness or colour information in image, and is 

usually an aspect of electronic noise.  It can be produced by the circuitry of digital 

camera.  In image processing, noise reduction and restoration of an image is expected 

to improve the qualitative inspection of an image and the performance criteria of the 

quantitative image analysis techniques.  A digital image is inclined to a variety of 

noise which affects the quality of the image. 

The main purpose of denoising the image is to restore the details of the 

original image as much as possible [2].  The criteria of the noise removal problem 

depend on the noise type by which the image is corrupted.  In the field of reducing the 

image noise, several types of linear and non-linear filtering techniques have been 

proposed. 

Different approaches for the reduction of noise and image enhancement have 

been considered, each of which has their own limitations and advantages.  Especially, 

medical images are captured through imaging modalities which give noise.  Due to 

the noise, the image details cannot be analysed properly [113].  The nature of the 

noise presented in the medical image modality depends upon the operation principle 

of the image modality as shown in Figure 2.14.  Consider Figure 2.14, different 

medical images like X-ray images, ultrasound images and MRI (brain) images are 

shown.  The noise affects the X-ray images due to which details of the image cannot 

be observed clearly; similarly, ultrasound and MRI images are affected due to noise.  
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X-Ray  
Ultrasound Image   

MRI Image  
Figure 2.14 Noise in the Medical Images 

 

But identification of these images are based on the sources of the acquisition process 

of the devices; like the ultrasound image that contains speckles or multiplicative noise 

due to the inherent characteristics of coherent imaging like ultrasound imaging.  

 

 

 

 

 

 

 

 

 

 

 

 

2.7.1 Image Noise Models 

 

Image restoration concerns the removal of degradation which has become a 

concern during the acquisition of the image.  Such degradation may include noise, 

which are errors in the pixel values or optic effects, such as out of focus blurring.   

The degradation process is modelled in the Figure 2.15 as degradation function that 
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Degradation 

function H 

Restoration 

Filter 
+ 

 

 

  𝑓(𝑥 𝑦) 

𝑔(𝑥 𝑦) 𝑓 (𝑥 𝑦) 

NOISE 
𝜂(𝑥 𝑦) 

Degradation  Restoration  

together with additive noise term.  It contained input image  (   ) to produce 

degrade image  (   ).   Given (   ) , some knowledge about degradation function    

and some knowledge about the additive noise term  (   ).  The objective of 

restoration is to obtain an estimate   (   ) of the original image.  We want the 

estimate to be as close as possible to original image and in general, the more we know 

about    and  , the closer   (   ) will be to  (   ).   If   is a linear, position-

invariant process then the degraded image is represented by Equation2-3.  

       (   )  ℎ(   )   (   )   (   )                                            2-3 

Where ℎ(   )spatial representation of the degradation is function and   

indicates the convolution.  The convolution in spatial domain is analogous to 

multiplication in the frequency domain, so Equationx1 equivalent frequency domain 

representation as Equation 2-4.  

         (   )   (   ) (   )   (   )                                                2-4 

Where the term with capital letters are Fourier transform of corresponding 

terms in Eqx1. These are two basic equation image restoration processes.   The 

degradation function  (   ) sometimes is known as the optical transform function 

(OTF), it is term derived from the Fourier analysis of optical systems.  In spatial 

domain ℎ(   ) is referred to as the point spread function (PSF),  a term that arises 

from letting ℎ(   ) operate on a point of light to obtain the characteristics of the 

degradation for any type of input.   The degradation due to linear space –invariant 

degradation function     can be modelled as convolution, sometimes the degradation 

process is referred to as “convolving the image with a PSF”.  Similarly, the restoration 

process is sometimes referred to as deconvolution [3].  

 

 

 

Figure 2.15 Model of Image degradation and Restoration process [3] 
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(a) Original Image (b)With added Salt and Pepper 

Noise  

 

The main sources of noise in digital images arise during image acquisition 

process.  The performance of imaging sensors is affected by a variety factors, such as 

environmental conditions during image acquisition process and by quality of the 

sensing elements themselves. For example in acquiring images with CCD camera, 

light levels and sensors temperature are major factors affecting the amount of noise in 

resulting image[3].  The basic noise models are defined below.     

Salt and pepper noise is also known as impulse noise or shot noise or binary 

noise.  This degradation can be caused by a sharp, sudden distribution in the image 

and its appearance is randomly scattered white or black pixels over the image as the 

example shown in Figure 2.16.  Salt and pepper noise is modelled as Equation 2-5 [3] 

 

            ( )  {
           
             
       ℎ        

                                                                2-5 

If    , intensity b will appear as light dot in the image and a will appear as a 

dark dot.  If either    and    is zero the impulse (salt-and-pepper) noise is called 

unipolar.  If neither probability is zero and especially if they are approximately equal 

to impulse noise values will resembles salt-and-pepper granules randomly distributed 

over the image.  

Gaussian noise is an idealised form of white noise, which is caused by the 

random fluctuation in the signals.  One can observe the white noise by watching a TV 

Figure 2.16 Illustration of Salt and Pepper Noise in Image 
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which is slightly mistuned to a particular channel.  Gaussian noise is white noise 

which is normally disturbed.  If the image is presented as I and the Gaussian noise by 

N, it can be modelled as a noise image by simply adding the two, I and N.  Gaussian 

noise is also called additive noise, the Probability Density Function (PDF) of 

Gaussian noise is shown mathematically [3].   

 ( )  
 

√   
 

 
(   ̅)

                                                             

Where   represents intensity of image or signal,   ̅ is the mean value of   and 

  is the standard deviation of image or signal.   As an example the effect of Gaussian 

noise is shown in Figure 2.17. 

 
Figure 2.17 Illustration of Gaussian noise 

 

Whereas, Gaussian noise can be modelled by random values added to an 

image and speckle noise can be modelled by random values multiplied by the pixel 

values; hence, it is also known as speckle noise.  As an example, the effect of speckle 

noise on the image is shown in Figure 2.18.  

(a) Original Image (b)With Gaussian Noise  
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Colour Fundus Image  

RGB 
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(GB) 

Macular Region of Fundus 

Image  

 

Figure 2.18  Illustration of Speckle noise 

2.7.2 Noise in Retinal Fundus Image  

 

Retinal fundus images were captured by using a fundus camera and they 

contained noise as shown in the Figure 2.19.  When the Retinal fundus image 

contained noise, it was very difficult to analysis the tiny blood vessels against the 

surrounding background in the selected RGB macular region.  The green band also 

contained noise.  The different regions of the green band image were cropped for 

observation and it was clearly observable that due to the noise, the blood vessels 

could not be observed.  This observation has been proved that without reducing the 

noise from the colour fundus image any enhancement and extraction of the blood 

vessel technique is affected.  Moreover, the performance of the enhancement 

techniques and the extraction of the blood vessels of the retinal image technique are 

affected.  

 

 

 

 

(a) Original Image (b)With Speckle Noise  

Figure 2.19 Noise in the Retinal Fundus Images 
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A fundus camera has a  complex optical design system and according to the 

principle operation of the fundus camera, it contains two illumination systems: the 

flash tube and photo detector (camera circuitry) [4].  Noise in the retinal fundus image 

may be multiplicative due to the speckle flash or iteration of the patient’s eye and the 

flash of the fundus camera.  Additive noise is also present due to the circuitry of the 

camera electronics because no digital image is a free additive as it is captured with 

cameras and camera circuitry produces noise.  The study of noise in the fundus image 

was first explained by Timothy et al [114].  Timothy et al [114] explained the effect 

of noise in Fundus auto fluorescence imaging.  The noise occurred due to the varying 

illumination during the acquisition process.  But Timothy also analysed the FFA 

image, and these images were obtained through invasive methods.  For those, 

Timothy et al [114] indicated only the appearance of noise but Timothy et al [114] 

did not elaborate on the nature of the noise in the FFA images. From the literature 

survey, it is observed that many researchers have worked on the retinal fundus but 

they are working only on enhancement and detection of pathologies.  However, it is 

very important to handle the noise first to make a better performance of the image 

enhancement technique.  The noise issue in colour fundus images has been studied in 

this thesis.  No one had proposed any method to identify the noise in the fundus 

image.  However, identification of the noise type in the retinal fundus image gave 

significance to applying a suitable denoising method to improve the Retinal fundus 

image quality.  It is elaborated in the chapter 4.  

2.7.3 Image Denoising Methods 

Image denoising problem is still a challenge for the researchers because 

removal of noise causes the artefacts and image blurring.   Image denoising is 

classified into two types i.e., spatial domain filtering and transform domain filtering 

methods.  A spatial filter is an image operation where each pixel value   (   ) is 

changed by a function of the intensities of pixels in a neighbourhood of(   ).  Spatial 

filters can be further classified into non-linear and linear filters.  A filtering method is 

linear when the output is a weighted sum of the input pixels such as mean filter, 

average filter, Wiener and Lee filter.    Non-linear spatial filters cannot be calculated 

using just a weighted sum.  Other operations (e.g. square root, log, sorting, and 
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t 

selection) are involved in calculation of non-linear filters. Examples of  non-linear 

filters are median filter and weighted median filters.  Non-linear filters are not easy to 

implement as compared to linear spatial filters such as non-linear Lee filter, Roberts 

filter, and Kirsch’s template filter.  Non-linear filters can smooth with less blurring 

edges compared to linear filters and can detect edges at all orientations 

simultaneously, but can be slow to compute.   Some of   transform domain filtering 

are specifically used to remove the noise [24].  The purpose of transform domain 

filtering is to find a domain where signal can be more easily separated from noise.   

Transform domain filtering has three main techniques namely frequency transform, 

short frequency transform and wavelet transform and these techniques can be used for 

image denoising purpose.  Wavelet transform is one of most popular method in image 

denoising [24].  The Fourier transform analysis is the main technique for frequency 

domain analysis.  However, Fourier transform cannot provide any information of 

spectrum changes with respect to time.  To overcome this limitation of Fourier 

transform, the Short time Fourier transform (STFT) was introduced.  The short time 

Fourier transforms (STFT) allows representing the signals in both time and frequency 

domains through time windowing function.  The window lengths in the STFT 

determine the constant time and frequency resolution.  In the Short Time Fourier 

Transform (STFT) the fixed time-frequency resolution is used [115] to overcome this 

limitation of Short Time Fourier Transform (STFT) then the wavelet transform was 

introduced.  Wavelet transform is used to analyse the signal at different frequencies 

with different resolutions.  Figure 2.20 represents the Fourier transform and it can be 

observed that very good frequency localization has occurred, however, non-existing 

time localization has happened. 

 

 

 

 

Figure 2.20 Time-Frequency Representation of Fourier Transform 
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Figure 2.21a and 2.21b represent the time-frequency localization of the Short-

Time Fourier Transform (STFT).  The operations of STFT depend upon the window 

size and due to fixed window size and it gives the fixed frequency localization.  The 

fixed time –frequency resolution is one of disadvantage of STFT.  STFT based on 

Heisenberg principle [116].  It is stated that the time and frequency localization are 

limited to certain bounds which lead to the fact that time-frequency elements will be 

equal to surface.  In Figure 2.20a and 2.20b, the rectangles represent time –frequency 

elements.  Figure 2.19a represents STFT but with better localized in frequency while 

Figure 2.19b represents STFT with better time localization. 

 

 

 

 

 

In order to achieve the uniform splitting of time-frequency locatisation the 

wavelet transform is introduced because STFT did not give uniform splitting of time-

frequency localisation.  Wavelet transform is shown in Figure 2.22.  This particular 

approach is suited for most signals and images applications. 

 

 

 

 

 

Figure 2.21 STFT Representation 

 

Figure 2.22 Time-Frequency Representation of Wavelet Transform 
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Many researchers worked on the spatial domain and transform domain to 

solve the problem of removal of noise from the image.   Chang. et.al [25] highlight on 

an image-de-noising filter that his proposed method is based on the median filter with 

thresholding.  In Chang et al [25] proposed method median filter is used to remove 

the noise.  Authors also focused on comparative study of image de-noising techniques 

relying on spatial filters and transform domain filters.  Subjective and objective 

evaluation methods are used for judging the efficiency of different types of spatial 

filters and transform filters applied to different types of noise.  Folke et al [26] 

proposed de-noising technique that is based on combination of median and wavelets 

filter [26].   Image is usually corrupted by two or more different type of noise 

simultaneously can be denoised.   But it is one of drawback of cascaded two filters for 

one task ( removal of noise ) because it takes more time and median filters [117] gave 

smoothness in images and wavelet produce artefacts due to its higher frequency co-

efficient and details of image are lost due to smoothness of median filter [22, 27].  

Denoising techniques based on the subspace structure of the image have been 

proposed over the last decade, among them are the Least Squares (LS) and the 

Minimum Variance (MV) [118].  These two techniques depend on the Singular 

Values Decomposition (SVD) of the original image or the Eigen Decomposition (ED) 

of the covariance in segregating the signal subspace from the noise subspace and use 

this information in minimizing the distance between the noisy image and the signal 

subspace.  The least squares and the minimum variance do achieve significant 

improvement in image denoising but at the expense of signal distortion.  Recently a 

novel subspace technique is proposed that take care of signal distortion and noise 

reduction.  This technique is an extension of the time-domain constraints estimators of 

Ephraim and Van Trees et al [119] and towards two-dimension signal (image).  The 

technique is proposed by Nidal Kamel et al [120].  This technique is used for retina 

image denoising in this research. 

The signal subspace approach was originally proposed by Ephraim and Van 

Trees [15] for speech enhancement applications.  Extensive research works in speech 

enhancement had been done by different researchers by using Time-Domain 
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Constrained (TDC) estimators.  The principle is based on to decompose the vector 

space of the noisy signal into a signal subspace.  The noise removal is achieved by 

nulling the noise subspace and controlling the noise distribution in the signal (signal + 

residual noise) subspace.  It is observed that signal distortion and residual noise 

( Once denoised image or signal sub-space is obtained, it is also possible that it 

contained noise so that noise is known residual noise and its effect the details of 

image, it is possible also to calculate the noise residual or residual image as it is 

difference between the original and denoised image [121] ) cannot minimized 

simultaneously.  Linear estimation of the clean image is performed using TDC 

estimator to keep residual noise energy below the threshold while minimizing the 

signal distortion.  The method involved decomposition of noisy images into two 

orthogonal subspaces, signal (signal+ residual noise) subspace and noise subspace.  

The signal (signal+ residual noise) subspace is predominated by eigenvalues of clean 

image so it is termed as signal subspace.  

In this research, the TDC estimator is used in retinal colour fundus image to 

improve the SNR of image because TDC estimator can control signal distortion and 

reduce the noise also.   TDC estimator is based on the singular value decomposition.  

The Singular Value Decomposition (SVD) is used to determine the signal sub-space; 

the SVD is defined in below sub-section.  The underlying principle of subspace 

denoising is to null the noise subspace and control the noise contribution in the signal 

subspace.  Hence, the methods try to achieve a trade-off between the amount of 

reduced noise and signal distortion.  This can be achieved by optimisation criteria 

which seek to minimize signal distortion while setting a user-defined upper bound on 

the residual noise via a control parameter and this can be achieved by using TDC 

estimator.  The below sub-section defined SVD, description of signal and noise model 

with TDC estimator.  Consider the Table 2.9 contained description of different 

denoising methods along with its strength and weakness 

Table 2.9 Comparison among Image denoising methods  

No Denoising method Description Strengths Weaknesses 

1 Mean Filter 
The value of each pixel 

is replaced by the 

 

Easy to implement.  

 

Lose the details of 
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2.7.3.1 Singular Value Decomposition (SVD) 

The Singular Value Decomposition (SVD)  is one strong mathematical tool for 

factorizing data [123].  SVD is robust orthogonal matrix decomposition method [124].   

Due to SVD conceptual and stability reasons, it becomes more commonly used in 

signal and image processing applications.  SVD is a good technique of algebraic 

transformation of image.  SVD has many useful properties in image processing.  SVD 

average of all the values 

in the local 

neighbourhood.  

image due to blurring 

in the image. 

2 
 

Median Filter [19] 

Replace each pixel value 

with the median of the 

gray values in the local 

neighborhood. 

 

Easy to implement  

 

Lose the details of 

image due to blurring 

in the image. 

3 Wiener Filter [20] 

Wiener filter is based on 

statistical measurement 

of basic parameters like 

standard deviation, mean 

and window size. 

Local filtering is 

performed and it 

remove the noise 

while maintain the 

contrast also.  

Wiener filter makes 

the image smooth and 

due to its smoothness 

image details are lost.  

4 
Wavelet 

Transform [122] 

Uniform localisation of 

the time-frequency. 

Wavelet transform give 

good image then spatial 

filtering and other 

frequency domain 

filtering.   

 

Removed the noise 

and give good 

information about 

the edges of image.  

 

Produce the artifacts. 
The results of 

wavelet transform 

are no longer shift 

invariant.   

5 

Least Squares 

Estimator (LSE) 

[22] 

It minimises the distance 

between noisy vectors 

and signal sub space and 

to give denoised image.  

LSE is good 

technique to handle 

noise level.  

LS estimator cannot 

control the signal 

distortion that affects 

the details of image. 

6 

The Minimum 

Variance 

Estimator (MVE) 

[23] 

MVE is used to 

minimize the variance 

according to rank of 

matrix 

MVE is much better 

technique to handle 

the noise level then 

LSE. 

MVE estimator 

cannot control the 

signal distortion that 

affects the details of 

image.  
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have many properties and some properties are highly advantageous for images such 

as; its maximum energy packing, solving of least squares problem, computing 

pseudo- inverse of a matrix and multivariate analysis [125, 126].  A key property of 

SVD is its relation to the rank of a matrix and its ability to approximate matrices of a 

given rank.  Digital images are often represented by low rank matrices and, therefore, 

able to be described by a sum of a relatively small set of Eigen values.  This concept 

rises the manipulating of the signal as two distinct subspaces [127, 128].  SVD is 

constituted from two orthogonal subspaces.  This property of SVD is mostly used in 

noise filtering to determine the signal sub-space and noise sub-space [129, 130]. 

SVD is based on a theorem from linear algebra which says that a rectangular 

matrix A can be broken down into the product of three matrices - an orthogonal 

matrix U, a diagonal matrix S, and the transpose of an orthogonal matrix V  and this 

theorem is shown in Equation 2-6. 

              
                                                                                                        

Where 

    ,         .   ] ,     ,         .   ] and     

[
 
 
 
  

  

  

 ]
 
 
 

 here  

Where     = I,     = I; the columns of U are orthonormal eigenvectors of     , the 

columns of V are orthonormal eigenvectors of      and S is a diagonal matrix 

containing the square roots of eigenvalues (,      . .   - ) from U or V in 

descending order [131].  For example, consider matrix A  

  0
   

    
1 

In order to find    we have to start with    .  The transpose of   is 

   [
   
  
  

] 

(2-6) 
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     0
   

    
1 [

   
  
  

]  0
   
   

1    

Next, we have to find the eigenvalues and corresponding eigenvectors of       

We know that eigenvectors are represented by the equation      .  Where   is a 

square matrix of data,   is a scalar value known is eigenvalue also, and   is the 

eigenvector and applying this to     gives us 

      0
   
   

1 0
  

  
1   0

  

  
1 

This represents the system of equations 

11   +    = λ  =(    )                                                                  2-7                                                                             
 

   +      = λ      (    )                                                            2-8                                                        
 
 

Solve for   by setting the determinant of the co-efficient matrix to zero, 

 

|
(    )  

 (    )
|=0 

It work out as  

(    )(    )   .    

        (    )(    )    

                       

It gives us two eigenvalues λ = 10, λ = 12.  Plugging λ back in to the original 

Equation 2-7 and 2-8 and it gives us eigenvectors           .  For λ = 10 we get 

(    )         

 

(     )        

        

       

(2-9) 

(2-10) 

(2-11) 
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Which is true for lots of values, so we'll pick    = 1 and    = −1 since those are small 

and easier to work with.  Thus, we have the eigenvector [1, −1] corresponding to the 

eigenvalue λ = 10. For λ = 12 we have 

   (    )     

   (     )     

         
 

       

 

For the same reason as before we'll take   = 1 and     = 1. Now, for λ = 12 we 

have the eigenvector [1, 1].   These eigenvectors become column vectors in a matrix 

ordered by the size of the corresponding eigenvalue.  In other words, the eigenvector 

of the largest eigenvalue is column one, the eigenvector of the next largest eigenvalue 

is column two, and so forth and so on until we have the eigenvector of the smallest 

eigenvalue as the last column of our matrix.  In the matrix below, the eigenvector for 

λ = 12 is column one, and the eigenvector for λ = 10 is column two. 

0
  
   

1 

Finally, we have to convert this matrix into an orthogonal matrix which we do 

by applying the Gram-Schmidt orthonormalisation process to the column 

vectors[132].  Below Equations are used for orthogonal matrix conversion.  

   
  

|  |
 

,    -

√     
 

,   -

√ 
 ,

 

√ 
 

 

√ 
- 

Similarly     

   
  

|  |
 

,    -

√   (   )

 
,    -

√ 
 ,

 

√ 
 
  

√ 
- 

It gives  

  

[
 
 
 

 

√ 

 

√ 
 

√ 
 

 

√ ]
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The calculation of   is similar.   is based on    , so we have 

    [
   
  
  

] 0
   

    
1  [

    
    
   

] 

Find the eigenvalues of     by 

      [
    
    
   

] [

  

  

  

]   [

  

  

  

] 

This represents the system of equations 

             

             

                

These equations can rewrite as  

(    )         

(    )         

               (   )     

This can be solved as  

|

(    )   
 (    )  
  (   )

|=0 

  

(2-12) 

(2-13) 

(2-14) 



 

  

 

 

This will be solve as  

(    ) |
(    )  

 (   )
|   |

 (    )

  
|    

(    ),(    )(   )    -   ,   (    )-    

 (    )(    ) 

so λ = 0, λ = 10, λ = 12 are the eigenvalues for    .  Substituting λ back into the 

original Equations 2-7 to find corresponding eigenvectors yields for λ = 12 

(    )         

(     )         

           

      

          

Put    and    in Equation 2-9.  

        (    )     

           

      

     

So for λ = 12,     = [1, 2, 1]. For λ = 10 we have 

(    )         

(     )         

     

Put     in Equation 2-9 

        (   )     

        (   )      
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Which means for λ = 10,   = [2,−1, 0]. For λ = 0 put in Equation 2-6.  

(    )       

          

      

Put      and λ = 0 in Equation 2-8 

(    )         

          

     

Put            and λ = 0 in Equation 2-9 

        (   )     

        (   )  (  )    

      

     

Which means for λ = 0,      = [1, 2, −5].   Order          as column vectors in a 

matrix according to the size of the eigenvalue to get 

 

  [
   
    
    

] 

Finally, we have to convert this matrix into an orthogonal matrix which we do 

by applying the Gram-Schmidt orthonormalisation process to the column vectors 

[132].  Below Equations are used for orthogonal matrix conversion.  
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|  |
 

,      -

√        
 

,     -
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 ,
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√ 
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|  |
 

,       -

√   (   )

 
,       -

√ 
 ,

 

√ 
 
  

√ 
  - 

   
  

|  |
 

,      -

√      (   )

 
,      -

√  
 ,

 

√  
 

 

√  
 
  

√  
- 

The V matrix is  

  

[
 
 
 
 
 
 

 

√ 

 

√ 

 

√  
 

√ 

  

√ 

 

√  
 

√ 
 

  

√  ]
 
 
 
 
 
 

 

According to SVD theorem (Equation 2-2) , V matrix is transpose     is  

   

[
 
 
 
 
 
 

 

√ 

 

√ 

 

√ 
 

√ 

  

√ 
 

 

√  

 

√  

  

√  ]
 
 
 
 
 
 

 

For   we take the square roots of the non-zero eigenvalues and populate the 

diagonal with them, putting the largest in     , the next largest in     and so on until 

the smallest value ends up in    .  The non-zero eigenvalues of U and V are always 

the same, so that's why it doesn't matter which one we take them.   The diagonal 

entries in S are the singular values of A, the columns in U are called left singular 

vectors, and the columns in V are called right singular vectors as shown in below 

matrix.  

  [√    

 √   
] 
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We have SVD equation  
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√ 
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√ ]
 
 
 
 

[
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 √   
]
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√  ]
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 √  

√ 

√  
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√  
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 √  
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]
 
 
 
 

[
 
 
 
 
 
 

 

√ 
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√ 
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√  

 

√  

  

√  ]
 
 
 
 
 
 

 

    0
   

    
1 

    is required singular value decomposition matrix.       is also known as signal 

sub-space and TDC estimator is defined in next section because TDC estimator is 

used to to keep residual noise energy below the threshold while minimizing the signal 

distortion and TDC estimator give image without noise, well contrast image and 

maintain image details.  It is very important to understand the signal and noise model 

before explain the TDC estimator and the both section (Signal and noise model and 

TDC estimator) are explained in following sub-sections.  

2.7.3.2 Signal and Noise Model  

An image signal is short window, can be considered as wide sense stationary 

process, and thus can be represented by a linear stochastic model of the form as 

Equation 2-15.  

     

Where     ×  a matrix of random samples is whose rank is       

  ×  is a model matrix and     ×  is zero mean random co-efficient matrix 

(2-15) 
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drawn from multivariate distribution.   Let consider an image is corrupted by additive 

independent white noise,    and uncorrelated with the clean signal, the  ×   matrix 

of noisy image    is given by Equation 2-16.  

      

Where     ×  is the noise matrix and     ×  is the clean image.  

Given the observed noisy signal, we wish to estimate the clean signal,   as accurate as 

possible according to some criteria.  This is a classical problem in estimation theory.  

If      is the  ×   filter matrix, then the linear estimator of the clean image given Y 

is equal to 

 ̂     

The discussed noisy signals are realization of stochastic processes, which 

mean that the analysis of subspace methods is based on correlation matrices. First, 

consider the correlation matrix of the original image defined by the linear model of 

Equation 2-15, i.e. 

    *   +   *      +        

Where      *   +.  The rank of    is   and this matrix has (   ) zero 

eigenvalues.  Similarly, let the correlation matrix of the noise vector be denoted by 

     *   +.   When considering second order statistics, it is useful to assume the 

following two assumptions.  

1. The element of    and   are uncorrelated ,i.e.             . 

2. The noise is white with variance   
 
 i.e      

  .  

The second assumption is based on the fact that the correlation matrix of noise is 

known and the mathematical approach of the estimators makes use of eigenvalue-

decomposition (EVD) of covariance matrices        and    given by Equation 2-18.  

                                                                                                                 

It is clear that the noise power is uniformly distributed in the entire Euclidean 

space, while the image signal is confined to   dimensional subspace.  In practical 

(2-16) 

(2-17) 

(2-18) 
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scenario, the exact knowledge of the second-order statistic     is not available, but it 

is estimated from the noisy signal. 

2.7.3.3 Time-Domain Constrained (TDC) Estimator 

A novel subspace technique is proposed that take care of signal distortion and 

noise reduction and it is known as Time-Domain Constrained (TDC) Estimator.  This 

technique is an extension of the time-domain constraints estimators of Ephraim et 

[119] towards two-dimension signal (image).  Consider the estimated signal,  ̂ in 

Equation 2-16.  The error signal obtained in this estimation is given by 

   ̂    

The estimated signal according Equation 2-17 is    ̂      then error signal become  

       

According to Equation 2-16,        
  (    )    

           

                                                (   )                                               (2-19) 

Where (   )   is signal distortion and it is represented as    and     is 

residual noise and it is represented as    [119].   The energy of  ×   matrix of signal 

distortion and residual noise is equal to Frobenius norm given as, 

  
  ‖  ‖ 

    *    
 +    ((   )  (   )  

  
  ‖  ‖ 

    *    
 +    * (   )  +      *     + 

Where    is matrix trace and it is defined as sum of diagonal elements of 

matrix.  

Now, assuming  known value of    , a TDC estimator [119] keeps the residual 

noise energy, below some threshold while minimizing the signal distortion energy.  

The optimum linear estimator can be obtained by solving a constrained optimization 

problem 

(2-20) 

(2-21) 
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where    is a positive constant and   is the rank of matrix.  The constrained 

minimization described in Equation 2-22 can be solved using the method of Lagrange 

multipliers [133].  This means that, H is a stationary feasible point if it satisfies the 

gradient equation of Lagrangian [133], 

 (   )     
   (   

     ) 

 (   )    *(   )  (   ) +   (  *     +     )                                 

where     is the Lagrangian multiplier, where   is the Lagrangian multiplier 

 (   
     )   (  {     }     )            

From    (   ) we obtained  

   (   )   (   )           

It gives  

       (      )   

In the case of   being white,      
   , where   

 
 is the noise variance, and 

 , is the identity matrix, the optimal estimator  , can be written as 

        (      
   )   

Also from Equation 2-123 and 2-25, it can be shown that    should satisfy  

   
 

 
  (  ((      )    (      )    ) 

Equation 2-21 indicates that if   varies from 0 to ∞ then it causes the    to 

vary from 
 

 
  (  ) to 0.  This means that the estimator does not add noise to the 

estimated signal.  Note that the value of    depends on image and noise level.  Now, 

Equation 2-27 can be simplified using the singular value decomposition of     

 ∆    to  

       ∆ (∆     
  )   

(2-22) 

(2-23) 

(2-24) 

(2-25) 

(2-26) 

(2-27) 

(2-28) 

(2-29) 
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Where the   is the unitary eigenvectors matrix and ∆  is the diagonal 

eigenvalue matrix of    .  TDC is successfully applied and as example consider 

matrix A,  

  0
   

    
1 

Perform the SVD on the matrix and achieved SVD components are given 

below (Referred section 2.7.3.1 for SVD calculation).   

Where  

  

[
 
 
 

 

√ 

 

√ 
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   [√    

 √   
]  

According to the Equation 2-23        ∆ (∆     
  )     and  ∆   is 

diagonal value of    and Rx is equal to   =    .  

   0
   

    
1 [

   
  
  

]  0
   
   

1 

But ∆   is the diagonal matrix of its Eigen value of Rx and its Eigen values are 

12 and 10 then ∆  becomes  

∆  0
   
   

1 

The transpose of U is  
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√ ]
 
 
 

 

According to Equation 2-23 to determine the TDC estimated image       

       ∆ (∆     
  )   
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Resultant       signal is  

      0
     
     

1 

 

When applied on the signals and images, TDCE achieved the better results in 

terms of noise reduction (performance is evaluated by measuring SNR of images) 

while preserving image details as shown in Figure 2.23 and 2.24 [134]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23 TDCE on Signal [6] 
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Noisy Image 
Denoised Image 

Noisy Image Denoised Image 

 

 

 

 

 

 

 

 

 

2.8 Summary  

Diabetic Retinopathy is the damage of the retinal vasculature that is a common 

complication of the diabetes mellitus disease.  It is estimated that 75% of the people 

with diabetic retinopathy are living in developing countries.  Eye screening is 

important for the detection of diabetic retinopathy [32].    DR has five stages No-DR 

to PDR but the progression of DR starts from Mild NPDR to Severe NPDR and ends 

with PDR, which is the complete vision loss stage.  These DR categories are 

characterised by the presence of pathologies, such as haemorrhages, exudates and 

changes in the veins.   

There are basically two ways to acquire fundus image, i.e., the Fundus 

fluorescein angiogram image (invasive method) and digital colour fundus image (non-

Figure 2.24 TDCE on Standard Test Images 
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invasive method).  The Fundus fluorescein angiogram is an injection-based method in 

which fluorescein dye is injected into a patient’s blood vessel to increase the contrast 

level of the  retinal vasculature (Retinal vasculature is a network of vessels in the 

retinal layer) of it.  The digital colour fundus is captured by a fundus camera without 

injecting the contrast agent into the blood vessels.  

Pathologies that occur in the retinal fundus image are such as microaneurysms, 

haemorrhages and exudates.  Microaneurysms (MAs) are the first clinical signs of DR 

in the fundus image.  MAs that appear as small dark red lesions in the colour fundus 

images (in white circles) are clearly seen as small round lesions with sharp edges and 

an irregularly brighter rim in the FFA images.  A haemorrhage appears as round 

shaped or irregular shaped, sharp or diffusely delineated and deep red (colour of 

intravenous blood) in fundus images.  Exudates are random whitish or yellowish 

patches found in the retinal fundus image with different sizes and shapes, and at 

different locations.  FAZ is the central region of the fovea that is usually free of 

capillaries.  The enlargement of FAZ is often observed in the eye with diabetic 

retinopathy and progresses with DR severity as the diabetic condition causes capillary 

loss in the perifoveal capillary network.  

The first automatic detection method for diabetic retinopathy was developed 

by Baudoin et al [51] to detect the microaneurysms from fluorescein angiograms.  

Further, Xiahui and Chutatape et al [59, 60] proposed a method for the detection of 

haemorrhages by using the principal component analysis and features that were 

extracted by the support vector machine to classify the image patch.   Goldbaum et al. 

[80] proposed a method of exudate detection algorithm based on the template 

matching and edge detection approach.   In medical research, it is reported that an 

enlargement of the Foveal avascular zone (FAZ) causes vision loss because the small 

capillaries surrounding the FAZ possibly tend to be blocked due to higher 

hemodynamic stress.  Ahmad Fadzil et al [28, 96] and his team worked on the 

determination of the FAZ area in the colour fundus image to reduce the use of the 

invasive method, FFA.  Ahmad Fadzil and  Lila et al [96] developed the method for 

analysis of FAZ in colour fundus images based on the vessel extraction and 

reconstruction for grading of DR and achieved a 92.2% accuracy.  Later, Hanung et al 
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[28] developed an automated determination of FAZ  for DR  grading and named it 

RETINO and it gave the accuracy of 95%.  

Retinal fundus images suffer from low and varied contrast.  Contrast 

enhancement techniques have played a vital part to enhance the tiny low contrast 

objects.  All of the techniques have been proposed for a solution to the most common 

problems of varied and low contrast images.  The medical image normalisation 

technique for varied contrast has been categorised into two types, i.e., the Prospective 

and Retrospective contrast normalisation techniques.  Image enhancement techniques 

for low contrast images are divided into two categories, namely, spatial domain and 

frequency domain for low contrast images.  The spatial domain techniques involve a 

process of the contrast enhancement by adjusting the luminous intensity histogram of 

the processed image and subsequently, they perform the enhancement process in the 

frequency domain of the image.  Ahmad Fadzil et al [17] developed a non-invasive 

image enhancement technique which is the combination of two techniques, Retinex 

and Independent Component Analysis (ICA) and is known as RETICA.  The 

technique was created to overcome the problem of varied and low contrast.  The 

Retinex algorithm is used for varied contrast problems and ICA is used for low 

contrast problems.  

 In image processing, noise reduction and the restoration of an image is 

expected to improve the qualitative inspection of an image and the performance 

criteria of the quantitative image analysis techniques.  Especially, medical images are 

captured through imaging modalities which give noise.  Due to the noise, the image 

details cannot be analysed clearly.  There are three basic image noise models namely, 

additive, multiplicative and additive plus multiplicative noise models.  Retinal fundus 

images are captured by using a fundus camera and they contain noise.  Due to the 

noise, it is very difficult to analyse the tiny capillaries.   

Image denoising problem is still a challenge for the researchers because 

removal of noise causes the artefacts and image blurring.  Image denoising is 

classified into two types i.e., spatial domain and Transform domain denoising 

methods.  These methods are mainly used for noise reduction but there are some 

disadvantages of using these methods i.e., mean filter, median filter and wiener filter 
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and these methods are mostly used by researcher to denoised different types of 

images.  Mainly these filters make the image blur and smooth.  Image details are lost 

due to blurring and smoothness affect.  In transform domain, many researchers used 

the wavelet transform.  Wavelet transform contained the higher frequency 

components and higher frequency components produce artefacts.   Low frequency 

component of wavelet transform is based on wiener filter and wiener filter make the 

image smooth that affects the details of image.  Linear sub-space estimator is based 

on different linear estimator to control the noise and signal distortion.  The least 

squares and the minimum variance do achieve significant improvement in image 

denoising but at the expense of signal distortion.  Recently, a novel subspace 

technique has been proposed that addresses signal distortion and noise reduction 

named Time Domain Constraint Estimator and in this research work TDC is used to 

improve the SNR of retinal colour fundus image.  TDC estimator can control signal 

distortion and reduce the noise also.  TDC estimator is based on the singular value 

decomposition.  The Singular value decomposition (SVD) is used to determine the 

signal sub-space; the SVD is defined in below sub-section.  The underlying principle 

of subspace denoising is to null the noise subspace and control the noise contribution 

in the signal subspace.   

From the literature review, five main problems have been observed in the retinal 

colour fundus image and these problems need to be solved.  

1. Varied contrast is one of the problems in the medical images due to the 

geometrical surface and configuration of image modalities.   

2. Low contrast is also one of the key problems in the medical images.  The low 

contrast of tiny objects of interest needs to be extracted and enhanced 

selectively for analysis.  

3. Non-invasive enhancement method is required to normalise the varied contrast 

of images and enhance the low contrast of images. 

4. Before normalising and enhancing the retinal colour fundus image, it is very 

important to handle the noise level and identification of the noise.  The 

performance of the image enhancement technique (for low and varied contrast 

image) can be affected by the noise. 
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5. Performance evaluation parameters of a non-invasive digital system must be 

equal or higher than the invasive system and the quality of the non-invasive 

digital image must be better than the invasive image.  This is because invasive 

systems, such as FFA, are based on contrast injecting agents that give higher 

contrast of the image as compared to colour fundus images but have other 

physiological problems. 
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CHAPTER 3 

METHODOLOGY

3.1 Analysis of Fundus Images 

Digital colour fundus images have been observed to suffer from noise and varying 

low contrast problems.  The resultant noise observed in fundus images may be due to 

improper acquisition process and system noise.  The varied contrast is due to the 

uneven illumination of the uneven curved retina surface.  The biological nature of the 

retina results in the different amounts of light being reflected and hence the low and 

varied contrast.   

 

 

 

 

 

 

 

 

Referring to Figure 3.1, colour fundus image contain noise due to which the 

blood vessels against their background cannot be observed clearly but the green band 

(GB) image of colour fundus image also contained noise due to which the details of 

the image are lost. 

In Figure 3.2, macular regions of the fundus images are shown and different 

regions are marked with white circles within the macula of the fundus image.  It can 

be seen that the contrast is low and varied in different regions of selected macular 

region of the colour fundus images.  This is due to varying illumination of the macular 

region as a result of improper and uneven illumination acquisition.  

Figure 3.1 Illustration of noise in Fundus Images 

 



 

  

 

 

 

The RETICA method applies the Retinex algorithm [29] for contrast 

normalisation to overcome the varied contrast followed by the Independent 

Component Analysis [30] for contrast enhancement to overcome the low contrast of 

blood vessels against background.  RETICA was tested on the developed model 

fundus images to investigate the effectiveness of the technique.   

Results show that RETICA successfully normalises the varied contrast in 

colour model fundus images with contrast normalisation of        .    better than 

other a non-invasive enhancement methods [17].  RETICA outperforms other 

enhancement methods in producing better contrast of retinal blood vessels     

  .   followed by Contrast Stretching (CS), Histogram Equalisation (HE) and 

Contrast Limited Adaptive Histogram Equalisation (CLAHE)  with 69.11,68.81 and 

42.81 respectively [17].  Using the green band image as reference, RETICA achieves 

the highest contrast improvement of 5.389 comparable to that of invasive FFA with 

CIF of 5.796 [17].   However, Hanung A.Nugroho et al [17] did not investigate nor 

validate the performance of RETICA on real fundus images in FINDeRS database and 

more importantly the effects of noise in fundus images on RETICA. 

Figure 3.2 Illustration of noise varying contrast in Fundus Images 
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3.2 Problem Formulation  

To address the issues related with the analysis of fundus images, it is important to 

understand the nature of the noise in fundus images and to develop a suitable noise 

reduction technique to address noise prior to any contrast enhancement.  Noise that 

arises from the image acquisition by fundus camera will have to be investigated 

thoroughly in order to identify the type(s) of noise.  Available noise reduction 

schemes should be investigated to obtain the most effective noise reduction for the 

type(s) of noise in fundus images.   

In improving the contrast of the fundus images, it is clear that the RETICA 

method has the potential to address varied and low contrast effectively as described 

from Hanung.A.Nugroho et al [17].  However, there is a need to ascertain its 

performance with real fundus images. 

RETICA is based on the two hypotheses as follows:- 

1. First, the digital colour fundus images are taken with a fundus camera and 

these images suffer from a varied contrast problem.  The colour fundus image 

has a problem of uneven illumination.  According to the image formulation 

model, the image intensity is the product of illumination and reflectance.  Due 

to uneven illumination, the image has a varied contrast which affects its 

quality.  Therefore, in order to achieve a uniform contrast image, it is 

necessary to normalise the image contrast and separate the illumination from 

the reflectance.  Retinex makes this possible by separating the illumination 

from the reflectance part of the image to give a contrast normalised image. 

 

2. Secondly, the objects of interest (macular region of the fundus image) suffer 

from low contrast because it is related to the reflectance.  The independent 

component analysis is used to enhance the objects without introducing noise 

or any artefacts.  

In Hanung.A.Nugroho et al [17], the above two problems of varied and low 

contrast were formulated and addressed on statistical models of fundus image.  The 

performance of RETICA is evaluated in terms of the contrast improvement factor and 
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it successfully achieved an average of 5.38 contrast improvement factor on the model 

fundus images.  However, RETICA was not validated on the real fundus image.   

In this research, it is hypothesised that noise affects the performance of 

RETICA and that the RETICA performance can be improved with fundus images of 

better SNR.  The noise in fundus images is therefore studied and its effect on the 

performance of RETICA with real colour fundus image is investigated. 

3.3 Design of Experimental Work 

The experimental work is described in the following sub-sections. 

3.3.1 Implementation of RETICA on a Real Fundus Image 

Referring to Figure 3.3, the Red, Green, and Blue colour channels of the 

macular region of the fundus image are processed by the Retinex algorithm (refer to 

section 2.6.3.1 in Chapter 2 on Retinex algorithm) to normalise the varied contrast of 

the image.  Next, ICA (refer to Sect 2.6.3.2 in Chapter 2 on ICA algorithm) is 

performed to obtain the independent components – macular (Red Channel), 

haemoglobin (Green Channel), and melanin pigments (Blue Channel), - from the 

colour channels of the retinal colour fundus image.   

The haemoglobin image (Green Band) is selected from the three independent 

components because it has higher contrast as compared to other two independent 

components.  This enhanced image of the macular region of the fundus image is 

called the RETICA image.   The two databases are analysed through the RETICA 

method.  The first database contained 35- Fundus images with corresponding FFA 

images in which there are 11 No_DR, 6 Mild NPDR, 6 Moderate NPDR, 4 Severe 

NPDR and 8 PDR images.  This database is known as the 35-Fundus database (refer 

to Appendix 1).  The second database contains 175 fundus images in which there are 

50 No_DR, 40 Mild NPDR, 30 Moderate NPDR, 18 Severe NPDR and 37 PDR 

images.  This database is known as FINDeR’s database (refer to Appendix 2).  
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Figure 3.3 RETICA Method 

 

 

 

 

 

 

 



 

  

3.3.2 Measurement of the Contrast and the Contrast Improvement Factor of 

Fundus Images 

 

Two parameters are used to evaluate the RETICA performance.  The first is 

the measurement of the contrast between the blood vessels against the background of 

the macular region of the green band image, FFA image, Haemoglobin (Green 

Component) or RETICA image.  The second is the contrast improvement factor of the 

RETICA image versus the green band image and the FFA image versus the green 

band image. 

To measure the contrast of the image, the 50 intensity points or pixels of the 

blood vessels and the background within the macular region are selected randomly as 

depicted by the blue dots in Figure 3.4.  Similarly, intensities of the retinal blood 

vessels against the surrounding background of the macular region of green band 

image, FFA image and haemoglobin image due to RETICA are selected randomly.  

The image contrast is analysed between the blood vessels against the surrounding 

background of the macular regions of the green band image, the FFA image and the 

RETICA image.  

The contrast of the retinal blood vessels against the surrounding background 

region is the absolute mean intensity difference between the retinal blood vessels and 

the background of the retinal image.  It was determined according to Equation 3.1.  

 |     |  |
 

 
(∑      ∑     

 
   

 
   | 

Here,  |     |  is the contrast measured of the retinal blood vessels against the 

surrounding background.  The terms      and      refer to the intensities of the retinal 

blood vessels and the background, respectively.  The n variable indicates the random 

number of the data points (pixels) for the retinal blood vessels against the surrounding 

background in the fundus image.  In this study, n= 50 and the data points (pixel 

locations) are randomly selected.  

 

(3-1) 
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Green Band Blood vessels intensity 

selection 

  

Green Band Background Intensity 

Selection 
  

 

FFA Blood vessels intensity 

selection 

  

FFA Background Intensity Selection 

  

  

Haemoglobin Blood vessel intensity 

Selection 

  

Haemoglobin Background Intensity 

selection 

  

 

 

 

 

Figure 3.4 Selection of intensity data points (blood vessel and background) for Green 

band, FFA and RETICA images 
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The contrast improvement factor (CIF) for the FFA image is calculated as the 

ratio of the contrast between the grey scale values of the FFA image and the reference 

green band image.  The contrast improvement factor (CIF) for the haemoglobin image 

or RETICA image  is defined as the ratio of the contrast between the haemoglobin 

image and the reference green band image as formulated in Table 3.1. 

Table 3.1 Formula of Contrast Improvement Factor 

 

 

 

          represents the contrast improvement factor of RETICA and 

        represents the contrast improvement factor of FFA.  Here,         is the 

contrast blood vessel against the surrounding background of the RETICA image 

and      is the contrast of the blood vessels against the surrounding background of 

the FFA image.       is the contrast of the blood vessels against the surrounding 

background of the green band image. 

3.3.3 Measurement of the Signal to Noise Ratio of the Fundus Images 

 

The evaluation of noise types in the digital retinal fundus image is based on 

the Peak Signal to Noise Ratio values of the images.  It is an engineering term for the 

ratio between the maximum possible power of a signal or image and the power of the 

corrupting noise in the image that affects the quality of a digital image [135].  

Mathematically, it is shown in Equation 3.2.  

            (
   

 
)     

RETICA FFA 

          
       

    
        

    

    
 

(3-2) 
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In the Equation 3-2, the σ is the standard deviation of the image intensities and 

255 is considered as peak intensity of a digital image.  

3.3.4 Measurement of the Signal Energy of the Fundus Image  

 

Signal Energy is main term in the signal and image processing to determine 

the strength of signal. In signal processing, signal as a function of 

varying amplitude through time, it seems to reason that a good measurement of the 

strength of a signal would be the area under the curve.   In image processing, the 

image contains the distribution of pixels.  Signal energy of image shows how the grey 

levels are distributed in image or any particular channels. There are many methods to 

calculate the signal energy of image.  The Signal energy is represented by Equation 3-

3.  

               ∑ | (   )|                                                                                     

Let assumed  (   ) is image with intensities values.  

3.3.5 Noise Identification in the Fundus Image 

 

The noise identification technique in the retinal fundus image has been 

proposed.  It has been based on three filters according to a noise model (additive, 

multiplicative and additive plus multiplicative).  The performance of the noise 

identification technique has been evaluated in terms of PSNR.  The highest 

improvement of the specified filters (additive, multiplicative and additive plus 

multiplicative) indicates the noise types in the retinal fundus image.  The noise 

identification technique for the retinal fundus is tested on both the model and the real 

retinal fundus images and effect of noise on Retinex algorithm is also observed.   

Three wiener filters are developed for the removal of the various types of 

noise.  The first adaptive wiener filter is basically designed to remove the additive 

noise.  The second adaptive wiener filter, named the multiplicative wiener filter, is 

(3-3) 
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designed as a multiplicative filter to remove multiplicative noise and the third 

adaptive wiener filter, named the additive and multiplicative wiener filter, is designed 

to deal with both the multiplicative plus additive noise.  In Figure 3.5, the three 

adaptive wiener filters (additive, multiplicative, and additive plus multiplicative 

filters) are designed according to the noise models defined in the equations below. 

Assumption #01:  Noise is Additive and uncorrelated with signal  

I’(x, y) = I (x, y) +n(x, y)  

Assumption #02:  Noise is multiplicative and correlated with signal  

I’(x, y) = I (x, y) *n(x, y) 

Assumption #03:  Noise is both Additive and Multiplicative 

I’(x, y) = I (x, y) *n(x, y) + n(x, y)        

                                                              

 

 

 

 

 

 

 

 

Figure 3.5 Modelling of Adaptive Wiener Filter  

(3-4) 

(3-5) 

(3-6) 
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3.3.5.1  Study 1 

 Study 1 is based on an adaptive wiener filters (additive, multiplicative, and 

additive plus multiplicative filters).  Adaptive wiener filters are applied on the green 

band of the fundus model image and the real fundus image in study 1 and the main 

purpose of study 1 is to determine the noise type in the green band fundus image.       

 Referring Figure 3.6 of study 1, the first the PSNR of green is calculated.  In 

the second step the green band image is processed through the additive wiener filter 

and its PSNR is calculated similarly in third and fourth steps the green band image is 

processed to multiplicative wiener filter and additive plus multiplicative wiener filter 

and its PSNR of filtered image is calculated.  The performance evaluation is based on 

the highest PSNR improvement between the PSNR of filtered green band image and 

PSNR of green band image.  The filter which resulted in the highest PSNR 

improvement indicates the type of noise in green band fundus image. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Study 1 
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3.3.5.2  Study 2 

 

Study 2 is based on applying adaptive wiener filters (additive, multiplicative, 

and additive plus multiplicative filters) followed by the Retinex process as shown in 

Figure 3.6.   Referring Figure 3.7 of study 2 the PSNR of the unfiltered Retinex image 

has also been determined.   Then after the green band image is processed through the 

additive wiener filter then into Retinex and its PSNR of Retinex is calculated.  

Similarly the green band image is processed to multiplicative wiener filter and 

additive plus multiplicative wiener filter then after, it is process through Retinex 

algorithm and finally,   PSNR of filtered Retinex image is calculated.   The PSNR 

improvement is observed between the PSNR of the unfiltered Retinex image and the 

PSNR of the filtered Retinex image to determine the effect of Retinex and adaptive 

wiener filtering on the noise in fundus images.  

 

 

 

 

 

 

Figure 3.7 Study 2 
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3.3.5.3 Study 3 

 

 Study 3 is based on Retinex process followed by adaptive wiener filters 

(additive, multiplicative, and additive plus multiplicative filters) to study the noise 

types in Retinex images.  In Study 3, the filters are applied after the Retinex algorithm 

and the PSNR at each stage has been calculated as shown in Figure 3.8.   Referring 

Figure 3.8 of study 3 the PSNR of the unfiltered Retinex image has also been 

determined.  In the second step the green band image is processed through Retinex 

then after it is process to additive wiener filter and PSNR of filtered Retinex image is 

calculated.  Similarly, the green band image is processed through Retinex the 

processed to multiplicative wiener filter and additive plus multiplicative wiener filter 

and finally PSNR of filtered Retinex image is calculated.   The PSNR improvement is 

observed between the PSNR of the unfiltered Retinex image and the PSNR of the 

filtered Retinex image to determine the the noise types in Retinex images.  The filter 

which resulted in the highest PSNR improvement indicates the type of noise in the 

Retinex. 

 

 

 

Figure 3.8 Study 3 

 



 

  

Denoising 

Method  

Denoised Image Green Band Image 

The main three studies is to identify the noise types in the fundus model green 

band image, real green band fundus images, and the Retinex images.  Secondly, 

observed the effect of noise on RETICA algorithm.  Study 1 is based on identification 

of the noise types in green band image (Model or real fundus image).  Study 2 is 

based on the effect on noise reductions using filters and Retinex.  Study 3 is based on 

identification of noise type of Retinex image.  The results are explained in chapter 4. 

3.4 Denoising Methods for Retinal Fundus Images   

In retinal fundus images, the macular region is analysed and evaluated based on 

the PSNR improvement between the green band image and its denoised image as 

shown in Figure 3.8.   

 

The PSNR improvement (PSNR of denoised Image - PSNR of Green band Image) 

is determined for each method to select suitable noise reduction schemes and results 

are elaborated in chapter 4.  

3.5 Improving the SNR of the Fundus Image 

In this thesis, TDCE (refer to section 2.7.3.3 in Chapter 2 on TDCE) has been 

applied on the real colour fundus image.  Referring Figure 3.9 of implementation of 

TDCE in the MATLAB, there are three steps to get estimated TDC image.  

Figure 3.9 Noise reduction 
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Steps of implementation of TDCE in MATLAB are explained as follow.  

1. Process the image. 

2. Apply the Singular value decomposition to determine the signal space. 

Because the noise removal is achieved by nulling the noise subspace 

and controlling the noise distribution in the signal (signal + residual 

noise) subspace.   In the    signal (signal + residual noise) sub-space 

contained required information and residual noise affects the details of 

image because linear estimation of the clean image is performed using 

TDC estimator to keep residual noise energy below the threshold while 

minimizing the signal distortion.  

3. Apply TDCE to minimised the signal distortion and determine the 

estimated TDC denoised image.  

 

Figure 3.10 Implementation of TDCE in MATLAB  
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Fundus Image 1 Macular Regions  Denoised TDCE Images  

TDCE 

TDCE 

 

 

PSNR: 24.32dB  PSNR: 26.41dB  

PSNR: 24.02dB  

Fundus Image 2 Macular Regions  Denoised TDCE Images  

PSNR: 26.79dB  

The performance of TDCE is evaluated by measuring PSNR.   Illustration of 

TDCE on retinal fundus images are shown in Figure 3.10. 

 

 

Linear Sub-Space TDCE successfully denoised the image gave PSNR 

improvement (image1:2.09dB and image2: 2.77dB).  Tiny blood vessels against the 

surrounding background of macular regions of retinal fundus mage is more enhanced 

and clearly observed in TDCE denoised image.  Consider Image 2 in the Figure 3.10, 

the tiny blood vessels surrounding its background cannot observed clear but it will 

observed in TDCE denoised and it is very important to analysis these tiny capillaries 

for early analysis of eye related diseases instead of this, TDCE image maintain the 

contrast of the image.  There are three many reasons of apply TDCE on retinal fundus 

image because it maintain the contrast of image and detail of image also with reduce 

the noise. 

It is hypothesised that noise affects the performance of RETICA and that 

RETICA can be improved with better SNR of fundus images.  Referring to Figure 

3.11, the Red, Green, and Blue colour channels of the macular region of the fundus 

image are processed by TDCE to improve the SNR.  Next, the output of the TDCE 

Figure 3.11 Illustration of TDCE on Retinal Fundus Image 
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images is processed with RETICA for measuring contrast improvement factor for 

RETICA performance on improved SNR images.  

The novelty of this proposed method is that TDCE is used to reduce the noise 

level in the colour fundus image whilst RETICA addresses the varied and low 

contrast problems.   

Three main issues in the real retinal colour fundus images are being addressed 

in this method.  These problems are the noise that occurred due to the improper 

acquisition process and the noise observed in the image which (1) degraded the image 

quality and (2) affected the performance of RETICA.  The linear sub-space time 

domain constraint estimator (TDCE) is used to improve the quality of the image by 

reducing noise, maintaining contrast and preserving the image details.  The problems 

of varied and low contrast are addressed by the Retinex and ICA in RETICA.  So, a 

fully computerised-based non-invasive image enhancement technique that contained 

TDCE and RETICA is developed and investigated in this research.  The results of 

experiment work are elaborated in the chapter 4.  
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Figure 3.12 Proposed Non-Invasive Image Enhancement Techniques (TDCE+ RETICA) 

 



 

  

 

3.6 Summary  

 The problem of varied and low contrast and noise often occurs in medical 

images.  Colour digital fundus images are obtained by the fundus camera and through 

analysis of these images some eye related diseases such as Diabetic Retinopathy can 

be determined.  Analysis of the tiny retinal vasculatures in the retinal fundus becomes 

difficult because the retinal fundus images suffer from noise, and very low and varied 

contrast between the retinal vasculature and the background in the image.  As a result, 

a digital image enhancement technique is required to give the best visualisation of the 

retinal blood vessels. 

 In this chapter, RETICA is validated on real digital colour fundus images 

instead of model fundus images.  Two databases are used; the first dataset is known as 

the 35-fundus image database and the second dataset is the FINDeR’s database.  The 

performance of RETICA is evaluated by measuring the contrast and the contrast 

improvement factor.  The method of the contrast improvement has been defined.  

RETICA is able to handle the problem of varied and low contrast but the fundus 

image also contained noise.  The noise affected the performance of RETICA because 

it is observed that RETICA gave two different performances on two different 

databases as the result elaborated in chapter 4.  It is observed that noise affected the 

performance of RETICA and in order to achieve better performance of RETICA as 

with FFA then the SNR of the fundus image has to be improved before being 

processed by RETICA.  But, it is very important to identify the nature of noise in the 

fundus before applying any denoising method.  

    In this chapter, the automated image filtering technique based on an identifying 

noise is developed for fundus images.  It is based on the three studies.  Study 1 is 

based on an adaptive wiener filters (additive, multiplicative, and additive plus 

multiplicative filters).  Adaptive wiener filters are applied on the green band of the 

fundus model image and the real fundus image in study 1 and main purpose of study1 
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is to determine the noise type in green band image.  Study 2 is based on applying 

adaptive wiener filters (additive, multiplicative, and additive plus multiplicative 

filters) followed by the Retinex process and the main purpose of study 2 the PSNR of 

the unfiltered Retinex image has also been determined.  Study 3 is based on Retinex 

process followed by adaptive wiener filters (additive, multiplicative, and additive plus 

multiplicative filters) to study the noise types in Retinex images.  The main purpose 

of the three studies is to identify the noise types in the fundus model green band 

image, real green band fundus images, and the Retinex images.  Secondly, observed 

the effect of noise on RETICA algorithm. The results of three studies are elaborated 

in the chapter 4.  

The second objective is to reduce the noise as it has been hypothesised that if the 

contrast improvement factor is dropped due to noise then the contrast improvement 

factor of the FINDeRS database will be increased by improving the PSNR of the 

FINDeRS image database.  The results are elaborated in chapter 4.  The non-invasive 

image enhancement technique along with TDCE and RETICA has a fair potential to 

reduce the need for the invasive fundus fluorescein angiogram method and other such 

methods as they pose other physiological problems.   

  



 

  

CHAPTER 4 

RESULTS AND DISCUSSION

4.1 Performance Analysis of RETICA Method on Real Fundus Images

The performance of RETICA is evaluated on real fundus images obtained 

from two databases.  The first database comprises 35 colour fundus images of various 

DR severities with their corresponding FFA images; 11 No_DR, 6 Mild NPDR, 6 

Moderate NPDR, 4 Severe NPDR and 8 PDR images.  This database is known as the 

35-Fundus database.  The second database has 175 colour fundus images of various 

DR severities in which there are  50 No_DR, 40 Mild NPDR, 30 Moderate NPDR, 18 

Severe NPDR and 37 PDR images.  This database is known as the FINDeRS (Fundus 

Image for Non–invasive Diabetic Retinopathy System) database.   

The contrast improvement factor achieved by the RETICA method for the 35 

colour fundus images compared to their corresponding FFA images in the 35-Fundus 

database is shown in Table 4.1.  Referring to Table 4.1, the RETICA method resulted 

in higher contrast improvement factors as compared to the FFA method for all DR 

stages with an average CIF of 5.12 (FFA) and 5.46 (RETICA).   

Note: The contrast improvement factor of FFA image is the contrast ratio of the FFA 

image and its green band image, which is used as the reference.   

Table 4.1 shows the contrast values of green band (CGB), FFA (CFFA), and 

RETICA or haemoglobin (CHI) images, and the CIF achieved for FFA (CIFFFA) 

and haemoglobin (CIFHI) of the 35-Fundus database.  As shown in Table 4.1, it is 

observed that RETICA achieved higher average contrast 43.1 as compared to FFA 

method 40.4.  RETICA achieved average CIF of 5.46 as compared to 5.12 of FFA.   It 

is also observed that some images have very high contrast values (contrast is above 50 
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for RETICA and FFA and above 10 for green band images) as highlighted in the 

table.   

Table 4.1 Contrast and CIF of 35–Fundus database 

            

 

No Image CGB CFFA CHI CIFFFA CIFHI 

1 No DR_1 6 33.8 34.4 5.63 5.73 
2 No DR_2 6.9 38.3 39.4 5.55 5.71 
3 No DR_3 5.6 28.4 31.1 5.07 5.55 
4 No DR_4 6.3 31.6 35.8 5.01 5.68 
5 No DR_5 6.2 33.2 35.5 5.35 5.72 
6 No DR_6 11.7 53.3 60.1 4.55 5.13 
7 No DR_7 6.4 34.9 35.3 5.45 5.51 
8 No DR_8 9.1 47.7 48.2 5.24 5.29 
9 No DR_9 8.5 34.3 47.5 4.03 5.58 
10 No DR_10 7.1 40.9 36.9 5.76 5.19 
11 No DR_11 8.7 35 45.5 4.02 5.22 
12 Mild_1 5.2 28.7 29.9 5.51 5.75 
13 Mild_2 5.3 29.2 26.9 5.50 5.07 
14 Mild_3 12.9 73 68.5 5.65 5.31 
15 Mild_4 12.9 50.2 67.1 3.89 5.20 
16 Mild_5 5.1 26.1 29.3 5.11 5.74 
17 Mild_6 10.7 54.9 58.9 5.13 5.50 
18 Moderate_1 5.6 28.3 30 5.05 5.35 
19 Moderate_2 5.1 27.6 26.5 5.41 5.19 
20 Moderate_3 7.8 44.4 39.2 5.69 5.02 
21 Moderate_4 9.3 49.5 52.8 5.32 5.67 
22 Moderate_5 14.2 75.5 82.2 5.31 5.78 
23 Moderate_6 9.9 42.1 53.8 4.25 5.43 
24 Severe_1 6.5 34.9 36.1 5.36 5.55 
25 Severe_2 5.1 29.2 31.2 5.72 6.11 
26 Severe_3 10.9 54.2 54.9 4.97 5.03 
27 Severe_4 11.2 59.8 59.9 5.33 5.34 
28 PDR_1 5.2 26.5 29.8 5.09 5.73 
29 PDR_2 5.2 27.1 29.6 5.20 5.69 
30 PDR_3 3.9 14.9 21.1 3.82 5.4 
31 PDR_4 6.3 32 31.8 5.07 5.04 
32 PDR_5 9.5 42.8 48.7 4.50 5.12 
33 PDR_6 4.6 27.2 25.6 5.91 5.56 
34 PDR_7 15.8 87.3 82.2 5.52 5.20 
35 PDR_8 7.4 38.5 43.4 5.20 5.86 

Average 7.9 40.4 43.1 5.12 5.46 
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Figure 4.1 Comparison of selected FFA and RETICA images  

Image Green Band FFA Image Haemoglobin Image 

No_DR_6 

Contrast: 11.17 Contrast: 53.3 Contrast:60.1  

Mild_3 

Contrast: 12.9 Contrast:73  Contrast: 68.5 

Mild_4 

Contrast: 12.9 Contrast: 50.9 Contrast: 58.9 

Mild_6 

Contrast: 10.7 Contrast: 54.9 Contrast: 58.9 

Moderate_
5 

Contrast: 14.2 Contrast: 75.5 
Contrast: 82.2 

Severe_3 

Contrast: 10.9 Contrast: 54.2 Contrast: 54.9 

Severe_4 

Contrast: 11.2 Contrast: 59.8 Contrast: 59.9 

PDR_7 

Contrast: 15.8 Contrast: 87.3 Contrast: 82.2 
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No_DR (11 Images ) Mild NPDR (6 Images)
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FFA Average CIF: 5.12 

Referring to Figure 4.1, the green band of No_DR_6 image clearly shows 

blood vessels with contrast of 11.17.  The RETICA (haemoglobin) image is also more 

enhanced with smaller retinal blood vessels more observable as compared to FFA 

image; RETICA image have the contrast of 60.1 as compared to FFA 53.3.  Similarly, 

RETICA images of Mild_4, Mild_6, Moderate_5, Severe_3 and Severe_4 clearly 

show tiny capillaries as compared to their corresponding FFA images.  For Mild_3 

and PDR_7, the FFA gave better contrast compared to RETICA.  It can be seen that 

the retinal blood vessels are brighter due contrasting agent. Nonetheless, blood vessels 

can also be observed from the corresponding RETICA (haemoglobin) image. 

Referring Figure 4.2, the contrast improvement factor of 35 images pairs is 

shown for various DR severity stages. RETICA outperformed the FFA in improving 

the contrast of the green band images. RETICA method resulted in higher contrast 

improvement factors as compared to the FFA method for all DR stages with an 

average CIF of 5.12 (FFA) and 5.46 (RETICA).   

 

 

The contrast improvement factors achieved by the RETICA method for the 

various DR stages in the FINDeRS database are shown in Figure 4.3 with an average 

CIF of 5.02.  

RETICA Average CIF: 5.46 

Figure 4.2  Contrast Improvement Factor of RETICA and FFA 
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RETICA CIF on FINDeR's Database RETICA  CIF on 35-Fundus Database

 

Figure 4.3 Contrast Improvement Factor of FINDeRS Database 

 

 It is observed that the contrast improvement factor (5.02) achieved by 

RETICA with the colour fundus images of FINDeRS database is lower compared to 

contrast improvement factor (5.46) for the colour fundus images of the 35-Fundus.  

Figure 4.4 shows the comparison of the CIF between images of FINDeRS and 35-

Fundus databases for all DR stages.  

 

 

No_DR (50 Images )
Mild NPDR (40

Images )

Moderate NPDR (30

Images )

Severe NPDR (18

Images )
PDR (37 Images )

Average CIF 5.22 5.01 5 4.8 4.9
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 RETICA Average CIF on FINDeR’s Database: 5.02 

RETICA Average CIF on FINDeRS Database: 5.02 

RETICA Average CIF on 35-Fundus Database: 5.46 

Figure 4.4 Contrast Improvement Factor Comparison between Images from 

FINDeRS and 35-Fundus Databases 
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The difference in RETICA performance for the two databases in particular, the 

causes for the lower CIF performance for the FINDeRS database is investigated by 

measuring the peak signal-to-noise (PSNR) levels for the database images.  Referring 

to Figure 4.5, the FINDeRS database gave a lower PSNR of 24.34dB in comparison 

to the PSNR of 27.59dB of the 35-Fundus database.  

 

Figure 4.5 PSNR Comparisons between FINDeRS Database and 35 Fundus Image 

Database 

 

From the signal-to-noise ratio analysis of the two databases (refer to Figure 

4.4), the images in FINDeRS database generally have PSNR values that are 3dB 

lower compared to the images in the 35-Fundus database for all DR stages.  The lower 

CIF for FINDeRS database in RETICA corresponds to lower PSNR of the images.  

The 3dB difference indicates either the signal levels of the fundus images in 

FINDeRS is about half of the signal levels in the 35-Fundus database or the noise 

levels in FINDeRS are higher as shown in Figure 4.5.  Referring to Figure 4.6, the 

FINDeRS database has a lower average signal energy of 1.42E+09 in comparison to 

average signal energy of 2.30E+09 of the 35-Fundus database.  This corresponds to 

the 3dB difference in PSNR values between the two databases. 
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PSNR of FINDeR's Database (dB) PSNR of  35 -Fundus Dataset (dB)

Average PSNR on 35-Fundus Database: 27.59dB 

Average PSNR on FINDERS Database: 24.34dB 
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Figure 4.6  Average signal energy of fundus images for the two databases (35-Fundus 

and FINDeRS Database) for various DR stages 

 

In addition, the RETICA algorithm produced no artefacts.  The normalised 

and enhanced contrast image resulted in a higher contrast in the retinal blood vessels 

and this is advantageous for the diagnosis of retina-related eye diseases such as 

Diabetic Retinopathy (DR).  The improvement of the contrast achieved by the 

RETICA is significantly important to reduce the use of invasive procedures such as 

the FFA.   

Figure 4.7 shows samples of No_DR, Mild NPDR, Moderate NPDR, Severe 

NPDR and PDR images.  All fundus images shown are clearly of varied and low 

contrast.  For No_DR image shown, the green band image contains a bright spot 

artefact (shown in red circle).  However, the RETICA process resulted in a 

normalised image with no bright spot and blood vessels can be seen clearly as 

compared to green band image. The RETICA achieved the contrast improvement 

factor of 5.52 for the No_DR image.  For the Mild NPDR image shown, the green 

band also contains a bright spot artefact and retinal blood vessels are difficult to 

visualise.  The RETICA normalises the varied contrast and enhanced contrast of 

background giving a clearer image of retinal capillaries with uniform contrast of 

background and blood vessels.  The Moderate NPDR, Severe NPDR and PDR 
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35-Fundus Database FINDeRS Database

Average Signal Energy on 35-Fundus Database: 2.30E+09 

 

Average Signal Energy on FINDERS Database: 1.42E+09 
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images shown contain several artefacts within its macula region (as shown in red 

circles) and Retinex image of these images contained noise.   

DR-Stages Green Band RETICA 

No_DR 

Contrast : 15.01 Contrast:82.75 

Contrast Improvement Factor: 5.52 

Mild NPDR 

Contrast:11.98 Contrast:60.59 

Contrast Improvement Factor:5.05 

Moderate 
NPDR 

Contrast: 9.71 Contrast: 45.81 

Contrast Improvement Factor:4.72 

Severe NPDR 

Contrast: 7.22 Contrast: 30.13 

Contrast Improvement Factor: 4.17 

PDR 

Contrast: 7.23 Contrast: 29.81 

Contrast Improvement Factor: 4.12 

Figure 4.7  Analysis of Green Band Image and RETICA Image of FINDeRS Database 
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The noise affect RETICA process and thus tiny blood vessels with macula 

region are not observable.  Lower contrast improvement factors below 5 are 

obtained.   

It is therefore hypothesised that noise affects the contrast of the image and 

consequently affects RETICA performance in contrast improvement factor.  This can 

be validated by the improving the PSNR of the images in FINDeRS database.  

However, before attempting to improve PSNR by reducing noise in retinal fundus 

images, it is necessary to identify the nature of noise in the fundus images.   

4.2 Results and Analysis of Identification of Noise Approach 

 The following two subsections discusses the identification of noise types in 

the fundus images and proposes appropriate noise reduction schemes to improve the 

PSNR of fundus images.   

4.2.1 Study 1  

 

 Study 1 (Refer to Sect 3.4.4 in Chapter 3) is based on an adaptive wiener 

filters (additive, multiplicative, and additive plus multiplicative filters).  Adaptive 

wiener filters are applied on the green band of the fundus model image and the real 

fundus image in study 1 as shown in Figure 4.8. Referring Figure 4.8 of study 1, the 

first the PSNR of green band image is calculated.  In the second step the green band 

image is processed through the additive wiener filter and its PSNR is calculated.  

Similarly the green band image is processed to multiplicative wiener filter and 

additive plus multiplicative wiener filter and PSNR of filtered image is calculated.  

The performance evaluation is based on the highest PSNR improvement between the 

PSNR of filtered green band image and PSNR of green band image.  The filter which 

resulted in the highest PSNR improvement indicates the type of noise in green band 

fundus image 



 

107 

PSNR PSNR 

values 

Additive 

Wiener Filter  
PSNR PSNR 

values 

Multiplicative 

Wiener Filter  PSNR 
PSNR 

values 

Additive plus 

Multiplicative 

Wiener Filter  
PSNR PSNR 

values 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 shows the PSNR values for the green band fundus model image and 

the results after filtering by the three wiener filters.   

Green Band Model 

Fundus Image 

An Additive Wiener Filtered 

Green Band Image 

A Multiplicative  Wiener 

Filtered Green Band Image 

An Additive-

Multiplicative Wiener 

Filter Green Band 

Image 

PSNR: 24.69dB PSNR: 24.89dB PSNR:25.01dB PSNR:26.98dB 

Figure 4.9 Results of Study 1of Model Fundus Images 

   

Figure 4.8 Study 1 
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PSNR Improvement Between Wiener Filter as Additive and Multiplicative and Green 
Band Image  

 Referring Figure 4.9, based on the comparison of the PSNR improvements 

achieved by the different filters, it is seen that the additive and multiplicative wiener 

filter gives the best PSNR improvement of 2.29dB.  This clearly implies that the 

fundus model image has both additive and multiplicative noise. 

Similarly, the macular region of the colour fundus image is processed through 

the three adaptive wiener filters and the PSNR values are shown in Figure 4.10.  The 

highest PSNR improvement (1.1dB) is achieved with the additive and multiplicative 

wiener filter.  Thus, the macular region of the green band image contains both 

additive and multiplicative noise. 

   Figure 4.10 Results of Study 1 on Green Band Fundus Image 

 

FINDeRS database is used in Study 1.  The PSNR improvement between the 

additive and multiplicative wiener filtered macular green band image of the FINDeRS 

database and the unfiltered green band image is observed.   

Green Band Image 

 

 

An Additive Wiener 

Filtered Green Band 

Image 

 

A Multiplicative  

Wiener Filtered 

Green Band Image 

An Additive-

Multiplicative 

Wiener Filter Green 

Band Image 

PSNR:26.03dB PSNR:26.96dB PSNR:27.05dB PSNR:27.13dB 

Average PSNR Improvement on FINDER Database:  0.2dB 

Figure 4.11 PSNR Improvement of Proposed Study 1 on FINDeRS Database 
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As shown in Figure 4.11, the average PSNR improvement at No_DR is 

0.22dB, at Mild NPDR-0.21dB, at Moderate NPDR-0.2dB, at Severe NPDR-0.19dB, 

and at PDR-0.18dB.   Average PSNR improvement of proposed study 1 is 0.2dB on 

FINDeRS database 

4.2.2 Study 2 

 

Study 2 (Refer to Sect 3.4.4 in Chapter 3) is based on applying adaptive 

wiener filters (additive, multiplicative, and additive plus multiplicative filters) 

followed by the Retinex process as shown in Figure 4.12.   

 

 

 

 

 

 

Referring Figure 4.12 of study 2 the PSNR of the unfiltered Retinex image has 

also been determined.   Then after the green band image is processed through the 

Figure 4.12 Study 2 
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additive wiener filter then into Retinex and finally, the PSNR of Retinex image is 

calculated.  Similarly the green band image is processed to multiplicative wiener filter 

and additive plus multiplicative wiener filter then after, it is process through Retinex 

algorithm and finally, PSNR of filtered Retinex image is calculated.  The PSNR 

improvement is observed between the PSNR of the unfiltered Retinex image and the 

PSNR of the filtered Retinex image to determine the effect of Retinex and adaptive 

wiener filtering on the noise in fundus images.  

 

The results are tabulated in Figure 4.13, as expected, the additive and 

multiplicative wiener filter with Retinex give the highest PSNR improvement 

(1.92dB).  Comparing results in this study with Study 1 on model fundus images, it is 

also seen that the Retinex process provides further noise reduction; an additional 1dB. 

 

 Similarly, Study 2 is applied on the macular region of the real fundus images 

as shown in Figure 4.14. Referring Figure 4.14, it is clearly seen that the additive and 

multiplicative wiener filter gives the highest PSNR improvement of 2.35dB.  Note 

that the PSNR values are higher for Retinex images because the Retinex process 

changes the pixel values altogether with the background having high grey level values 

compared to the blood vessels which have low grey level values.  

 

Retinex 

(Without Filtering) 

An Additive Wiener 

Filtered with Retinex 

 

A Multiplicative 

Wiener Filter with 

Retinex 

 

 

An Additive- 

Multiplicative 

Wiener Filter with 

Retinex 

 

PSNR: 26.68dB PSNR:27.01dB PSNR:27.58dB PSNR:27.93dB 

Figure 4.13 Results of proposed Method 2 on Model Fundus Image  
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The FINDeRS database is used for the validation of the proposed Study 2. The 

PSNR improvement between an additive and multiplicative wiener filtered macular 

region of the Retinex image and the unfiltered Retinex image is calculated.  Referred 

Figure 4.15, the No_DR images give an average PSNR improvement of 4.03dB, Mild 

NPDR is 3.99 dB, Moderate NPDR is 2.96 dB, Severe NPDR is 2.56 dB and PDR is 

1.96dB.  Average PSNR improvement of proposed study 2 is 3.24dB on FINDeRS 

database.  

 

 

Retinex Image 

(Without Filtering) 

An Additive Wiener 

Filtered Retinex 

Image  

 

A Multiplicative 

Wiener Filter 

Retinex Image  

 

 

An Additive- 

Multiplicative Wiener 

Filter Retinex Image 

 

PSNR: 39.56dB PSNR:40.57dB PSNR:41.03dB PSNR:41.91dB 

Figure 4.14 Results of Study 2 on Retinex Fundus Image  

Average PSNR Improvement on FINDER Database:  3.24dB 

Figure 4.15 PSNR Improvement of Proposed study 2 on FINDeRS Database 
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4.2.3 Study 3 

 

Study 3 (Refer to Sect 3.4.4 in Chapter 3) is based on Retinex process 

followed by adaptive wiener filters (additive, multiplicative, and additive plus 

multiplicative filters) to study the noise types in Retinex images.  In Study 3, the 

filters are applied after the Retinex algorithm and the PSNR at each stage has been 

calculated as shown in Figure 4.16.   

 

 

 

 

 

 

 

 

  

 

 

  

 

Figure 4.16  Study 3 
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 Referring Figure 4.16 of study 3 the PSNR of the unfiltered Retinex image has 

also been determined.  In the second step the green band image is processed through 

Retinex then after it is process to additive wiener filter and PSNR of filtered Retinex 

image is calculated.  Similarly, the green band image is processed through Retinex the 

processed to multiplicative wiener filter and additive plus multiplicative wiener filter 

and finally PSNR of filtered Retinex image is calculated.   The PSNR improvement is 

observed between the PSNR of the unfiltered Retinex image and the PSNR of the 

filtered Retinex image to determine the noise types in Retinex images.  The filter 

which resulted in the highest PSNR improvement indicates the type of noise in the 

Retinex. 

 

The results are tabulated in Figure 4.17.  Again, the additive and multiplicative 

wiener filter give the highest PSNR improvement (2.23dB), which implies the 

Retinex image contains both additive and multiplicative noise.  

 

Similarly, Study 3 is applied on the macular region of the real fundus images 

as shown in Figure 4.18.  It is clearly seen that the additive and multiplicative wiener 

filter gives the highest PSNR improvement of 3.26dB, which indicates that the 

Retinex fundus image contains both additive and multiplicative noise. 

 

 

Retinex Image 
(Without Filtering) 

An Additive Wiener 
Filtered Retinex Image  

 
A Multiplicative Wiener 

Filter Retinex Image  
 

 
An Additive- 

Multiplicative Wiener 
Filter Retinex Image 

 

PSNR:26.68dB PSNR:27.09dB PSNR:27.82dB PSNR:28.91dB 

Figure 4.17 Results of proposed study 3 on Model Fundus Image   
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The FINDeRS database is used for the validation of the proposed method 3. 

The PSNR improvement between an additive and multiplicative wiener filtered 

macular region of the Retinex image and the unfiltered Retinex image is calculated.   

Referred Figure 4.19, the No_DR images give an average PSNR improvement of 

4.87dB, Mild NPDR is 4.51dB, Moderate NPDR is 3.99dB, Severe NPDR  is 3.18dB 

and PDR was 2.14dB.  Average PSNR improvement of Study 3 is 3.88dB on 

FINDeRS database.  

 

Retinex Image 
(Without Filtering) 

An Additive Wiener 
Filtered Retinex 

Image  

 
A Multiplicative 

Wiener Filter Retinex 
Image  

 

 
An Additive- 

Multiplicative Wiener 
Filter Retinex Image 

 

PSNR:39.56dB PSNR:41.05dB PSNR:41.93dB PSNR:42.82dB 

Figure 4.18 Results of study 3 on Retinex Fundus Image   

Average PSNR Improvement on FINDER Database:  3.88dB 

Figure 4.19 PSNR Improvement of Proposed Method 3 on FINDeRS Database 
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TDCE 
 

PSNR: 27.31dB PSNR: 24.56dB 

The PSNR improvements based on the analysis of the three studies prove that 

the model fundus image, green band fundus images, and the Retinex images contain 

additive and multiplicative noise.  Secondly, noise affects the performance of the 

RETICA algorithm.  It has been observed that the Retinex algorithm also improved 

the SNR of the image but its performance is affected due to the noise coming from the 

image modality.  In addition, the performance of RETICA (Retinex and ICA) can be 

improved by improving the SNR of the green band fundus image.  The additive and 

multiplicative noise occurring in the retinal fundus image is due to the fundus camera.  

Multiplicative noise occurred due to the flash of the fundus camera and the additive 

noise is due to the camera electronics.  Denoising techniques are thus required to 

improve the SNR green band fundus image for improving the performance of 

RETICA to achieve higher contrast image. 

4.3 Results and Analysis of Denoising Methods for Fundus Image  

Referring to Figure 4.20, TDCE is applied as the technique for denoising.  In this 

particular example, a 24.56dB is the calculated value of the PSNR of the green band 

image.  Upon the application of TDCE, there is an improvement of PSNR of 2.75dB. 

 

 

Processing of the fundus images from the FINDeRS database is performed and 

Figure 4.21 presents the overall results.  It can be seen that the average PSNR of the 

green band images of the FINDeRS database is 24.31dB and the average PSNR of the 

TDCE denoised images is 27.19dB giving an average PSNR improvement of 2.88dB. 

Figure 4.20 Green bands is denoised by using TDCE 
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 Figure 4.22 shows the results obtained before and after using Wiener filter for 

denoising.  An average PSNR of 25.14dB for the Wiener Filtered denoised images is 

obtained resulting in an average PSNR improvement of 0.83db. 

 

 

Using the SWT approach, the average PSNR of 26.13dB is obtained for the 

SWT denoised images.  A PSNR improvement of 1.82dB for the fundus images is 

achieved.  Figure 4.23 shows the average PSNR for each DR category before and 

after denoising.  

Figure 4.22 Analysis based on Wiener Filter 

Figure 4.21 Analysis based on TDCE 
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PSNR Green band  FINDeR's PSNR Green Band  LSE

 

Referring to the results in Figure 4.24, an average PSNR of 26.13dB is 

obtained for the LSE denoised image, i.e. an average improvement of PSNR of 

1.86dB. 

Referring to results in Figure 4.25, the Minimum Variance Estimator (MVE) 

used to denoised the fundus image resulted in average PSNR of 26.02dB.  There is an 

overall average improvement of PSNR of 1.71dB. 

 

Figure 4.23 Analysis based on SWT 

Figure 4.24 PSNR Analysis based on LSE 
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Based on the analysis of PSNR improvement of various methods used for 

denoising images in the FINDeRS database as shown in Figure 4.26, it is found that 

the TDCE provided the best performance, improving PSNR by 2.88dB.   

 

Figure 4.27 presents a two sample retinal fundus images (green band) with 

their corresponding denoised images for various denoising methods.  There is less 

PSNR improvement achieved with MVE (Image 1:1.74dB and Image 2:1.65dB) as 

compared to the LSE improvement of PSNR (Image 1:1.79dB and Image 2:1.73dB).  

TDCE provided an even greater improvement of PSNR (Image1:2.68db and Image 

2:2.72dB) as compared to the improvement of PSNR achieved by LSE and MVE.   

Amongst all of the denoising techniques, the best performance on the retinal images is 

obtained with TDCE.  This is because it is able deal with the noise level and caused 

no loss of the details of the image.  

  

Figure 4.25 Analysis based on MVE 
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PSNR Improvement of Different Denoising Methods on Green Band Fundus Images  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 PSNR Improvement of Different Denoising Methods on Green band Fundus Images 



 

  

DR-Stages Image 1 Image 2 

Green Band  

PSNR : 24.35db  PSNR : 24.46db  

Wiener Filter  

PSNR : 25.01db  PSNR : 25.09db  

LSE  

PSNR: 26.14db PSNR : 26.19db  

MVE  

PSNR:26.09db PSNR : 26.11db 

TDCE 

PSNR:27.03db  PSNR : 27.18db 

SWT  

PSNR:26.06db  PSNR : 26.12db 

Figure 4.27 Analysis of Selected Images   
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Linear Sub-

space TDCE  
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4.4 Results and Analysis of Improving the SNR of the Fundus Image 

According to the analysis of the two databases (Refer section 4.2) it is observed 

that FINDeRS database gives a 3dB lower PSNR as compared to the 35-Fundus 

database.  It is hypothesised that noise may reduce the contrast of the image because 

the 35-fundus database has a higher PSNR and contrast improvement factor as 

compared to the PSNR and contrast improvement factor of FINDeRS database.  This 

is validated by the improved the PSNR of the FINDeRS database around the 3dB by 

using TDCE as the denoised methods and then processing with RETICA to observe 

their contrast improvement factor (Refer section 3.4.5 of Chapter 3 on improving the 

SNR of the Fundus Image).  

The PSNR of the FINDeRS database has been improved by applying the linear 

sub-space time domain constraint estimator (TDCE) (described in section 2.7)  

 

 

 

 

 

Considering Figure 4.28, the macular region of the colour fundus image was 

selected and converted into three colour channels.  Each channel is processed in the 

linear sub-space time domain constraint estimator (TDCE).  The output image of the 

sub-space TDCE is processed through RETICA to achieve the contrast improvement 

Figure 4.28 Modified RETICA 
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factor of the final enhanced image.  The PSNR of the green band image of the 

FINDeRS database is 24.91dB and TDCE is applied on the green band image; it gives 

the improved PSNR of 27.8dB.  It gives the PSNR improvement of 2.89dB.  It is 

expected that with improved PSNR of the FINDeRS database, the contrast 

improvement factor can be increased. 

Figure 4.29 Comparison of RETICA Image and Modified RETICA 

DR-Stages 

 

RETICA Method 

 

TDCE + RETICA Method 

No_DR 

  

Mild NPDR 

  

Moderate 

NPDR 

  

Severe 

NPDR 

  

PDR 

  



 

123 

After improving the PSNR of the fundus images in FINDeRS database using 

TDCE, the images are processed by RETICA.  The performance is evaluated by 

measuring the achieved contrast improvement factor.  Figure 4.29 shows sample 

green band images of the enhanced image due to RETICA only and enhanced image 

of RETICA image with improved SNR using TDCE.  With TDCE, RETICA resulted 

in better visualisation of tiny capillaries as seen from Figure 4.29. 

 

 Referring to Figure 4.30, the PSNR of the FINDeRS database at every stage of 

DR has been improved up to 2.88dB by applying the sub-space TDCE on the green 

band image and it is almost equal to the PSNR of the 35-Fundus database.  
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Figure 4.30 Comparisons between PSNR of Improved FINDeRS Database and PSNR of 35-Fundus Database 
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RETICA CIF of 35- Fundus Database RETICA CIF of FINDeR's Database RETICA CIF of Improved  SNR FINDeR's Database

 

RETICA Average CIF on Improved SNR FINDeRS Database: 5.56 

RETICA Average CIF on 35-Fundus Database: 5.46 

  RETICA Average CIF on FINDeRS Database :5.02 

Figure 4.31 Comparison between CIF of Improved FINDeRS Database and CIF Of 35- Fundus Database 



 

  

 

 As seen from Figure 4.31, the contrast improvement factor of the FINDeRS 

database has been increased to almost equal to the 35-Fundus dataset.  The average 

contrast improvement factor of the FINDeRS database increased from 5.02 to 5.56 

and is slightly higher than average contrast improvement factor of 5.46 of the 35-

Fundus dataset as shown in Figure 4.31.    

 

 This analysis clearly shows that by improving the PSNR of the FINDeRS 

database by around 3db, the contrast improvement factor of 0.54 can be achieved.  In 

the modified image enhancement technique shown in Figure 4.28, the three main 

problems of retinal fundus images (noise, and varied and low contrast) have been 

addressed.  The noise level has been effectively reduced by TDCE, with RETICA 

addressing the varied and low contrast problem of the retinal fundus image.  
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Contrast Improvement Factor comparsion among Non-invasive image 

enhancement techniques  

4.4.1 Comparison of the Improved RETICA with other Algorithms 

 

 

Referring to Figure 4.32, the comparison amongst different non-invasive 

digital image enhancement techniques and FFA are shown in terms of the contrast 

improvement factor.  The green band image gave a contrast improvement of 1.  The 

remaining non-invasive digital image enhancement techniques were developed to 

reduce the problem of varied and low contrast in fundus images.  The common 

enhancement methods, such as Contrast Stretching (CS) and Histogram Equalisation 

(HE), gave contrast improvement above normal but Contrast Stretching (CS) and 

Histogram Equalisation (HE) failed to produce a better enhanced image because of 

the noise that was present in the fundus image.  Contrast Limited Adaptive Histogram 

Equalization (CLAHE) and Independent Component Analysis (ICA) was applied to 

get better enhanced images.  Contrast limited adaptive histogram equalisation 

(CLAHE) and Independent component Analysis (ICA) gave CIF of above 3, however, 

they produced artifacts and noise [28].  

Analysis of the results of the commonly used non-invasive image 

enhancement techniques, such as Contrast Stretching (CS), Histogram Equalisation 

(HE), Contrast Limited Adaptive Histogram Equalization (CLAHE) and Independent 

Component Analysis (ICA), showed that there should be a requirement for the non-

Figure 4.32 Comparison of Contrast Improvement factor among different methods 
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invasive digital image enhancement technique to handle problems of noise and 

varying low contrast.  Earlier, RETICA is developed by Ahmad Fadzil et al [114].  

RETICA is played an important role to reduce the use of invasive methods by 

improving the contrast of the colour fundus image.  RETICA achieved a contrast 

improvement factor of 5.46 in the 35-Fundus database and a contrast improvement 

factor of 5.02 on the FINDeRS database.  After analysis of the results of RETICA, it 

is observed that the retinal fundus image contained noise and that noise affected the 

contrast of the image.  After improving the SNR of the FINDeRS database through 

applying the linear sub-space time domain constraint estimator (TDCE), the higher 

contrast improvement factor of 5.56 is achieved.  In summary, image enhancement 

technique contained RETICA and TDCE is capable to overcome the problem of noise 

and varying low contrast in the fundus image.  Novelty of this proposed technique 

based on TDCE and RETICA for retinal fundus image is handled noise level (TDCE 

handles the noise level of the fundus images) and overcome the problem of varying 

low contrast (RETICA has the potential to overcome the problem of the varied and 

low contrast of the retinal fundus images).  It has a fair potential to reduce the need 

for invasive fundus fluorescein angiogram (FFA) methods in DR assessment as well 

as other such methods that pose other physiological problems.  

4.5 Summary 

The results of applying RETICA method using fundus images from two 

databases namely FINDeRS and 35-Fundus, are analysed.  The contrast improvement 

factor of the 35-Fundus database is 5.46, is much better than the contrast 

improvement factor of the FINDeRS database of 5.02.  From the signal-to-noise ratio 

analysis of the two databases (refer to Figure 4.4), the images in FINDeRS database 

generally have PSNR values that are 3dB lower compared to the images in the 35-

Fundus database for all DR stages.  The lower CIF for FINDeRS database in RETICA 

corresponds to lower PSNR of the images.  The 3dB difference indicates either the 

signal levels of the fundus images in FINDeRS is about half of the signal levels in the 

35-Fundus database or the noise levels in FINDeRS are higher as shown in Figure 4.5.  

Referring to Figure 4.5, the FINDeRS database gave average Signal Energy of 
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1.42E+09 in comparison to average Signal Energy of  2.30E+09 of the 35-Fundus 

database.  Noise seems to be affecting the performance of RETICA.  It is therefore 

hypothesised that noise affects the contrast of the image and consequently affects 

RETICA performance in contrast improvement factor.  This can be validated by the 

improving the PSNR of the images in FINDeRS database.  However, before 

attempting to improve PSNR by reducing noise in retinal fundus images, it is 

necessary to identify first the nature of noise in the images.   

The noise identification approach proposed is based on the adaptive wiener 

filters (additive, multiplicative, and additive plus multiplicative filters).  The 

performance using various filters is evaluated by measuring the PSNR improvement.  

To identify noise in the fundus image or the Retinex fundus image, three studies has 

been performed.  The PSNR improvements based on the analysis of the three studies 

prove that the model fundus image, green band fundus images, and the Retinex 

images contain additive and multiplicative noise.  Secondly, noise affects the 

performance of the RETICA algorithm has been proved from study2 else study 1and 

3 related to prove the nature of noise in green band image (Model or real) and Retinex 

image.  It has been observed that the Retinex algorithm also improved the SNR of the 

image but its performance is affected due to the noise coming from the image 

modality.  In addition, the performance of RETICA (Retinex and ICA) can be 

improved by improving the SNR of the green band fundus image.  The additive and 

multiplicative noise occurring in the retinal fundus image is due to the fundus camera.  

Multiplicative noise occurred due to the flash of the fundus camera and the additive 

noise is due to the camera electronics.  Denoising techniques are thus required to 

improve the SNR green band fundus image for improving the performance of 

RETICA to achieve higher contrast image. 

 

In the third section, the SNR of the FINDeRS database is improved by around 

3dB by applying the time domain constraint estimator (TDCE).  Due to improving the 

SNR of the FINDeRS database (Average PSNR of the FINDeRS database is 

improved from 24.34dB to 27.22dB), then it process through RETICA.   RETICA 

gives significant performance after improving SNR of FINDeRS database, the 

contrast improvement factor of the FINDeRS database is increased from 5.02 to 5.56.   
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The hypothesis is proved successfully that due to noise, the performance of RETICA 

is affected.  The source of noise is the image modality (Fundus camera).   The 

performance of RETICA is improved by improving the SNR of the green band image 

through TDCE.  The Non-invasive image enhancement technique has a fair potential 

to reduce the need for the invasive fundus fluorescein angiogram method and other 

such methods which pose other physiological problems. 

  



 

  

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion  

It is important to analysis the digital colour fundus image to analysis the eye 

related disease such as diabetic retinopathy.  Colour digital fundus images are 

obtained by the fundus camera.  The analysis of retinal vasculature in digital fundus 

images is significant for diagnosing eye related diseases.  However the digital colour 

fundus images are suffering from low and varied contrast.  With the added presence 

of noise it becomes difficult to analyse retinal vasculature digitally requiring the use 

of fundus angiogram modality.  The fundus fluorescein angiogram (FFA) modality 

gives 5 to 6 time’s higher contrast for the retinal vasculature but it is an invasive 

method that can lead other physiological problems.  In order to avoid using FFA, 

digital image enhancement techniques are developed to overcome the problem of the 

varied contrast and low contrast of retinal fundus images, and to obtain the best 

visualisation of the retinal blood vessels.  Hanung et al [28]  developed an image 

enhancement technique to overcome the problems of varied and low contrast of 

fundus images.  The developed technique named RETICA has been successfully 

tested on model retinal fundus images achieving a contrast improvement factor of 

5.38. Hanung however did not validate the RETICA technique with real fundus 

images nor consider the effects of noise levels in fundus images. 

  

RETICA has been validated on real digital colour fundus images in this 

research work using two databases namely 35-Fundus and FINDeRS databases.  The 

35-Fundus database contains 35 colour fundus images with corresponding FFA 

images.  For this database, RETICA gives a better average contrast improvement 

factor of 5.46 as compared to a contrast improvement factor 5.12 of FFA images.  The 
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FINDeRS database contains 175 colour fundus images of various DR severities in 

which there are  50 No_DR, 40 Mild NPDR, 30 Moderate NPDR, 18 Severe NPDR 

and 37 PDR images.  For this database, RETICA gives a contrast improvement factor 

of 5.02.   The lower CIF performance of RETICA for the FINDeRS database is found 

to be due to noise inherent in colour fundus images as well as the images generally 

having lower signal energies.  Signal-to-noise ratio consequently affects RETICA 

performance and thus, it is necessary to identify the nature of noise in the images and 

to reduce the noise.  

The second objective is related to the noise identification approach. The noise 

identification approach proposed is based on the adaptive wiener filters (additive, 

multiplicative, and additive plus multiplicative filters).  The performance using 

various filters is evaluated by measuring the PSNR improvement.  To identify noise in 

the fundus image or the Retinex fundus image, three studies has been performed.  The 

PSNR improvements based on the analysis of the three studies showed that the model 

fundus image, green band images from real fundus images, and Retinex images 

contain additive and multiplicative noise.  Secondly, noise affects the performance of 

the RETICA algorithm.  It has been observed that the Retinex algorithm also 

improved the SNR of the image but its performance is affected due to the noise 

coming from the image acquisition modality.  The additive and multiplicative noise 

occurring in the retinal fundus image is due to the fundus camera.  Multiplicative 

noise occurred due to the flash of the fundus camera and the additive noise is due to 

the camera electronics.  In addition, the performance of RETICA (Retinex and ICA) 

can be improved by raising the SNR of the green band fundus image.  Denoising 

techniques are thus required to improve the SNR green band fundus image. 

The third objective is related to the performance of RETICA when noise has been 

addressed.  The SNR of the FINDeRS database is improved by around 3dB by 

applying the time domain constraint estimator (TDCE).  Due to the better SNRs of 

the FINDeRS database images (average PSNR of the FINDeRS database is 

improved from 24.34dB to 27.22dB), RETICA achieved a significant performance 

improvement; the contrast improvement factor of the FINDeRS database is 

increased from 5.02 to 5.56.  The hypothesis that the performance of RETICA is 

affected by noise levels has been proven true.  The proposed technique based on 
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TDCE and RETICA overcomes the problem of noise (TDCE), varying and low 

contrast (RETICA) of the retinal fundus images.  The proposed technique achieves 

comparable and better CIF and is thus a better alternative to the invasive fundus 

fluorescein angiogram (FFA) method in eye and DR assessment. Five major 

contributions have been achieved from this research work.  

 

1. The validation of the earlier developed non-invasive image enhancement 

technique RETICA on real fundus images. 

2. Comparative study of colour Fundus images (RETICA Images) and FFA 

images.  In the comparative study, the RETICA image gives an average 

contrast improvement factor of 5.46 as compared to a 5.12 contrast 

improvement factor of FFA.  The RETICA (haemoglobin) image has better 

contrast. 

3. RETICA has been improved by adding the denoising technique linear sub-

space time domain constraint estimator (TDCE) before the Retinex 

Algorithm   

4. Proposition of the noise identification techniques based on the image filter 

with noise estimation models.  So far, no researchers have contributed or 

discussed the noise problems in the colour fundus image.  It is a very 

appreciative achievement in the field of image processing to identify the 

nature of noise in the fundus image as additive and multiplicative because 

multiplicative noise occurs due to image modality (Fundus camera). 

5. TDCE along with RETICA has overcome the need for the invasive fundus 

fluorescein angiogram (FFA) method in DR assessment.  

5.2 Suggestion for Future Works 

For future work, RETICA with linear sub-space TDCE is one of the more 

proficient techniques for the analysis of the macular region of the retinal fundus 

image.  Research can also be conducted for the implementation of algorithm of the 

automated segmentation of retinal blood vessels by applying this non-invasive 

enhancement technique before extraction technique of blood vessels and it may give 
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more improved accurate detection of retinal vessels end points as compared to 

previous algorithms.  Research can also be conducted using this image enhancement 

technique before applying pathologies detection techniques because TDCE along with 

RETICA overcomes three main problems (noise, varied and low contrast) and thus 

reduce false detection of pathologies.  The research can be carried out to incorporate 

this image enhancement technique in different fundus cameras to reduce the use of the 

FFA method.  
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APPENDIX B:  Analysis of some selected images of FINDeR’s database through 

Non-Invasive Image Enhancement Technique (TDCE along with RETICA). 
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