406 research outputs found

    Next Generation M2M Cellular Networks: Challenges and Practical Considerations

    Get PDF
    In this article, we present the major challenges of future machine-to-machine (M2M) cellular networks such as spectrum scarcity problem, support for low-power, low-cost, and numerous number of devices. As being an integral part of the future Internet-of-Things (IoT), the true vision of M2M communications cannot be reached with conventional solutions that are typically cost inefficient. Cognitive radio concept has emerged to significantly tackle the spectrum under-utilization or scarcity problem. Heterogeneous network model is another alternative to relax the number of covered users. To this extent, we present a complete fundamental understanding and engineering knowledge of cognitive radios, heterogeneous network model, and power and cost challenges in the context of future M2M cellular networks

    Sensor function virtualization to support distributed intelligence in the internet of things

    Get PDF
    It is estimated that-by 2020-billion devices will be connected to the Internet. This number not only includes TVs, PCs, tablets and smartphones, but also billions of embedded sensors that will make up the "Internet of Things" and enable a whole new range of intelligent services in domains such as manufacturing, health, smart homes, logistics, etc. To some extent, intelligence such as data processing or access control can be placed on the devices themselves. Alternatively, functionalities can be outsourced to the cloud. In reality, there is no single solution that fits all needs. Cooperation between devices, intermediate infrastructures (local networks, access networks, global networks) and/or cloud systems is needed in order to optimally support IoT communication and IoT applications. Through distributed intelligence the right communication and processing functionality will be available at the right place. The first part of this paper motivates the need for such distributed intelligence based on shortcomings in typical IoT systems. The second part focuses on the concept of sensor function virtualization, a potential enabler for distributed intelligence, and presents solutions on how to realize it

    Traffic classification and prediction, and fast uplink grant allocation for machine type communications via support vector machines and long short-term memory

    Get PDF
    Abstract. The current random access (RA) allocation techniques suffer from congestion and high signaling overhead while serving machine type communication (MTC) applications. Therefore, 3GPP has introduced the need to use fast uplink grant (FUG) allocation. This thesis proposes a novel FUG allocation based on support vector machine (SVM) and long short-term memory (LSTM). First, MTC devices are prioritized using SVM classifier. Second, LSTM architecture is used to predict activation time of each device. Both results are used to achieve an efficient resource scheduler in terms of the average latency and total throughput. Furthermore, a set of correction techniques is introduced to overcome the classification and prediction errors. The Coupled Markov Modulated Poisson Process (CMMPP) traffic model is applied to compare the proposed FUG allocation to other existing allocation techniques. In addition, an extended traffic model based CMMPP is used to evaluate the proposed algorithm in a more dense network. Our simulation results show the proposed model outperforms the existing RA allocation schemes by achieving the highest throughput and the lowest access delay when serving the target massive and critical MTC applications

    A survey on MAC protocols for complex self-organizing cognitive radio networks

    Get PDF
    Complex self-organizing cognitive radio (CR) networks serve as a framework for accessing the spectrum allocation dynamically where the vacant channels can be used by CR nodes opportunistically. CR devices must be capable of exploiting spectrum opportunities and exchanging control information over a control channel. Moreover, CR nodes should intelligently coordinate their access between different cognitive radios to avoid collisions on the available spectrum channels and to vacate the channel for the licensed user in timely manner. Since inception of CR technology, several MAC protocols have been designed and developed. This paper surveys the state of the art on tools, technologies and taxonomy of complex self-organizing CR networks. A detailed analysis on CR MAC protocols form part of this paper. We group existing approaches for development of CR MAC protocols and classify them into different categories and provide performance analysis and comparison of different protocols. With our categorization, an easy and concise view of underlying models for development of a CR MAC protocol is provided

    A SURVEY OF CONTENTION BASED MEDIUM ACCESS CONTROL (MAC) PROTOCOLS IN WIRELESS LAN

    Get PDF
    In wireless network, all radio nodes are tuned to the same frequency to interconnect and establish communication between each other. All nodes in the network broadcasts their packets over a common medium and in such scenario collisions are considered as instinctive attribute. Therefore, a proper method/regulation known as Medium Access Control (MAC) protocol is required to regulate and manage an efficient access to the common channel. The protocol is designed to allow radio nodes in wireless network to broadcast their packets in an orderly and efficient manner to eliminate the collision among them. It also provides a fair bandwidth sharing to all contending nodes in the network. To date, various MAC protocols was developed to regulate the communication access among all radio nodes in wireless network. This article presents an exhaustive survey of existing contention based MAC protocols, their operations, advantages and disadvantages. Other than that, a typical MAC protocol used in IEEE 802.11 wireless networks standard, such as Carrier Sense Multiple Access (CSMA) and Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) also explained and presented in this article

    IEEE 802.11ax: challenges and requirements for future high efficiency wifi

    Get PDF
    The popularity of IEEE 802.11 based wireless local area networks (WLANs) has increased significantly in recent years because of their ability to provide increased mobility, flexibility, and ease of use, with reduced cost of installation and maintenance. This has resulted in massive WLAN deployment in geographically limited environments that encompass multiple overlapping basic service sets (OBSSs). In this article, we introduce IEEE 802.11ax, a new standard being developed by the IEEE 802.11 Working Group, which will enable efficient usage of spectrum along with an enhanced user experience. We expose advanced technological enhancements proposed to improve the efficiency within high density WLAN networks and explore the key challenges to the upcoming amendment.Peer ReviewedPostprint (author's final draft

    Priority-based initial access for URLLC traffic in massive IoT networks: Schemes and performance analysis

    Get PDF
    At a density of one million devices per square kilometer, the10’s of billions of devices, objects, and machines that form a massive Internet of things (mIoT) require ubiquitous connectivity. Among a massive number of IoT devices, a portion of them require ultra-reliable low latency communication (URLLC) provided via fifth generation (5G) networks, bringing many new challenges due to the stringent service requirements. Albeit a surge of research efforts on URLLC and mIoT, access mechanisms which include both URLLC and massive machine type communications (mMTC) have not yet been investigated in-depth. In this paper, we propose three novel schemes to facilitate priority-based initial access for mIoT/mMTC devices that require URLLC services while also considering the requirements of other mIoT/mMTC devices. Based on a long term evolution-advanced (LTEA) or 5G new radio frame structure, the proposed schemes enable device grouping based on device vicinity or/and their URLLC requirements and allocate dedicated preambles for grouped devices supported by flexible slot allocation for random access. These schemes are able not only to increase the reliability and minimize the delay of URLLC devices but also to improve the performance of all involved mIoT devices. Furthermore, we evaluate the performance of the proposed schemes through mathematical analysis as well as simulations and compare the results with the performance of both the legacy LTE-A based initial access scheme and a grant-free transmission scheme.acceptedVersio

    A Review on Internet of Things (IoT): Security and Privacy Requirements and the Solution Approaches

    Get PDF
    The world is undergoing a dramatic rapid transformation from isolated systems to ubiquitous Internet-based-enabled 2018;things2019; capable of interacting each other and generating data that can be analyzed to extract valuable information. This highly interconnected global network structure known as Internet of Things will enrich everyone2019;s life, increase business productivity, improve government efficiency, and the list just goes on. However, this new reality (IoT) built on the basis of Internet, contains new kind of challenges from a security and privacy perspective. Traditional security primitives cannot be directly applied to IoT technologies due to the different standards and communication stacks involved. Along with scalability and heterogeneity issues, major part of IoT infrastructure consists of resource constrained devices such as RFIDs and wireless sensor nodes. Therefore, a flexible infrastructure is required capable to deal with security and privacy issues in such a dynamic environment. This paper presents an overview of IoT, security and privacy challenges and the existing security solutions and identifying some open issues for future research
    • …
    corecore