841 research outputs found

    A review of artificial intelligence applied to path planning in UAV swarms

    Get PDF
    This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/ s00521-021-06569-4This is the accepted version of: A. Puente-Castro, D. Rivero, A. Pazos, and E. Fernández-Blanco, "A review of artificial intelligence applied to path planning in UAV swarms", Neural Computing and Applications, vol. 34, pp. 153–170, 2022. https://doi.org/10.1007/s00521-021-06569-4[Abstract]: Path Planning problems with Unmanned Aerial Vehicles (UAVs) are among the most studied knowledge areas in the related literature. However, few of them have been applied to groups of UAVs. The use of swarms allows to speed up the flight time and, thus, reducing the operational costs. When combined with Artificial Intelligence (AI) algorithms, a single system or operator can control all aircraft while optimal paths for each one can be computed. In order to introduce the current situation of these AI-based systems, a review of the most novel and relevant articles was carried out. This review was performed in two steps: first, a summary of the found articles; second, a quantitative analysis of the publications found based on different factors, such as the temporal evolution or the number of articles found based on different criteria. Therefore, this review provides not only a summary of the most recent work but it gives an overview of the trend in the use of AI algorithms in UAV swarms for Path Planning problems. The AI techniques of the articles found can be separated into four main groups based on their technique: reinforcement Learning techniques, Evolutive Computing techniques, Swarm Intelligence techniques, and, Graph Neural Networks. The final results show an increase in publications in recent years and that there is a change in the predominance of the most widely used techniques.This work is supported by Instituto de Salud Carlos III, grant number PI17/01826 (Collaborative Project in Genomic Data Integration (CICLOGEN) funded by the Instituto de Salud Carlos III from the Spanish National plan for Scientific and Technical Research and Innovation 2013–2016 and the European Regional Development Funds (FEDER)—“A way to build Europe.”. This project was also supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia ED431D 2017/16 and “Drug Discovery Galician Network” Ref. ED431G/01 and the “Galician Network for Colorectal Cancer Research” (Ref. ED431D 2017/23). This work was also funded by the grant for the consolidation and structuring of competitive research units (ED431C 2018/49) from the General Directorate of Culture, Education and University Management of Xunta de Galicia, and the CYTED network (PCI2018_093284) funded by the Spanish Ministry of Ministry of Innovation and Science. This project was also supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia “PRACTICUM DIRECT” Ref. IN845D-2020/03.Xunta de Galicia; ED431D 2017/16Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/23Xunta de Galicia; ED431C 2018/49Xunta de Galicia; IN845D-2020/0

    AFIT UAV Swarm Mission Planning and Simulation System

    Get PDF
    The purpose of this research is to design and implement a comprehensive mission planning system for swarms of autonomous aerial vehicles. The system integrates several problem domains including path planning, vehicle routing, and swarm behavior. The developed system consists of a parallel, multi-objective evolutionary algorithm-based path planner, a genetic algorithm-based vehicle router, and a parallel UAV swarm simulator. Each of the system\u27s three primary components are developed on AFIT\u27s Beowulf parallel computer clusters. Novel aspects of this research include: integrating terrain following technology into a swarm model as a means of detection avoidance, combining practical problems of path planning and routing into a comprehensive mission planning strategy, and the development of a swarm behavior model with path following capabilities

    D3S: A Framework for Enabling Unmanned Aerial Vehicles as a Service

    Get PDF
    In this paper, we consider the use of UAVs to provide wireless connectivity services, for example after failures of wireless network components or to simply provide additional bandwidth on demand, and introduce the concept of UAVs as a service (UaaS). To facilitate UaaS, we introduce a novel framework, dubbed D3S, which consists of four phases: demand, decision, deployment, and service. The main objective of this framework is to develop efficient and realistic solutions to implement these four phases. The technical problems include determining the type and number of UAVs to be deployed, and also their final locations (e.g., hovering or on-ground), which is important for serving certain applications. These questions will be part of the decision phase. They also include trajectory planning of UAVs when they have to travel between charging stations and deployment locations and may have to do this several times. These questions will be part of the deployment phase. The service phase includes the implementation of the backbone communication and data routing between UAVs and between UAVs and ground control stations

    Task scheduling system for UAV operations in indoor environment

    Get PDF

    Scheduling unmanned aerial vehicle and automated guided vehicle operations in an indoor manufacturing environment using differential evolution-fused particle swarm optimization

    Get PDF
    Intelligent manufacturing technologies have been pursued by the industries to establish an autonomous indoor manufacturing environment. It means that tasks, which are comprised in the desired manufacturing activities, shall be performed with exceptional human interventions. This entails the employment of automated resources (i.e. machines) and agents (i.e. robots) on the shop floor. Such an implementation requires a planning system which controls the actions of the agents and their interactions with the resources to accomplish a given set of tasks. A scheduling system which plans the task executions by scheduling the available unmanned aerial vehicles and automated guided vehicles is investigated in this study. The primary objective of the study is to optimize the schedule in a cost-efficient manner. This includes the minimization of makespan and total battery consumption; the priority is given to the schedule with the better makespan. A metaheuristic-based methodology called differential evolution-fused particle swarm optimization is proposed, whose performance is benchmarked with several data sets. Each data set possesses different weights upon characteristics such as geographical scale, number of predecessors, and number of tasks. Differential evolution-fused particle swarm optimization is compared against differential evolution and particle swarm optimization throughout the conducted numerical simulations. It is shown that differential evolution-fused particle swarm optimization is effective to tackle the addressed problem, in terms of objective values and computation time. </jats:p
    • …
    corecore