
 

  

 

Aalborg Universitet

Toward delay-tolerant multiple-unmanned aerial vehicle scheduling system using
Multi-strategy Coevolution algorithm

Khosiawan, Yohanes; Scherer, Sebastian; Nielsen, Izabela

Published in:
Advances in Mechanical Engineering

DOI (link to publication from Publisher):
10.1177/1687814018815235

Creative Commons License
CC BY 4.0

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Khosiawan, Y., Scherer, S., & Nielsen, I. (2018). Toward delay-tolerant multiple-unmanned aerial vehicle
scheduling system using Multi-strategy Coevolution algorithm. Advances in Mechanical Engineering, 10(12).
https://doi.org/10.1177/1687814018815235

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1177/1687814018815235
https://vbn.aau.dk/en/publications/e4789d47-9b8f-4795-9f60-800ac377a9ab
https://doi.org/10.1177/1687814018815235


Research Article

Advances in Mechanical Engineering
2018, Vol. 10(12) 1–15
� The Author(s) 2018
DOI: 10.1177/1687814018815235
journals.sagepub.com/home/ade

Toward delay-tolerant multiple-
unmanned aerial vehicle scheduling
system using Multi-strategy
Coevolution algorithm

Yohanes Khosiawan1 , Sebastian Scherer2 and Izabela Nielsen1

Abstract
Autonomous bridge inspection operations using unmanned aerial vehicles take multiple task assignments and constraints
into account. To efficiently execute the operations, a schedule is required. Generating a cost optimum schedule of
multiple-unmanned aerial vehicle operations is known to be Non-deterministic Polynomial-time (NP)-hard. This study
approaches such a problem with heuristic-based algorithms to get a high-quality feasible solution in a short computation
time. A constructive heuristic called Retractable Chain Task Assignment algorithm is presented to build an evaluable
schedule from a task sequence. The task sequence representation is used during the search to perform seamless opera-
tions. Retractable Chain Task Assignment algorithm calculates and incorporates slack time to the schedule according to
the properties of the task. The slack time acts as a cushion which makes the schedule delay-tolerant. This algorithm is
incorporated with a metaheuristic algorithm called Multi-strategy Coevolution to search the solution space. The pro-
posed algorithm is verified through numerical simulations, which take inputs from real flight test data. The obtained solu-
tions are evaluated based on the makespan, battery consumption, computation time, and the robustness level of the
schedules. The performance of Multi-strategy Coevolution is compared to Differential Evolution, Particle Swarm
Optimization, and Differential Evolution–Fused Particle Swarm Optimization. The simulation results show that Multi-
strategy Coevolution gives better objective values than the other algorithms.
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Introduction

Unmanned aerial vehicle (UAV) scheduling has been
scrutinized by researchers in various application
domains. Some researchers pursue green UAV opera-
tions, while some others seek to efficiently fulfill impor-
tant tasks in an emergency situation.1,2 The scheduling
process involves a very large combinatorial space, a
plethora of constraints and uncertainties—making the
scheduling problem difficult to solve.3 The reported
works comprise not only UAV applications in outdoor
environments but also the ones indoor. In indoor

manufacturing environment, Khosiawan et al.4 investi-
gated the optimization of UAV operations for inspec-
tion and material handling. UAVs are assigned to
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perform multiple tasks in the given environment.
Nigam et al.5 performed a study on parallel surveil-
lance with multiple UAVs in an indoor test facility.
The multiple task execution problem can be considered
as a transportation problem (with zero payload or
unlimited cargo capacity), where a UAV flies from one
location to another to execute a task. Furthermore, a
UAV executes one task after another (and possibly
recharges its battery) in a planning horizon. In the
transportation problem, Verderame et al.6 address that
the main challenges lie in the areas of fleet sizing, vehi-
cle routing, and scheduling.7,8

This article focuses on the task scheduling system of
bridge inspection operations using UAVs. It has the
characteristic of both indoor and outdoor environ-
ments. While navigating beneath the bridge, the Global
Positioning System (GPS) signal is not reliable since it
is blocked by the deck.9 The positioning system can uti-
lize ultra-wideband, inertial measurement unit (IMU)
or light detection and ranging (LiDAR). To enhance
the accuracy and/or reliability, they can be combined
and filtered based on the measurements’ confidence lev-
els. This technique brings flight uncertainty into play.
Being outdoor, the existence of wind causes the real
flight time to deviate from the scheduled one. Another
constraint is the maximum flight time, by which the
operational time is limited. The objectives of the sche-
duling system are to optimize the combination of the
task value, makespan, and battery consumption. In
other words, it maximizes the throughput and mini-
mizes the cost of operation. Such objectives require a
delay-tolerant scheduling system, which measures the
impact of the uncertainty. It means that the schedule
overall yields an optimized objective which relates to
different considered measurements of uncertainty.

Regardless of the application domain, a scheduling
system can consider uncertainties to yield a robust solu-
tion. Wu et al.10 consider a scheduling problem where
the release dates of the tasks are uncertain. The uncer-
tainty is characterized by the estimated probability dis-
tribution of the arrival time. This assumption is highly
dependent on the actuality of the observations. When
the behavior of one of the involved elements in the
operations is changed, the value is prone to differ. Li
and Ierapetritou11 present a scheduling system which
considers uncertain processing time. In the problem
formulation, the authors address the processing time
uncertainty which is relevant to the addressed problem
in this article. The uncertainty is characterized by an
estimated variability of the processing time. This is rea-
listic when the granularity of the task is made as atomic
as possible. Hence, for that atomic process, a reason-
able experiment-based variability can be considered in
the scheduling.

Figure 1 illustrates the impact of execution uncer-
tainty on a schedule. The schedule instance corresponds
to a plan of tasks to be executed within a given make-
span MSmax. When the scheduling system optimistically
assigns the tasks, the schedule becomes tight. A delayed
completion time of a task (task ½) prevents the UAVs
to return to base safely. Furthermore, task � needs to
wait for the completion of task ½—given that task ½
is task �’s predecessor. If the command dispatcher is
intelligent, recharge tasks are carried out before
tasks� and —with the drawback of MSmax being vio-
lated. The task assignments could have been arranged
in a more realistic way which can cope up with the
unknown known uncertainties.

Herroelen and Leus12 brought the insight on reactive
scheduling in their study. Reactive scheduling does not
cope with uncertainty in creating the baseline schedule
but revises the baseline schedule when an uncertain
event occurs. In this article, the identified uncertainties
are taken into account during the schedule
generation—discouraging nervousness on the schedul-
ing system. The uncertain flight time and task execu-
tion are patched with calculated slacks, which act as
cushions. This means that the schedule allows the
whole execution to finish at its earliest end time (when
no uncertainty occurs), yet still considers a near opti-
mum cost when uncertainty occurs. Due to this beha-
vior, the respective algorithm is named Retractable
Chain Task Assignment algorithm (RCTA).

Davenport et al.13 have studied the usage of slack-
based techniques for creating robust schedules. In the
reported work, the temporal protection gives a slack
toward the duration of the task. The amount of the
temporal protection is the duration of uncertainties
that are expected to occur during the execution of the
task. The distinction of the presented RCTA is that
there are temporal lower slack and upper slack, whose
roles are different. The temporal lower slack is respon-
sible for handling the delayed preceding or predecessor
task, while the upper one is responsible for handling
the current task’s delay (see ‘‘Mathematical formula-
tion and methodology’’ section for details). The earliest

Figure 1. Inapplicable schedule due to execution uncertainty.
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end time of a task is the earliest start time of the subse-
quent task, and the latest end time of a task takes the
latest end time of the previous task into account. In this
manner, the slack time of a task is sharable by all the
subsequent tasks in a particular sequence, yet allowing
the schedule to complete early (as if no slack is assigned
at all) when no uncertainties occur. Consequently, a
non-straightforward manner to evaluate the objective
value of the schedule is needed and presented in the
‘‘Mathematical formulation and methodology’’ section.

Furthermore, researchers14,15 have investigated real-
time task scheduling system in dynamic and uncertain
environments. In the reported works, the points of
interest (in connection with the tasks) are moving dur-
ing the mission execution. Pongpunwattana and
Rysdyk14 consider the possibility of multiple UAVs to
cooperate on the same task, unlike Bertuccelli et al.15 In
both works, heuristic-based approaches are used. This
is due to the nature of the problems being NP-hard.
The most commonly used gradient-based techniques in
the past can be either costly or even impossible to
obtain the minima.16 On the other hand, heuristic-based
approaches, including metaheuristics, are suitable for
exploring even the unlikely area in the search space to
get a near optimum feasible solution in a reasonable
amount of time.

In this study, RCTA is developed for constructing
the schedule from a sequence. An individual in the pop-
ulation during the search is a sequence of tasks. This is
due to the tractable manipulation of the sequence rep-
resentation, which is required during the search. The
sequence is yet transformable to the detailed schedule
representation (e.g. with the timestamp, trajectory, and
position of interest properties) by using RCTA. For the
search, a metaheuristic algorithm called Multi-strategy
Coevolution (MC) is proposed. Some researchers17,18

investigate evolutionary algorithms which employ mul-
tiple strategies on subpopulations. On the other hand,

MC clones the population to allow the individuals to
experience each strategy simultaneously. The main pop-
ulation is called the elite group, where after a number
of iterations will be replaced through a tournament
selection of the other groups. This process iterates until
the termination condition is met.

In addition, the UAV operations can be exposed to
a constraint of maximum total makespan Tmax.
Depending on the sequence of execution of the task,
the respective flight cost to go to the point of interest
can be different. This constraint becomes an input for
RCTA. RCTA assigns a task into the schedule when
the total makespan is less than Tmax. Otherwise, the task
is discarded—it means that there is no UAV which can
make it before Tmax. During the search, MC maximizes
the total value of the tasks in the schedule. When there
is no Tmax, MC minimizes the makespan. In both cases,
the objective is followed by battery consumption
minimization.

The main contributions of this study are listed as
follows:

� Developed RCTA to construct a schedule from a
sequence.

The constructed schedule incorporates slack time which
acts like a cushion. Hence, the start time of a following
task can be retracted as early as the end time of a pre-
ceding task. Yet, the latest end time takes into account
a realistic slack time in connection with the task type
and the required flight.

� Developed Multi-strategy Coevolution algorithm
to perform the search.

This metaheuristic algorithm allows each individual in
the population to be exposed to each strategy at the
same state. The elite group is cloned according to the
number of search strategies, and each clone group is
exposed to a search strategy. The clone groups are
linked to the elite one through a tournament selection
which is done every couple of iterations. The result of
the tournament selection replaces the elite group. This
process iterates until the termination condition is met.

The remainder of the article is organized as follows.
The description of the problem is addressed in the
‘‘Problem definition’’ section. The proposed methodol-
ogy: RCTA and MC are explained in detail in the
‘‘Mathematical formulation and methodology’’ section.
The results of numerical experiments and analysis are
presented in the ‘‘Numerical simulations’’ section. The
concluding remarks of the study are then presented in
the ‘‘Conclusion’’ section.

Algorithm 1. Task Sequence Repair Algorithm.

Input: task sequence (q)
Output: feasible task sequence (qf )

1: qf  null
2: while q is not empty do
3: for task in q do
4: for d in qf do
5: if task.predecessorList contains d then
6: remove d from task.predecessors
7: if task.predecessorList is empty then
8: break
9: if task.predecessorList is empty then
10: add task into qf

11: remove task from q
12: break

Khosiawan et al. 3



Problem definition

This work investigates the scheduling of multiple-UAV
operations in a bridge inspection, which considers exe-
cution delays due to flight uncertainty. There are multi-
ple tasks representing multiple inspection areas
throughout the bridge. UAV performs the given tasks
in accordance with the environment specifications.4 In
a given time horizon, the corresponding tasks are
planned as a schedule, which will be executed after-
ward. A UAV executes a task at a time, and the task
can only be executed once. Since the task is executed at
a particular geographical location, the position data
become a relevant factor to look at. The values in the
data are influenced by the flight uncertainty factors
such as the mechanical condition of the UAV, the envi-
ronmental condition (e.g. wind), and the measurement
data from the positioning system during the task execu-
tion. In Figure 2(a) and (b), the planned flight path
andits execution are depicted through waypoints (o)
and paths (-). The flight uncertainty causes the execu-
tion to deviate from the planned flight. The deviation
distances for all planned waypoints are measured.
Through a one-sided t-test (with the null hypothesis of
the mean distance equals 0, against the alternative
where the mean is greater than that), they are statisti-
cally significantly deviating from the planned ones—
with p value= 5:8585e� 16, a= 0:05.

Upon the observation of the data, the flight
approaching and leaving a waypoint tend to experience
delays. This corresponds to the aforementioned flight
path deviation during the execution. While approach-
ing a target waypoint, the UAV slows down and checks
whether it has arrived at the desired position. When the
UAV is within \1m radius, it considers that it is at
that particular location. This is related to the dimen-
sion of the UAV which can be represented at least as a
sphere with a diameter of 0.5m. As the required confi-
dence gets higher, getting an accurate actual position
measurement can take longer time. Furthermore, to fly
toward the subsequent waypoint, the UAV might need
to adjust its orientation (in respect to the Euler angles).
Thus, the magnitude of the waypoints contributes to
the scale of the delayed flight execution time.

To deal with such an operational environment, the
schedule shall be delay-tolerant. This means that the
comprised tasks in the schedule are neither under- nor
over-assigned—in respect to the involved constraints
(e.g. battery consumption, maximum makespan). This
is measured through the robustness of the schedule in
the proposed approach.

This study addresses the problem of multiple-UAV
scheduling system with a delay-tolerant awareness.
Multiple inspection tasks are performed by multiple
UAVs, whose execution time uncertainties can delay

the scheduled completion time. The tasks can have pre-
cedence relationship, and the predictive execution time
is determined. A fixed-time schedule of the tasks intro-
duces high nervousness, in which flight conflicts arise
and a high operational cost is incurred. An approach
which is based on slack time is proposed in this study.
Consequently, a task schedule is encapsulated by an
earliest start time and a latest end time—other proper-
ties are explained in detail in the ‘‘Mathematical formu-
lation and methodology’’ section. A corresponding
schedule instance is depicted in Figure 3. The overlap-
ping timespans of tasks assigned to a UAV (e.g. time-
spans 0–48 and 44–55 on UAV 101) are related to the
proposed method which is explained in the
‘‘Mathematical formulation and methodology’’ section.
Upon the schedule completion, the remaining battery
power of a UAV is ensured to be sufficient for return-
ing back to recharge station. For conciseness, the final
trip back to recharge station is not explicitly included
in the schedule.

In coherence with the aforementioned goal, the
objectives of minimizing makespan and battery

Figure 2. (a) Planned flight path and (b) its execution
uncertainty.
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consumption are pursued through schedule optimiza-
tion. The primary objective is to minimize the make-
span of schedule d (denoted by MS(d)), followed by
minimizing the battery consumption of schedule d

(denoted by B(d))—refer equations (1) and (2),
respectively

Minimize MS dð Þ ð1Þ

Minimize B dð Þ ð2Þ

Correspondingly, the tasks have task values, whose
total is maximized. The task value correlates to the pro-
portion of a task in completing the whole bridge inspec-
tion. The more in depth the (inspection) task type, the
higher the task value. Furthermore, the processing time
increases as the task type gets more in depth. Task value
and processing time of different task types are depicted
in Table 1. The types of the task include large-scale (e.g.
on the deck surface), detailed (e.g. on the hanger), and
hands-on inspections (e.g. on the joint of the hanger
and the deck, and the joint of the hanger and the arch
or the foundation). The regions of interest on the bridge
are illustrated in Figure 4. A large-scale inspection can
be done through image processing,19 a detailed one can
be with ultrasonic,20 and a hands-on one can be a coor-
dinated combination of both.

Moreover, a task might have predecessor tasks. A
predecessor task is a task which is not necessarily
assigned right before a particular task, but its comple-
tion must be prior to the commencement of the particu-
lar task. It differs from a preceding task, which is

assigned right before a particular task in a UAV’s
schedule.

In addition, a subproblem with a maximum make-
span limitation is addressed. When the maximum
makespan is limited, the primary objective is to maxi-
mize the total task value (equation (3)), followed by
minimizing the battery consumption (equation (2)).
The detailed mathematical formulation is presented
side by side with the proposed methodology in detail in
the ‘‘Mathematical formulation and methodology’’
section

Minimize V dð Þ ð3Þ

The backbone of the problem addressed in this arti-
cle can be considered as traveling salesman optimiza-
tion problem. This problem is known to be NP-hard,21

where mathematical approaches require a significantly
increased amount of time as the problem grows.22

Hence, the mathematical approaches are only suitable
for small-scale problems in practice.

The case which is used in the ‘‘Numerical simula-
tions’’ section is depicted in Figure 5(a). The forward
part of the bridge is shown with the available way-
points and paths; see Figure 5(b) for more emphasis on
waypoints and paths. Figure 5(c) depicts an isometric
view which mostly covers the view beneath the arch of
the bridge, illustrating the labeled waypoints and paths
which are used during the scheduling. A corresponding
instance of task data is depicted in Table 2. The afore-
mentioned schedule instance in Figure 3 comprises the
tasks in Table 2. In this study, the simulation focuses
on the flight uncertainty, while the task execution
uncertainty is addressed in the proposed method.
Hence, the scope of this work serves as a progress

Table 1. Task type.

Task type Description Task
value

Processing
time (s)

1 Large-scale inspection 5 5
2 Detailed inspection 10 15
3 Hands-on inspection 20 25

Figure 3. Illustration of a schedule instance.

Figure 4. Regions of interest on the bridge.

Khosiawan et al. 5



toward the delay-tolerant multiple-UAV scheduling
system.

Mathematical formulation and
methodology

RCTA

In the UAV operations, there are uncertain events
which can affect the schedule execution. This leads to
the deviation of the real flight time from the scheduled
one. The motivation of generating the schedule is to
optimize the combination of total task value, make-
span, and battery consumption. When a schedule which
considers no uncertainty is executed under an environ-
ment with uncertainties, the purpose of the schedule
becomes undermined. Hence, the proposed methodol-
ogy seeks a delay-tolerant schedule, which overall yields
an optimized objective which relates to different consid-
ered measurements of uncertainty.

RCTA allows a flexible amount of time between two
adjacent tasks in a schedule. A temporal lower slack is
used in consideration of the preceding and predecessor
tasks. The earliest start time of task i assigned to UAV
u, denoted by jui, equals the latest time among the ear-
liest end time of the preceding task zu, i�1 and the prede-
cessor tasks z(fui) (see equation (4))

jui = max zu, i�1, max zið Þ
i2fu, i

 !
ð4Þ

The latest start time of task i executed by UAV u,
denoted by aui, equals the latest time among the latest
end time of the preceding task, denoted by vu, i�1, and
the latest end time of the predecessor tasks fui, denoted
by v(fui) (see equation (5))

aui = max vu, i�1, max
i2fu, i

við Þ
� �

ð5Þ

When no delay occurs, the schedule hence can be
executed as if no slack is assigned—yet the slack time
can be used by every subsequent task in a particular
sequence. When the latter part of the schedule is prone
to more delay (e.g. by the delay that occurred in the
beginning of the schedule), the unused former slack
provides more tolerance.

Equation (6) states the earliest end time of task i

assigned to UAV u, denoted by zui, equals the earliest
start time jui plus the duration of the task d0ui

zui = jui + d0ui
ð6Þ

Equations (7) and (8) show the latest end time of
task i assigned to UAV u, denoted by vui, equals the lat-
est start time aui plus the duration of the task and the
respective slack dui. This is where the upper slack is used
in consideration of the current task’s delay. Depending
on the type of the task, the respective task slack time is

Figure 5. Forward part of a bridge.
Note: Labels in Figure 5c mark the positions and waypoints in the UAV

operations. Positions in Table 2 correspond to these labels.

Table 2. Task data.

Task ID Position Task type Predecessors (Task IDs)

1 BD-UL3 1 –
2 BD-LL3 1 –
3 BD-M3 1 –
4 BD-M6 1 –
5 BD-UR3 1 –
6 BD-LR3 2 –
7 OL-L3 3 –
8 OL-U6 2 7
9 OR-L6 3 –
10 OR-U3 2 9

6 Advances in Mechanical Engineering



contributed by clui
. When it is a flight action, the slack

time is contributed by wlui

vui =aui + dui ð7Þ

dui = d0ui
+ clui

+wlui
ð8Þ

A task has a specialization as an action; it can be a
flight, wait-on-ground, hover, or battery replacement
action. A flight action has uncertainty in its execution
time. On the other hand, hover, wait-on-ground, and
battery replacement actions have no execution uncer-
tainty, setting the slack time to zero. In connection to
this classification, the slack time of a task can be clui

or
wlui

as depicted in equations (9) and (10). For a task,
the slack is predetermined based on the type of the task
tui, that is, large-scale, detailed, and hands-on inspec-
tions. For a flight action, it is based on the number of
traversed waypoints h and a variable flight slack lf. A
priori observations show that the UAV experiences
more execution uncertainty when it tries to fly through
multiple waypoints than just cruising on a straight line
between two waypoints. This phenomenon drives the
granularity of the flight delay time to be in respect to
the number of the traversed waypoints (h). The flight
delay time in regard to a waypoint determines the value
of the variable slack lf

clui
= lt tuið Þ ð9Þ

wlui
= h� 1ð Þ�lf ð10Þ

The value of lf is not constant; it follows a normal
distribution model based on the real test flight data.
These data belong to the flight of a UAV following a
plan depicted in Figure 2(a). The flight data are
recorded in the form of Robot Operating System
(ROS) messages, whose properties include position and
timestamp.23 The message is broadcasted at the fre-
quency of 50Hz—see Figure 6(a) for the whole data
(notice that Figure 2(b) is constructed by taking the
closest corresponding waypoints from the data in
Figure 6(a) in connection with the planned ones in
Figure 2(a)). The data are then sampled in connection
with the planned waypoints. At each planned way-
point, messages whose positions are within 1m are col-
lected. This is related to the reference system of the
UAV which considers a UAV to be at a particular posi-
tion when it is \1m in distance. Then, the respective
timestamps are formed into groups based on the corre-
sponding planned waypoint. The biggest difference of
timestamp in each group is calculated, and the respec-
tive data from all groups are estimated to follow a nor-
mal distribution, where m̂= 3:83 and ŝ = 3:05. These
values indicate a reasonable flight uncertainty that
incurs when the UAV approaches a waypoint and
leaves it to go to the next one. The sampling is

illustrated in Figure 6(b), in which (o) and (-) represent
waypoint and path, respectively.

Furthermore, the UAV velocity is calculated and
modeled based on previously obtained flight data. The
flight data comprise the positions and timestamps of
the UAV while operating at a constant velocity. A nor-
mal distribution is fit to the data, where m̂= 0:52 and
ŝ= 0:24 are estimated. This is used in the numerical
simulation to imitate the UAV flight performance. In
the simulation, the velocity can be lower than average
for an entire flight path—not just when it is approach-
ing a waypoint. In this manner, the simulation puts the
generated schedule in a harsher operational environ-
ment than the real one.

Equations (11) to (13) depict the battery level calcu-
lation. The battery consumption of task i which is exe-
cuted by UAV u, denoted by bui, equals the difference
between the latest end time of the task vui and the pre-
ceding one vu, i�1. It relates to the characteristic of the
temporal lower slack and the upper slack which are
incorporated into the schedule as depicted in Figure 7.
This applies to all tasks except battery replacement and
wait-on-ground actions, where bui = 0. Respectively,
the battery level of UAV u after executing task i,
denoted by Bui, is decreased by bui when it is a task

Figure 6. (a) Whole and (b) sampled ROS messages around
the planned waypoints.

Khosiawan et al. 7



execution, flight or hover action. In the case of battery
replacement action, the battery level of the UAV is set
to its full capacity F. Otherwise, the UAV sits on the
ground, in which the battery consumption is assumed
as 0. The battery replacement is scheduled before task i

if there is not enough battery level on the UAV to go
to the nearest recharge station after the task execution.
In this manner, the final trip back to recharge station is
accounted for in the scheduling. Letting j be the flight
action from the position of task i to the nearest
recharge station, the battery replacement triggering
condition is depicted in equation (14)

bui =vui � vu, i�1 ð11Þ
Bui =Bu, i�1 � bui ð12Þ

Bui =F ð13Þ
Bui\buj ð14Þ

In the case where maximum makespan limitation
MSmax exists, the insertion of a task is dropped when the
yielded schedule makespan MS(d) exceeds the defined
limit. Otherwise, MSmax equals ‘ indicates the schedul-
ing case without maximum makespan limitation. A
flowchart of RCTA is depicted in Figure 8.

MC

To search the solution space, a metaheuristic algorithm
called Multi-strategy Coevolution algorithm is pro-
posed. In principle, it utilizes linked clone groups which
run different strategies during the search. The fitness
evaluation of a solution candidate during the search is
based on the defined objective(s).

The objective function of minimizing the makespan
of schedule d, denoted by MS(d), is depicted in equa-
tion (17). Iu is the number of tasks in a sequence which
is assigned to UAV u 2 U= f1, 2, . . . ,Ug, and slackui

equals the slack time clui
or wlui

, depending on whether

it is a flight action or a task (note that an action is a
specialization of task). The naive makespan of UAV u,
denoted by MSu, is calculated according to equation (15).
Correspondingly, the naive makespan of the entire
schedule d, denoted by MS(d), is calculated according to
equation (16)

MSu =vui i= Iu ð15Þ
MS dð Þ= max

u2U
MSuð Þ ð16Þ

The usage of the natural logarithm is to avoid exces-
sive slack time. This is because the value which is

Figure 7. Structural representation of a task schedule.

Figure 8. Flowchart of Retractable Chain Task Assignment
algorithm.
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subtracted from MSu becomes normalized (not exces-
sive). A bit longer slack can be accepted, but as it gets
longer, more battery replacements are required. It leads
to a longer makespan, and, respectively, lower chance
of the schedule to be selected. The usage of (Iu � i)+ 1

allows a bigger slack time for tasks in the latter parts of
the schedule. This is due to their higher likelihood of
getting delayed, which is translated from the interfer-
ence on the former tasks

MS dð Þ= min max
u2U

MSu �
XIu

i= 1

ln slackuið Þ
Iu � ið Þ+ 1

" # !
ð17Þ

When the maximum makespan limitation exists, the
objective is to maximize the total task value V(d), whose
function is depicted in equation (18)

V dð Þ=
XU

u= 1

XIu

i= 1

vui ð18Þ

The aforementioned objective functions are primary
for the, respectively, mentioned cases (i.e. without and
with maximum makespan limitation). In both cases, the
primary objective function is followed by a secondary
objective of minimizing the battery consumption B(d),
whose function is depicted in equation (19). When mul-
tiple solutions have equal primary objective value, the
secondary one breaks the tie. The battery consumption

is quantified in terms of its lifetime. In this pilot study,
the rate is assumed to be constant over time (i.e. when
the UAV flies toward a position, hovers, or executes a
task)

B dð Þ=
XU

u= 1

XIu

i= 1

bui ð19Þ

The detailed procedure of MC is explained as fol-
lows, and the respective flowchart is depicted in
Figure 9.

Step 1. Initialize the parameters of the utilized stra-
tegies. For MC itself, initialize the size of population
P, period of the tournament selection T , the maxi-
mum number of iterations N , and the maximum
number of stagnant iterations Ns (no improvement
seen). In this study, P equals 40, T equals 10, N

equals 40, and Ns equals 10. For the crossover oper-
ations, the crossover probability CR equals 0:5.
These values are selected based on a priori
simulations.
Step 2. Generate the initial swarm based on the pri-
ority rules which are intuitively believed to produce
good starting points. When the number of priority
rules is less than P, the remaining individuals are
generated by mutating the existing ones. From this
point forward, the initial swarm is referred as the

Figure 9. Flowchart of Multi-strategy Coevolution algorithm.
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elite group et, where the iteration index t equals 0.
In addition, the counter of stagnant iterations ts
equals 0.
Step 3. If t ø N or ts ø Ns has been met, end the
search and take the best solution d as the output.
Otherwise, go to step 4.
Step 4. Clone et as many as the number of the uti-
lized strategies S. In this study, two strategies are
used: (1) crossover between an individual in the
group and a random one in et and (2) crossover
between an individual in the group and the best
solution. The crossover point is random at any given
time. When a crossover is performed, a simple repair
mechanism which follows Algorithm 1 is
performed—this serves as the mutation experience.
Correspondingly, together with et, there are S + 1

groups in total. The execution of a strategy in a
group allows interactions with the elite group, but
only limited to read access. Furthermore, d is shared
by all the groups throughout the entire search.
Step 5. For each iteration, each clone group will exe-
cute its strategy on a certain individual to produce a
new candidate c. If c is better, replace the individual
with c. When c is better than the current d, set d to
c. This operation can be performed on all individu-
als or partly, according to the defined strategy.
Step 6. In the end of an iteration, increase t by 1. If
there is no improvement on the best solution in this
iteration, increase ts by 1.
Step 7. For every T iterations, a tournament selec-
tion is held among the clone groups. The best P

individuals are selected to form a new elite group
et + 1, discarding the old one et. Go to Step 3.

Furthermore, the robustness level of the schedule is
calculated in a straightforward way. For every task (i.e.
action or task) in the schedule, the scheduled time is
compared against the one from the simulation. If the
simulated execution time is contained inside the sched-
uled one, it is put into the set of conformed tasks Tc,
otherwise it is put into the violated set Tv.
Correspondingly, the robustness level R(%) is depicted
in equation (20)

R=
jTcj

jTcj+ jTvj
�100 ð20Þ

Numerical simulations

In the numerical simulations, scenarios of inspection
on a site depicted in Figure 5 with 2 up to 10 UAVs are
carried out. The number of tasks Nt is set to 52 in the
data of every scenario. As mentioned in the ‘‘Problem
definition’’ section, this study inclines toward the flight
uncertainty investigation. Consequently, the task exe-
cution uncertainty is not included in the simulation.

The simulations include comparisons of the proposed
method MC with Differential Evolution (DE), Particle
Swarm Optimization (PSO), and Differential
Evolution–Fused Particle Swarm Optimization
(DEFPSO—introduced by Khosiawan et al.24). DE
and PSO are prominent metaheuristic algorithms
among others, which have been used in various optimi-
zation problems.16,25 To have a fair comparison, all
metaheuristic algorithms (DE, DEFPSO, MC, and
PSO) are given the same P, N , and Ns. The crossover
operation in DEFPSO and MC is a one-point cross-
over, with a random crossover point following a uni-
form distribution (a= 0, b=Nt � 1). The parameter
values for each algorithm are listed as follows.

� DE

F = 0:8 (weighting factor which controls mutation)
and CR= 0:5 (crossover control parameter)

� DEFPSO

F = 0:5 (F acts similar to c2 in PSO), CR= 0:5

� MC

T = 10 and CR= 0:5

� PSO

c1 = 1 (cognitive learning coefficient) and c2 = 2 (social
learning coefficient), while u1 and u2 are randomly
(following a uniform distribution) set in the range of
[0, 0.5].

� DE, PSO, DEFPSO, and MC

P= 40 (size of population), N = 40 (maximum number
of iterations), and Ns = 10 (maximum number of stag-
nant iterations).

In the following figures (Figures 10–14), the mea-
surement of the schedule properties is depicted in box-
plots and fitted lines. A boxplot depicts the distribution
of data based on the five-number summary (minimum,
first quartile, median, third quartile, and maximum). A
fitted line depicts a local polynomial regression fitting26

with span= 0:75 and degree= 2.
At a glance, the makespan of the schedule is obvi-

ously decreased when more UAVs are used (see
Figure 10). However, this observation needs a further
investigation on its robustness. Through the simula-
tions, more waiting time due to the high path occupa-
tions are found. More delays are exposed and the
robustness of the schedule is decreased. On the other
hand, this condition has a compensation when the
tasks are more distributed to the higher number of
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UAVs. Distinctly assigned areas are likely to produce
optimized makespan, the sequence assigned to each
UAV is not long, and hence the battery consumption
can be decreased. In a different setup, where more
alternative paths are available, the robustness defi-
ciency can be alleviated at the cost of longer make-
span and battery consumption.

The effects of the occupied path and the less assigned
tasks (to each UAV) keep pulling each other. Figure 11
depicts this phenomenon. In the beginning, the battery
consumption is decreased as the number of UAVs
begins to increase. As it gets higher (the exact number
differs from one algorithm to another), the overhead
cost of departing and going back from and to the base
is increased. Since the paths are clogged, a higher
amount of waiting time is exposed—which can create
more delay and decrease the robustness. In opposition
to that, the more distributed tasks yield less tasks for
each UAV to execute, and the battery consumption for
that is less. As a result, a sin-like pattern can be seen in
the depicted boxplots.

The robustness degrades as the limited number of
paths (especially when they depart from one single sta-
tion/base) is clogged by numerous UAVs. Figure 12(a)
depicts the consequence of the delayed completion time
caused by the frequently occupied paths. It makes the
execution time of the planned tasks deviate from the
schedule. This degradation can be reduced by tracking
the path occupation during the schedule generation.
This brings a drawback of an increased computation
time, though. In addition, the respective schedule
potentially has more hover actions, whose total battery
consumption is not attractive. Moreover, the diminish-
ing robustness in the presented result helps to indicate
the effective number of UAVs to be used.

To present a further investigation on such a phe-
nomenon, the robustness levels of schedules considering
a large number of competitive alternative paths are pre-
sented in Figure 12(b). It means that an alternative path
exists when the shortest one is occupied, and their costs
are equal. Another factor which degrades the robust-
ness level as the number of UAVs increases is the

diminishing cumulative buffer effect. When the tasks
are highly distributed, each UAV has less assigned
tasks. This leads to less unused slack time which can be
contributed from the former to the latter part of the
schedule. Notice that the UAV engine failure is not
included in the simulation in this study.

In connection with the performance of the pro-
posed metaheuristic algorithm, schedules from MC
have less makespan and battery consumption than
DE, PSO, and DEFPSO. Furthermore, the lower
bound of the robustness is slightly better than others.
The computation time of the schedule generation with
MC is reasonable, even though it is not the fastest one
(see Figure 13). This can be seen as the trade-off with
the better other properties of the generated schedule.

Figure 10. Makespan of the schedule based on the simulations. Figure 11. Battery consumption of the schedule based on the
simulations.

Figure 12. Robustness level of the schedule based on
simulations with (a) limited and (b) large number of competitive
alternative paths.
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Correspondingly, performing the operations with 2
UAVs looks reasonably good in this case study.

Numerical simulations for operations with maxi-
mum makespan limitation are also conducted. The
results are depicted in Figure 14 and the respective
analysis is presented as follows. Let MSmax be 600 s
(10min), one can consider the utilization of 3 to 4
UAVs as a viable option. MC gives better objective val-
ues, which are task value and battery consumption in
this case, than the other algorithms. Specifically, the
task value can be highly obtained when 3 or 4 UAVs
are used, and all tasks are shown to be covered from
that point onward. Consequently, the battery consump-
tion goes relatively stagnant when 4 and more UAVs
are utilized. An observation on the computation time
of MC shows that it reaches the peak at 6 to 7 UAVs.
This shows the characteristic of metaheuristic where it
might get attracted to a local optimum. When such a
condition holds for more than Ns iterations, it caused a
few simulation runs of 10 UAVs to end immediately.
Based on Table 3, the average computation time of
MC on 7 and 10 UAVs are 4.78 and 4.34 s. It indicates
that the peak is quite marginal.

The schedule makespan is decreased as the tasks are
more distributed among the UAVs. The corresponding
computation time scales, in regard to the solution space
which gets bigger following the higher number of
UAVs. As depicted in the previous case (MSmax =‘),
the robustness level degrades as more UAVs are
involved. In both cases, the effectiveness of the pro-
posed method is aligned to the balance between the
number of the deployed UAVs and the map. The
amount of 2 to 4 UAVs is considered appropriate to
enhance the efficiency while reducing the overhead and
waiting costs. This also gives a mean robustness level
of ’ 75% and above. When the large number of com-
petitive alternative paths is used, the robustness level
can be maintained better. Figure 15 depicts the mean
robustness level of .90% when 2 to 4 UAVs are used.
This is consistent with Figure 12(b).

Table 3 lists the mean makespan (MS), mean battery
consumption (B), mean computation time (�t), and

mean robustness level (R) for different numbers of
UAVs (U ) and algorithms (A). The mean task value (V)
is shown when MSmax = 600 s, while it is omitted (MS

always equals 260) when MSmax =‘. The best values
among the compared algorithms are marked with aster-
isks, and the ones yielded by MC are shaded (when the
values from all algorithms are equal, no asterisk is

Figure 13. Computation time of the schedule generation
based on the simulations.

Figure 14. Simulations with maximum makespan limitation.
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given). Each mean value corresponds to the average of
the values from the respective 20 simulation runs.
Hence, in total there are 36 3 20=720 runs from each
case (where MSmax = 600 s and MSmax =‘).

Conclusion

This study investigates a delay-tolerant scheduling sys-
tem for bridge inspection operations. A constructive
algorithm called Retractable Chain Task Assignment
algorithm is presented. RCTA is tailored for assigning
slack time on the task schedules. RCTA is incorporated
with a proposed metaheuristic algorithm called Multi-

Table 3. Means of the numerical simulation results.

No. U A MSmax =‘ MSmax = 600

MS(s) B t(s) R(%) V B MS(s) t(s) R(%)

1 2 DE 1071.8 2007.3 3.86 93.3 157.5 1116.4 594.2 2.62 85.8
2 2 DEFPSO 1209.5 2274.55 2.65 91.45 143 1115.05 592.45 2.44 91.7*
3 2 MC 986.3* 1854.65* 3.96 90 172.5* 1105.35* 590.45* 3.05 91.05
4 2 PSO 1241.55 2338.7 2.48* 93.6* 136.5 1117.1 591.85 2.11* 84.4
5 3 DE 704.65 1968.4 5.12 86.5* 226 1664.4 594 3.72 82.1*
6 3 DEFPSO 792.95 2205.75 2.67 83.25 203.75 1659.6 590.5 2.58* 79.8
7 3 MC 660.35* 1838.15* 4.19 82.45 238.5* 1648.7 591.85 3.67 74.95
8 3 PSO 831.25 2310.15 2.60* 81.4 204.25 1647.75* 588.9* 2.66 82.1*
9 4 DE 530.7 1946.1 4.42 68 260* 1982.85 543.75 3.67 74.5
10 4 DEFPSO 594.75 2169.1 2.66* 75.1 257 2095.65 570.15 2.78 75.85*
11 4 MC 504.25* 1858.3* 3.84 69.6 260* 1844.65* 509.9* 4.32 74.8
12 4 PSO 608.45 2218.25 2.80 79.8* 250.75 2156.35 585 2.62* 72.7
13 5 DE 435.15 1983.25 4.45 70.2* 260 1952.15 441.55 4.54 64.45
14 5 DEFPSO 498.55 2249.4 2.54* 68.65 260 2193.25 483.45 2.76 66.45
15 5 MC 408.4* 1862.6* 4.06 63.35 260 1856.05* 420.65* 4.49 71.05*
16 5 PSO 492.35 2218.1 2.82 68.4 260 2203.65 488.9 2.6* 68.95
17 6 DE 369.85 2015.4 4.92 64.45 260 1980.15 379.7 4.25 61.1
18 6 DEFPSO 401.1 2144.1 3.25* 56.65 260 2149.85 406.25 3.18* 62.55
19 6 MC 352.95* 1909.7* 4.06 66.95* 260 1873.65* 363.9* 4.66 56.45
20 6 PSO 432.55 2283.65 3.33 60.3 260 2252.85 427.9 3.22 70.4*
21 7 DE 324.4 2015.9 4.43 53.25 260 1976.6 341.3 3.78 58.15
22 7 DEFPSO 345.65 2109.05 3.97 54.65 260 2160.35 357.8 3.38 50.5
23 7 MC 311.25* 1961.9* 4.36 53.8 260 1848.7* 320.4* 4.78 57.45
24 7 PSO 369.3 2246.25 3.39* 59.4* 260 2335.6 385.1 3.17* 61.4*
25 8 DE 278.95 1955.05* 5.97 46 260 1948.85 289.35 4.28 49.9
26 8 DEFPSO 313.7 2136.2 3.6 52.85* 260 2128 313.85 3.46 49.15
27 8 MC 277.9* 1980.6 4.75 48.7 260 1839.95* 280.95* 4.65 39.1
28 8 PSO 331.6 2266.35 3.4* 52.35 260 2279.4 332.95 2.95* 52.8*
29 9 DE 252.5 1991.25 4.98 43.35 260 1939.85 256.1* 5.09 41.65
30 9 DEFPSO 279.1 2135.55 3.21* 44.9 260 2153.05 283.35 3.09* 42.35
31 9 MC 251* 1965.9* 4.59 40.85 260 1891.35* 262.6 4.41 40.3
32 9 PSO 303.7 2264.45 4.37 44.95* 260 2165.7 290.05 3.97 50.75*
33 10 DE 229.75 2004.25 5.82 37.35 260 1917.55 233.7* 4.65 32.35
34 10 DEFPSO 262.75 2197.5 3.51* 41.7 260 2171.05 265.15 3.5* 37.7*
35 10 MC 228.85* 1985.4* 4.85 35.65 260 1904.45* 234.85 4.34 37.25
36 10 PSO 269.9 2235.25 4.26 41.9* 260 2176.95 266.55 3.8 37

DE: Differential Evolution; DEFPSO: Differential Evolution–Fused Particle Swarm Optimization; MC: Multi-strategy Coevolution; PSO: Particle Swarm

Optimization.

The best values among the compared algorithms are marked with asterisks, and the ones yielded by MC are shaded (when the values from all

algorithms are equal, no asterisk is given).

Figure 15. Robustness level of schedule based on simulations
with MSmax = 600 and large number of competitive alternative
paths.
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strategy Coevolution to search the solution space. MC
utilizes linked clone groups to perform multiple strate-
gies separately and yet share the best solution through-
out the entire search. Furthermore, the elite group
(which is cloned to form the other groups) is replaced
every several iterations through a tournament selection
of the other groups. The generated schedules are com-
pared against simulations to measure the robustness
level. A diminishing benefit behavior as the number of
UAVs increases is found, and the appropriate number
of multiple UAVs in proportion to the scale of the
tasks and environment (map) can vary. The effective-
ness of the proposed method is proportional to the
well-balanced scales of the map and the UAVs.
Furthermore, MC outperforms the DE, PSO, and
DEFPSO in terms of the schedule objectives (make-
span and battery consumption). The robustness level of
MC is on par with the other algorithms. In terms of
computation time, MC is inferior toward PSO while
being on par with the others. This is consistent on both
cases: with and without the maximum makespan
limitation.
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